1
|
Heagy FK, Clements KN, Adams CL, Blain E, Issa FA. Socially induced plasticity of the posterior tuberculum and motor behavior in zebrafish (Danio rerio). J Exp Biol 2024; 227:jeb248148. [PMID: 39422204 PMCID: PMC11626077 DOI: 10.1242/jeb.248148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Social dominance is prevalent throughout the animal kingdom. It facilitates the stabilization of social relationships and allows animals to divide resources according to social rank. Zebrafish form stable dominance relationships that consist of dominants and subordinates. Although social status-dependent differences in behavior must arise as a result of neural plasticity, mechanisms by which neural circuits are reconfigured to cope with social dominance are poorly described. Here, we describe how the posterior tuberculum nucleus (PTN), which integrates sensory social information to modulate spinal motor circuits, is morphologically and functionally influenced by social status. We combined non-invasive behavioral monitoring of motor activity (startle escape and swim) and histological approaches to investigate how social dominance affects the morphological structure, axosomatic synaptic connectivity and functional activity of the PTN in relation to changes in motor behavior. We show that dopaminergic cell number significantly increases in dominants compared with subordinates, while PTN synaptic interconnectivity, demonstrated with PSD-95 expression, is higher in subordinates than in dominants. Secondly, these socially induced morphological differences emerge after 1 week of dominance formation and correlate with differences in cellular activities illustrated with higher phosphor-S6 ribosomal protein expression in dominants compared with subordinates. Thirdly, these morphological differences are reversible as the social environment evolves and correlate with adaptations in startle escape and swim behaviors. Our results provide new insights into the neural bases of social behavior that may be applicable to other social species with similar structural and functional organization.
Collapse
Affiliation(s)
- Faith K. Heagy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Katie N. Clements
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Carrie L. Adams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elena Blain
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Fadi A. Issa
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
2
|
Hayashi S, Fujiuchi M, Oshiden M, Honda A, Kagawa N. Opioid receptor and dopaminergic gene expression increase in the brains of dominant medaka Oryzias latipes males after repeated fights. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39462145 DOI: 10.1111/jfb.15980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The central opioid system and dopaminergic activity in mammals play key roles in mediating social reward, impulsivity, cognition, decision making, and motivation for learning and social interactions. Repeated positive fighting experiences enhance the gene expression levels of μ-type opioid receptor (Mor), tyrosine hydroxylase (Th), an enzyme involved in dopamine synthesis, and dopamine receptor type 2 (D2r) in the reward-related brain regions of aggressive mice. However, it remains unclear whether the opioid system and dopaminergic activity are associated with repeated winning in fish. In this study, we investigated changes in the expression levels of Mor, Th1, and D2r in different regions of the brain of adult medaka Oryzias latipes males after intermittent and continuous fight for 3 days. When a pair of males was provided a fighting opportunity for 20 min per day, we noted that within the 3-day observation period, aggressive winning males showed significantly higher expression levels of Mor in telencephalon and diencephalon, Th1 in diencephalon, and D2r in telencephalon than subordinate losing males. However, no such differences in gene expression level were observed between winning and losing males in the 3-day continuous fight. Further, no differences were detected in the total number of aggressive actions among the winners from each fighting test. However, the total number of "chase" actions, with a stronger aggressiveness index, was higher for the repeated winning male in the three-time intermittent fight than for the winner in the 3-day continuous fight. These findings suggest that repeated intermittent winning experiences with strong aggressiveness could be perceived as a reward by O. latipes males.
Collapse
Affiliation(s)
- Suzuna Hayashi
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Miki Fujiuchi
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Mei Oshiden
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Akira Honda
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Nao Kagawa
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| |
Collapse
|
3
|
McNaught-Flores DA, Chen YC, Arias-Montaño JA, Panula P, Leurs R. Pharmacological characterization of the zebrafish Hrh2a histamine H 2 receptor. Eur J Pharmacol 2024; 981:176870. [PMID: 39117262 DOI: 10.1016/j.ejphar.2024.176870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The zebrafish, Danio rerio, is a widely adopted in vivo model that conserves organs such as the liver, kidney, stomach, and brain, being, therefore, suitable for studying human diseases, drug discovery and toxicology. The brain aminergic systems are also conserved and the histamine H1, H2 and H3 receptors were previously cloned and identified in the zebrafish brain. Genome studies identified another putative H2 receptor (Hrh2) with ∼50% sequence identity with H2 receptor orthologs. In this study, we recombinantly expressed both zebrafish H2 receptor paralogs (hrh2a and hrh2b) and compared their pharmacology with the human H2 receptor ortholog. Our results showed that both zebrafish receptors conserve all the class A GPCR motifs. However, in contrast with the Hrh2a paralog, the Hrh2b does not possess all the amino acid residues shown to participate in histamine binding. The zebrafish Hrh2a receptor displays high affinity for [3H]-tiotidine with a binding profile for H2 receptor ligands similar to that of the human H2 receptor. The zebrafish Hrh2a receptor couples to GαS and Gαq/11 proteins, resulting in cAMP accumulation and activation of several reporter genes linked to the Gαq/11 pathway. Additionally, this receptor shows high constitutive activity, with histamine potency in the low nanomolar range for cAMP accumulation and the micromolar range for the activation of the NFAT response element. Moreover, dimaprit and amthamine seem to preferentially activate GαS over Gαq/11 proteins via the zebrafish Hrh2a receptor. These results can contribute to clarifying the functional roles of the H2 receptor in zebrafish.
Collapse
Affiliation(s)
- Daniel A McNaught-Flores
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Jose-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Tea M, Pan YK, Lister JGR, Perry SF, Gilmour KM. Effects of serta and sertb knockout on aggression in zebrafish (Danio rerio). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:785-799. [PMID: 38416162 DOI: 10.1007/s00359-024-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Zebrafish (Danio rerio) are unusual in having two paralogues of the serotonin re-uptake transporter (Sert), slc6a4a (serta) and slc6a4b (sertb), the transporter that serves in serotonin re-uptake from a synapse into the pre-synaptic cell or in serotonin uptake from the extracellular milieu into cells in the peripheral tissues. To address a knowledge gap concerning the specific roles of these paralogues, we used CRISPR/Cas9 technology to generate zebrafish knockout lines predicted to lack functional expression of Serta or Sertb. The consequences of loss-of-function of Serta or Sertb were assessed at the gene expression level, focusing on the serotonergic signalling pathway, and at the behaviour level, focusing on aggression. Whereas serta mRNA was expressed in all tissues examined, with high expression in the heart, gill and brain, only the brain displayed substantial sertb mRNA expression. In both serta-/- and sertb-/- fish, changes in transcript abundances of multiple components of the serotonin signalling pathway were detected, including proteins involved in serotonin synthesis (tph1a, tph1b, tph2, ddc), packaging (vmat2) and degradation (mao), and serotonin receptors (htr1aa, htr1ab). Using a mirror aggression test, serta-/- male but not female fish exhibited greater aggression than wildtype fish. However, both male and female sertb-/- fish displayed less aggression than their wildtype counterparts. These differences in behaviour between serta-/- and sertb-/- individuals hold promise for increasing our understanding of the neurophysiological basis of aggression in zebrafish.
Collapse
Affiliation(s)
- Michael Tea
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Yihang Kevin Pan
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Joshua G R Lister
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
5
|
Stennette KA, Godwin JR. Estrogenic influences on agonistic behavior in teleost fishes. Horm Behav 2024; 161:105519. [PMID: 38452611 DOI: 10.1016/j.yhbeh.2024.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Teleost fishes show an extraordinary diversity of sexual patterns, social structures, and sociosexual behaviors. Sex steroid hormones are key modulators of social behaviors in teleosts as in other vertebrates and act on sex steroid receptor-containing brain nuclei that form the evolutionarily conserved vertebrate social behavior network (SBN). Fishes also display important differences relative to tetrapod vertebrates that make them particularly well-suited to study the physiological mechanisms modulating social behavior. Specifically, fishes exhibit high levels of brain aromatization and have what has been proposed to be a lifelong, steroid hormone dependent plasticity in the neural substrates mediating sociosexual behavior. In this review, we examine how estrogenic signaling modulates sociosexual behaviors in teleosts with a particular focus on agonistic behavior. Estrogens have been shown to mediate agonistic behaviors in a broad range of fishes, from sexually monomorphic gonochoristic species to highly dimorphic sex changers with alternate reproductive phenotypes. These similarities across such diverse taxa contribute to a growing body of evidence that estrogens play a crucial role in the modulation of aggression in vertebrates. As analytical techniques and genomic tools rapidly advance, methods such as LC-MS/MS, snRNAseq, and CRISPR-based mutagenesis show great promise to further elucidate the mechanistic basis of estrogenic effects on social behavior in the diverse teleost lineage.
Collapse
Affiliation(s)
- Katherine A Stennette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Kleiber A, Roy J, Brunet V, Baranek E, Le-Calvez JM, Kerneis T, Batard A, Calvez S, Pineau L, Milla S, Guesdon V, Calandreau L, Colson V. Feeding predictability as a cognitive enrichment protects brain function and physiological status in rainbow trout: a multidisciplinary approach to assess fish welfare. Animal 2024; 18:101081. [PMID: 38335569 DOI: 10.1016/j.animal.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Cognitive enrichment is a promising but understudied type of environmental enrichment that aims to stimulate the cognitive abilities of animals by providing them with more opportunities to interact with (namely, to predict events than can occur) and to control their environment. In a previous study, we highlighted that farmed rainbow trout can predict daily feedings after two weeks of conditioning, the highest conditioned response being elicited by the combination of both temporal and signalled predictability. In the present study, we tested the feeding predictability that elicited the highest conditioned response in rainbow trout (both temporal and signalled by bubbles, BUBBLE + TIME treatment) as a cognitive enrichment strategy to improve their welfare. We thus analysed the long-term effects of this feeding predictability condition as compared with an unpredictable feeding condition (RANDOM treatment) on the welfare of rainbow trout, including the markers in the modulation of brain function, through a multidisciplinary approach. To reveal the brain regulatory pathways and networks involved in the long-term effects of feeding predictability, we measured gene markers of cerebral activity and plasticity, neurotransmitter pathways and physiological status of fish (oxidative stress, inflammatory status, cell type and stress status). After almost three months under these predictability conditions of feeding, we found clear evidence of improved welfare in fish from BUBBLE + TIME treatment. Feeding predictability allowed for a food anticipatory activity and resulted in fewer aggressive behaviours, burst of accelerations, and jumps before mealtime. BUBBLE + TIME fish were also less active between meals, which is in line with the observed decreased expression of transcripts related to the dopaminergic system. BUBBLE + TIME fish tented to present fewer eroded dorsal fin and infections to the pathogen Flavobacterium psychrophilum. Decreased expression of most of the studied mRNA involved in oxidative stress and immune responses confirm these tendencies else suggesting a strong role of feeding predictability on fish health status and that RANDOM fish may have undergone chronic stress. Fish emotional reactivity while isolated in a novel-tank as measured by fear behaviour and plasma cortisol levels were similar between the two treatments, as well as fish weight and size. To conclude, signalled combined with temporal predictability of feeding appears to be a promising approach of cognitive enrichment to protect brain function via the physiological status of farmed rainbow trout in the long term.
Collapse
Affiliation(s)
- A Kleiber
- JUNIA, Comportement Animal et Systèmes d'Elevage, F-59000 Lille, France; INRAE, LPGP, Campus de Beaulieu, 35042 Rennes, France; INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | - J Roy
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - V Brunet
- INRAE, LPGP, Campus de Beaulieu, 35042 Rennes, France
| | - E Baranek
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | | | | | - A Batard
- INRAE, PEIMA, 29450 Sizun, France
| | - S Calvez
- Oniris, INRAE, BIOEPAR, 44300 Nantes, France
| | - L Pineau
- Oniris, INRAE, BIOEPAR, 44300 Nantes, France
| | - S Milla
- Université de Lorraine, INRAE, UR AFPA, 54505 Vandoeuvre-lès-Nancy, France
| | - V Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, F-59000 Lille, France
| | - L Calandreau
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - V Colson
- INRAE, LPGP, Campus de Beaulieu, 35042 Rennes, France
| |
Collapse
|
7
|
Clevenger T, Paz J, Stafford A, Amos D, Hayes AW. An Evaluation of Zebrafish, an Emerging Model Analyzing the Effects of Toxicants on Cognitive and Neuromuscular Function. Int J Toxicol 2024; 43:46-62. [PMID: 37903286 DOI: 10.1177/10915818231207966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
An emerging alternative to conventional animal models in toxicology research is the zebrafish. Their accelerated development, regenerative capacity, transparent physical appearance, ability to be genetically manipulated, and ease of housing and care make them feasible and efficient experimental models. Nonetheless, their most esteemed asset is their 70% (+) genetic similarity with the human genome, which allows the model to be used in a variety of clinically relevant studies. With these attributes, we propose the zebrafish is an excellent model for analyzing cognitive and neuromuscular responses when exposed to toxicants. Neurocognition can be readily analyzed using visual discrimination, memory and learning, and social behavior testing. Neuromuscular function can be analyzed using techniques such as the startle response, assessment of activity level, and evaluation of critical swimming speed. Furthermore, selectively mutated zebrafish is another novel application of this species in behavioral and pharmacological studies, which can be exploited in toxicological studies. There is a critical need in biomedical research to discover ethical and cost-effective methods to develop new products, including drugs. Through mutagenesis, zebrafish models have become key in meeting this need by advancing the field in numerous areas of biomedical research.
Collapse
Affiliation(s)
| | - Jakob Paz
- Florida College, Temple Terrace, FL, USA
| | | | | | - A Wallace Hayes
- College of Public Health, University of South Florida, Temple Terrace, FL, USA
| |
Collapse
|
8
|
Luchiari AC, Maximino C. Fish personality: meta-theoretical issues, personality dimensions, and applications to neuroscience and psychopathology. PERSONALITY NEUROSCIENCE 2023; 6:e9. [PMID: 38107778 PMCID: PMC10725779 DOI: 10.1017/pen.2023.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 12/19/2023]
Abstract
While the field of personality neuroscience has extensively focused on humans and, in a few cases, primates and rodents, a wide range of research on fish personality has emerged in the last decades. This research is focused mainly on the ecological and evolutionary causes of individual differences and also aimed less extensively at proximal mechanisms (e.g., neurochemistry or genetics). We argue that, if consistent and intentional work is made to solve some of the meta-theoretical issues of personality research both on fish and mammals, fish personality research can lead to important advances in personality neuroscience as a whole. The five dimensions of personality in fish (shyness-boldness, exploration-avoidance, activity, aggressiveness, and sociability) need to be translated into models that explicitly recognize the impacts of personality in psychopathology, synergizing research on fish as model organisms in experimental psychopathology, personality neuroscience, and ecological-ethological approaches to the evolutionary underpinnings of personality to produce a powerful framework to understand individual differences.
Collapse
Affiliation(s)
- Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
9
|
Alex D, Cardoso SD, Ramos A, Gonçalves D. Behavioral and endocrine responses to noninteractive live and video conspecifics in males of the Siamese fighting fish. Curr Zool 2023; 69:568-577. [PMID: 37637314 PMCID: PMC10449422 DOI: 10.1093/cz/zoac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 08/29/2023] Open
Abstract
The physiological mechanisms underlying variation in aggression in fish remain poorly understood. One possibly confounding variable is the lack of standardization in the type of stimuli used to elicit aggression. The presentation of controlled stimuli in videos, a.k.a. video playback, can provide better control of the fight components. However, this technique has produced conflicting results in animal behavior studies and needs to be carefully validated. For this, a similar response to the video and an equivalent live stimulus needs to be demonstrated. Further, different physiological responses may be triggered by live and video stimuli, and it is important to demonstrate that video images elicit appropriate physiological reactions. Here, the behavioral and endocrine responses of male Siamese fighting fish Betta splendens to a matched-for-size conspecific fighting behind a one-way mirror, presented live or through video playback, were compared. The video playback and live stimulus elicited a strong and similar aggressive response by the focal fish, with a fight structure that started with stereotypical threat displays and progressed to overt attacks. Postfight plasma levels of the androgen 11-ketotestosterone were elevated as compared to controls, regardless of the type of stimuli. Cortisol also increased in response to the video images, as previously described for live fights in this species. These results show that the interactive component of a fight and its resolution are not needed to trigger an endocrine response to aggression in this species. The study also demonstrates for the first time in a fish a robust endocrine response to video stimuli and supports the use of this technique for researching aggressive behavior in B. splendens.
Collapse
Affiliation(s)
- Deepa Alex
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 106, Macao SAR, China
| | - Sara D Cardoso
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 106, Macao SAR, China
| | - Andreia Ramos
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 106, Macao SAR, China
| | - David Gonçalves
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 106, Macao SAR, China
| |
Collapse
|
10
|
Locascio A, Annona G, Caccavale F, D'Aniello S, Agnisola C, Palumbo A. Nitric Oxide Function and Nitric Oxide Synthase Evolution in Aquatic Chordates. Int J Mol Sci 2023; 24:11182. [PMID: 37446358 DOI: 10.3390/ijms241311182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Nitric oxide (NO) is a key signaling molecule in almost all organisms and is active in a variety of physiological and pathological processes. Our understanding of the peculiarities and functions of this simple gas has increased considerably by extending studies to non-mammal vertebrates and invertebrates. In this review, we report the nitric oxide synthase (Nos) genes so far characterized in chordates and provide an extensive, detailed, and comparative analysis of the function of NO in the aquatic chordates tunicates, cephalochordates, teleost fishes, and amphibians. This comprehensive set of data adds new elements to our understanding of Nos evolution, from the single gene commonly found in invertebrates to the three genes present in vertebrates.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Department of Research Infrastructure for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
11
|
Lopes AR, Leandro LP, Mariano MVT, Posser T, Franco J. Assessment of alcohol-induced aggressive behavior in zebrafish (Danio rerio): A practical class. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:455-460. [PMID: 37078473 DOI: 10.1002/bmb.21730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 04/21/2023]
Abstract
Ethanol (EtOH) is among the most consumed drugs in the world. The behavior of humans after ingestion of this drug is characteristic: At low doses it may be excitatory and at higher doses, it may induce depressant/sedative effects. Similar effects are observed in the zebrafish experimental model (Danio rerio), which has about 70% genetic similarity with humans and has been widely used in numerous research. With the objective of improving the learning of biochemistry students, this work aimed to develop a practical exercise in the laboratory for students to observe the behavioral repertoire of zebrafish under the effects of exposure to ethanol. Through this practical class, the students were able to observe the similarity of the behavior of the animal model with that of humans, showing its importance for the consolidation of knowledge, awakening in the students an interest in science and its applications in everyday life.
Collapse
Affiliation(s)
- Andressa Rubim Lopes
- Post graduate Program in Physiological Sciences, Institute of Biological Sciences, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group (GPEOSCEL), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel, Rio Grande do Sul, Brazil
| | - Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group (GPEOSCEL), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel, Rio Grande do Sul, Brazil
| | - Thais Posser
- Oxidative Stress and Cell Signaling Research Group (GPEOSCEL), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel, Rio Grande do Sul, Brazil
| | - Jeferson Franco
- Oxidative Stress and Cell Signaling Research Group (GPEOSCEL), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Scott E, Brewer MS, Peralta AL, Issa FA. The Effects of Social Experience on Host Gut Microbiome in Male Zebrafish ( Danio rerio). THE BIOLOGICAL BULLETIN 2023; 244:177-189. [PMID: 38457676 DOI: 10.1086/729377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractAlthough the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group-housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms.
Collapse
|
13
|
Schuett GW, Peterson KH, Powell AR, Taylor JD, Alexander JR, Lappin AK. Female-female aggression in the Gila monster ( Heloderma suspectum). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221466. [PMID: 37181791 PMCID: PMC10170349 DOI: 10.1098/rsos.221466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
Historically, the role of aggression in the social lives of animals overwhelmingly focused on males. In recent years, however, female-female aggression in vertebrates, particularly lizards, has received increasing attention. This growing body of literature shows both similarities and differences to aggressive behaviours between males. Here, we document female-female aggression in captive Gila monsters (Heloderma suspectum). Based on four unique dyadic trials (eight adult female subjects), we developed a qualitative ethogram. Unexpected and most intriguing were the prevalence and intensity of aggressive acts that included brief and sustained biting, envenomation, and lateral rotation (i.e. rolling of body while holding onto opponent with closed jaws). Given specific behavioural acts (i.e. biting) and the results of bite-force experiments, we postulate that osteoderms (bony deposits in the skin) offer some degree of protection and reduce the likelihood of serious injury during female-female fights. Male-male contests in H. suspectum, in contrast, are more ritualized, and biting is rarely reported. Female-female aggression in other lizards has a role in territoriality, courtship tactics, and nest and offspring guarding. Future behavioural research on aggression in female Gila monsters is warranted to test these and other hypotheses in the laboratory and field.
Collapse
Affiliation(s)
- Gordon W. Schuett
- Department of Biology | Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Chiricahua Desert Museum, Rodeo, NM, USA
| | | | - Anthony R. Powell
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, USA
| | - John D. Taylor
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, USA
| | - Jennifer R. Alexander
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, USA
| | - A. Kristopher Lappin
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, USA
| |
Collapse
|
14
|
Kinoshita M, Okamoto H. Acetylcholine potentiates glutamate transmission from the habenula to the interpeduncular nucleus in losers of social conflict. Curr Biol 2023:S0960-9822(23)00445-1. [PMID: 37105168 DOI: 10.1016/j.cub.2023.03.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Switching behaviors from aggression to submission in losers at the end of conspecific social fighting is essential to avoid serious injury or death. We have previously shown that the experience of defeat induces a loser-specific potentiation in the habenula (Hb)-interpeduncular nucleus (IPN) and show here that this is induced by acetylcholine. Calcium imaging and electrophysiological recording using acute brain slices from winners and losers of fighting behavior in zebrafish revealed that the ventral IPN (vIPN) dominates over the dorsal IPN in the neural response to Hb stimulation in losers. We also show that GluA1 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits on the postsynaptic membrane increased in the vIPN of losers. Furthermore, these loser-specific neural properties disappeared in the presence of an α7 nicotinic acetylcholine receptor (nAChR) antagonist and, conversely, were induced in brain slices of winners treated with α7 nAChR agonists. These data suggest that acetylcholine released from Hb terminals in the vIPN induces activation of α7 nAChR followed by an increase in postsynaptic membrane GluA1. This results in an increase in active synapses on postsynaptic neurons, resulting in the potentiation of neurotransmissions to the vIPN. This acetylcholine-induced neuromodulation could be the neural foundation for behavioral switching in losers. Our results could increase our understanding of the mechanisms of various mood disorders such as social anxiety disorder and social withdrawal.
Collapse
Affiliation(s)
- Masae Kinoshita
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan.
| |
Collapse
|
15
|
de Moura LA, Pyterson MP, Pimentel AFN, Araújo F, de Souza LVXB, Mendes CHM, Costa BPD, de Siqueira-Silva DH, Lima-Maximino M, Maximino C. Roles of the 5-HT2C receptor on zebrafish sociality. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110769. [PMID: 37068544 DOI: 10.1016/j.pnpbp.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Serotonin (5-HT) receptors have been implicated in social behavior in vertebrates. Zebrafish (Danio rerio) have been increasingly being used behavioral neuroscience to study the neurobiological correlates of behavior, including sociality. Nonetheless, the role of 5-HT2C receptors in different social functions were not yet studied in this species. Zebrafish were treated with the agonist MK-212 (2 mg/kg) or the antagonist RS-102221 (2 mg/kg) and tested in the social interaction and social novelty tests, conditional approach test, or mirror-induced aggressive displays. MK-212 increased preference for an unknown conspecific in the social investigation test, but also increased preference for the known conspecific in the social novelty test; RS-102221, on the other hand, decreased preference in the social investigation test but increased preference for the novel conspecific in the social novelty test. MK-212 also decreased predator inspection in the conditional approach test. While RS-102221 decreased time in the display zone in the mirror-induced aggressive display test, it increased display duration. Overall, these results demonstrate the complex role of 5-HT2C receptors in different social contexts in zebrafish, revealing a participation in social plasticity in vertebrates.
Collapse
Affiliation(s)
- Layana Aquino de Moura
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Maryana Pereira Pyterson
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Ana Flávia Nogueira Pimentel
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Fernanda Araújo
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Loanne Valéria Xavier Bruce de Souza
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém, PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Caio Henrique Moura Mendes
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Bruna Patrícia Dutra Costa
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Grupo de Estudos da Reprodução de Peixes Amazônicos, Faculdade de Biologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil.
| |
Collapse
|
16
|
Svitačová K, Slavík O, Horký P. Pigmentation potentially influences fish welfare in aquaculture. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
17
|
Identification and Characterization of 5-HT Receptor 1 from Scylla paramamosain: The Essential Roles of 5-HT and Its Receptor Gene during Aggressive Behavior in Crab Species. Int J Mol Sci 2023; 24:ijms24044211. [PMID: 36835632 PMCID: PMC9960410 DOI: 10.3390/ijms24044211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Biogenic amines (BAs) play an important role in the aggressive behavior of crustaceans. In mammals and birds, 5-HT and its receptor genes (5-HTRs) are characterized as essential regulators involved in neural signaling pathways during aggressive behavior. However, only one 5-HTR transcript has been reported in crabs. In this study, the full-length cDNA of the 5-HTR1 gene, named Sp5-HTR1, was first isolated from the muscle of the mud crab Scylla paramamosain using the reverse-transcription polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends (RACE) methods. The transcript encoded a peptide of 587 amino acid residues with a molecular mass of 63.36 kDa. Western blot results indicate that the 5-HTR1 protein was expressed at the highest level in the thoracic ganglion. Furthermore, the results of quantitative real-time PCR show that the expression levels of Sp5-HTR1 in the ganglion at 0.5, 1, 2, and 4 h after 5-HT injection were significantly upregulated compared with the control group (p < 0.05). Meanwhile, the behavioral changes in 5-HT-injected crabs were analyzed with EthoVision. After 0.5 h of injection, the speed and movement distance of the crab, the duration of aggressive behavior, and the intensity of aggressiveness in the low-5-HT-concentration injection group were significantly higher than those in the saline-injection and control groups (p < 0.05). In this study, we found that the Sp5-HTR1 gene plays a role in the regulation of aggressive behavior by BAs, including 5-HT in the mud crab. The results provide reference data for the analysis of the genetic mechanism of aggressive behaviors in crabs.
Collapse
|
18
|
Scaia MF, Trudeau VL, Somoza GM, Pandolfi M. Fighting cichlids: An integrated multimodal analysis to understand female and male aggression in Cichlasoma dimerus. Horm Behav 2023; 148:105301. [PMID: 36623433 DOI: 10.1016/j.yhbeh.2022.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023]
Abstract
Aggression has been historically linked to males and androgen levels and, even if females from different species also display aggressive behavior, female aggression is still widely understudied. The aim of the present work is to disentangle how sex differences in social plasticity can be explained by sex steroid hormone levels, gonadal state and/or morphometric characteristics. In this context, we performed intrasexual dyadic encounters to identify social plasticity after acquiring a winner or loser status in males and females of Cichlasoma dimerus. This integral analysis suggests that the reproductive and hormonal variables analyzed explain the behavioral variation among winner and loser males and females, and that there are significant differences between sexes and contest outcome when individual morphometric variables are excluded from the analysis. Interestingly, there are no sex differences in aggressive and submissive behaviors, and clustering into winners and losers is mainly explained by specific behavioral displays, such as bites, chases, approaches, passive copings, and escapes. Correlation heatmaps show a positive correlation between estradiol with aggression and a negative correlation with submission, suggesting estrogens may have a dual role regulating agonistic behavior. Finally, these results suggest that size difference can help to understand aggression in females but not in males, and that assessment of the opponent's body size is important to understand aggression also before the initiation of the contest in both sexes. Overall, this study constitutes an integral approach adding insights into the importance of reproductive and hormonal variables to understand social plasticity in males and females.
Collapse
Affiliation(s)
- María Florencia Scaia
- Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gustavo Manuel Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM). Argentina
| | - Matías Pandolfi
- Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
19
|
Meade EB, Iwanowicz LR, Neureuther N, LeFevre GH, Kolpin DW, Zhi H, Meppelink SM, Lane RF, Schmoldt A, Mohaimani A, Mueller O, Klaper RD. Transcriptome signatures of wastewater effluent exposure in larval zebrafish vary with seasonal mixture composition in an effluent-dominated stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159069. [PMID: 36174698 DOI: 10.1016/j.scitotenv.2022.159069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plant (WWTP) effluent-dominated streams provide critical habitat for aquatic and terrestrial organisms but also continually expose them to complex mixtures of pharmaceuticals that can potentially impair growth, behavior, and reproduction. Currently, few biomarkers are available that relate to pharmaceutical-specific mechanisms of action. In the experiment reported in this paper, zebrafish (Danio rerio) embryos at two developmental stages were exposed to water samples from three sampling sites (0.1 km upstream of the outfall, at the effluent outfall, and 0.1 km below the outfall) during base-flow conditions from two months (January and May) of a temperate-region effluent-dominated stream containing a complex mixture of pharmaceuticals and other contaminants of emerging concern. RNA-sequencing identified potential biological impacts and biomarkers of WWTP effluent exposure that extend past traditional markers of endocrine disruption. Transcriptomics revealed changes to a wide range of biological functions and pathways including cardiac, neurological, visual, metabolic, and signaling pathways. These transcriptomic changes varied by developmental stage and displayed sensitivity to variable chemical composition and concentration of effluent, thus indicating a need for stage-specific biomarkers. Some transcripts are known to be associated with genes related to pharmaceuticals that were present in the collected samples. Although traditional biomarkers of endocrine disruption were not enriched in either month, a high estrogenicity signal was detected upstream in May and implicates the presence of unidentified chemical inputs not captured by the targeted chemical analysis. This work reveals associations between bioeffects of exposure, stage of development, and the composition of chemical mixtures in effluent-dominated surface water. The work underscores the importance of measuring effects beyond the endocrine system when assessing the impact of bioactive chemicals in WWTP effluent and identifies a need for non-targeted chemical analysis when bioeffects are not explained by the targeted analysis.
Collapse
Affiliation(s)
- Emma B Meade
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Luke R Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, United States
| | - Nicklaus Neureuther
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Shannon M Meppelink
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Rachael F Lane
- U.S. Geological Survey, Kansas Water Science Center, 1217 Biltmore Dr, Lawrence, KS 66049, United States
| | - Angela Schmoldt
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Aurash Mohaimani
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Olaf Mueller
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States; Great Lakes Genomics Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States.
| |
Collapse
|
20
|
Almeida O, Félix AS, Oliveira RF. Interaction between vasotocin and gonadal hormones in the regulation of reproductive behavior in a cichlid fish. Acta Ethol 2022. [DOI: 10.1007/s10211-022-00404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Zhu B, Su X, Yu W, Wang F. What Forms, Maintains, and Changes the Boldness of Swimming Crabs (Portunus trituberculatus)? Animals (Basel) 2022; 12:ani12131618. [PMID: 35804517 PMCID: PMC9265058 DOI: 10.3390/ani12131618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
Boldness of personality is an important theme in animal behavior and has significant ecological and evolutionary consequences. Studies on boldness in crustaceans typically focus on their behavior, while relatively few studies have focused on the formation and maintenance of and change in boldness, such as energy metabolism and neurotransmission. In this study, we measured the boldness of swimming crabs (Portunus trituberculatus) and analyzed the relationship between boldness and oxygen consumption rate, energy concentration, and the relative expression of energy-metabolism-related and 5-HT genes in mRNA. The results showed that boldness remained stable across repeated tests but changed under dangerous conditions. Swimming crabs could be divided into bold and shy individuals. Bold individuals consumed oxygen at a significantly higher rate than shy individuals. Lactate and glucose concentrations in hemolymph were significantly lower in bold individuals than in shy individuals, and mRNA relative expression of Na+/K+-ATPase and 5-HT genes was significantly higher in bold than in shy individuals. Preliminary results indicate that energy metabolism and neurotransmitters may underlie the formation and maintenance of personality characteristics of swimming crabs. Swimming crabs also exhibit behavioral flexibility in order to cope with risks. This may be an adaptation to their complex environments.
Collapse
Affiliation(s)
- Boshan Zhu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (B.Z.); (X.S.)
| | - Xianpeng Su
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (B.Z.); (X.S.)
| | - Weiping Yu
- School of Biological and Ecological Engineering, Dongying Vocational Institute, 129 Fuqian Street, Dongying 257091, China;
| | - Fang Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (B.Z.); (X.S.)
- Correspondence:
| |
Collapse
|
22
|
Oliveira JA, da Silva Souza JG, de Jesus Paula DA, Carmo Rodrigues Virote BD, Murgas LDS. Oxytocin reduces the frequency of aggressive behaviours in male betta fish (Betta splendens). Behav Processes 2022; 200:104689. [PMID: 35718243 DOI: 10.1016/j.beproc.2022.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
The objective of this study was to evaluate the effect of visual isolation and the influence of oxytocin on the aggressive behaviour of male Betta splendens and produce an ethogram for analyses. In the first stage, the fish (n=6) were kept for 60 days in a recirculation system, maintaining visual contact. After this period, the mirror test was applied. The same procedure was performed with the same individuals after 30 days of visual isolation. Visual isolation did no effect on the aggressive behaviour. Application of oxytocin (2.5µg/g) for 1h (twice) in this first stage was also conducted after the mirror test. The effect of exposure to oxytocin was evaluated by applying the mirror test 24hours after the second exposure. The second stage was conducted with another 10 individuals exposed to oxytocin (7.5µg/g) for 1h, after which the mirror test was performed. Exposure to oxytocin (2.5µg/g) did not effect on combat-related behaviours. However, in the second stage influenced all behaviours related to combat and display, with an increase in the frequency of "rest" behaviour. The results indicate that exposure to a neuropeptide at a dose of 7.5µg/g reduces the frequency of aggressive behaviour of male Betta splendens.
Collapse
Affiliation(s)
- Júlia Alvarenga Oliveira
- Department of Biology, Natural Sciences Institute of Federal University of Lavras, UFLA, Rua Doutor Silvio Menicucci, s/n, Lavras 37200-900, Minas Gerais, Brazil
| | - José Gilmar da Silva Souza
- Department of Animal Science, College of Animal Science and Veterinary Medicine of Federal University of Lavras, UFLA, Rua Doutor Silvio Menicucci, s/n, Lavras 37200-900, Minas Gerais, Brazil
| | - Daniella Aparecida de Jesus Paula
- Postgraduate Program in Veterinary Medicine, College of Animal Science and Veterinary Medicine of Federal University of Lavras, UFLA, Rua Doutor Silvio Menicucci, s/n, Lavras 37200-900, Minas Gerais, Brazil.
| | - Bárbara do Carmo Rodrigues Virote
- Postgraduate Program in Veterinary Medicine, College of Animal Science and Veterinary Medicine of Federal University of Lavras, UFLA, Rua Doutor Silvio Menicucci, s/n, Lavras 37200-900, Minas Gerais, Brazil
| | - Luis David Solis Murgas
- Postgraduate Program in Veterinary Medicine, College of Animal Science and Veterinary Medicine of Federal University of Lavras, UFLA, Rua Doutor Silvio Menicucci, s/n, Lavras 37200-900, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Trieu-Duc V, Oshima K, Matsumura K, Iwasaki Y, Chiu MT, Nikaido M, Okada N. Alternative splicing plays key roles in response to stress across different stages of fighting in the fish Betta splendens. BMC Genomics 2022; 22:920. [PMID: 35637454 PMCID: PMC9150285 DOI: 10.1186/s12864-022-08609-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Background Aggression is an evolutionarily conserved behavior critical for animal survival. In the fish Betta splendens, across different stages of fighting interactions, fighting opponents suffer from various stressors, especially from the great demand for oxygen. Using RNA sequencing, we profiled differential alternative splicing (DAS) events in the brains of fish collected before fighting, during fighting, and after fighting to study the involvement of alternative splicing (AS) in the response to stress during the fight. Results We found that fighting interactions induced the greatest increase in AS in the ‘during-fighting’ fish, followed by that of the ‘after-fighting’ fish. Intron retention (IR) was the most enriched type among all the basic AS events. DAS genes were mainly associated with synapse assembly, ion transport, and regulation of protein secretion. We further observed that IR events significantly differentiated between winners and losers for 19 genes, which were associated with messenger RNA biogenesis, DNA repair, and transcription machinery. These genes share many common features, including shorter intron length and higher GC content. Conclusions This study is the first comprehensive view of AS induced by fighting interactions in a fish species across different stages of those interactions, especially with respect to IR events in winners and losers. Together, these findings facilitate future investigations into transcriptome complexity and AS regulation in response to stress under the context of aggression in vertebrates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08609-2.
Collapse
Affiliation(s)
- Vu Trieu-Duc
- School of Pharmacy, Kitasato University, Tokyo, Japan.,Life Sciences and Biotechnology Department, Tokyo Institute of Technology, Tokyo, Japan.,Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | - Yuri Iwasaki
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Ming-Tzu Chiu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Masato Nikaido
- Life Sciences and Biotechnology Department, Tokyo Institute of Technology, Tokyo, Japan
| | - Norihiro Okada
- School of Pharmacy, Kitasato University, Tokyo, Japan. .,Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan. .,Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.
| |
Collapse
|
24
|
Scaia MF, Akinrinade I, Petri G, Oliveira RF. Sex Differences in Aggression Are Paralleled by Differential Activation of the Brain Social Decision-Making Network in Zebrafish. Front Behav Neurosci 2022; 16:784835. [PMID: 35250500 PMCID: PMC8890505 DOI: 10.3389/fnbeh.2022.784835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
Although aggression is more prevalent in males, females also express aggressive behaviors and in specific ecological contexts females can be more aggressive than males. The aim of this work is to assess sex differences in aggression and to characterize the patterns of neuronal activation of the social-decision making network (SDMN) in response to intra-sexual aggression in both male and female zebrafish. Adult fish were exposed to social interaction with a same-sex opponent and all behavioral displays, latency, and time of resolution were quantified. After conflict resolution, brains were sampled and sex differences on functional connectivity throughout the SDMN were assessed by immunofluorescence of the neuronal activation marker pS6. Results suggest that both sexes share a similar level of motivation for aggression, but female encounters show shorter conflict resolution and a preferential use of antiparallel displays instead of overt aggression, showing a reduction of putative maladaptive effects. Although there are no sex differences in the neuronal activation in any individual brain area from the SDMN, agonistic interactions increased neuronal activity in most brain areas in both sexes. Functional connectivity was assessed using bootstrapped adjacency matrices that capture the co-activation of the SDMN nodes. Male winners increased the overall excitation and showed no changes in inhibition across the SDMN, whereas female winners and both male and female losers showed a decrease in both excitation and inhibition of the SDMN in comparison to non-interacting control fish. Moreover, network centrality analysis revealed both shared hubs, as well as sex-specific hubs, between the sexes for each social condition in the SDMN. In summary, a distinct neural activation pattern associated with social experience during fights was found for each sex, suggesting a sex-specific differential activation of the social brain as a consequence of social experience. Overall, our study adds insights into sex differences in agonistic behavior and on the neuronal architecture of intrasexual aggression in zebrafish.
Collapse
Affiliation(s)
- María Florencia Scaia
- Instituto de Biodiversidad y Biología Experimental y Aplicada—CONICET, Ciudad Auntónoma de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Ibukun Akinrinade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Giovanni Petri
- ISI Foundation and ISI Global Science Foundation, Torino, Italy
| | - Rui F. Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA– Instituto Universitário, Lisbon, Portugal
- Champalimaud Neuroscience Programme, Lisbon, Portugal
- *Correspondence: Rui F. Oliveira
| |
Collapse
|
25
|
Salahinejad A, Attaran A, Meuthen D, Chivers DP, Niyogi S. Proximate causes and ultimate effects of common antidepressants, fluoxetine and venlafaxine, on fish behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150846. [PMID: 34626640 DOI: 10.1016/j.scitotenv.2021.150846] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Antidepressant (AD) drugs are widely prescribed for the treatment of psychiatric disorders, including depression and anxiety disorders. The continuous use of ADs causes significant quantities of these bioactive chemicals to enter the aquatic ecosystems mainly through wastewater effluent discharge. This may result in many aquatic organisms being inadvertently affected by these drugs. Fluoxetine (FLX) and venlafaxine (VEN) are currently among the most widely detected ADs in aquatic systems. A growing body of experimental evidence demonstrates that FLX and VEN have a substantial capacity to induce neurotoxicity and cause behavioral dysfunctions in a wide range of teleost species. At the same time, these studies often report seemingly contradictory results that are confounding in nature. Hence, we clearly require comprehensive reviews that attempt to find overarching patterns and establish possible causes for these variable results. This review aims to explore the current state of knowledge regarding the neurobehavioral effects of FLX and VEN on fishes. This study also discusses the potential mechanistic linkage between the neurotoxicity of ADs and behavioral dysfunction and identifies key knowledge gaps and areas for future research.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
26
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|
27
|
Bozi B, Rodrigues J, Lima-Maximino M, de Siqueira-Silva DH, Soares MC, Maximino C. Social Stress Increases Anxiety-Like Behavior Equally in Male and Female Zebrafish. Front Behav Neurosci 2022; 15:785656. [PMID: 34987363 PMCID: PMC8721036 DOI: 10.3389/fnbeh.2021.785656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Zebrafish anxiety-like behavior was assessed in the novel tank test after the formation of dominant-subordinate hierarchies. Ten pairs of animals were subjected to dyadic interactions for 5 days, and compared with control animals. After this period, a clear dominance hierarchy was established across all dyads, irrespective of sex. Social status affected parameters of anxiety-like behavior in the novel tank test, with subordinate males and females displaying more bottom-dwelling, absolute turn angle, and freezing than dominant animals and controls. The results suggest that subordinate male and female zebrafish show higher anxiety-like behavior, which together with previous literature suggests that subordination stress is conserved across vertebrates.
Collapse
Affiliation(s)
- Brenno Bozi
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.,Grupo de Pesquisas em Neurociências, Comportamento & Cognição, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| | - Jeane Rodrigues
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.,Programa de Pós-Graduação em Reprodução Animal da Amazônia, ReproAmazon-Universidade Federal do Pará, Belém, Brazil.,Grupo de Estudos da Reprodução Animal, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| | - Monica Lima-Maximino
- Grupo de Pesquisas em Neurociências, Comportamento & Cognição, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.,Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.,Grupo de Estudos da Reprodução Animal, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| | - Marta Candeias Soares
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.,Grupo de Pesquisas em Neurociências, Comportamento & Cognição, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
28
|
Hollander-Cohen L, Meir I, Shulman M, Levavi-Sivan B. Identifying the Interaction of the Brain and the Pituitary in Social - and Reproductive - State of Tilapia by Transcriptome Analyses. Neuroendocrinology 2022; 112:1237-1260. [PMID: 35381588 DOI: 10.1159/000524437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
INTRODUCTION As in all vertebrates, reproduction in fish is regulated by gonadotrophin-releasing hormone (GnRH) control on gonadotrophic hormones (GtHs) activity. However, the neuroendocrine factors that promote GnRH and GtH activity are unknown. In Nile tilapia (Oreochromis niloticus), sexual activity and reproduction ability depend on social rank; only dominant males and females reproduce. Here, this characteristic of dominant fish allows us to compare brain and pituitary gene expression in animals that do and do not reproduce, aiming to reveal mechanisms that regulate reproduction. METHODS An extensive transcriptome analysis was performed, combining two sets of transcriptomes: a novel whole-brain and pituitary transcriptome of established dominant and subordinate males, together with a cell-specific transcriptome of luteinizing hormone (LH) and follicle-stimulating hormone cells. Pituitary incubation assay validated the direct effect of steroid application on chosen genes and GtH secretion. RESULTS In most dominant fish, as determined behaviorally, the gonadosomatic index was higher than in subordinate fish, and the leading upregulated pituitary genes were those coding for GtHs. In the brain, various neuropeptide genes, including isotocin, cholecystokinin, and MCH, were upregulated; these may be related to reproductive status through effects on behavior and feeding. In a STRING network analysis combining the two transcriptome sets, brain aromatase, highly expressed in LH cells, is the most central gene with the highest number of connections. In the pituitary incubation assay, testosterone and estradiol increased the secretion of LH and specific gene transcription. CONCLUSIONS The close correlation between behavioral dominance and reproductive capacity in tilapia allows unraveling novel genes that may regulate the hypothalamic-pituitary-gonadal axis, highlighting aromatase as the main factor affecting the brain and pituitary in maintaining a sexually active organism.
Collapse
Affiliation(s)
- Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel,
| | - Inbar Meir
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Miriam Shulman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
29
|
Targeting PSD95/nNOS by ZL006 alleviates social isolation-induced heightened attack behavior in mice. Psychopharmacology (Berl) 2022; 239:267-276. [PMID: 34661719 PMCID: PMC8521491 DOI: 10.1007/s00213-021-06000-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE Deregulated attack behaviors have devastating social consequences; however, satisfactory clinical management for the behavior is still an unmet need so far. Social isolation (SI) has been common during the COVID-19 pandemic and may have detrimental effects on mental health, including eliciting heightened attack behavior. OBJECTIVES This study aims to explore whether injection of ZL006 can alleviate SI-induced escalation of attack behavior in mice. METHODS Pharmacological tools, biochemical methods, and behavioral tests were used to explore the potential therapeutic effects of ZL006 targeting postsynaptic density 95 (PSD95)/neuronal nitric oxide synthase (nNOS) pathway on escalation of attack behavior induced by SI in mice. RESULTS ZL006 mitigated SI-induced escalated attack behaviors and elevated nitric oxide (NO) level in the cortex of the SI mice. The beneficial effects of ZL006 lasted for at least 72 h after a single injection of ZL006. Potentiation of NO levels by L-arginine blocked the effects of ZL006. Moreover, a sub-effective dose of 7-NI in combination with a sub-effective dose of ZL006 decreased both SI-induced escalated attack behaviors and NO levels in mice subjected to SI. CONCLUSIONS Our study highlights the importance of the PSD95/nNOS pathway in mediating SI-induced escalation of attack behavior. ZL006 may be a promising therapeutic strategy for treating aggressive behaviors.
Collapse
|
30
|
Hubená P, Horký P, Grabic R, Grabicová K, Douda K, Slavík O, Randák T. Prescribed aggression of fishes: Pharmaceuticals modify aggression in environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112944. [PMID: 34715502 DOI: 10.1016/j.ecoenv.2021.112944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Traces of psychoactive substances have been found in freshwaters globally. Fish are chronically exposed to pollution at low concentrations. The changes of aggressive behaviour of chub (Squalius cephalus) were determined under the exposure to four psychoactive compounds (sertraline, citalopram, tramadol, methamphetamine) at environmentally relevant concentrations of 1 μg/L for 42 days. We tested whether (A) the behavioural effect of compounds varies within a single species; (B) there is a correlation between the individual brain concentration of the tested pollutants and fish aggression using the novel analysis of pollutants in brain; and (C) there is detectable threshold to effective pollutant concentration in brain. Behaviour and pollutant concentrations in brain were determined repeatedly (1st, 7th, 21st, 42nd and 56th days), including a two-week-long depuration period. The effect of particular compounds varied. Citalopram and methamphetamine generally increased the fish aggression, while no such effect was found after exposure to tramadol or sertraline. The longitudinal analysis showed an aggression increase after depuration, indicating the presence of withdrawal effects in methamphetamine- and tramadol-exposed fish. The analysis of pollutant concentration in brain revealed a positive linear relationship of citalopram concentration and aggression, while no such effect was detected for other compounds and/or their metabolites. Structural break analyses detected concentration thresholds of citalopram (1 and 3 ng/g) and sertraline (1000 ng/g) in brain tissue, from which a significant effect on behaviour was manifested. While the effect of sertraline was not detected using traditional approaches, there was a reduction in aggression after considering its threshold concentration in the brain. Our results suggest that pursuing the concentration threshold of psychoactive compounds can help to reduce false negative results and provide more realistic predictions on behavioural outcomes in freshwater environments, especially in the case of compounds with bioaccumulation potential such as sertraline.
Collapse
Affiliation(s)
- Pavla Hubená
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| | - Pavel Horký
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Karel Douda
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Ondřej Slavík
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| |
Collapse
|
31
|
Li X, Liu H, Li D, Lei H, Wei X, Schlenk D, Mu J, Chen H, Yan B, Xie L. Dietary Seleno-l-Methionine Causes Alterations in Neurotransmitters, Ultrastructure of the Brain, and Behaviors in Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11894-11905. [PMID: 34488355 DOI: 10.1021/acs.est.1c03457] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elevated concentrations of dietary selenium (Se) cause abnormalities and extirpation of fish inhabiting in Se-contaminated environments. However, its effect on fish behavior and the underlying mechanisms remain largely unknown. In this study, two-month-old zebrafish (Danio rerio) was fed seleno-l-methionine (Se-Met) at environmentally relevant concentrations (i.e., control (2.61), low (5.43), medium (12.16), and high (34.61) μg Se/g dry weight (dw), respectively, corresponding to the C, L, M, and H treatments) for 60 days. Targeted metabolomics, histopathological, and targeted transcriptional endpoints were compared to behavioral metrics to evaluate the effects of dietary exposure to Se-Met . The results showed that the levels of total Se and malondialdehyde in fish brains were increased in a dose-dependent pattern. Meanwhile, mitochondrial damages and decreased activities of the mitochondria respiratory chain complexes were observed in the neurons at the M and H treatments. In addition, dietary Se-Met affected neurotransmitters, metabolites, and transcripts of the genes associated with the dopamine, serotonin, gamma-aminobutyric acid, acetylcholine, and histamine signaling pathways in zebrafish brains at the H treatments. The total swimming distance and duration in the Novel Arm were lowered in fish from the H treatment. This study has demonstrated that dietary Se-Met affects the ultrastructure of the zebrafish brain, neurotransmitters, and associated fish behaviors and may help enhance adverse outcome pathways for neurotransmitter-behavior key events in zebrafish.
Collapse
Affiliation(s)
- Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xinrong Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92507, United States
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
32
|
Antunes DF, Teles MC, Zuelling M, Friesen CN, Oliveira RF, Aubin‐Horth N, Taborsky B. Early social deprivation shapes neuronal programming of the social decision-making network in a cooperatively breeding fish. Mol Ecol 2021; 30:4118-4132. [PMID: 34133783 PMCID: PMC8457231 DOI: 10.1111/mec.16019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
The early social environment an animal experiences may have pervasive effects on its behaviour. The social decision-making network (SDMN), consisting of interconnected brain nuclei from the forebrain and midbrain, is involved in the regulation of behaviours during social interactions. In species with advanced sociality such as cooperative breeders, offspring are exposed to a large number and a great diversity of social interactions every day of their early life. This diverse social environment may have life-long consequences on the development of several neurophysiological systems within the SDMN, although these effects are largely unknown. We studied these life-long effects in a cooperatively breeding fish, Neolamprologus pulcher, focusing on the expression of genes involved in the monoaminergic and stress response systems in the SDMN. N. pulcher fry were raised until an age of 2 months either with their parents, subordinate helpers and same-clutch siblings (+F), or with same-clutch siblings only (-F). Analysis of the expression of glucocorticoid receptor, mineralocorticoid receptor, corticotropin releasing factor, dopamine receptors 1 and 2, serotonin transporter and DNA methyltransferase 1 genes showed that early social experiences altered the neurogenomic profile of the preoptic area. Moreover, the dopamine receptor 1 gene was up-regulated in the preoptic area of -F fish compared to +F fish. -F fish also showed up-regulation of GR1 expression in the dorsal medial telencephalon (functional equivalent to the basolateral amygdala), and in the dorsolateral telencephalon (functional equivalent to the hippocampus). Our results suggest that early social environment has life-long effects on the development of several neurophysiological systems within the SDMN.
Collapse
Affiliation(s)
- Diogo F. Antunes
- Division of Behavioural EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| | - Magda C. Teles
- Instituto Gulbenkian de CiênciaOeirasPortugal
- ISPA‐Instituto UniversitárioLisbonPortugal
| | - Matthew Zuelling
- Division of Evolutionary EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| | - Caitlin N. Friesen
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
| | - Rui F. Oliveira
- Instituto Gulbenkian de CiênciaOeirasPortugal
- ISPA‐Instituto UniversitárioLisbonPortugal
- Champalimaud ResearchLisbonPortugal
| | - Nadia Aubin‐Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Barbara Taborsky
- Division of Behavioural EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| |
Collapse
|
33
|
Carver JJ, Carrell SC, Chilton MW, Brown JN, Yong L, Zhu Y, Issa FA. Nuclear androgen and progestin receptors inversely affect aggression and social dominance in male zebrafish (Danio rerio). Horm Behav 2021; 134:105012. [PMID: 34153924 PMCID: PMC8403641 DOI: 10.1016/j.yhbeh.2021.105012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Aggression is a fundamental behavior displayed universally among animal species, but hyper- or hypo-aggressiveness can be maladaptive with negative consequences for individuals and group members. While the social and ecological significance of aggression is well understood, the specific neurobiological and hormonal mechanisms responsible for mediating aggression have not been fully elucidated. Previous studies have shown a relationship between aggressive acts and circulating gonadal steroids, but whether classical nuclear steroid receptors regulate aggression in animals is still uncertain. We examined whether the nuclear androgen receptor (Ar) and nuclear progestin receptor (Pgr) were necessary for aggressive behaviors and maintenance of a dominance relationship in male zebrafish (Danio rerio). Dyadic social interactions of Ar knockout (ArKO), Pgr knockout (PgrKO) and wildtype (WT) controls were observed for two weeks (2-weeks). ArKO zebrafish were significantly less aggressive and had a less defined dominance relationship, whereas PgrKO dominant zebrafish were significantly and persistently more aggressive with a robust dominance relationship. Our results demonstrate the importance of nuclear steroid hormone receptors in regulating aggression of adult male zebrafish and provide new models for understanding of the mechanisms of aggression.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Skyler C Carrell
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Matthew W Chilton
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Julia N Brown
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Lengxob Yong
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27285, USA.
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC 27285, USA.
| |
Collapse
|
34
|
Quintana L, Jalabert C, Fokidis HB, Soma KK, Zubizarreta L. Neuroendocrine Mechanisms Underlying Non-breeding Aggression: Common Strategies Between Birds and Fish. Front Neural Circuits 2021; 15:716605. [PMID: 34393727 PMCID: PMC8358322 DOI: 10.3389/fncir.2021.716605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Aggression is an adaptive behavior that plays an important role in gaining access to limited resources. Aggression may occur uncoupled from reproduction, thus offering a valuable context to further understand its neural and hormonal regulation. This review focuses on the contributions from song sparrows (Melospiza melodia) and the weakly electric banded knifefish (Gymnotus omarorum). Together, these models offer clues about the underlying mechanisms of non-breeding aggression, especially the potential roles of neuropeptide Y (NPY) and brain-derived estrogens. The orexigenic NPY is well-conserved between birds and teleost fish, increases in response to low food intake, and influences sex steroid synthesis. In non-breeding M. melodia, NPY increases in the social behavior network, and NPY-Y1 receptor expression is upregulated in response to a territorial challenge. In G. omarorum, NPY is upregulated in the preoptic area of dominant, but not subordinate, individuals. We hypothesize that NPY may signal a seasonal decrease in food availability and promote non-breeding aggression. In both animal models, non-breeding aggression is estrogen-dependent but gonad-independent. In non-breeding M. melodia, neurosteroid synthesis rapidly increases in response to a territorial challenge. In G. omarorum, brain aromatase is upregulated in dominant but not subordinate fish. In both species, the dramatic decrease in food availability in the non-breeding season may promote non-breeding aggression, via changes in NPY and/or neurosteroid signaling.
Collapse
Affiliation(s)
- Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Cecilia Jalabert
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL, United States
| | - Kiran K Soma
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Lucia Zubizarreta
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
35
|
Pandolfi M, Scaia MF, Fernandez MP. Sexual Dimorphism in Aggression: Sex-Specific Fighting Strategies Across Species. Front Behav Neurosci 2021; 15:659615. [PMID: 34262439 PMCID: PMC8273308 DOI: 10.3389/fnbeh.2021.659615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Aggressive behavior is thought to have evolved as a strategy for gaining access to resources such as territory, food, and potential mates. Across species, secondary sexual characteristics such as competitive aggression and territoriality are considered male-specific behaviors. However, although female–female aggression is often a behavior that is displayed almost exclusively to protect the offspring, multiple examples of female–female competitive aggression have been reported in both invertebrate and vertebrate species. Moreover, cases of intersexual aggression have been observed in a variety of species. Genetically tractable model systems such as mice, zebrafish, and fruit flies have proven extremely valuable for studying the underlying neuronal circuitry and the genetic architecture of aggressive behavior under laboratory conditions. However, most studies lack ethological or ecological perspectives and the behavioral patterns available are limited. The goal of this review is to discuss each of these forms of aggression, male intrasexual aggression, intersexual aggression and female intrasexual aggression in the context of the most common genetic animal models and discuss examples of these behaviors in other species.
Collapse
Affiliation(s)
- Matias Pandolfi
- Department of Biodiversity and Experimental Biology, University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Florencia Scaia
- Department of Biodiversity and Experimental Biology, University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Paz Fernandez
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, United States
| |
Collapse
|
36
|
James N, Bell A. Minimally invasive brain injections for viral-mediated transgenesis: New tools for behavioral genetics in sticklebacks. PLoS One 2021; 16:e0251653. [PMID: 33999965 PMCID: PMC8128275 DOI: 10.1371/journal.pone.0251653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Behavioral genetics in non-model organisms is currently gated by technological limitations. However, with the growing availability of genome editing and functional genomic tools, complex behavioral traits such as social behavior can now be explored in diverse organisms. Here we present a minimally invasive neurosurgical procedure for a classic behavioral, ecological and evolutionary system: threespine stickleback (Gasterosteus aculeatus). Direct brain injection enables viral-mediated transgenesis and pharmaceutical delivery which bypasses the blood-brain barrier. This method is flexible, fast, and amenable to statistically powerful within-subject experimental designs, making it well-suited for use in genetically diverse animals such as those collected from natural populations. Developing this minimally invasive neurosurgical protocol required 1) refining the anesthesia process, 2) building a custom surgical rig, and 3) determining the normal recovery pattern allowing us to clearly identify warning signs of failure to thrive. Our custom-built surgical rig (publicly available) and optimized anesthetization methods resulted in high (90%) survival rates and quick behavioral recovery. Using this method, we detected changes in aggression from the overexpression of either of two different genes, arginine vasopressin (AVP) and monoamine oxidase (MAOA), in outbred animals in less than one month. We successfully used multiple promoters to drive expression, allowing for tailored expression profiles through time. In addition, we demonstrate that widely available mammalian plasmids work with this method, lowering the barrier of entry to the technique. By using repeated measures of behavior on the same fish before and after transfection, we were able to drastically reduce the necessary sample size needed to detect significant changes in behavior, making this a viable approach for examining genetic mechanisms underlying complex social behaviors.
Collapse
Affiliation(s)
- Noelle James
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Evolution, Ecology and Behavior, University of Illinois at Urbana, Urbana, Illinois, United States of America
| | - Alison Bell
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Evolution, Ecology and Behavior, University of Illinois at Urbana, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
37
|
Orr SA, Ahn S, Park C, Miller TH, Kassai M, Issa FA. Social Experience Regulates Endocannabinoids Modulation of Zebrafish Motor Behaviors. Front Behav Neurosci 2021; 15:668589. [PMID: 34045945 PMCID: PMC8144649 DOI: 10.3389/fnbeh.2021.668589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effects of social status on neuromodulatory systems that drive motor activity are poorly understood. Zebrafish form a stable social relationship that consists of socially dominant and subordinate animals. The locomotor behavior patterns differ according to their social ranks. The sensitivity of the Mauthner startle escape response in subordinates increases compared to dominants while dominants increase their swimming frequency compared to subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in mediating these differences in motor activities. We show that brain gene expression of key ECS protein pathways are socially regulated. Diacylglycerol lipase (DAGL) expression significantly increased in dominants and significantly decreased in subordinates relative to controls. Moreover, brain gene expression of the cannabinoid 1 receptor (CB1R) was significantly increased in subordinates relative to controls. Secondly, increasing ECS activity with JZL184 reversed swimming activity patterns in dominant and subordinate animals. JZL184 did not affect the sensitivity of the startle escape response in dominants while it was significantly reduced in subordinates. Thirdly, blockage of CB1R function with AM-251 had no effect on dominants startle escape response sensitivity, but startle sensitivity was significantly reduced in subordinates. Additionally, AM-251 did not affect swimming activities in either social phenotypes. Fourthly, we demonstrate that the effects of ECS modulation of the startle escape circuit is mediated via the dopaminergic system specifically via the dopamine D1 receptor. Finally, our empirical results complemented with neurocomputational modeling suggest that social status influences the ECS to regulate the balance in synaptic strength between excitatory and inhibitory inputs to control the excitability of motor behaviors. Collectively, this study provides new insights of how social factors impact nervous system function to reconfigure the synergistic interactions of neuromodulatory pathways to optimize motor output.
Collapse
Affiliation(s)
- Stephen A Orr
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| | - Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Thomas H Miller
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
38
|
da Silva MC, Canário AVM, Hubbard PC, Gonçalves DMF. Physiology, endocrinology and chemical communication in aggressive behaviour of fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1217-1233. [PMID: 33410154 PMCID: PMC8247941 DOI: 10.1111/jfb.14667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 05/10/2023]
Abstract
Fishes show remarkably diverse aggressive behaviour. Aggression is expressed to secure resources; adjusting aggression levels according to context is key to avoid negative consequences for fitness and survival. Nonetheless, despite its importance, the physiological basis of aggression in fishes is still poorly understood. Several reports suggest hormonal modulation of aggression, particularly by androgens, but contradictory studies have been published. Studies exploring the role of chemical communication in aggressive behaviour are also scant, and the pheromones involved remain to be unequivocally characterized. This is surprising as chemical communication is the most ancient form of information exchange and plays a variety of other roles in fishes. Furthermore, the study of chemical communication and aggression is relevant at the evolutionary, ecological and economic levels. A few pioneering studies support the hypothesis that aggressive behaviour, at least in some teleosts, is modulated by "dominance pheromones" that reflect the social status of the sender, but there is little information on the identity of the compounds involved. This review aims to provide a global view of aggressive behaviour in fishes and its underlying physiological mechanisms including the involvement of chemical communication, and discusses the potential use of dominance pheromones to improve fish welfare. Methodological considerations and future research directions are also outlined.
Collapse
Affiliation(s)
- Melina Coelho da Silva
- CCMAR – Centro e Ciências do MarUniversidade do AlgarveFaroPortugal
- ISE – Institute of Science and EnvironmentUniversity of Saint JosephMacauChina
| | | | | | | |
Collapse
|
39
|
Sundvik M, Puttonen H, Semenova S, Panula P. The bullies are the leaders of the next generation: Inherited aminergic neurotransmitter system changes in socially dominant zebrafish, Danio rerio. Behav Brain Res 2021; 409:113309. [PMID: 33878430 DOI: 10.1016/j.bbr.2021.113309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
We studied the social hierarchy in zebrafish and assessed differences in neurotransmitters and behavior in the F1 generation offspring of dominant and subordinate zebrafish (Danio rerio). We used behavioral assays to study locomotion, ability to complete cognitive tasks, social interaction and aggression. To study the neurochemical changes, we applied quantitative polymerase chain reaction, high pressure liquid chromatography and immunohistochemistry. Social hierarchies were formed both by males and females when animals were kept in same sex pairs in the dyadic dominant-subordinate hierarchy test. The offspring of dominant animals were the leaders in social interactions, however aggression in the mirror-test was not altered in any group. Serotonin and noradrenaline levels were lower in the F1 generation subordinate animals when compared with dominant animals, but not compared with animals that were naïve to social hierarchy. The mRNA level of the rate-limiting enzyme in histamine synthesis, histidine decarboxylase, was significantly lower in dominant and subordinate larval zebrafish when compared with control animals. In the dominant adult zebrafish tyrosine hydroxylase 1 mRNA level was lower compared with control animals, whereas tyrosine hydroxylase 2 mRNA was not different. The result was verified with immunohistochemistry. There were gender specific differences between the dominant and subordinate animals, where the dominant females performed better in cognitive tasks such as the T-maze than subordinate females. This was not observed in males, as the behavior of the dominant and subordinate males did not differ. These results add to the understanding of the plastic nature of the central nervous system and show that neurochemical features in aminergic neurotransmitter systems are associated with social leadership and dominance.
Collapse
Affiliation(s)
- Maria Sundvik
- Department of Anatomy, POB 63, 00014, University of Helsinki, Helsinki, Finland.
| | - Henri Puttonen
- Department of Anatomy, POB 63, 00014, University of Helsinki, Helsinki, Finland
| | - Svetlana Semenova
- Department of Anatomy, POB 63, 00014, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, POB 63, 00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Xu X, Sun X, Bai Q, Zhang Y, Qin J, Zhang X. Molecular identification of an androgen receptor and the influence of long-term aggressive interaction on hypothalamic genes expression in black rockfish (Sebastes schlegelii). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:401-413. [PMID: 33774729 DOI: 10.1007/s00359-021-01480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
This study aims to explore the mechanism on how aggressive interaction alters reproductive physiology by testing whether aggressive interaction can activate the reproductive neuroendocrine function via the hypothalamus-pituitary-gonadal (HPG) axis in black rockfish (Sebastes schlegelii). The expressions of the androgen receptor gene (ar) and gonadotropin-releasing hormone genes (gnrhs), the concentration of plasma androgens, and GSI (the ratio of testes mass to body mass) were compared between the interaction group (dominant males or subordinate males) and the isolation group in male black rockfish after 3 weeks. A full-length cDNA encoding an androgen receptor (AR) of 766 amino acids was isolated. Transcripts encoding this AR were detected at a high relative abundance in the liver, kidney, testis, ovary, muscle, and intestine tissue. Further evaluation of brain genes transcripts abundance revealed that the mRNA levels of gnrh I and ar genes were significantly different between the interaction group and the isolation group in the hypothalamus. However, no significant difference was detected in testosterone, 11-keto-testosterone, and GSI between these two groups. This study indicates that a long-term aggressive interaction affect the expression of hypothalamic gnrh I and ar but may not change the physiological function of the HPG axis in an all-male condition.
Collapse
Affiliation(s)
- Xiuwen Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xin Sun
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingqing Bai
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuyang Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan, 316022, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
41
|
Vu TD, Iwasaki Y, Oshima K, Chiu MT, Nikaido M, Okada N. A unique neurogenomic state emerges after aggressive confrontations in males of the fish Betta splendens. Gene 2021; 784:145601. [PMID: 33766705 DOI: 10.1016/j.gene.2021.145601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Territorial defense involves frequent aggressive confrontations with competitors, but little is known about how brain-transcriptomic profiles change between individuals competing for territory establishment. Our previous study elucidated that when two fish Betta splendens males interact, transcriptomes across their brains synchronize in a way that reflects a mutual assessment process between them at the gene expression level. Here we aim to evaluate how the brain-transcriptomic profiles of opponents change immediately after shifting their social status (i.e., the winner/loser has emerged) and 30 min after this shift. We showed that changes in the expression of certain genes are unique to different fighting stages and the expression patterns of certain genes are transiently or persistently changed across all fighting stages. These brain transcriptomic responses are in accordance with behavioral changes across the fight. Strikingly, the specificity of the brain-transcriptomic synchronization of a pair during fighting was gradually lost after fighting ceased, leading to the emergence of a basal neurogenomic state in which the changes in gene expression were reduced to minimum and consistent across all individuals. This state shares common characteristics with the hibernation state that animals adopt to minimize their metabolic rates to save energy. Interestingly, expression changes for genes related to metabolism, autism spectrum disorder, and long-term memory still differentiated losers from winners. Together, the fighting system using male B. splendens provides a promising platform for investigating neurogenomic states of aggression in vertebrates.
Collapse
Affiliation(s)
- Trieu-Duc Vu
- School of Pharmacy, Kitasato University, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan; Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yuki Iwasaki
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | - Ming-Tzu Chiu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Norihiro Okada
- School of Pharmacy, Kitasato University, Tokyo, Japan; Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.
| |
Collapse
|
42
|
Bentz AB, Niederhuth CE, Carruth LL, Navara KJ. Prenatal testosterone triggers long-term behavioral changes in male zebra finches: unravelling the neurogenomic mechanisms. BMC Genomics 2021; 22:158. [PMID: 33676394 PMCID: PMC7937265 DOI: 10.1186/s12864-021-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Maternal hormones, like testosterone, can strongly influence developing offspring, even generating long-term organizational effects on adult behavior; yet, the mechanisms facilitating these effects are still unclear. Here, we experimentally elevated prenatal testosterone in the eggs of zebra finches (Taeniopygia guttata) and measured male aggression in adulthood along with patterns of neural gene expression (RNA-seq) and DNA methylation (MethylC-Seq) in two socially relevant brain regions (hypothalamus and nucleus taenia of the amygdala). We used enrichment analyses and protein-protein interaction networks to find candidate processes and hub genes potentially affected by the treatment. We additionally identified differentially expressed genes that contained differentially methylated regions. RESULTS We found that males from testosterone-injected eggs displayed more aggressive behaviors compared to males from control eggs. Hundreds of genes were differentially expressed, particularly in the hypothalamus, including potential aggression-related hub genes (e.g., brain derived neurotrophic factor). There were also enriched processes with well-established links to aggressive phenotypes (e.g., somatostatin and glutamate signaling). Furthermore, several highly connected genes identified in protein-protein interaction networks also showed differential methylation, including adenylate cyclase 2 and proprotein convertase 2. CONCLUSIONS These results highlight genes and processes that may play an important role in mediating the effects of prenatal testosterone on long-term phenotypic outcomes, thereby providing insights into the molecular mechanisms that facilitate hormone-mediated maternal effects.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
- Poultry Science Department, University of Georgia, Athens, GA, 30602, USA.
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Laura L Carruth
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Kristen J Navara
- Poultry Science Department, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
43
|
Campos-Sánchez JC, Esteban MÁ. Review of inflammation in fish and value of the zebrafish model. JOURNAL OF FISH DISEASES 2021; 44:123-139. [PMID: 33236349 DOI: 10.1111/jfd.13310] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/28/2023]
Abstract
Inflammation is a crucial step in the development of chronic diseases in humans. Understanding the inflammation environment and its intrinsic mechanisms when it is produced by harmful stimuli may be a key element in the development of human disease diagnosis. In recent decades, zebrafish (Danio rerio) have been widely used in research, due to their exceptional characteristics, as a model of various human diseases. Interestingly, the mediators released during the inflammatory response of both the immune system and nervous system, after its integration in the hypothalamus, could also facilitate the detection of injury through the register of behavioural changes in the fish. Although there are many studies that give well-defined information separately on such elements as the recruitment of cells, the release of pro- and anti-inflammatory mediators or the type of neurotransmitters released against different triggers, to the best of our knowledge there are no reviews that put all this knowledge together. In the present review, the main available information on inflammation in zebrafish is presented in order to facilitate knowledge about this important process of innate immunity, as well as the stress responses and behavioural changes derived from it.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| |
Collapse
|
44
|
Reichmann F, Rimmer N, Tilley CA, Dalla Vecchia E, Pinion J, Al Oustah A, Carreño Gutiérrez H, Young AMJ, McDearmid JR, Winter MJ, Norton WHJ. The zebrafish histamine H3 receptor modulates aggression, neural activity and forebrain functional connectivity. Acta Physiol (Oxf) 2020; 230:e13543. [PMID: 32743878 DOI: 10.1111/apha.13543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/17/2023]
Abstract
AIM Aggression is a behavioural trait characterized by the intention to harm others for offensive or defensive purposes. Neurotransmitters such as serotonin and dopamine are important mediators of aggression. However, the physiological role of the histaminergic system during this behaviour is currently unclear. Here, we aimed to better understand histaminergic signalling during aggression by characterizing the involvement of the histamine H3 receptor (Hrh3). METHODS We have generated a novel zebrafish Hrh3 null mutant line using CRISPR-Cas9 genome engineering and investigated behavioural changes and alterations to neural activity using whole brain Ca2+ imaging in zebrafish larvae and ribosomal protein S6 (rpS6) immunohistochemistry in adults. RESULTS We show that genetic inactivation of the histamine H3 receptor (Hrh3) reduces aggression in zebrafish, an effect that can be reproduced by pharmacological inhibition. In addition, hrh3-/- zebrafish show behavioural impairments consistent with heightened anxiety. Larval in vivo whole brain Ca2+ imaging reveals higher neuronal activity in the forebrain of mutants, but lower activity in specific hindbrain areas and changes in measures of functional connectivity between subregions. Adult hrh3-/- zebrafish display brain region-specific neural activity changes in response to aggression of both key regions of the social decision-making network, and the areas containing histaminergic neurons in the zebrafish brain. CONCLUSION These results highlight the importance of zebrafish Hrh3 signalling for aggression and anxiety and uncover the brain areas involved. Targeting this receptor might be a potential novel therapeutic route for human conditions characterized by heightened aggression.
Collapse
Affiliation(s)
- Florian Reichmann
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
- Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Neal Rimmer
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Ceinwen A Tilley
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Joseph Pinion
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Amir Al Oustah
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Hector Carreño Gutiérrez
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Jonathan R McDearmid
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
45
|
Kellner M, Olsén KH. Divergent Response to the SSRI Citalopram in Male and Female Three-Spine Sticklebacks (Gasterosteus aculeatus). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:478-487. [PMID: 33151376 PMCID: PMC7688600 DOI: 10.1007/s00244-020-00776-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/12/2020] [Indexed: 06/09/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are psychotropic pharmaceuticals used as antidepressants. SSRIs are commonly found in surface waters in populated areas across the globe. They exert their effect by blocking the serotonin re-uptake transporter in the presynaptic nerve ending. The present study examined whether behavioural effects to exposure to SSRI citalopram depend on personality and sex in the stickleback (Gasterosteus aculeatus). Three aspects of stickleback behaviour are examined: feeding behaviour, aggression, and boldness. We exposed sticklebacks to 350-380 ng/l citalopram for 3 weeks. Feeding and aggressive behaviour were recorded before and after exposure, whereas scototaxis behaviour was tested after exposure. The results show treatment effects in feeding and aggressive behaviour. Feeding is suppressed only in the male group (χ2 = 20.4, P < 0.001) but not in the females (χ2 = 0.91, P = 0.339). Aggressive behaviour was significantly affected by treatment (χ2 = 161.9, P < 0.001), sex (χ2 = 86.3, P < 0.001), and baseline value (χ2 = 58.8, P < 0.001). Aggressiveness was suppressed by citalopram treatment. In addition, the fish showed no change in aggression and feeding behaviour over time regardless of sex and treatment, which indicate personality traits. Only females are affected by treatment in the scototaxis test. The exposed females spent significantly (χ2 = 5.02, P = 0.050) less time in the white zone than the female controls.
Collapse
Affiliation(s)
- Martin Kellner
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, 141 89, Huddinge, Sweden
| | - K Håkan Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, 141 89, Huddinge, Sweden.
| |
Collapse
|
46
|
Pierre C, Pradère N, Froc C, Ornelas-García P, Callebert J, Rétaux S. A mutation in monoamine oxidase (MAO) affects the evolution of stress behavior in the blind cavefish Astyanax mexicanus. J Exp Biol 2020; 223:jeb226092. [PMID: 32737213 DOI: 10.1242/jeb.226092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 08/26/2023]
Abstract
The neurotransmitter serotonin controls a variety of physiological and behavioral processes. In humans, mutations affecting monoamine oxidase (MAO), the serotonin-degrading enzyme, are highly deleterious. Yet, blind cavefish of the species Astyanax mexicanus carry a partial loss-of-function mutation in MAO (P106L) and thrive in their subterranean environment. Here, we established four fish lines, corresponding to the blind cave-dwelling and the sighted river-dwelling morphs of this species, with or without the mutation, in order to decipher the exact contribution of mao P106L in the evolution of cavefish neurobehavioral traits. Unexpectedly, although mao P106L appeared to be an excellent candidate for the genetic determinism of the loss of aggressive and schooling behaviors in cavefish, we demonstrated that it was not the case. Similarly, the anatomical variations in monoaminergic systems observed between cavefish and surface fish brains were independent from mao P106L, and rather due to other, morph-dependent developmental processes. However, we found that mao P106L strongly affected anxiety-like behaviors. Cortisol measurements showed lower basal levels and an increased amplitude of stress response after a change of environment in fish carrying the mutation. Finally, we studied the distribution of the P106L mao allele in wild populations of cave and river A. mexicanus, and discovered that the mutant allele was present - and sometimes fixed - in all populations inhabiting caves of the Sierra de El Abra. The possibility that this partial loss-of-function mao allele evolves under a selective or a neutral regime in the particular cave environment is discussed.
Collapse
Affiliation(s)
- Constance Pierre
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Naomie Pradère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Cynthia Froc
- Amatrace platform, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Patricia Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Autónoma de México, CP 04510, Mexico City, Mexico
| | - Jacques Callebert
- Service Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75475 Paris, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
47
|
Rosvall KA, Bentz AB, George EM. How research on female vertebrates contributes to an expanded challenge hypothesis. Horm Behav 2020; 123:104565. [PMID: 31419407 PMCID: PMC7061077 DOI: 10.1016/j.yhbeh.2019.104565] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
The bi-directional links between hormones and behavior have been a rich area of research for decades. Theory on the evolution of testosterone (T) was greatly advanced by the challenge hypothesis, which presented a framework for understanding interspecific, seasonal, and social variation in T levels in males, and how they are shaped by the competing demands of parental care and male-male competition. Female competition is also widespread in nature, although it is less clear whether or how the challenge hypothesis applies to females. Here, we evaluate this issue in four parts: (1) We summarize and update prior analyses of seasonal plasticity and interspecific variation in T in females. (2) We evaluate experimental links between T and female aggression on shorter timescales, asking how T manipulations affect aggression and conversely, how social manipulations affect T levels in female mammals, birds, lizards, and fishes. (3) We examine alternative mechanisms that may link aggression to the social environment independently of T levels in circulation. (4) We present a case study, including new data analyses, in an aggressive female bird (the tree swallow, Tachycineta bicolor) to explore how variation in tissue-level processing of T may bridge the gap between circulating T and variation in behavior that is visible to natural selection. We close by connecting these multivariate levels of sex steroid signaling systems alongside different temporal scales (social, seasonal, and evolutionary) to generate broadly applicable insights into how animals respond to their social environment, regardless of whether they are male or female.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Elizabeth M George
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
48
|
Salahinejad A, Naderi M, Attaran A, Meuthen D, Niyogi S, Chivers DP. Effects of chronic exposure to bisphenol-S on social behaviors in adult zebrafish: Disruption of the neuropeptide signaling pathways in the brain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:113992. [PMID: 32126434 DOI: 10.1016/j.envpol.2020.113992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol S (BPS), considered to be a safe alternative to Bisphenol A, is increasingly used in a wide variety of consumer and industrial products. However, mounting evidence suggests that BPS can act as a xenoestrogen targeting a wide range of neuro-endocrine functions in animals. At present, very little is known about the impacts of BPS on social behaviors and/or the potential underlying mechanisms. To this end, we exposed adult male and female zebrafish to environmentally relevant concentrations of BPS (0 (control), 1, 10, and 30 μg/L), as well as to 17β-estradiol (E2; 1 μg/L; as positive control) for 75 days. Subsequently, alterations in social behaviors were evaluated by measuring shoal cohesion, group preferences, and locomotor activity. Furthermore, to elucidate the possible molecular mechanism underlying the neuro-behavioral effects of BPS, we also quantified the changes in the mRNA abundance of arginine vasotocin (AVT), isotocin (IT), and their corresponding receptors in the zebrafish brain. The results showed that E2 and BPS (30 μg/L) decreased shoal cohesion in both males and females. Moreover, a marked decline in group preferences was observed in all treatment groups, while locomotor activity remained unaffected. Alterations in the social behaviors were associated with sex-specific changes in the mRNA expression of genes involved in IT and AVT signaling. Taken together, the results of this study suggest that chronic exposure to BPS can impair zebrafish social behaviors via disruption of isotocinergic and vasotocinergic neuro-endocrine systems.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| | - Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada; Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
49
|
Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens. PLoS Genet 2020; 16:e1008831. [PMID: 32555673 PMCID: PMC7299326 DOI: 10.1371/journal.pgen.1008831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/05/2020] [Indexed: 01/13/2023] Open
Abstract
Conspecific male animals fight for resources such as food and mating opportunities but typically stop fighting after assessing their relative fighting abilities to avoid serious injuries. Physiologically, how the fighting behavior is controlled remains unknown. Using the fighting fish Betta splendens, we studied behavioral and brain-transcriptomic changes during the fight between the two opponents. At the behavioral level, surface-breathing, and biting/striking occurred only during intervals between mouth-locking. Eventually, the behaviors of the two opponents became synchronized, with each pair showing a unique behavioral pattern. At the physiological level, we examined the expression patterns of 23,306 brain transcripts using RNA-sequencing data from brains of fighting pairs after a 20-min (D20) and a 60-min (D60) fight. The two opponents in each D60 fighting pair showed a strong gene expression correlation, whereas those in D20 fighting pairs showed a weak correlation. Moreover, each fighting pair in the D60 group showed pair-specific gene expression patterns in a grade of membership analysis (GoM) and were grouped as a pair in the heatmap clustering. The observed pair-specific individualization in brain-transcriptomic synchronization (PIBS) suggested that this synchronization provides a physiological basis for the behavioral synchronization. An analysis using the synchronized genes in fighting pairs of the D60 group found genes enriched for ion transport, synaptic function, and learning and memory. Brain-transcriptomic synchronization could be a general phenomenon and may provide a new cornerstone with which to investigate coordinating and sustaining social interactions between two interacting partners of vertebrates. Agonistic encounters induce changes in the brain and behavior, but their underlying molecular mechanisms remain poorly understood. The fighting fish Betta splendens are small freshwater fish that are well known for their aggressiveness and are widely used to study aggression. Here, by measuring aggressive behavior displays (bite/strike/surface-breathing) between two opponents during fighting, we demonstrate that the two opponents in each fighting pair showed similar fighting configurations by influencing each other. In addition, we compared brain gene expression between opponents and showed synchronization of gene expression within a fighting pair, leading to pair-specific synchronization in genes associated with ion transport, synapse function, and learning and memory. This study presents the possibility that similar behaviors in pairs of animals under similar conditions may trigger synchronizing waves of transcription between the individuals, providing a hint to support the idea that fighting behaviors contain cooperative aspects at the molecular level.
Collapse
|
50
|
Brain transcriptomics of agonistic behaviour in the weakly electric fish Gymnotus omarorum, a wild teleost model of non-breeding aggression. Sci Rep 2020; 10:9496. [PMID: 32528029 PMCID: PMC7289790 DOI: 10.1038/s41598-020-66494-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/22/2020] [Indexed: 11/28/2022] Open
Abstract
Differences in social status are often mediated by agonistic encounters between competitors. Robust literature has examined social status-dependent brain gene expression profiles across vertebrates, yet social status and reproductive state are often confounded. It has therefore been challenging to identify the neuromolecular mechanisms underlying social status independent of reproductive state. Weakly electric fish, Gymnotus omarorum, display territorial aggression and social dominance independent of reproductive state. We use wild-derived G. omarorum males to conduct a transcriptomic analysis of non-breeding social dominance relationships. After allowing paired rivals to establish a dominance hierarchy, we profiled the transcriptomes of brain sections containing the preoptic area (region involved in regulating aggressive behaviour) in dominant and subordinate individuals. We identified 16 differentially expressed genes (FDR < 0.05) and numerous genes that co-varied with behavioural traits. We also compared our results with previous reports of differential gene expression in other teleost species. Overall, our study establishes G. omarorum as a powerful model system for understanding the neuromolecular bases of social status independent of reproductive state.
Collapse
|