1
|
Wang C, Zeng Y, Wang J, Wang T, Li X, Shen Z, Meng J, Yao X. A genome-wide association study of the racing performance traits in Yili horses based on Blink and FarmCPU models. Sci Rep 2024; 14:27648. [PMID: 39532956 PMCID: PMC11557848 DOI: 10.1038/s41598-024-79014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Racing performance traits are the main indicators for evaluating the performance and value of sport horses. The aim of this study was to identify the key genes for racing performance traits in Yili horses by performing a genome-wide association study (GWAS). Breeding values for racing performance traits were calculated for Yili horses (n = 827) using an animal model. Genome-wide association analysis of racing performance traits in horses (n = 236) was carried out using the Blink, and FarmCPU models in GAPIT software, and genes within the significant regions were functionally annotated. The results of GWAS showed that a total of 24 significant SNP markers (P < 6.05 × 10- 9) and 22 suggestive SNP markers (P < 1.21 × 10- 7) were identified. Among them, the Blink associated 16 significant SNP loci and FarmCPU associated 12 significant SNP loci. A total of 127 candidate genes (50 significant) were annotated. Among these, CNTN6 (motor coordination), NIPA1 (neuronal development), and DCC (dopamine pathway maturation) may be the main candidate genes affecting speed traits. SHANK2 (neuronal synaptic regulation), ISCA1 (mitochondrial protein assembly), and KCNIP4 (neuronal excitability) may be the main candidate genes affecting ranking score traits. A common locus (ECA1: 22698579) was significantly associated with racing performance traits, and the function of the genes at this locus needs to be studied in depth. These findings will provide new insights into the detection and selection of genetic variants for racing performance and will help to accelerate the genetic improvement of Yili horses.
Collapse
Affiliation(s)
- Chuankun Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi, 830052, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi, 830052, China
| | - Tongliang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xueyan Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhehong Shen
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi, 830052, China.
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi, 830052, China.
| |
Collapse
|
2
|
Bailey E, Finno CJ, Cullen JN, Kalbfleisch T, Petersen JL. Analyses of whole-genome sequences from 185 North American Thoroughbred horses, spanning 5 generations. Sci Rep 2024; 14:22930. [PMID: 39358442 PMCID: PMC11447028 DOI: 10.1038/s41598-024-73645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Whole genome sequences (WGS) of 185 North American Thoroughbred horses were compared to quantify the number and frequency of variants, diversity of mitotypes, and autosomal runs of homozygosity (ROH). Of the samples, 82 horses were born between 1965 and 1986 (Group 1); the remaining 103, selected to maximize pedigree diversity, were born between 2000 and 2020 (Group 2). Over 14.3 million autosomal variants were identified with 4.5-5.0 million found per horse. Mitochondrial sequences associated the North American Thoroughbreds with 9 of 17 clades previously identified among diverse breeds. Individual coefficients of inbreeding, estimated from ROH, averaged 0.266 (Group 1) and 0.283 (Group 2). When SNP arrays were simulated using subsets of WGS markers, the arrays over-estimated lengths of ROH. WGS-based estimates of inbreeding were highly correlated (r > 0.98) with SNP array-based estimates, but only moderately correlated (r = 0.40) with inbreeding based on 5-generation pedigrees. On average, Group 1 horses had more heterozygous variants (P < 0.001), more total variants (P < 0.001), and lower individual inbreeding (FROH; P < 0.001) than horses in Group 2. However, the distribution of numbers of variants, allele frequency, and extent of ROH overlapped among all horses such that it was not possible to identify the group of origin of any single horse using these measures. Consequently, the Thoroughbred population would be better monitored by investigating changes in specific variants, rather than relying on broad measures of diversity. The WGS for these 185 horses is publicly available for comparison to other populations and as a foundation for modeling changes in population structure, breeding practices, or the appearance of deleterious variants.
Collapse
Affiliation(s)
- Ernie Bailey
- University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, KY, 40546, USA
| | - Carrie J Finno
- University of California-Davis, Population Health and Reproduction, Davis, CA, 95616, USA
| | - Jonah N Cullen
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Ted Kalbfleisch
- University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, KY, 40546, USA.
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583-0908, USA.
| |
Collapse
|
3
|
Durward-Akhurst SA, Marlowe JL, Schaefer RJ, Springer K, Grantham B, Carey WK, Bellone RR, Mickelson JR, McCue ME. Predicted genetic burden and frequency of phenotype-associated variants in the horse. Sci Rep 2024; 14:8396. [PMID: 38600096 PMCID: PMC11006912 DOI: 10.1038/s41598-024-57872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Disease-causing variants have been identified for less than 20% of suspected equine genetic diseases. Whole genome sequencing (WGS) allows rapid identification of rare disease causal variants. However, interpreting the clinical variant consequence is confounded by the number of predicted deleterious variants that healthy individuals carry (predicted genetic burden). Estimation of the predicted genetic burden and baseline frequencies of known deleterious or phenotype associated variants within and across the major horse breeds have not been performed. We used WGS of 605 horses across 48 breeds to identify 32,818,945 variants, demonstrate a high predicted genetic burden (median 730 variants/horse, interquartile range: 613-829), show breed differences in predicted genetic burden across 12 target breeds, and estimate the high frequencies of some previously reported disease variants. This large-scale variant catalog for a major and highly athletic domestic animal species will enhance its ability to serve as a model for human phenotypes and improves our ability to discover the bases for important equine phenotypes.
Collapse
Affiliation(s)
- S A Durward-Akhurst
- Department of Veterinary Clinical Sciences, University of Minnesota, C339 VMC, 1353 Boyd Avenue, St. Paul, MN, 55108, USA.
| | - J L Marlowe
- Department of Veterinary Clinical Sciences, University of Minnesota, C339 VMC, 1353 Boyd Avenue, St. Paul, MN, 55108, USA
| | - R J Schaefer
- Department of Veterinary Population Medicine, University of Minnesota, 225 VMC, 1365 Gortner Avenue, St. Paul, MN, 55108, USA
| | - K Springer
- Department of Veterinary Population Medicine, University of Minnesota, 225 VMC, 1365 Gortner Avenue, St. Paul, MN, 55108, USA
| | - B Grantham
- Interval Bio LLC, 408 Stierline Road, Mountain View, CA, 94043, USA
| | - W K Carey
- Interval Bio LLC, 408 Stierline Road, Mountain View, CA, 94043, USA
| | - R R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
- Population Health and Reproduction and Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - J R Mickelson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 295F Animal Science Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN, 55108, USA
| | - M E McCue
- Department of Veterinary Population Medicine, University of Minnesota, 225 VMC, 1365 Gortner Avenue, St. Paul, MN, 55108, USA
| |
Collapse
|
4
|
SAITO I, NAKAMURA K, TOZAKI T, HANO K, TAKASU M. Genetic characterization of Japanese native horse breeds by genotyping variants that are associated with phenotypic traits. J Equine Sci 2023; 34:115-120. [PMID: 38274555 PMCID: PMC10806362 DOI: 10.1294/jes.34.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/23/2023] [Indexed: 01/27/2024] Open
Abstract
Concerns have been raised about the loss of genetic diversity in Japanese native horses because of their declining populations. In this study, we investigated the genetic variation of four genes, myostatin (MSTN), ligand-dependent nuclear receptor corepressor like (LCORL), doublesex and mab-3 related transcription factor 3 (DMRT3), and 5-hydroxytryptamine receptor 1A (HTR1A), which are associated with horse phenotypic traits, in six Japanese horse breeds (Hokkaido, Kiso, Noma, Misaki, Tokara, and Yonaguni). MSTN, LCORL, DMRT3, and HTR1A showed polymorphisms in the Kiso; Hokkaido and Noma; Hokkaido; and Kiso, Tokara, and Yonaguni breeds, respectively. The Misaki did not show polymorphisms in any of the genes. This study may serve as a basis for developing future breeding strategies focusing on traits in Japanese native horses.
Collapse
Affiliation(s)
- Ibuki SAITO
- Department of Veterinary Medicine, Faculty of
Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kotono NAKAMURA
- Department of Veterinary Medicine, Faculty of
Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Teruaki TOZAKI
- Department of Veterinary Medicine, Faculty of
Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Kazuki HANO
- Gifu University Institute for Advanced Study,
Gifu University, Gifu 501-1193, Japan
| | - Masaki TAKASU
- Gifu University Institute for Advanced Study,
Gifu University, Gifu 501-1193, Japan
- Center for One Medicine Innovative Translational
Research (COMIT), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
5
|
Reißmann M, Rajavel A, Kokov ZA, Schmitt AO. Identification of Differentially Expressed Genes after Endurance Runs in Karbadian Horses to Determine Candidates for Stress Indicators and Performance Capability. Genes (Basel) 2023; 14:1982. [PMID: 38002925 PMCID: PMC10671444 DOI: 10.3390/genes14111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
RNA sequencing makes it possible to uncover genetic mechanisms that underlie certain performance traits. In order to gain a deeper insight into the genetic background and biological processes involved in endurance performance in horses, the changes in the gene expression profiles induced by endurance runs over long (70 km) and short (15 km) distances in the blood of Kabardian horses (Equus caballus) were analyzed. For the long-distance runs, we identified 1484 up- and 691 downregulated genes, while after short-distance runs, only 13 up- and 8 downregulated genes (FC > |1.5|; p < 0.05) were found. These differentially expressed genes (DEGs) are involved in processes and pathways that are primarily related to stress response (interleukin production, activation of inflammatory system) but also to metabolism (carbohydrate catabolic process, lipid biosynthesis, NADP metabolic process). The most important genes involved in these processes therefore represent good candidates for the monitoring and evaluation of the performance of horses in order to avoid excessive demands when endurance performance is required, like ACOD1, CCL5, CD40LG, FOS, IL1R2, IL20RA, and IL22RA2, on the one hand, and, on the other hand, for assessing the suitability of a horse for endurance races, like GATA2, GYG1, HIF1A, MOGAT1, PFKFB3, PLIN5, SIK1, and STBD1.
Collapse
Affiliation(s)
- Monika Reißmann
- Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
| | - Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Zaur A. Kokov
- Institute of Physics and Mathematics, Kabardino-Balkarian State University, Chernyshevsky 173, Nalchik 360004, Russia;
| | - Armin O. Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
6
|
Abstract
Myostatin (GDF-8) was discovered 25 years ago as a new transforming growth factor-β family member that acts as a master regulator of skeletal muscle mass. Myostatin is made by skeletal myofibers, circulates in the blood, and acts back on myofibers to limit growth. Myostatin appears to have all of the salient properties of a chalone, which is a term proposed over a half century ago to describe hypothetical circulating, tissue-specific growth inhibitors that control tissue size. The elucidation of the molecular, cellular, and physiological mechanisms underlying myostatin activity suggests that myostatin functions as a negative feedback regulator of muscle mass and raises the question as to whether this type of chalone mechanism is unique to skeletal muscle or whether it also operates in other tissues.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA;
| |
Collapse
|
7
|
Han H, McGivney BA, Allen L, Bai D, Corduff LR, Davaakhuu G, Davaasambuu J, Dorjgotov D, Hall TJ, Hemmings AJ, Holtby AR, Jambal T, Jargalsaikhan B, Jargalsaikhan U, Kadri NK, MacHugh DE, Pausch H, Readhead C, Warburton D, Dugarjaviin M, Hill EW. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds. Commun Biol 2022; 5:1320. [PMID: 36513809 PMCID: PMC9748125 DOI: 10.1038/s42003-022-04206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.
Collapse
Affiliation(s)
- Haige Han
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Beatrice A. McGivney
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Lucy Allen
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Dongyi Bai
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Leanne R. Corduff
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Gantulga Davaakhuu
- grid.425564.40000 0004 0587 3863Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 54B, Ulaanbaatar, 13330 Mongolia
| | - Jargalsaikhan Davaasambuu
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Dulguun Dorjgotov
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Thomas J. Hall
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Andrew J. Hemmings
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Amy R. Holtby
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Tuyatsetseg Jambal
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Badarch Jargalsaikhan
- grid.444534.60000 0000 8485 883XDepartment of Obstetrics and Gynecology, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
| | - Uyasakh Jargalsaikhan
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Naveen K. Kadri
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - David E. MacHugh
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland ,grid.7886.10000 0001 0768 2743UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Hubert Pausch
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Carol Readhead
- grid.20861.3d0000000107068890Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - David Warburton
- grid.42505.360000 0001 2156 6853The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Manglai Dugarjaviin
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Emmeline W. Hill
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland ,grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| |
Collapse
|
8
|
Conditionally immortalised equine skeletal muscle cell lines for in vitro analysis. Biochem Biophys Rep 2022; 33:101391. [PMID: 36504704 PMCID: PMC9727643 DOI: 10.1016/j.bbrep.2022.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Thoroughbred racehorse performance is largely influenced by a major quantitative trait locus at the myostatin (MSTN) gene which determines aptitude for certain race distances due to a promoter region insertion mutation influencing functional phenotypes in skeletal muscle. To develop an in vitro system for functional experiments we established three novel equine skeletal muscle cell lines reflecting the variation in phenotype associated with MSTN genotype (CC/II, CT/IN and TT/NN for SNP g.66493737C > T/SINE insertion 227 bp polymorphism). Primary equine skeletal muscle myoblasts, isolated from Thoroughbred horse gluteus medius, were conditionally immortalised and evaluated to determine whether cell phenotype and metabolic function were comparable to functional characteristics previously reported for ex vivo skeletal muscle isolated from Thoroughbred horses with each genotype. Results Primary myoblasts conditionally immortalised with the temperature sensitive SV40TtsA58 lentivirus vector successfully proliferated and could revert to their primary cell phenotype and differentiate into multinucleated myotubes. Skeletal muscle fibre type, MSTN gene expression, mitochondrial abundance, and mitochondrial function of the three MSTN genotype cell lines, were consistent with equivalent characterisation of ex vivo skeletal muscle samples with these genotypes. Furthermore, addition of coenzyme Q10 (CoQ10) to the cell lines improved mitochondrial function, an observation consistent with ex vivo skeletal muscle samples with these genotypes following supplementation with CoQ10 in the diet. Conclusions The observation that the phenotypic characteristics and metabolic function of the cells lines are equivalent to ex vivo skeletal muscle indicates that this in vitro system will enable efficient and cost-effective analyses of equine skeletal muscle for a range of different applications including understanding metabolic function, testing of nutritional supplements, drug test development and gene doping test development. In the multi-billion-euro international Thoroughbred horse industry research advances in the biological function of skeletal muscle are likely to have considerable impact. Furthermore, this novel genotype-specific system may be adapted and applied to human biomedicine to improve understanding of the effects of myostatin in human physiology and medicine.
Collapse
|
9
|
Novotna A, Birovas A, Vostra-Vydrova H, Vesela Z, Vostry L. Genetic Parameters of Performance and Conformation Traits of 3-Year-Old Warmblood Sport Horses in the Czech Republic. Animals (Basel) 2022; 12:2957. [PMID: 36359080 PMCID: PMC9654176 DOI: 10.3390/ani12212957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
The aim of this study was to estimate the genetic parameters of a one-day performance test together with the linear type traits of 3-year-old warmblood horses. The study of genetic parameters was based on 5958 tested horses in the period 1998-2021. A total of 22 traits of linear description, three quantitatively measured traits, and one summary mark from the performance test were tested. The model equation included the fixed effect of gender and combination effects of classifier-year of evaluation-place. A single-trait animal model was used for the estimation of heritability and genetic variance, while the two-trait animal model was applied for the estimation of variance and covariance between all traits. The heritability of the overall score of the performance test was 0.25. The range for heritability was between 0.04 and 0.33 for the linear type traits and between 0.46 and 0.57 for the quantitatively measured traits. Genetic correlations were between -0.47 and 0.92. The estimated genetic parameters suggest that the results from the performance test can be incorporated into genetic evaluation in the Czech Republic.
Collapse
Affiliation(s)
- Alexandra Novotna
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Pratelstvi 815, 10401 Praque, Czech Republic
| | - Alena Birovas
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Pratelstvi 815, 10401 Praque, Czech Republic
| | - Hana Vostra-Vydrova
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Pratelstvi 815, 10401 Praque, Czech Republic
- Department of Ethology and Companion Animal Science, Czech University of Life Sciences Prague, Kamycka 129, 16521 Praque, Czech Republic
| | - Zdenka Vesela
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Pratelstvi 815, 10401 Praque, Czech Republic
| | - Lubos Vostry
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Pratelstvi 815, 10401 Praque, Czech Republic
- Department of Genetics and Breeding, Czech University of Life Sciences Prague, Kamycka 129, 16521 Praque, Czech Republic
| |
Collapse
|
10
|
Sonali, Giri SK, Unnati, Nayan V, Legha RA, Pal Y, Bhardwaj A. Characterization of Partial Sequence of Myostatin Gene Exon 2 along with SNP detection in Indian Horse Breeds (Equus caballus). J Equine Vet Sci 2022; 116:104047. [PMID: 35716837 DOI: 10.1016/j.jevs.2022.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
India has well documented horse and pony breeds; however, the population is well diversified in different geographical regions. The Myostatin gene is one of the most profoundly studied genetic components for the detection of SNP's for the performance analysis in horses. In the present study, the MSTN exon 2 partial cds were amplified, sequenced and characterized in about 60 samples of eight different breeds of Indian horses. The results indicated the transition of Thymine to Cytosine (T>C) as SNPs in the partial sequence of exon 2 of the MSTN gene at two different codon positions (T12C, T13C) on chromosome 18. The haplotypes and phylogeny of the MSTN gene in the selected horse population were also analyzed. The overall and singleton haplotype are two different entities, indicating the variation among breeds is unique while the gene is equally distributed throughout the population. The phylogeny suggests that all the breeds are somehow equally distributed in their specific geographical tracts. It is the first study of MSTN gene variations in Indian horse breeds, which provides insight into predicting athletic performance as well as phylogeny. This study provides useful genetic information on Indian horses that can be used to model the racing performances of the breeds.
Collapse
Affiliation(s)
- Sonali
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India; Department of Biotechnology (SBAS), Maharaja Agrasen University, Baddi, 174103, Solan HP, India
| | - Shiv Kumar Giri
- Department of Biotechnology (SBAS), Maharaja Agrasen University, Baddi, 174103, Solan HP, India.
| | - Unnati
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India
| | - Varij Nayan
- ICAR- Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Ram Avatar Legha
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India
| | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India
| | - Anuradha Bhardwaj
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India.
| |
Collapse
|
11
|
Lee SJ, Lehar A, Rydzik R, Youngstrom DW, Bhasin S, Liu Y, Germain-Lee EL. Functional replacement of myostatin with GDF-11 in the germline of mice. Skelet Muscle 2022; 12:7. [PMID: 35287700 PMCID: PMC8922734 DOI: 10.1186/s13395-022-00290-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression. METHODS We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11. RESULTS In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected. CONCLUSIONS GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Adam Lehar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Renata Rydzik
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Shalender Bhasin
- Brigham Research Assay Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA.,Division of Endocrinology & Diabetes and Center for Rare Bone Disorders, Connecticut Children's, Farmington, CT, USA
| |
Collapse
|
12
|
Durward-Akhurst SA, Schaefer RJ, Grantham B, Carey WK, Mickelson JR, McCue ME. Genetic Variation and the Distribution of Variant Types in the Horse. Front Genet 2021; 12:758366. [PMID: 34925451 PMCID: PMC8676274 DOI: 10.3389/fgene.2021.758366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic variation is a key contributor to health and disease. Understanding the link between an individual's genotype and the corresponding phenotype is a major goal of medical genetics. Whole genome sequencing (WGS) within and across populations enables highly efficient variant discovery and elucidation of the molecular nature of virtually all genetic variation. Here, we report the largest catalog of genetic variation for the horse, a species of importance as a model for human athletic and performance related traits, using WGS of 534 horses. We show the extent of agreement between two commonly used variant callers. In data from ten target breeds that represent major breed clusters in the domestic horse, we demonstrate the distribution of variants, their allele frequencies across breeds, and identify variants that are unique to a single breed. We investigate variants with no homozygotes that may be potential embryonic lethal variants, as well as variants present in all individuals that likely represent regions of the genome with errors, poor annotation or where the reference genome carries a variant. Finally, we show regions of the genome that have higher or lower levels of genetic variation compared to the genome average. This catalog can be used for variant prioritization for important equine diseases and traits, and to provide key information about regions of the genome where the assembly and/or annotation need to be improved.
Collapse
Affiliation(s)
- S. A. Durward-Akhurst
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, United States
| | - R. J. Schaefer
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, United States
| | - B. Grantham
- Interval Bio LLC, Mountain View, CA, United States
| | - W. K. Carey
- Interval Bio LLC, Mountain View, CA, United States
| | - J. R. Mickelson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, MN, United States
| | - M. E. McCue
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Abstract
Thoroughbred horses have been selected for racing performance for more than 400 years. Despite continued selection, race times have not improved significantly during the past 60 years, raising the question of whether genetic variation for racing performance still exists. Studies using phenotypes such as race time, money earned, and handicapping, however, demonstrate that there is extensive variation within these traits and that they are heritable. Even so, these are poor measures of racing success since Thoroughbreds race at different ages and distances and on different types of tracks, and some may not race at all. With the advent of genomic tools, DNA variants are being identified that contribute to racing success. Aside from strong associations for myostatin variants with best racing distance, weak to modest associations with racing phenotypes are reported for other genomic regions. These data suggest that diverse genetic strategies have contributed to producing a successful racehorse, and genetic variation contributing to athleticism remains important. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ernest Bailey
- MH Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA; ,
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska, USA;
| | | |
Collapse
|
14
|
Henry ML, Velez-Irizarry D, Pagan JD, Sordillo L, Gandy J, Valberg SJ. The Impact of N-Acetyl Cysteine and Coenzyme Q10 Supplementation on Skeletal Muscle Antioxidants and Proteome in Fit Thoroughbred Horses. Antioxidants (Basel) 2021; 10:antiox10111739. [PMID: 34829610 PMCID: PMC8615093 DOI: 10.3390/antiox10111739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Horses have one of the highest skeletal muscle oxidative capacities amongst mammals, which, combined with a high glycolytic capacity, could perturb redox status during maximal exercise. We determined the effect of 30 d of oral coenzyme Q10 and N-acetyl-cysteine supplementation (NACQ) on muscle glutathione (GSH), cysteine, ROS, and coenzyme Q10 concentrations, and the muscle proteome, in seven maximally exercising Thoroughbred horses using a placebo and randomized cross-over design. Gluteal muscle biopsies were obtained the day before and 1 h after maximal exercise. Concentrations of GSH, cysteine, coenzyme Q10, and ROS were measured, and citrate synthase, glutathione peroxidase, and superoxide dismutase activities analyzed. GSH increased significantly 1 h post-exercise in the NACQ group (p = 0.022), whereas other antioxidant concentrations/activities were unchanged. TMT proteomic analysis revealed 40 differentially expressed proteins with NACQ out of 387 identified, including upregulation of 13 mitochondrial proteins (TCA cycle and NADPH production), 4 Z-disc proteins, and down regulation of 9 glycolytic proteins. NACQ supplementation significantly impacted muscle redox capacity after intense exercise by enhancing muscle glutathione concentrations and increasing expression of proteins involved in the uptake of glutathione into mitochondria and the NAPDH-associated reduction of oxidized glutathione, without any evident detrimental effects on performance.
Collapse
Affiliation(s)
- Marisa L. Henry
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
- Correspondence:
| | - Deborah Velez-Irizarry
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| | - Joe D. Pagan
- Kentucky Equine Research, Versailles, KY 40383, USA;
| | - Lorraine Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| | - Jeff Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| | - Stephanie J. Valberg
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| |
Collapse
|
15
|
Rare and common variant discovery by whole-genome sequencing of 101 Thoroughbred racehorses. Sci Rep 2021; 11:16057. [PMID: 34362995 PMCID: PMC8346562 DOI: 10.1038/s41598-021-95669-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
The Thoroughbred breed was formed by crossing Oriental horse breeds and British native horses and is currently used in horseracing worldwide. In this study, we constructed a single-nucleotide variant (SNV) database using data from 101 Thoroughbred racehorses. Whole genome sequencing (WGS) revealed 11,570,312 and 602,756 SNVs in autosomal (1–31) and X chromosomes, respectively, yielding a total of 12,173,068 SNVs. About 6.9% of identified SNVs were rare variants observed only in one allele in 101 horses. The number of SNVs detected in individual horses ranged from 4.8 to 5.3 million. Individual horses had a maximum of 25,554 rare variants; several of these were functional variants, such as non-synonymous substitutions, start-gained, start-lost, stop-gained, and stop-lost variants. Therefore, these rare variants may affect differences in traits and phenotypes among individuals. When observing the distribution of rare variants among horses, one breeding stallion had a smaller number of rare variants compared to other horses, suggesting that the frequency of rare variants in the Japanese Thoroughbred population increases through breeding. In addition, our variant database may provide useful basic information for industrial applications, such as the detection of genetically modified racehorses in gene-doping control and pedigree-registration of racehorses using SNVs as markers.
Collapse
|
16
|
Tozaki T, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Kusano K, Nagata SI. Robustness of digital PCR and real-time PCR against inhibitors in transgene detection for gene doping control in equestrian sports. Drug Test Anal 2021; 13:1768-1775. [PMID: 34270866 DOI: 10.1002/dta.3131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Gene doping is a threat to fair competition in sports, both human and equestrian. One method of gene doping is to administer exogenous genetic materials, called transgenes, into the bodies of postnatal humans and horses. Polymerase chain reaction (PCR)-based transgene detection methods such as digital PCR and real-time PCR have been developed for gene doping testing in humans and horses. However, the significance of PCR inhibitors in gene doping testing has not been well evaluated. In this study, we evaluated the effects of PCR inhibitors on transgene detection using digital PCR and real-time PCR against gene doping. Digital PCR amplification was significantly inhibited by high concentrations of proteinase K (more than 0.1 μg/μl), ethylenediaminetetraacetic acid (more than 5 nmol/μl), and heparin (more than 0.05 unit/μl) but not by ethanol or genomic DNA. In addition, phenol affected droplet formation in the digital PCR amplification process. Real-time PCR amplification was inhibited by high concentrations of phenol (more than 1% v/v), proteinase K (more than 0.001 μg/μl), ethylenediaminetetraacetic acid (more than 1 nmol/μl), heparin (more than 0.005 unit/μl), and genomic DNA (more than 51.9 ng/μl) but not by ethanol. Although both PCR systems were inhibited by nearly the same substances, digital PCR was more robust than real-time PCR against the inhibitors. We believe that our findings are important for the development of better methods for transgene detection and prevention of false negative results in gene doping testing.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Kei-Ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Kanichi Kusano
- Equine Department, Japan Racing Association, Minato, Tokyo, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| |
Collapse
|
17
|
Orbán L, Shen X, Phua N, Varga L. Toward Genome-Based Selection in Asian Seabass: What Can We Learn From Other Food Fishes and Farm Animals? Front Genet 2021; 12:506754. [PMID: 33968125 PMCID: PMC8097054 DOI: 10.3389/fgene.2021.506754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Due to the steadily increasing need for seafood and the plateauing output of fisheries, more fish need to be produced by aquaculture production. In parallel with the improvement of farming methods, elite food fish lines with superior traits for production must be generated by selection programs that utilize cutting-edge tools of genomics. The purpose of this review is to provide a historical overview and status report of a selection program performed on a catadromous predator, the Asian seabass (Lates calcarifer, Bloch 1790) that can change its sex during its lifetime. We describe the practices of wet lab, farm and lab in detail by focusing onto the foundations and achievements of the program. In addition to the approaches used for selection, our review also provides an inventory of genetic/genomic platforms and technologies developed to (i) provide current and future support for the selection process; and (ii) improve our understanding of the biology of the species. Approaches used for the improvement of terrestrial farm animals are used as examples and references, as those processes are far ahead of the ones used in aquaculture and thus they might help those working on fish to select the best possible options and avoid potential pitfalls.
Collapse
Affiliation(s)
- László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore.,Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Keszthely, Hungary
| | - Xueyan Shen
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore.,Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Norman Phua
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - László Varga
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllõ, Hungary.,Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, Gödöllõ, Hungary
| |
Collapse
|
18
|
Pira E, Vacca GM, Dettori ML, Piras G, Moro M, Paschino P, Pazzola M. Polymorphisms at Myostatin Gene ( MSTN) and the Associations with Sport Performances in Anglo-Arabian Racehorses. Animals (Basel) 2021; 11:964. [PMID: 33808485 PMCID: PMC8065447 DOI: 10.3390/ani11040964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
One hundred and eighty Anglo-Arabian horses running 1239 races were sampled for the present study. DNA was extracted from the blood and myostatin gene, MSTN, was genotyped. Moreover, prizes won and places were achieved for the 1239 races to perform association analyses between the different genotypes and sport traits. Two SNPs already reported in previous studies regarding the Thoroughbred breed, rs69472472 and rs397152648, were revealed as polymorphic. The linkage disequilibrium analysis investigating the haplotype structure of MSTN did not evidence any association block. Polymorphism at SNP rs397152648, previously known as g.66493737 T>C, significantly influenced sport traits, with heterozygous horses TC showing better results than homozygotes TT. The portion of variance due to the random effect of the individual animal, and the other phenotypic effects of sex, percentage of Arabian blood and race distance, computed together with the genotype at MSTN in the statistical models, exerted a significant influence. Hence, this information is useful to improve knowledge of the genetic profile of Anglo-Arabian horses and a possible selection for better sport performance.
Collapse
Affiliation(s)
- Emanuela Pira
- Local Health Authority 7 Pedemontana, Via dei Lotti 40, 36061 Bassano del Grappa, Italy;
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| | - Gianpiera Piras
- Local Health Authority of Oristano, Via Carducci 35, 09170 Oristano, Italy;
| | - Massimiliano Moro
- Local Health Authority of Nuoro, Via Amerigo Demurtas 1, 08110 Nuoro, Italy;
| | - Pietro Paschino
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| |
Collapse
|
19
|
Orlando L. The Evolutionary and Historical Foundation of the Modern Horse: Lessons from Ancient Genomics. Annu Rev Genet 2020; 54:563-581. [PMID: 32960653 DOI: 10.1146/annurev-genet-021920-011805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The domestication of the horse some 5,500 years ago followed those of dogs, sheep, goats, cattle, and pigs by ∼2,500-10,000 years. By providing fast transportation and transforming warfare, the horse had an impact on human history with no equivalent in the animal kingdom. Even though the equine sport industry has considerable economic value today, the evolutionary history underlying the emergence of the modern domestic horse remains contentious. In the last decade, novel sequencing technologies have revolutionized our capacity to sequence the complete genome of organisms, including from archaeological remains. Applied to horses, these technologies have provided unprecedented levels of information and have considerably changed models of horse domestication. This review illustrates how ancient DNA, especially ancient genomes, has inspired researchers to rethink the process by which horses were first domesticated and then diversified into a variety of breeds showing a range of traits that are useful to humans.
Collapse
Affiliation(s)
- Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse, Faculté de Médecine Purpan, Université Toulouse III-Paul Sabatier, 31000 Toulouse, France;
| |
Collapse
|
20
|
Denham J, McCluskey M, Denham MM, Sellami M, Davie AJ. Epigenetic control of exercise adaptations in the equine athlete: Current evidence and future directions. Equine Vet J 2020; 53:431-450. [PMID: 32671871 DOI: 10.1111/evj.13320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Horses (Equus ferus caballus) have evolved over the past 300 years in response to man-made selection for particular athletic traits. Some of the selected traits were selected based on the size and horses' muscular power (eg Clydesdales), whereas other breeds were bred for peak running performance (eg Thoroughbred and Arabian). Although the physiological changes and some of the cellular adaptations responsible for athletic potential of horses have been identified, the molecular mechanisms are only just beginning to be comprehensively investigated. The purpose of this review was to outline and discuss the current understanding of the molecular mechanisms underpinning the athletic performance and cardiorespiratory fitness in athletic breeds of horses. A brief review of the biology of epigenetics is provided, including discussion on DNA methylation, histone modifications and small RNAs, followed by a summary and critical review of the current work on the exercise-induced epigenetic and transcriptional changes in horses. Important unanswered questions and currently unexplored areas that deserve attention are highlighted. Finally, a rationale for the analysis of epigenetic modifications in the context with exercise-related traits and ailments associated with athletic breeds of horses is outlined in order to help guide future research.
Collapse
Affiliation(s)
- Joshua Denham
- RMIT University, School of Health and Biomedical Sciences, Melbourne, VIC, Australia
| | | | | | - Maha Sellami
- Qatar University, College of Arts and Sciences (CAS), Sport Science Program (SSP), Doha, Qatar
| | - Allan J Davie
- Australian Equine Racing and Research Centre (AERR), Ballina, NSW, Australia
| |
Collapse
|
21
|
Zhao J, Pei L. Cardiac Endocrinology: Heart-Derived Hormones in Physiology and Disease. ACTA ACUST UNITED AC 2020; 5:949-960. [PMID: 33015416 PMCID: PMC7524786 DOI: 10.1016/j.jacbts.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
The heart plays a central role in the circulatory system and provides essential oxygen, nutrients, and growth factors to the whole organism. The heart can synthesize and secrete endocrine signals to communicate with distant target organs. Studies of long-known and recently discovered heart-derived hormones highlight a shared theme and reveal a unified mechanism of heart-derived hormones in coordinating cardiac function and target organ biology. This paper reviews the biochemistry, signaling, function, regulation, and clinical significance of representative heart-derived hormones, with a focus on the cardiovascular system. This review also discusses important and exciting questions that will advance the field of cardiac endocrinology.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ActR, activin receptor
- BNP, brain natriuretic peptide
- CNP, C-type natriuretic peptide
- FGF, fibroblast growth factor
- FSTL, follistatin-like
- GDF, growth differentiation factor
- GDF15
- GFRAL, GDNF family receptor α-like
- NPR, natriuretic peptide receptors
- PCSK, proprotein convertase subtilisin/kexin type
- ST2, suppression of tumorigenesis-2
- TGF, transforming growth factor
- cardiac endocrinology
- heart
- heart-derived hormones
Collapse
Affiliation(s)
- Juanjuan Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Moro LN, Viale DL, Bastón JI, Arnold V, Suvá M, Wiedenmann E, Olguín M, Miriuka S, Vichera G. Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer. Sci Rep 2020; 10:15587. [PMID: 32973188 PMCID: PMC7518276 DOI: 10.1038/s41598-020-72040-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The application of new technologies for gene editing in horses may allow the generation of improved sportive individuals. Here, we aimed to knock out the myostatin gene (MSTN), a negative regulator of muscle mass development, using CRISPR/Cas9 and to generate edited embryos for the first time in horses. We nucleofected horse fetal fibroblasts with 1, 2 or 5 µg of 2 different gRNA/Cas9 plasmids targeting the first exon of MSTN. We observed that increasing plasmid concentrations improved mutation efficiency. The average efficiency was 63.6% for gRNA1 (14/22 edited clonal cell lines) and 96.2% for gRNA2 (25/26 edited clonal cell lines). Three clonal cell lines were chosen for embryo generation by somatic cell nuclear transfer: one with a monoallelic edition, one with biallelic heterozygous editions and one with a biallelic homozygous edition, which rendered edited blastocysts in each case. Both MSTN editions and off-targets were analyzed in the embryos. In conclusion, CRISPR/Cas9 proved an efficient method to edit the horse genome in a dose dependent manner with high specificity. Adapting this technology sport advantageous alleles could be generated, and a precision breeding program could be developed.
Collapse
Affiliation(s)
- Lucia Natalia Moro
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Diego Luis Viale
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Neurología y Citogenética Molecular, CESyMA, Buenos Aires, Argentina
| | | | | | - Mariana Suvá
- KHEIRON BIOTECH S.A, Pilar, Buenos Aires, Argentina
| | | | | | - Santiago Miriuka
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
23
|
Fontanel M, Todd E, Drabbe A, Ropka-Molik K, Stefaniuk-Szmukier M, Myćka G, Velie BD. Variation in the SLC16A1 and the ACOX1 Genes Is Associated with Gallop Racing Performance in Arabian Horses. J Equine Vet Sci 2020; 93:103202. [PMID: 32972674 DOI: 10.1016/j.jevs.2020.103202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022]
Abstract
Arabian horses are not only one of the most ancient breeds in the world, but they are also one of the most appreciated racehorse breeds today. The breed generates attention for their phenomenal endurance ability and their capability for gallop racing. Consequently, genetic testing to select the best individuals is attracting ever increasing interests from the Arabian industry. As such, the aim of this study was to further investigate associations between performance and variation at candidate genes suspected of having a key role in Arabian gallop racing performance. Generalized linear models were fit to test associations between eight candidate gene variants and a variety of gallop racing performance traits in a sample of Arabian racehorses (n = 287). Two genes, solute carrier family 16 member 1 (SLC16A1) and acyl-CoA oxidase 1 (ACOX1), were significantly associated with multiple gallop racing performance traits, whereas another gene, actinin alpha 3 (ACTN3) was associated with best race distance. Previously established associations between these three genes and equine metabolism strongly suggest further investigation of these genes, and their relationship with Arabian horse performance is warranted.
Collapse
Affiliation(s)
- Marie Fontanel
- Equine Genetics & Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia; Agrosup Dijon, Institut national supérieur des sciences agronomiques et de l'alimentation et de l'environnement, Dijon Cedex, France
| | - Evelyn Todd
- Equine Genetics & Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Alize Drabbe
- Equine Genetics & Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Kraków, Poland
| | - Grzegorz Myćka
- University of Agriculture in Krakow, Faculty of Biotechnology and Horticulture, Kraków, Poland
| | - Brandon D Velie
- Equine Genetics & Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| |
Collapse
|
24
|
Curi RA, Pereira GL, Alvarez MVN, Baldassini WA, Machado Neto OR, Chardulo LAL. Exome analysis and functional classification of identified variants in racing Quarter Horses. Anim Genet 2020; 51:716-721. [PMID: 32696541 DOI: 10.1111/age.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
The main objectives of this study were to identify and functionally classify SNPs and indels by exome sequencing of animals of the racing line of Quarter Horses. Based on the individual genomic estimated breeding values (GEBVs) for maximum speed index (SImax) obtained for 349 animals, two groups of 20 extreme animals were formed. Of these individuals, 20 animals with high GEBVs for SImax and 19 with low GEBVs for SImax had their exons and 5' and 3' UTRs sequenced. Considering SNPs and indels, 105 182 variants were identified in the expressed regions of the Quarter Horse genome. Of these, 72 166 variants were already known and 33 016 are new variants and were deposited in a database. The analysis of the set of gene variants significantly related (Padjusted < 0.05) to extreme animals in conjunction with the predicted impact of the changes and the physiological role of protein product pointed to two candidate genes potentially related to racing performance: SLC3A1 on ECA15 and CCN6 on ECA10.
Collapse
Affiliation(s)
- R A Curi
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - G L Pereira
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - M V N Alvarez
- Department of Parasitology, Institute of Biosciences, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - W A Baldassini
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - O R Machado Neto
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - L A L Chardulo
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| |
Collapse
|
25
|
Identification and Functional Annotation of Genes Related to Horses' Performance: From GWAS to Post-GWAS. Animals (Basel) 2020; 10:ani10071173. [PMID: 32664293 PMCID: PMC7401650 DOI: 10.3390/ani10071173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary It is assumed that the athletic performance of horses is influenced by a large number of genes; however, to date, not many genomic studies have been performed to identify candidate genes. In this study we performed a systematic review of genome-wide association studies followed by functional analyses aiming to identify the most candidate genes for horse performance. We were successful in identifying 669 candidate genes, from which we built biological process networks. Regulatory elements (transcription factors, TFs) of these genes were identified and used to build a gene–TF network. Genes and TFs presented in this study are suggested to play a role in the studied traits through biological processes related with exercise performance, for example, positive regulation of glucose metabolism, regulation of vascular endothelial growth factor production, skeletal system development, cellular response to fatty acids and cellular response to lipids. In general, this study may provide insights into the genetic architecture underlying horse performance in different breeds around the world. Abstract Integration of genomic data with gene network analysis can be a relevant strategy for unraveling genetic mechanisms. It can be used to explore shared biological processes between genes, as well as highlighting transcription factors (TFs) related to phenotypes of interest. Unlike other species, gene–TF network analyses have not yet been well applied to horse traits. We aimed to (1) identify candidate genes associated with horse performance via systematic review, and (2) build biological processes and gene–TF networks from the identified genes aiming to highlight the most candidate genes for horse performance. Our systematic review considered peer-reviewed articles using 20 combinations of keywords. Nine articles were selected and placed into groups for functional analysis via gene networks. A total of 669 candidate genes were identified. From that, gene networks of biological processes from each group were constructed, highlighting processes associated with horse performance (e.g., regulation of systemic arterial blood pressure by vasopressin and regulation of actin polymerization and depolymerization). Transcription factors associated with candidate genes were also identified. Based on their biological processes and evidence from the literature, we identified the main TFs related to horse performance traits, which allowed us to construct a gene–TF network highlighting TFs and the most candidate genes for horse performance.
Collapse
|
26
|
Campbell MLH, McNamee MJ. Ethics, Genetic Technologies and Equine Sports: The Prospect of Regulation of a Modified Therapeutic Use Exemption Policy. SPORT ETHICS AND PHILOSOPHY 2020. [DOI: 10.1080/17511321.2020.1737204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M. L. H Campbell
- Department of Production and Population Sciences, The Royal Veterinary College, South Mymms, UK
| | - M. J. McNamee
- School of Sport and Exercise Sciences, Swansea University, Swansea, UK
- Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Tozaki T, Kusano K, Ishikawa Y, Kushiro A, Nomura M, Kikuchi M, Kakoi H, Hirota K, Miyake T, Hill EW, Nagata S. A candidate-SNP retrospective cohort study for fracture risk in Japanese Thoroughbred racehorses. Anim Genet 2019; 51:43-50. [PMID: 31612520 DOI: 10.1111/age.12866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 11/30/2022]
Abstract
Fractures are medical conditions that compromise the athletic potential of horses and/or the safety of jockeys. Therefore, the reduction of fracture risk is an important horse and human welfare issue. The present study used molecular genetic approaches to determine the effect of genetic risk for fracture at four candidate SNPs spanning the myostatin (MSTN) gene on horse chromosome 18. Among the 3706 Japanese Thoroughbred racehorses, 1089 (29.4%) had experienced fractures in their athletic life, indicating the common occurrence of this injury in Thoroughbreds. In the case/control association study, fractures of the carpus (carpal bones and distal radius) were statistically associated with g.65809482T/C (P = 1.17 x 10-8 ), g.65868604G/T (P = 2.66 x 10-9 ), and g.66493737C/T (P = 6.41 x 10-8 ). In the retrospective cohort study using 1710 racehorses born in 2000, the relative risk (RR) was highest for male horses at g.65868604G/T, based on the dominant allele risk model (RR = 2.251, 95% confidence interval 1.407-3.604, P = 0.00041), and for female horses at g.65868604G/T, based on the recessive allele risk model (RR = 2.313, 95% confidence interval 1.380-3.877, P = 0.00163). Considering the association of these SNPs with racing performance traits such as speed, these genotypes may affect the occurrence of carpus fractures in Japanese Thoroughbred racehorses as a consequence of the non-genetic influence of the genotype on the distance and/or intensity of racing and training. The genetic information presented here may contribute to the development of strategic training programs and racing plans for racehorses that improve their health and welfare.
Collapse
Affiliation(s)
- T Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - K Kusano
- Equine Department, Japan Racing Association, Minato, Tokyo, 106-8401, Japan
| | - Y Ishikawa
- Racehorse Hospital Ritto Training Center, Japan Racing Association, Ritto, Shiga, 520-3005, Japan
| | - A Kushiro
- Racehorse Hospital Miho Training Center, Japan Racing Association, Miho, Ibaraki, 300-0493, Japan
| | - M Nomura
- Racehorse Hospital Ritto Training Center, Japan Racing Association, Ritto, Shiga, 520-3005, Japan
| | - M Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - H Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - K Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| | - T Miyake
- Comparative Agricultural Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - E W Hill
- School of Agriculture and Food Science, University College Dublin, Dublin, 4, Ireland.,Plusvital Ltd, The Highline, Dun Laoghaire Industrial Estate, Pottery Road, Dun Laoghaire, Co Dublin, Ireland
| | - S Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi, 320-0851, Japan
| |
Collapse
|
28
|
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet 2019; 50:569-597. [PMID: 31568563 PMCID: PMC6825885 DOI: 10.1111/age.12857] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Research, Texas A&M University, College Station, TX, 77843, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,School of Veterinary Medicine, Veterinary Genetics Laboratory, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| |
Collapse
|
29
|
Farries G, Gough KF, Parnell AC, McGivney BA, McGivney CL, McGettigan PA, MacHugh DE, Katz LM, Hill EW. Analysis of genetic variation contributing to measured speed in Thoroughbreds identifies genomic regions involved in the transcriptional response to exercise. Anim Genet 2019; 50:670-685. [PMID: 31508842 DOI: 10.1111/age.12848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
Abstract
Despite strong selection for athletic traits in Thoroughbred horses, there is marked variation in speed and aptitude for racing performance within the breed. Using global positioning system monitoring during exercise training, we measured speed variables and temporal changes in speed with age to derive phenotypes for GWAS. The aim of the study was to test the hypothesis that genetic variation contributes to variation in end-point physiological traits, in this case galloping speed measured during field exercise tests. Standardisation of field-measured phenotypes was attempted by assessing horses exercised on the same gallop track and managed under similar conditions by a single trainer. PCA of six key speed indices captured 73.9% of the variation with principal component 1 (PC1). Verifying the utility of the phenotype, we observed that PC1 (median) in 2-year-old horses was significantly different among elite, non-elite and unraced horses (P < 0.001) and the temporal change with age in PC1 varied among horses with different myostatin (MSTN) g.66493737C>T SNP genotypes. A GWAS for PC1 in 2-year-old horses (n = 122) identified four SNPs reaching the suggestive threshold for association (P < 4.80 × 10-5 ), defining a 1.09 Mb candidate region on ECA8 containing the myosin XVIIIB (MYO18B) gene. In a GWAS for temporal change in PC1 with age (n = 168), five SNPs reached the suggestive threshold for association and defined candidate regions on ECA2 and ECA11. Both regions contained genes that are significantly differentially expressed in equine skeletal muscle in response to acute exercise and training stimuli, including MYO18A. As MYO18A plays a regulatory role in the skeletal muscle response to exercise, the identified genomic variation proximal to the myosin family genes may be important for the regulation of the response to exercise and training.
Collapse
Affiliation(s)
- G Farries
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - K F Gough
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - A C Parnell
- Insight Centre for Data Analytics, Hamilton Institute, Maynooth University, Kildare, W23 F2H6, Ireland
| | - B A McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,Plusvital Ltd, Dun Laoghaire Industrial Estate, Pottery Road, Dublin, A96 KW29, Ireland
| | - C L McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - P A McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - D E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - L M Katz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - E W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,Plusvital Ltd, Dun Laoghaire Industrial Estate, Pottery Road, Dublin, A96 KW29, Ireland
| |
Collapse
|
30
|
Ropka-Molik K, Stefaniuk-Szmukier M, Szmatoła T, Piórkowska K, Bugno-Poniewierska M. The use of the SLC16A1 gene as a potential marker to predict race performance in Arabian horses. BMC Genet 2019; 20:73. [PMID: 31510920 PMCID: PMC6740031 DOI: 10.1186/s12863-019-0774-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arabian horses are commonly believed to be one of the oldest and the most popular horse breeds in the world, characterized by favourable stamina traits and exercise phenotypes. During intensive training, the rates of lactate production and utilization are critical to avoid muscle fatigue and a decrease in exercise performance. The key factor determining transmembrane lactate transport is the monocarboxylate transporter 1 protein coded for by the SLC16A1 gene. The aim of the present research was to identify polymorphisms in the coding sequence and UTRs in the equine SLC16A1 gene and to evaluate their potential association with race performance traits in Arabian horses. Based on RNA-seq data, SNPs were identified and genotyped using PCR-RFLP or PCR-HRM methods in 254 Arabian horses that competed in flat races. An association analysis between polymorphisms and racing results was performed. RESULTS Novel polymorphisms in the equine SLC16A1 locus have been identified (missense and 5'UTR variants: g.55601543C > T and g.55589063 T > G). Analysis showed a significant association between the 5'UTR polymorphism and several racing results as follows: the possibility of winning first or second place, the number of races in which horses started and total financial benefits. The analysis also showed differences in genotype distribution depending on race distance. In the studied population, the shorter distance races were only won by TT horses. The GG and TG horses took first and second places in middle- and long-distance races, and the percentage of winning heterozygotes increased from 19.5 to 27% at the middle and long distances, respectively. The p.Val432Ile (g.55601543C > T) polymorphism was not significantly related to the analysed racing results. CONCLUSION Our results showed that g.55589063 T > G polymorphism affected the possibility of winning first or second place and of competing in more races. The different distribution of genotypes depending on race distance indicated the possibility of using a SNP in the SLC16A1 gene as a marker to predict the best race distance for a horse. The presented results provide a basis for further research to validate the use of the SLC16A1 gene as a potential marker associated with racing performance.
Collapse
Affiliation(s)
- Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland.
| | - Monika Stefaniuk-Szmukier
- Department of Horse Breeding, Institute of Animal Science, University of Agriculture in Cracow, Cracow, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland.,University Centre of Veterinary Medicine, University of Agriculture in Cracow, Mickiewicza 24/28, 30-059, Cracow, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland.,Department of Animals Reproduction, Anatomy and Genomics, University of Agriculture in Cracow, Cracow, Poland
| |
Collapse
|
31
|
Fawcett JA, Sato F, Sakamoto T, Iwasaki WM, Tozaki T, Innan H. Genome-wide SNP analysis of Japanese Thoroughbred racehorses. PLoS One 2019; 14:e0218407. [PMID: 31339891 PMCID: PMC6655603 DOI: 10.1371/journal.pone.0218407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022] Open
Abstract
The domestication process of plants and animals typically involves intense inbreeding and directional selection for various traits. Here, we genotyped 370 Japanese Thoroughbred horses using the recently developed 670k SNP array and performed various genome-wide analysis also using genotype data of other horse breeds. We identified a number of regions showing interesting patterns of polymorphisms. For instance, the region containing the MC1R locus associated with chestnut coat color may have been targeted by selection for a different mutation much earlier on than the recent selection for chestnut color. We also identified regions that show signatures of selection specific to Thoroughbreds. In addition, we found that intense inbreeding early in the history of the Thoroughbred breed and also before the formation of the breed has a significant impact on the genomic architecture of modern Thoroughbreds. Our study demonstrates that the horse 670k array can be utilized to gain important insight into the domestication process of horses and to understand the genetic basis of the phenotypic diversity in horses.
Collapse
Affiliation(s)
- Jeffrey A Fawcett
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan.,RIKEN iTHEMS, Wako, Saitama 351-0198, Japan
| | - Fumio Sato
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Takahiro Sakamoto
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Watal M Iwasaki
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi 320-0851, Japan
| | - Hideki Innan
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
32
|
Yokomori T, Tozaki T, Mita H, Miyake T, Kakoi H, Kobayashi Y, Kusano K, Itou T. Heritability estimates of the position and number of facial hair whorls in Thoroughbred horses. BMC Res Notes 2019; 12:346. [PMID: 31215455 PMCID: PMC6582570 DOI: 10.1186/s13104-019-4386-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/13/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE According to oral traditions of horse caretakers and trainers, the differences in the position and number of facial hair whorls may be associated with temperamental traits. Elucidating genetic background of facial hair whorls and its relationship to temperamental traits may promote more efficient breeding and maintenance of racehorses. In this study, we estimated heritabilities of the position and number of facial hair whorls in Japanese Thoroughbred horses. RESULTS The number of facial hair whorls varied from one to four and heritability estimate in 4024 Thoroughbred horses was low (h2= 0.160). The positions of facial hair whorls were categorized into high, medium, and low, based on their locations. This trait was estimated to have high heritability (h2= 0.643) in 3782 Thoroughbred horses. These results indicated that a larger proportion of the variation in the studied population was due to genetic factors for facial hair whorls position. Because a similar result was also observed in another horse breed, Polish Konik horses, high heritability of facial hair whorl position may be characteristic of multiple horse breeds. We expect that these results will stimulate future studies to elucidate the relationship among temperamental traits and facial hair whorls in all horse breeds.
Collapse
Affiliation(s)
- Tamu Yokomori
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa, 252-0880, Japan
| | - Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, 320-0851, Japan.
| | - Hiroshi Mita
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, 329-0412, Japan
| | - Takeshi Miyake
- Comparative Agricultural Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-852, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, 320-0851, Japan
| | - Yuki Kobayashi
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kanichi Kusano
- Racehorse Hospital Ritto Training Center, Japan Racing Association, 1028 Misono, Ritto, Shiga, 520-3085, Japan
| | - Takuya Itou
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
33
|
Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse. PLoS One 2019; 14:e0215913. [PMID: 31022261 PMCID: PMC6483353 DOI: 10.1371/journal.pone.0215913] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/10/2019] [Indexed: 12/04/2022] Open
Abstract
The study of selection signatures helps to find genomic regions that have been under selective pressure and might host genes or variants that modulate important phenotypes. Such knowledge improves our understanding of how breeding programmes have shaped the genomes of livestock. In this study, 942 stallions were included from four, exemplarily chosen, German warmblood breeds with divergent historical and recent selection focus and different crossbreeding policies: Trakehner (N = 44), Holsteiner (N = 358), Hanoverian (N = 319) and Oldenburger (N = 221). Those breeds are nowadays bred for athletic performance and aptitude for show-jumping, dressage or eventing, with a particular focus of Holsteiner on the first discipline. Blood samples were collected during the health exams of the stallion preselections before licensing and were genotyped with the Illumina EquineSNP50 BeadChip. Autosomal markers were used for a multi-method search for signals of positive selection. Analyses within and across breeds were conducted by using the integrated Haplotype Score (iHS), cross-population Extended Haplotype Homozygosity (xpEHH) and Runs of Homozygosity (ROH). Oldenburger and Hanoverian showed very similar iHS signatures, but breed specificities were detected on multiple chromosomes with the xpEHH. The Trakehner clustered as a distinct group in a principal component analysis and also showed the highest number of ROHs, which reflects their historical bottleneck. Beside breed specific differences, we found shared selection signals in an across breed iHS analysis on chromosomes 1, 4 and 7. After investigation of these iHS signals and shared ROH for potential functional candidate genes and affected pathways including enrichment analyses, we suggest that genes affecting muscle functionality (TPM1, TMOD2-3, MYO5A, MYO5C), energy metabolism and growth (AEBP1, RALGAPA2, IGFBP1, IGFBP3-4), embryonic development (HOXB-complex) and fertility (THEGL, ZPBP1-2, TEX14, ZP1, SUN3 and CFAP61) have been targeted by selection in all breeds. Our findings also indicate selection pressure on KITLG, which is well-documented for influencing pigmentation.
Collapse
|
34
|
Grade CVC, Mantovani CS, Alvares LE. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. J Anim Sci Biotechnol 2019; 10:32. [PMID: 31044074 PMCID: PMC6477727 DOI: 10.1186/s40104-019-0338-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- 1Universidade Federal da Integração Latino-Americana, UNILA, Instituto Latino-Americano de Ciências da Vida e da Natureza, Avenida Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR CEP 85870-901 Brazil
| | - Carolina Stefano Mantovani
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| | - Lúcia Elvira Alvares
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| |
Collapse
|
35
|
Seong HS, Kim NY, Kim DC, Hwang NH, Son DH, Shin JS, Lee JH, Chung WH, Choi JW. Whole genome sequencing analysis of horse populations inhabiting the Korean Peninsula and Przewalski's horse. Genes Genomics 2019; 41:621-628. [PMID: 30941726 DOI: 10.1007/s13258-019-00795-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND The Jeju horse is an indigenous horse breed in Korea. However, there is a severe lack of genomic studies on Korean horse breeds. OBJECTIVE The objective of this study was to report genomic characteristics of domestic horse populations that inhabit South Korea (Jeju, Jeju crossbred, and Thoroughbred) and a wild horse breed (Przewalski's horse). RESULTS Using the equine reference genome assembly (EquCab 2.0), more than ~ 6.5 billion sequence reads were successfully mapped, which generated an average of 40.87-fold coverage throughout the genome. Using these data, we detected a total of 12.88 million SNPs, of which 73.7% were found to be novel. All the detected SNPs were deeply annotated to retrieve SNPs in gene regions using the RefSeq and Ensemble gene sets. Approximately 27% of the total SNPs were located within genes, whereas the remaining 73% were found in intergenic regions. Using 129,776 coding SNPs, we retrieved a total of 49,171 nonsynonymous SNPs in 12,351 genes. Furthermore, we identified a total of 10,770 deleterious nonsynonymous SNPs which are predicted to affect protein structure or function. CONCLUSION We showed numerous genomic variants from domestic and wild horse breeds. These results provide a valuable resource for further studies on functions of SNP-containing genes, and can aid in determining the molecular basis underlying variation in economically important traits of horses.
Collapse
Affiliation(s)
- Ha-Seung Seong
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Nam-Young Kim
- Subtropical Animal Research Institute, National Institute of Animal Science, RDA, Jeju, 690-150, Republic of Korea
| | - Dae Cheol Kim
- Jeju Special Self-Governing Province Livestock Promotion, Jeju, Republic of Korea
| | - Nam-Hyun Hwang
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Da-Hye Son
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jong Suh Shin
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Joon-Hee Lee
- Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hyong Chung
- Division of Food Functionality Research, Research Group of Healthcare, Wanju-gun, 55365, Republic of Korea.
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
36
|
Velie BD, Lillie M, Fegraeus KJ, Rosengren MK, Solé M, Wiklund M, Ihler CF, Strand E, Lindgren G. Exploring the genetics of trotting racing ability in horses using a unique Nordic horse model. BMC Genomics 2019; 20:104. [PMID: 30717660 PMCID: PMC6360714 DOI: 10.1186/s12864-019-5484-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
Background Horses have been strongly selected for speed, strength, and endurance-exercise traits since the onset of domestication. As a result, highly specialized horse breeds have developed with many modern horse breeds often representing closed populations with high phenotypic and genetic uniformity. However, a great deal of variation still exists between breeds, making the horse particularly well suited for genetic studies of athleticism. To identify genomic regions associated with athleticism as it pertains to trotting racing ability in the horse, the current study applies a pooled sequence analysis approach using a unique Nordic horse model. Results Pooled sequence data from three Nordic horse populations were used for FST analysis. After strict filtering, FST analysis yielded 580 differentiated regions for trotting racing ability. Candidate regions on equine chromosomes 7 and 11 contained the largest number of SNPs (n = 214 and 147, respectively). GO analyses identified multiple genes related to intelligence, energy metabolism, and skeletal development as potential candidate genes. However, only one candidate region for trotting racing ability overlapped a known racing ability QTL. Conclusions Not unexpected for genomic investigations of complex traits, the current study identified hundreds of candidate regions contributing to trotting racing ability in the horse. Likely resulting from the cumulative effects of many variants across the genome, racing ability continues to demonstrate its polygenic nature with candidate regions implicating genes influencing both musculature and neurological development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5484-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brandon D Velie
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. .,School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| | - Mette Lillie
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Kim Jäderkvist Fegraeus
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria K Rosengren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marina Solé
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maja Wiklund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carl-Fredrik Ihler
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Eric Strand
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Livestock Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Hill EW, McGivney BA, Rooney MF, Katz LM, Parnell A, MacHugh DE. The contribution of myostatin (MSTN) and additional modifying genetic loci to race distance aptitude in Thoroughbred horses racing in different geographic regions. Equine Vet J 2019; 51:625-633. [PMID: 30604488 DOI: 10.1111/evj.13058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Race distance aptitude in Thoroughbred horses is highly heritable and is influenced largely by variation at the myostatin gene (MSTN). OBJECTIVES In addition to MSTN, we hypothesised that other modifying loci contribute to best race distance. STUDY DESIGN Using 3006 Thoroughbreds, including 835 'elite' horses, which were >3 years old, had race records and were sampled from Europe/Middle-East, Australia/New Zealand, North America and South Africa, we performed genome-wide association (GWA) tests and separately developed a genomic prediction algorithm to comprehensively catalogue additive genetic variation contributing to best race distance. METHODS 48,896 single-nucleotide polymorphism (SNP) genotypes were generated from high-density SNP genotyping arrays. Heritability estimates, tests of GWA and genomic prediction models were derived for the phenotypes: average race distance, best race distance for elite, nonelite and all winning horses. RESULTS Heritability estimates were high ( h m 2 = 0.51, best race distance - elite; h m 2 = 0.42, best race distance - nonelite; h m 2 = 0.40, best race distance - all) and most of the variation was attributed to the MSTN gene. MSTN locus SNPs were the most strongly associated with the trait and included BIEC2-438999 (ECA18:66913090; P = 4.51 × 10-110 , average race distance; P = 2.33 × 10-42 , best race distance - elite). The genomic prediction algorithm enabled the inclusion of variation from all SNPs in a model that partitioned horses into short and long cohorts following assignment of MSTN genotype. Additional genes with minor contributions to best race distance were identified. MAIN LIMITATIONS The nongenetic influence of owner/trainer decisions on placement of horses in suitable races could not be controlled. CONCLUSIONS MSTN is the single most important genetic contributor to best race distance in the Thoroughbred. Employment of genetic prediction models will lead to more accurate placing of horses in races that are best suited to their inherited genetic potential for distance aptitude.
Collapse
Affiliation(s)
- E W Hill
- Plusvital Ltd, Dun Laoghaire, Co. Dublin, Ireland.,UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - B A McGivney
- Plusvital Ltd, Dun Laoghaire, Co. Dublin, Ireland
| | - M F Rooney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - L M Katz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - A Parnell
- UCD Insight Centre for Data Analytics, University College Dublin, Belfield, Dublin, Ireland
| | - D E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
38
|
Peter VG, O'Keeffe TA, Smith LCR, Schweizer-Gorgas D. Radiographic Identification of Osseous Cyst- Like Lesions in the Distal Phalanx in 22 Lame Thoroughbred Horses Managed Conservatively and Their Racing Performance. Front Vet Sci 2018; 5:286. [PMID: 30525046 PMCID: PMC6262755 DOI: 10.3389/fvets.2018.00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
Reasons for performing study: To investigate the racing performance of Thoroughbred horses with osseous cyst-like lesions (OCLLs) in the distal phalanx causing lameness and treated conservatively. Objectives: To assess horses' ability to race and perform after radiographic identification of OCLL in the distal phalanx of Thoroughbred horses with lameness at the time of detection and undergoing conservative treatment. Study Design: Retrospective case control study. Methods: The clinical database of one equine clinic was reviewed in a 10-year period for Thoroughbreds showing lameness localized to the foot and a radiographic diagnosis of OCLL in the distal phalanx. Sex, age at time of detection of the OCLL, degree of lameness, affected limb, and treatment were recorded. Successful performance of horses was assessed by racing at least once after detection of the OCLL and maximum racing performance rating (RPR). Radiographic features such as size, location, sclerotic rim of the OCLL and irregularity of the articular surface of the distal phalanx were compared to successful performance using univariable statistical analysis. Successful performance of horses with OCLL was compared to a control group of maternal siblings by parametric testing. Results: Twenty-two horses met the inclusion criteria. Thirteen horses raced after the detection of OCLLs. Eight did not race, one case had not yet reached racing age, resulting in 62% (13/21) of racing age racing at least once. The number of successfully performing horses with an OCCL was significantly lower compared to their maternal siblings [p = 0.03, Odds ratio (OR) = 0.30]. If horses with OCLL in the distal phalanx raced, their RPR was similar to their maternal siblings. No significant association was found between radiographic features of OCLLs and successful performance, but OCLLs in the left forelimb carried a more favorable outcome for racing (p = 0.02, OR = 2.33 95%CI 1.27, 4.27) compared to OCLLs in any other limb. Conclusions: Horses with lameness and an OCLL in the distal phalanx managed conservatively are less likely to race when compared to their maternal siblings. If horses with OCLLs in the distal phalanx are able to race, their performance, measured as RPR, was comparable to their maternal siblings. Due to the small numbers in this study the results should be interpreted carefully.
Collapse
Affiliation(s)
- Vanessa G Peter
- Division of Clinical Radiology, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Thomas A O'Keeffe
- Rossdales Equine Hospital and Diagnostic Centre, Newmarket, United Kingdom
| | - Lewis C R Smith
- Rossdales Equine Hospital and Diagnostic Centre, Newmarket, United Kingdom
| | - Daniela Schweizer-Gorgas
- Division of Clinical Radiology, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
de Matteis R, Pereira GL, Casarotto LT, Tavernaro AJS, Silva JAIIV, Chardulo LAL, Curi RA. Variants in the Chromosomal Region of the Myostatin Gene and Their Association With Lines, Performance, and Body Measurements of Quarter Horses. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
The "speed gene" effect of myostatin arises in Thoroughbred horses due to a promoter proximal SINE insertion. PLoS One 2018; 13:e0205664. [PMID: 30379863 PMCID: PMC6209199 DOI: 10.1371/journal.pone.0205664] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/30/2018] [Indexed: 11/25/2022] Open
Abstract
Thoroughbred horses are finely-tuned athletes with a high aerobic capacity relative to skeletal muscle mass, attributable to centuries of genetic selection for speed and stamina. Polymorphisms in the myostatin gene (MSTN), a pronounced inhibitor of skeletal muscle growth, have been shown to almost singularly account for gene-based race distance aptitude in racehorses. In Thoroughbreds, two MSTN polymorphisms, a single nucleotide variation in the first intron (SNP g.66493737C>T) and a non-coding transposable element within the promoter region (a 227 bp SINE insertion) are of particular interest. Until now, it has not been clear which of these variants affect skeletal muscle phenotypes or whether both can impact racing performance. In a large cohort of Thoroughbreds, we observed a complete concordance between the SNP and the SINE insertion. By means of in vitro assays in C2C12 myoblasts, we isolated the SNP variant from the SINE polymorphism and showed the latter is exclusively responsible for adversely affecting transcription initiation and gene expression thereby limiting myostatin protein production. Mapping the MSTN transcription start site in horse skeletal muscle likewise revealed anomalous transcription initiation in the presence of the SINE insertion. Our data provides mechanistic evidence that the SINE insertion uniquely accounts for the MSTN “speed gene” effect on race distance aptitude in the Thoroughbred horse.
Collapse
|
41
|
Velie BD, Fegraeus KJ, Solé M, Rosengren MK, Røed KH, Ihler CF, Strand E, Lindgren G. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism. BMC Genet 2018; 19:80. [PMID: 30157760 PMCID: PMC6114527 DOI: 10.1186/s12863-018-0670-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Background Although harness racing is of high economic importance to the global equine industry, significant genomic resources have yet to be applied to mapping harness racing success. To identify genomic regions associated with harness racing success, the current study performs genome-wide association analyses with three racing performance traits in the Norwegian-Swedish Coldblooded Trotter using the 670 K Axiom Equine Genotyping Array. Results Following quality control, 613 horses and 359,635 SNPs were retained for further analysis. After strict Bonferroni correction, nine genome-wide significant SNPs were identified for career earnings. No genome-wide significant SNPs were identified for number of gallops or best km time. However, four suggestive genome-wide significant SNPs were identified for number of gallops, while 19 were identified for best km time. Multiple genes related to intelligence, energy metabolism, and immune function were identified as potential candidate genes for harness racing success. Conclusions Apart from the physiological requirements needed for a harness racing horse to be successful, the results of the current study also advocate learning ability and memory as important elements for harness racing success. Further exploration into the mental capacity required for a horse to achieve racing success is likely warranted. Electronic supplementary material The online version of this article (10.1186/s12863-018-0670-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brandon D Velie
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Kim Jäderkvist Fegraeus
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marina Solé
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria K Rosengren
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Carl-Fredrik Ihler
- Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| | - Eric Strand
- Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| | - Gabriella Lindgren
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| |
Collapse
|
42
|
Genome-wide analyses of the Jeju, Thoroughbred, and Jeju crossbred horse populations using the high density SNP array. Genes Genomics 2018; 40:1249-1258. [PMID: 30099720 DOI: 10.1007/s13258-018-0722-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022]
Abstract
The Jeju horse is an indigenous Korean horse breed that is currently registered with the Food and Agriculture Organization of the United Nations. However, there is severe lack of genomic studies on Jeju horse. This study was conducted to investigate genetic characteristics of horses including Jeju horse, Thoroughbred and Jeju crossbred (Jeju × Thoroughbred) populations. We compared the genomes of three horse populations using the Equine SNP70 Beadchip array. Short-range Linkage disequilibrium was the highest in Thoroughbred, whereas r2 values were lowest in Jeju horse. Expected heterozygosity was the highest in Jeju crossbred (0.351), followed by the Thoroughbred (0.337) and Jeju horse (0.311). The level of inbreeding was slightly higher in Thoroughbred (- 0.009) than in Jeju crossbred (- 0.035) and Jeju horse (- 0.038). FST value was the highest between Jeju horse and Thoroughbred (0.113), whereas Jeju crossbred and Thoroughbred showed the lowest value (0.031). The genetic relationship was further assessed by principal component analysis, suggesting that Jeju crossbred is more genetically similar to Thoroughbred than Jeju horse population. Additionally, we detected potential selection signatures, for example, in loci located on LCORL/NCAPG and PROP1 genes that are known to influence body. Genome-wide analyses of the three horse populations showed that all the breeds had somewhat a low level of inbreeding within each population. In the population structure analysis, we found that Jeju crossbred was genetically closer to Thoroughbred than Jeju horse. Furthermore, we identified several signatures of selection which might be associated with traits of interest. To our current knowledge, this study is the first genomic research, analyzing genetic relationships of Jeju horse, Thoroughbred and Jeju crossbred.
Collapse
|
43
|
Abstract
We found that hundreds of years of selection by humans have produced sport-hunting breeds of superior speed and athleticism through strong selection on multiple genes relating to cardiovascular, muscle, and neuronal functions. We further substantiated these findings by showing that genes under selection significantly enhanced athleticism, as measured by racing speed and obstacle course success, using standardized measures from dogs competing in national competitions. Overall these results reveal both the evolutionary processes and the genetic pathways putatively involved in athletic success. Modern dogs are distinguished among domesticated species by the vast breadth of phenotypic variation produced by strong and consistent human-driven selective pressure. The resulting breeds reflect the development of closed populations with well-defined physical and behavioral attributes. The sport-hunting dog group has long been employed in assistance to hunters, reflecting strong behavioral pressures to locate and pursue quarry over great distances and variable terrain. Comparison of whole-genome sequence data between sport-hunting and terrier breeds, groups at the ends of a continuum in both form and function, reveals that genes underlying cardiovascular, muscular, and neuronal functions are under strong selection in sport-hunting breeds, including ADRB1, TRPM3, RYR3, UTRN, ASIC3, and ROBO1. We also identified an allele of TRPM3 that was significantly associated with increased racing speed in Whippets, accounting for 11.6% of the total variance in racing performance. Finally, we observed a significant association of ROBO1 with breed-specific accomplishments in competitive obstacle course events. These results provide strong evidence that sport-hunting breeds have been adapted to their occupations by improved endurance, cardiac function, blood flow, and cognitive performance, demonstrating how strong behavioral selection alters physiology to create breeds with distinct capabilities.
Collapse
|
44
|
Affiliation(s)
- E. N. Adam
- Gluck Equine Research Center; University of Kentucky; Lexington USA
| |
Collapse
|
45
|
Padilha FGF, El-Jaick KB, de Castro L, Moreira ADS, Ferreira AMR. Effect of selection for eventing on the MSTN gene in Brazilian sport horses. J Equine Sci 2018; 29:21-24. [PMID: 29593445 PMCID: PMC5865066 DOI: 10.1294/jes.29.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/13/2017] [Indexed: 11/01/2022] Open
Abstract
Polymorphisms in MSTN have previously been associated with equine performance. Therefore, the aim of this study was to identify variants in MSTN intron 1 in 16 Brazilian Sport Horses selected for competition in eventing and their possible effects of selection on performance. Among the nine variants identified, eight had already been reported in previous studies or genomic databases, although they showed differences in frequencies when compared with other horse breeds. Moreover, a new mutation was identified in two horses, both in heterozygous form. Considering the absence of molecular studies in this valuable Brazilian breed, these findings represent an important contribution to the characterization of its genetic profile and may possibly aid in further genotype-phenotype association studies.
Collapse
Affiliation(s)
| | - Kênia Balbi El-Jaick
- Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brasil
| | | | | | | |
Collapse
|
46
|
Hines MT. Clinical Approach to Commonly Encountered Problems. EQUINE INTERNAL MEDICINE 2018. [PMCID: PMC7158300 DOI: 10.1016/b978-0-323-44329-6.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Interbreed Distribution of the Myostatin (MSTN) Gene 5′-Flanking Variants and Their Relationship With Horse Biometric Traits. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Farries G, McGettigan PA, Gough KF, McGivney BA, MacHugh DE, Katz LM, Hill EW. Genetic contributions to precocity traits in racing Thoroughbreds. Anim Genet 2017; 49:193-204. [PMID: 29230835 DOI: 10.1111/age.12622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
Abstract
Adaptation to early training and racing (i.e. precocity), which is highly variable in racing Thoroughbreds, has implications for the selection and training of horses. We hypothesised that precocity in Thoroughbred racehorses is heritable. Age at first sprint training session (work day), age at first race and age at best race were used as phenotypes to quantify precocity. Using high-density SNP array data, additive SNP heritability (hSNP2) was estimated to be 0.17, 0.14 and 0.17 for the three traits respectively. In genome-wide association studies (GWAS) for age at first race and age at best race, a 1.98-Mb region on equine chromosome 18 (ECA18) was identified. The most significant association was with the myostatin (MSTN) g.66493737C>T SNP (P = 5.46 × 10-12 and P = 1.89 × 10-14 respectively). In addition, two SNPs on ECA1 (g.37770220G>A and g.37770305T>C) within the first intron of the serotonin receptor gene HTR7 were significantly associated with age at first race and age at best race. Although no significant associations were identified for age at first work day, the MSTN:g.66493737C>T SNP was among the top 20 SNPs in the GWAS (P = 3.98 × 10-5 ). Here we have identified variants with potential roles in early adaptation to training. Although there was an overlap in genes associated with precocity and distance aptitude (i.e. MSTN), the HTR7 variants were more strongly associated with precocity than with distance. Because HTR7 is closely related to the HTR1A gene, previously implicated in tractability in young Thoroughbreds, this suggests that behavioural traits may influence precocity.
Collapse
Affiliation(s)
- G Farries
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - P A McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - K F Gough
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - B A McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,Plusvital Ltd., Dun Laoghaire Industrial Estate, Pottery Road, Dublin, A96 KW29, Ireland
| | - D E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - L M Katz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - E W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,Plusvital Ltd., Dun Laoghaire Industrial Estate, Pottery Road, Dublin, A96 KW29, Ireland
| |
Collapse
|
49
|
Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse. PLoS One 2017; 12:e0186247. [PMID: 29190290 PMCID: PMC5708611 DOI: 10.1371/journal.pone.0186247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
Variation in the myostatin (MSTN) gene has been reported to be associated with race distance, body composition and skeletal muscle fibre composition in the horse. The aim of the present study was to test the hypothesis that MSTN variation influences mitochondrial phenotypes in equine skeletal muscle. Mitochondrial abundance and skeletal muscle fibre types were measured in whole muscle biopsies from the gluteus medius of n = 82 untrained (21 ± 3 months) Thoroughbred horses. Skeletal muscle fibre type proportions were significantly (p < 0.01) different among the three MSTN genotypes and mitochondrial content was significantly (p < 0.01) lower in the combined presence of the C-allele of SNP g.66493737C>T (C) and the SINE insertion 227 bp polymorphism (I). Evaluation of mitochondrial complex activities indicated higher combined mitochondrial complex I+III and II+III activities in the presence of the C-allele / I allele (p ≤ 0.05). The restoration of complex I+III and complex II+III activities following addition of exogenous coenzyme Q1 (ubiquinone1) (CoQ1) in vitro in the TT/NN (homozygous T allele/homozygous no insertion) cohort indicated decreased coenzyme Q in these animals. In addition, decreased gene expression in two coenzyme Q (CoQ) biosynthesis pathway genes (COQ4, p ≤ 0.05; ADCK3, p ≤ 0.01) in the TT/NN horses was observed. This study has identified several mitochondrial phenotypes associated with MSTN genotype in untrained Thoroughbred horses and in addition, our findings suggest that nutritional supplementation with CoQ may aid to restore coenzyme Q activity in TT/NN horses.
Collapse
|
50
|
Bryan K, McGivney BA, Farries G, McGettigan PA, McGivney CL, Gough KF, MacHugh DE, Katz LM, Hill EW. Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components. BMC Genomics 2017; 18:595. [PMID: 28793853 PMCID: PMC5551008 DOI: 10.1186/s12864-017-4007-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND A single bout of exercise induces changes in gene expression in skeletal muscle. Regular exercise results in an adaptive response involving changes in muscle architecture and biochemistry, and is an effective way to manage and prevent common human diseases such as obesity, cardiovascular disorders and type II diabetes. However, the biomolecular mechanisms underlying such responses still need to be fully elucidated. Here we performed a transcriptome-wide analysis of skeletal muscle tissue in a large cohort of untrained Thoroughbred horses (n = 51) before and after a bout of high-intensity exercise and again after an extended period of training. We hypothesized that regular high-intensity exercise training primes the transcriptome for the demands of high-intensity exercise. RESULTS An extensive set of genes was observed to be significantly differentially regulated in response to a single bout of high-intensity exercise in the untrained cohort (3241 genes) and following multiple bouts of high-intensity exercise training over a six-month period (3405 genes). Approximately one-third of these genes (1025) and several biological processes related to energy metabolism were common to both the exercise and training responses. We then developed a novel network-based computational analysis pipeline to test the hypothesis that these transcriptional changes also influence the contextual molecular interactome and its dynamics in response to exercise and training. The contextual network analysis identified several important hub genes, including the autophagosomal-related gene GABARAPL1, and dynamic functional modules, including those enriched for mitochondrial respiratory chain complexes I and V, that were differentially regulated and had their putative interactions 're-wired' in the exercise and/or training responses. CONCLUSION Here we have generated for the first time, a comprehensive set of genes that are differentially expressed in Thoroughbred skeletal muscle in response to both exercise and training. These data indicate that consecutive bouts of high-intensity exercise result in a priming of the skeletal muscle transcriptome for the demands of the next exercise bout. Furthermore, this may also lead to an extensive 're-wiring' of the molecular interactome in both exercise and training and include key genes and functional modules related to autophagy and the mitochondrion.
Collapse
Affiliation(s)
- Kenneth Bryan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Beatrice A. McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Gabriella Farries
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Paul A. McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Charlotte L. McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Katie F. Gough
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Lisa M. Katz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Emmeline W. Hill
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| |
Collapse
|