1
|
Sugawara S, Hueber B, Woolley G, Terry K, Kroll K, Manickam C, Ram DR, Ndhlovu LC, Goepfert P, Jost S, Reeves RK. Multiplex interrogation of the NK cell signalome reveals global downregulation of CD16 signaling during lentivirus infection through an IL-18/ADAM17-dependent mechanism. PLoS Pathog 2023; 19:e1011629. [PMID: 37669308 PMCID: PMC10503717 DOI: 10.1371/journal.ppat.1011629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2023] [Revised: 09/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Despite their importance, natural killer (NK) cell responses are frequently dysfunctional during human immunodeficiency virus-1 (HIV-1) and simian immunodeficiency virus (SIV) infections, even irrespective of antiretroviral therapies, with poorly understood underlying mechanisms. NK cell surface receptor modulation in lentivirus infection has been extensively studied, but a deeper interrogation of complex cell signaling is mostly absent, largely due to the absence of any comprehensive NK cell signaling assay. To fill this knowledge gap, we developed a novel multiplex signaling analysis to broadly assess NK cell signaling. Using this assay, we elucidated that NK cells exhibit global signaling reduction from CD16 both in people living with HIV-1 (PLWH) and SIV-infected rhesus macaques. Intriguingly, antiretroviral treatment did not fully restore diminished CD16 signaling in NK cells from PLWH. As a putative mechanism, we demonstrated that NK cells increased surface ADAM17 expression via elevated plasma IL-18 levels during HIV-1 infection, which in turn reduced surface CD16 downregulation. We also illustrated that CD16 expression and signaling can be restored by ADAM17 perturbation. In summary, our multiplex NK cell signaling analysis delineated unique NK cell signaling perturbations specific to lentiviral infections, resulting in their dysfunction. Our analysis also provides mechanisms that will inform the restoration of dysregulated NK cell functions, offering potential insights for the development of new NK cell-based immunotherapeutics for HIV-1 disease.
Collapse
Affiliation(s)
- Sho Sugawara
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Brady Hueber
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, United States of America
| | - Paul Goepfert
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Anderson JL, Sandstrom K, Smith WR, Wetzel M, Klenchin VA, Evans DT. MHC Class I Ligands of Rhesus Macaque Killer Cell Ig-like Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1815-1826. [PMID: 37036309 PMCID: PMC10192222 DOI: 10.4049/jimmunol.2200954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Definition of MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as an animal model for infectious diseases, reproductive biology, and transplantation. To provide a more complete foundation for studying NK cell responses, rhesus macaque KIRs representing common allotypes of lineage II KIR genes were tested for interactions with MHC class I molecules representing diverse Macaca mulatta (Mamu)-A, -B, -E, -F, -I, and -AG alleles. KIR-MHC class I interactions were identified by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. Ligands for 12 KIRs of previously unknown specificity were identified that fell into three general categories: interactions with multiple Mamu-Bw4 molecules, interactions with Mamu-A-related molecules, including allotypes of Mamu-AG and the hybrid Mamu-B*045:03 molecule, or interactions with Mamu-A1*012:01. Whereas most KIRs found to interact with Mamu-Bw4 are inhibitory, most of the KIRs that interact with Mamu-AG are activating. The KIRs that recognize Mamu-A1*012:01 belong to a phylogenetically distinct group of macaque KIRs with a 3-aa deletion in the D0 domain that is also present in human KIR3DL1/S1 and KIR3DL2. This study more than doubles the number of rhesus macaque KIRs with defined MHC class I ligands and identifies interactions with Mamu-AG, -B*045, and -A1*012. These findings support overlapping, but nonredundant, patterns of ligand recognition that reflect extensive functional diversification of these receptors.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Willow R. Smith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Molly Wetzel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
3
|
Hu Q, Huang X, Jin Y, Zhang R, Zhao A, Wang Y, Zhou C, Liu W, Liu X, Li C, Fan G, Zhuo M, Wang X, Ling F, Luo W. Long-read assembly of major histocompatibility complex and killer cell immunoglobulin-like receptor genome regions in cynomolgus macaque. Biol Direct 2022; 17:36. [PMID: 36447238 PMCID: PMC9707422 DOI: 10.1186/s13062-022-00350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) and the killer cell immunoglobulin-like receptors (KIR) are key regulators of immune responses. The cynomolgus macaque, an Old World monkey species, can be applied as an important preclinical model for studying human diseases, including coronavirus disease 2019 (COVID-19). Several MHC-KIR combinations have been associated with either a poor or good prognosis. Therefore, macaques with a well-characterized immunogenetic profile may improve drug evaluation and speed up vaccine development. At present, a complete overview of the MHC and KIR haplotype organizations in cynomolgus macaques is lacking, and characterization by conventional techniques is hampered by the extensive expansion of the macaque MHC-B region that complicates the discrimination between genes and alleles. METHODS We assembled complete MHC and KIR genomic regions of cynomolgus macaque using third-generation long-read sequencing approach. We identified functional Mafa-B loci at the transcriptome level using locus-specific amplification in a cohort of 33 Vietnamese cynomolgus macaques. RESULTS This is the first physical mapping of complete MHC and KIR gene regions in a Vietnamese cynomolgus macaque. Furthermore, we identified four functional Mafa-B loci (B2, B3, B5, and B6) and showed that alleles of the Mafa-I*01, -B*056, -B*034, and -B*001 functional lineages, respectively, are highly frequent in the Vietnamese cynomolgus macaque population. CONCLUSION The insights into the MHC and KIR haplotype organizations and the level of diversity may refine the selection of animals with specific genetic markers for future medical research.
Collapse
Affiliation(s)
- Qingxiu Hu
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xiaoqi Huang
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Yabin Jin
- grid.12981.330000 0001 2360 039XThe First People’s Hospital of Foshan, Sun Yat-sen University, Foshan, 528000 China
| | - Rui Zhang
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Aimin Zhao
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Yiping Wang
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Chenyun Zhou
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Weixin Liu
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xunwei Liu
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Chunhua Li
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Guangyi Fan
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Min Zhuo
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xiaoning Wang
- grid.414252.40000 0004 1761 8894National Clinic Center of Geriatric, The Chinese PLA General Hospital, Beijing, 100853 China
| | - Fei Ling
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Wei Luo
- grid.12981.330000 0001 2360 039XThe First People’s Hospital of Foshan, Sun Yat-sen University, Foshan, 528000 China
| |
Collapse
|
4
|
Hasan MZ, Walter L. Rhesus Macaque Activating Killer Immunoglobulin-Like Receptors Associate With Fc Receptor Gamma (FCER1G) and Not With DAP12 Adaptor Proteins Resulting in Stabilized Expression and Enabling Signal Transduction. Front Immunol 2021; 12:678964. [PMID: 33968088 PMCID: PMC8102735 DOI: 10.3389/fimmu.2021.678964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Activating killer cell immunoglobulin-like receptors (KIR) in macaques are thought to be derived by genetic recombination of the region encoding the transmembrane and intracellular part of KIR2DL4 and a KIR3D gene. As a result, all macaque activating KIR possess a positively charged arginine residue in the transmembrane region. As human KIR2DL4 associates with the FCER1G (also called Fc receptor-gamma, FcRγ) adaptor, we hypothesized that in contrast to human and great ape the activating KIRs of macaques associate with FcRγ instead of DAP12. By applying co-immunoprecipitation of transfected as well as primary cells, we demonstrate that rhesus macaque KIR3DS05 indeed associates with FcRγ and not with DAP12. This association with FcRγ results in increased and substantially stabilized surface expression of KIR3DS05. In addition, we demonstrate that binding of specific ligands of KIR3DS05, Mamu-A1*001 and A1*011, resulted in signal transduction in the presence of FcRγ in contrast to DAP12.
Collapse
Affiliation(s)
- Mohammad Zahidul Hasan
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
5
|
Bruijnesteijn J, de Groot NG, Bontrop RE. The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Front Immunol 2020; 11:582804. [PMID: 33013938 PMCID: PMC7516082 DOI: 10.3389/fimmu.2020.582804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
The activity and function of natural killer (NK) cells are modulated through the interactions of multiple receptor families, of which some recognize MHC class I molecules. The high level of MHC class I polymorphism requires their ligands either to interact with conserved epitopes, as is utilized by the NKG2A receptor family, or to co-evolve with the MHC class I allelic variation, which task is taken up by the killer cell immunoglobulin-like receptor (KIR) family. Multiple molecular mechanisms are responsible for the diversification of the KIR gene system, and include abundant chromosomal recombination, high mutation rates, alternative splicing, and variegated expression. The combination of these genetic mechanisms generates a compound array of diversity as is reflected by the contraction and expansion of KIR haplotypes, frequent birth of fusion genes, allelic polymorphism, structurally distinct isoforms, and variegated expression, which is in contrast to the mainly allelic nature of MHC class I polymorphism in humans. A comparison of the thoroughly studied human and macaque KIR gene repertoires demonstrates a similar evolutionarily conserved toolbox, through which selective forces drove and maintained the diversified nature of the KIR gene cluster. This hypothesis is further supported by the comparative genetics of KIR haplotypes and genes in other primate species. The complex nature of the KIR gene system has an impact upon the education, activity, and function of NK cells in coherence with an individual’s MHC class I repertoire and pathogenic encounters. Although selection operates on an individual, the continuous diversification of the KIR gene system in primates might protect populations against evolving pathogens.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Bruijnesteijn J, de Groot N, van der Wiel MKH, Otting N, de Vos-Rouweler AJM, de Groot NG, Bontrop RE. Unparalleled Rapid Evolution of KIR Genes in Rhesus and Cynomolgus Macaque Populations. THE JOURNAL OF IMMUNOLOGY 2020; 204:1770-1786. [PMID: 32111732 DOI: 10.4049/jimmunol.1901140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/19/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
The killer cell Ig-like receptors (KIR) modulate immune responses through interactions with MHC class I molecules. The KIR region in large cohorts of rhesus and cynomolgus macaque populations were characterized, and the experimental design enabled the definition of a considerable number of alleles (n = 576) and haplotypes, which are highly variable with regard to architecture. Although high levels of polymorphism were recorded, only a few alleles are shared between species and populations. The rapid evolution of allelic polymorphism, accumulated by point mutations, was further confirmed by the emergence of a novel KIR allele in a rhesus macaque family. In addition to allelic variation, abundant orthologous and species-specific KIR genes were identified, the latter of which are frequently generated by fusion events. The concerted action of both genetic mechanisms, in combination with differential selective pressures at the population level, resulted in the unparalleled rapid evolution of the KIR gene region in two closely related macaque species. The variation of the KIR gene repertoire at the species and population level might have an impact on the outcome of preclinical studies with macaque models.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Marit K H van der Wiel
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and .,Theoretical Biology and Bioinformatics Group, Utrecht University, 3527 Utrecht, the Netherlands
| |
Collapse
|
7
|
Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates. Immunogenetics 2019; 72:37-47. [PMID: 31781789 DOI: 10.1007/s00251-019-01135-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
Abstract
The Killer-cell Immunoglobulin-like Receptors (KIR) are encoded by a diverse group of genes, which are characterized by allelic polymorphism, gene duplications, and recombinations, which may generate recombinant entities. The number of reported macaque KIR sequences is steadily increasing, and these data illustrate a gene system that may match or exceed the complexity of the human KIR cluster. This report lists the names of quality controlled and annotated KIR genes/alleles with all the relevant references for two different macaque species: rhesus and cynomolgus macaques. Numerous recombinant KIR genes in these species necessitate a revision of some of the earlier-published nomenclature guidelines. In addition, this report summarizes the latest information on the Immuno Polymorphism Database (IPD)-NHKIR Database, which contains annotated KIR sequences from four non-human primate species.
Collapse
|
8
|
Wu C, Espinoza DA, Koelle SJ, Yang D, Truitt L, Schlums H, Lafont BA, Davidson-Moncada JK, Lu R, Kaur A, Hammer Q, Li B, Panch S, Allan DA, Donahue RE, Childs RW, Romagnani C, Bryceson YT, Dunbar CE. Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. Sci Immunol 2019; 3:3/29/eaat9781. [PMID: 30389798 DOI: 10.1126/sciimmunol.aat9781] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells recognize and eliminate infected and malignant cells. Their life histories are poorly understood, particularly in humans, due to lack of informative models and endogenous clonal markers. Here, we apply transplantation of barcoded rhesus macaque hematopoietic cells to interrogate the landscape of NK cell production, expansion, and life histories at a clonal level long term and after proliferative challenge. We identify oligoclonal populations of rhesus CD56-CD16+ NK cells that are characterized by marked expansions and contractions over time yet remained long-term clonally uncoupled from other hematopoietic lineages, including CD56+CD16- NK cells. Individual or groups of CD56-CD16+ expanded clones segregated with surface expression of specific killer immunoglobulin-like receptors. These clonally distinct NK cell subpopulation patterns persisted for more than 4 years, including after transient in vivo anti-CD16-mediated depletion and subsequent regeneration. Profound and sustained interleukin-15-mediated depletion was required to generate new oligoclonal CD56-CD16+ NK cells. Together, our results indicate that linear NK cell production from multipotent hematopoietic progenitors or less mature CD56+CD16- cells is negligible during homeostasis and moderate proliferative stress. In such settings, peripheral compartmentalized self-renewal can maintain the composition of distinct, differentiated NK cell subpopulations.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Diego A Espinoza
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samson J Koelle
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Department of Statistics, University of Washington, Seattle, WA, USA
| | - Di Yang
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lauren Truitt
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Heinrich Schlums
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Bernard A Lafont
- Viral Immunology Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jan K Davidson-Moncada
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Clinical Development and Translational Research, MacroGenics Inc. Rockville, MD, USA
| | - Rong Lu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Covington, LA, USA
| | - Quirin Hammer
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Deutsches Rheuma-Forschungszentrum-A Leibnitz Institute, Charite Medical University, Berlin, Germany
| | - Brian Li
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Department of Medicine, Beth Israel Hospital, Boston, MA, USA
| | - Sandhya Panch
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - David A Allan
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Robert E Donahue
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Richard W Childs
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum-A Leibnitz Institute, Charite Medical University, Berlin, Germany
| | - Yenan T Bryceson
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Stockholm, Sweden. .,Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Cynthia E Dunbar
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Manickam C, Shah SV, Nohara J, Ferrari G, Reeves RK. Monkeying Around: Using Non-human Primate Models to Study NK Cell Biology in HIV Infections. Front Immunol 2019; 10:1124. [PMID: 31191520 PMCID: PMC6540610 DOI: 10.3389/fimmu.2019.01124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the major innate effectors primed to eliminate virus-infected and tumor or neoplastic cells. Recent studies also suggest nuances in phenotypic and functional characteristics among NK cell subsets may further permit execution of regulatory and adaptive roles. Animal models, particularly non-human primate (NHP) models, are critical for characterizing NK cell biology in disease and under homeostatic conditions. In HIV infection, NK cells mediate multiple antiviral functions via upregulation of activating receptors, inflammatory cytokine secretion, and antibody dependent cell cytotoxicity through antibody Fc-FcR interaction and others. However, HIV infection can also reciprocally modulate NK cells directly or indirectly, leading to impaired/ineffective NK cell responses. In this review, we will describe multiple aspects of NK cell biology in HIV/SIV infections and their association with viral control and disease progression, and how NHP models were critical in detailing each finding. Further, we will discuss the effect of NK cell depletion in SIV-infected NHP and the characteristics of newly described memory NK cells in NHP models and different mouse strains. Overall, we propose that the role of NK cells in controlling viral infections remains incompletely understood and that NHP models are indispensable in order to efficiently address these deficits.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Junsuke Nohara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
10
|
Wroblewski EE, Parham P, Guethlein LA. Two to Tango: Co-evolution of Hominid Natural Killer Cell Receptors and MHC. Front Immunol 2019; 10:177. [PMID: 30837985 PMCID: PMC6389700 DOI: 10.3389/fimmu.2019.00177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells have diverse roles in hominid immunity and reproduction. Modulating these functions are the interactions between major histocompatibility complex (MHC) class I molecules that are ligands for two NK cell surface receptor types. Diverse killer cell immunoglobulin-like receptors (KIR) bind specific motifs encoded within the polymorphic MHC class I cell surface glycoproteins, while, in more conserved interactions, CD94:NKG2A receptors recognize MHC-E with bound peptides derived from MHC class I leader sequences. The hominid lineage presents a choreographed co-evolution of KIR with their MHC class I ligands. MHC-A, -B, and -C are present in all great apes with species-specific haplotypic variation in gene content. The Bw4 epitope recognized by lineage II KIR is restricted to MHC-B but also present on some gorilla and human MHC-A. Common to great apes, but rare in humans, are MHC-B possessing a C1 epitope recognized by lineage III KIR. MHC-C arose from duplication of MHC-B and is fixed in all great apes except orangutan, where it exists on approximately 50% of haplotypes and all allotypes are C1-bearing. Recent study showed that gorillas possess yet another intermediate MHC organization compared to humans. Like orangutans, but unlike the Pan-Homo species, duplication of MHC-B occurred. However, MHC-C is fixed, and the MHC-C C2 epitope (absent in orangutans) emerges. The evolution of MHC-C drove expansion of its cognate lineage III KIR. Recently, position −21 of the MHC-B leader sequence has been shown to be critical in determining NK cell educational outcome. In humans, methionine (−21M) results in CD94:NKG2A-focused education whereas threonine (−21T) produces KIR-focused education. This is another dynamic position among hominids. Orangutans have exclusively −21M, consistent with their intermediate stage in lineage III KIR-focused evolution. Gorillas have both −21M and −21T, like humans, but they are unequally encoded by their duplicated B genes. Chimpanzees have near-fixed −21T, indicative of KIR-focused NK education. Harmonious with this observation, chimpanzee KIR exhibit strong binding and, compared to humans, smaller differences between binding levels of activating and inhibitory KIR. Consistent between these MHC-NK cell receptor systems over the course of hominid evolution is the evolution of polymorphism favoring the more novel and dynamic KIR system.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University, St. Louis, MO, United States
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Leaton LA, Shortt J, Kichula KM, Tao S, Nemat-Gorgani N, Mentzer AJ, Oppenheimer SJ, Deng Z, Hollenbach JA, Gignoux CR, Guethlein LA, Parham P, Carrington M, Norman PJ. Conservation, Extensive Heterozygosity, and Convergence of Signaling Potential All Indicate a Critical Role for KIR3DL3 in Higher Primates. Front Immunol 2019; 10:24. [PMID: 30745901 PMCID: PMC6360152 DOI: 10.3389/fimmu.2019.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2018] [Accepted: 01/07/2019] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cell functions are modulated by polymorphic killer cell immunoglobulin-like receptors (KIR). Among 13 human KIR genes, which vary by presence and copy number, KIR3DL3 is ubiquitously present in every individual across diverse populations. No ligand or function is known for KIR3DL3, but limited knowledge of expression suggests involvement in reproduction, likely during placentation. With 157 human alleles, KIR3DL3 is also highly polymorphic and we show heterozygosity exceeds that of HLA-B in many populations. The external domains of catarrhine primate KIR3DL3 evolved as a conserved lineage distinct from other KIR. Accordingly, and in contrast to other KIR, we show the focus of natural selection does not correspond exclusively to known ligand binding sites. Instead, a strong signal for diversifying selection occurs in the D1 Ig domain at a site involved in receptor aggregation, which we show is polymorphic in humans worldwide, suggesting differential ability for receptor aggregation. Meanwhile in the cytoplasmic tail, the first of two inhibitory tyrosine motifs (ITIM) is conserved, whereas independent genomic events have mutated the second ITIM of KIR3DL3 alleles in all great apes. Together, these findings suggest that KIR3DL3 binds a conserved ligand, and a function requiring both receptor aggregation and inhibitory signal attenuation. In this model KIR3DL3 resembles other NK cell inhibitory receptors having only one ITIM, which interact with bivalent downstream signaling proteins through dimerization. Due to the extensive conservation across species, selection, and other unusual properties, we consider elucidating the ligand and function of KIR3DL3 to be a pressing question.
Collapse
Affiliation(s)
- Laura A. Leaton
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
| | - Jonathan Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
| | - Sudan Tao
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Alexander J. Mentzer
- Wellcome Trust Centre for Human Genetics, and Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Stephen J. Oppenheimer
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| | - Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher R. Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
| | - Lisbeth A. Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- Ragon Institute of the Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
12
|
Bruijnesteijn J, van der Wiel MKH, de Groot N, Otting N, de Vos-Rouweler AJM, Lardy NM, de Groot NG, Bontrop RE. Extensive Alternative Splicing of KIR Transcripts. Front Immunol 2018; 9:2846. [PMID: 30564240 PMCID: PMC6288254 DOI: 10.3389/fimmu.2018.02846] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
The killer-cell Ig-like receptors (KIR) form a multigene entity involved in modulating immune responses through interactions with MHC class I molecules. The complexity of the KIR cluster is reflected by, for instance, abundant levels of allelic polymorphism, gene copy number variation, and stochastic expression profiles. The current transcriptome study involving human and macaque families demonstrates that KIR family members are also subjected to differential levels of alternative splicing, and this seems to be gene dependent. Alternative splicing may result in the partial or complete skipping of exons, or the partial inclusion of introns, as documented at the transcription level. This post-transcriptional process can generate multiple isoforms from a single KIR gene, which diversifies the characteristics of the encoded proteins. For example, alternative splicing could modify ligand interactions, cellular localization, signaling properties, and the number of extracellular domains of the receptor. In humans, we observed abundant splicing for KIR2DL4, and to a lesser extent in the lineage III KIR genes. All experimentally documented splice events are substantiated by in silico splicing strength predictions. To a similar extent, alternative splicing is observed in rhesus macaques, a species that shares a close evolutionary relationship with humans. Splicing profiles of Mamu-KIR1D and Mamu-KIR2DL04 displayed a great diversity, whereas Mamu-KIR3DL20 (lineage V) is consistently spliced to generate a homolog of human KIR2DL5 (lineage I). The latter case represents an example of convergent evolution. Although just a single KIR splice event is shared between humans and macaques, the splicing mechanisms are similar, and the predicted consequences are comparable. In conclusion, alternative splicing adds an additional layer of complexity to the KIR gene system in primates, and results in a wide structural and functional variety of KIR receptors and its isoforms, which may play a role in health and disease.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit K H van der Wiel
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Nanine de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Nel Otting
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | - Neubury M Lardy
- Department of Immunogenetics, Sanquin, Amsterdam, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Banerjee P, Ries M, Janaka SK, Grandea AG, Wiseman R, O'Connor DH, Golos TG, Evans DT. Diversification of Bw4 Specificity and Recognition of a Nonclassical MHC Class I Molecule Implicated in Maternal-Fetal Tolerance by Killer Cell Ig-like Receptors of the Rhesus Macaque. THE JOURNAL OF IMMUNOLOGY 2018; 201:2776-2786. [PMID: 30232137 DOI: 10.4049/jimmunol.1800494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/03/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
The rhesus macaque is an important animal model for AIDS and other infectious diseases; however, studies to address NK cell function in this species have been limited by the lack of defined ligands for killer cell Ig-like receptors (KIRs). To identify ligands for rhesus macaque KIRs, we adopted a novel approach based on a pair of stable cell lines. NFAT-responsive luciferase reporter cell lines expressing the extracellular domains of macaque KIRs fused to the transmembrane and cytoplasmic domains of CD28 and CD3ζ were incubated with target cells expressing individual MHC class I molecules, and ligand recognition was detected by the MHC class I-dependent upregulation of luciferase. Using this approach, we found that Mamu-KIR3DL01, -KIR3DL06, -KIR3DL08, and -KIR3DSw08 all recognize Mamu-Bw4 molecules but with differing allotype specificity. In contrast, Mamu-KIR3DL05 recognizes Mamu-A and Mamu-A-related molecules, including Mamu-A1*002 and -A3*13, Mamu-B*036, the product of a recombinant Mamu-B allele with α1 and α2 domain sequences derived from a MHC-A gene, and Mamu-AG*01, a nonclassical molecule expressed on placental trophoblasts that originated from an ancestral duplication of a MHC-A gene. These results reveal an expansion of the lineage II KIRs in macaques that recognize Bw4 ligands and identify a nonclassical molecule implicated in placental development and pregnancy as a ligand for Mamu-KIR3DL05. In addition to offering new insights into KIR-MHC class I coevolution, these findings provide an important foundation for investigating the role of NK cells in the rhesus macaque as an animal model for infectious diseases and reproductive biology.
Collapse
Affiliation(s)
- Priyankana Banerjee
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Andres G Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Roger Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706; and.,Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; .,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| |
Collapse
|
14
|
Abstract
The increasing number of Killer Immunoglobulin-like Receptor (KIR) sequences available for non-human primate species and cattle has prompted development of a centralized database, guidelines for a standardized nomenclature, and minimum requirements for database submission. The guidelines and nomenclature are based on those used for human KIR and incorporate modifications made for inclusion of non-human species in the companion IPD-NHKIR database. Included in this first release are the rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), orangutan (Pongo abelii and Pongo pygmaeus), and cattle (Bos taurus).
Collapse
|
15
|
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
16
|
Ries M, Reynolds MR, Bashkueva K, Crosno K, Capuano S, Prall TM, Wiseman R, O’Connor DH, Rakasz EG, Uno H, Lifson JD, Evans DT. KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques. PLoS Pathog 2017; 13:e1006506. [PMID: 28708886 PMCID: PMC5529027 DOI: 10.1371/journal.ppat.1006506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2017] [Revised: 07/26/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023] Open
Abstract
Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFα) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFα upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.
Collapse
Affiliation(s)
- Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ksenia Bashkueva
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristin Crosno
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trent M. Prall
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hajime Uno
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
Prall TM, Graham ME, Karl JA, Wiseman RW, Ericsen AJ, Raveendran M, Alan Harris R, Muzny DM, Gibbs RA, Rogers J, O'Connor DH. Improved full-length killer cell immunoglobulin-like receptor transcript discovery in Mauritian cynomolgus macaques. Immunogenetics 2017; 69:325-339. [PMID: 28343239 PMCID: PMC5856007 DOI: 10.1007/s00251-017-0977-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 12/25/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) modulate disease progression of pathogens including HIV, malaria, and hepatitis C. Cynomolgus and rhesus macaques are widely used as nonhuman primate models to study human pathogens, and so, considerable effort has been put into characterizing their KIR genetics. However, previous studies have relied on cDNA cloning and Sanger sequencing that lack the throughput of current sequencing platforms. In this study, we present a high throughput, full-length allele discovery method utilizing Pacific Biosciences circular consensus sequencing (CCS). We also describe a new approach to Macaque Exome Sequencing (MES) and the development of the Rhexome1.0, an adapted target capture reagent that includes macaque-specific capture probe sets. By using sequence reads generated by whole genome sequencing (WGS) and MES to inform primer design, we were able to increase the sensitivity of KIR allele discovery. We demonstrate this increased sensitivity by defining nine novel alleles within a cohort of Mauritian cynomolgus macaques (MCM), a geographically isolated population with restricted KIR genetics that was thought to be completely characterized. Finally, we describe an approach to genotyping KIRs directly from sequence reads generated using WGS/MES reads. The findings presented here expand our understanding of KIR genetics in MCM by associating new genes with all eight KIR haplotypes and demonstrating the existence of at least one KIR3DS gene associated with every haplotype.
Collapse
Affiliation(s)
- Trent M Prall
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA
| | - Michael E Graham
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Adam J Ericsen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA
| | | | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA.
| |
Collapse
|
18
|
Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology 2016; 150:248-264. [PMID: 27779741 PMCID: PMC5290243 DOI: 10.1111/imm.12684] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
19
|
Byrareddy SN, Arthos J, Cicala C, Villinger F, Ortiz KT, Little D, Sidell N, Kane MA, Yu J, Jones JW, Santangelo PJ, Zurla C, McKinnon LR, Arnold KB, Woody CE, Walter L, Roos C, Noll A, Van Ryk D, Jelicic K, Cimbro R, Gumber S, Reid MD, Adsay V, Amancha PK, Mayne AE, Parslow TG, Fauci AS, Ansari AA. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science 2016; 354:197-202. [PMID: 27738167 PMCID: PMC5405455 DOI: 10.1126/science.aag1276] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2016] [Accepted: 09/09/2016] [Indexed: 01/20/2023]
Abstract
Antiretroviral drug therapy (ART) effectively suppresses replication of both the immunodeficiency viruses, human (HIV) and simian (SIV); however, virus rebounds soon after ART is withdrawn. SIV-infected monkeys were treated with a 90-day course of ART initiated at 5 weeks post infection followed at 9 weeks post infection by infusions of a primatized monoclonal antibody against the α4β7 integrin administered every 3 weeks until week 32. These animals subsequently maintained low to undetectable viral loads and normal CD4+ T cell counts in plasma and gastrointestinal tissues for more than 9 months, even after all treatment was withdrawn. This combination therapy allows macaques to effectively control viremia and reconstitute their immune systems without a need for further therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- CD4 Lymphocyte Count
- CD4-Positive T-Lymphocytes/immunology
- Combined Modality Therapy
- Cytokines/blood
- Disease Models, Animal
- Female
- Gastrointestinal Tract/immunology
- Immunization, Passive/methods
- Infusions, Intravenous
- Integrin alpha4/immunology
- Integrin beta Chains/immunology
- Killer Cells, Natural/immunology
- Macaca mulatta
- Male
- Membrane Glycoproteins/immunology
- Simian Acquired Immunodeficiency Syndrome/blood
- Simian Acquired Immunodeficiency Syndrome/drug therapy
- Simian Acquired Immunodeficiency Syndrome/therapy
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/isolation & purification
- T-Lymphocyte Subsets/immunology
- Tretinoin/blood
- Viral Envelope Proteins/immunology
- Viral Load/immunology
- Viremia/blood
- Viremia/drug therapy
- Viremia/therapy
- Viremia/virology
Collapse
Affiliation(s)
- Siddappa N Byrareddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Arthos
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA. Division of Pathology, The Yerkes National Primate Center of Emory University, Atlanta, GA 30329, USA
| | - Kristina T Ortiz
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dawn Little
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30680, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30680, USA
| | - Lyle R McKinnon
- Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caroline E Woody
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Donald Van Ryk
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Katija Jelicic
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Raffaello Cimbro
- Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| | - Sanjeev Gumber
- Division of Pathology, The Yerkes National Primate Center of Emory University, Atlanta, GA 30329, USA
| | - Michelle D Reid
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Volkan Adsay
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Praveen K Amancha
- Division of Pathology, The Yerkes National Primate Center of Emory University, Atlanta, GA 30329, USA
| | - Ann E Mayne
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tristram G Parslow
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Walter L, Petersen B. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques - implications for highly complex MHC-dependent regulation of natural killer cells. Immunology 2016; 150:139-145. [PMID: 27565739 DOI: 10.1111/imm.12666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 02/01/2023] Open
Abstract
The killer immunoglobulin-like receptors (KIR) as well as their MHC class I ligands display enormous genetic diversity and polymorphism in macaque species. Signals resulting from interaction between KIR or CD94/NKG2 receptors and their cognate MHC class I proteins essentially regulate the activity of natural killer (NK) cells. Macaque and human KIR share many features, such as clonal expression patterns, gene copy number variations, specificity for particular MHC class I allotypes, or epistasis between KIR and MHC class I genes that influence susceptibility and resistance to immunodeficiency virus infection. In this review article we also annotated publicly available rhesus macaque BAC clone sequences and provide the first description of the CD94-NKG2 genomic region. Besides the presence of genes that are orthologous to human NKG2A and NKG2F, this region contains three NKG2C paralogues. Hence, the genome of rhesus macaques contains moderately expanded and diversified NKG2 genes in addition to highly diversified KIR genes. The presence of two diversified NK cell receptor families in one species has not been described before and is expected to require a complex MHC-dependent regulation of NK cells.
Collapse
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, Leibniz Institute for Primate Research, German Primate Center, Göttingen, Germany
| | - Beatrix Petersen
- Primate Genetics Laboratory, Leibniz Institute for Primate Research, German Primate Center, Göttingen, Germany
| |
Collapse
|
21
|
Jiang W, Johnson C, Simecek N, López-Álvarez MR, Di D, Trowsdale J, Traherne JA. qKAT: a high-throughput qPCR method for KIR gene copy number and haplotype determination. Genome Med 2016; 8:99. [PMID: 27686127 PMCID: PMC5041586 DOI: 10.1186/s13073-016-0358-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs), expressed on natural killer cells and T cells, have considerable biomedical relevance playing significant roles in immunity, pregnancy and transplantation. The KIR locus is one of the most complex and polymorphic regions of the human genome. Extensive sequence homology and copy number variation makes KIRs technically laborious and expensive to type. To aid the investigation of KIRs in human disease we developed a high-throughput, multiplex real-time polymerase chain reaction method to determine gene copy number for each KIR locus. We used reference DNA samples to validate the accuracy and a cohort of 1698 individuals to evaluate capability for precise copy number discrimination. The method provides improved information and identifies KIR haplotype alterations that were not previously visible using other approaches.
Collapse
Affiliation(s)
- W Jiang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - C Johnson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - N Simecek
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - M R López-Álvarez
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - D Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - J Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - J A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
22
|
Weisgrau KL, Ries M, Pomplun N, Evans DT, Rakasz EG. OMIP-035: Functional analysis of natural killer cell subsets in macaques. Cytometry A 2016; 89:799-802. [PMID: 27532346 DOI: 10.1002/cyto.a.22932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2016] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 01/25/2023]
Abstract
This panel was developed to measure the functional capability of natural killer (NK) cell subsets in rhesus macaques (Macaca mulatta). It includes markers to determine the frequency of cytokine secreting and cytotoxic NK cell subpopulations in peripheral blood mononuclear cell (PBMC) samples stimulated in vitro with human 721.221 cells. NK cell subsets were defined by the expression of killer cell immunoglobulin-like receptors (KIRs) Mamu-KIR3DL01 and Mamu-KIR3DL05, and differentiation antigens CD16 and CD56. The panel can be used to assess the functional capability of NK cells in a range of normal and pathologic conditions of captive bred rhesus macaques of Indian origin. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin
| | - Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 53711, Wisconsin
| | - Nicholas Pomplun
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin
| | - David T Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 53711, Wisconsin
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53711, Wisconsin.
| |
Collapse
|
23
|
Shiina T, Blancher A, Inoko H, Kulski JK. Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology 2016; 150:127-138. [PMID: 27395034 DOI: 10.1111/imm.12624] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022] Open
Abstract
The MHC is a highly polymorphic genomic region that encodes the transplantation and immune regulatory molecules. It receives special attention for genetic investigation because of its important role in the regulation of innate and adaptive immune responses and its strong association with numerous infectious and/or autoimmune diseases. The MHC locus was first discovered in the mouse and for the past 50 years it has been studied most intensively in both mice and humans. However, in recent years the macaque species have emerged as some of the more important and advanced experimental animal models for biomedical research into MHC with important human immunodeficiency virus/simian immunodeficiency virus and transplantation studies undertaken in association with precise MHC genotyping and haplotyping methods using Sanger sequencing and next-generation sequencing. Here, in this special issue on 'Macaque Immunology' we provide a short review of the genomic similarities and differences among the human, macaque and mouse MHC class I and class II regions, with an emphasis on the association of the macaque class I region with MHC polymorphism, haplotype structure and function.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Antoine Blancher
- Laboratoire d'Immunogénétique moléculaire (LIMT, EA 3034), Laboratoire d'immunologie, Faculté de Médecine Purpan, Université Toulouse 3, CHU de Toulouse, Toulouse, France
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jerzy K Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
24
|
Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 2016; 267:259-82. [PMID: 26284483 DOI: 10.1111/imr.12326] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Hugo G Hilton
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Walter L, Ansari AA. MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection. Front Immunol 2015; 6:540. [PMID: 26557119 PMCID: PMC4617107 DOI: 10.3389/fimmu.2015.00540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023] Open
Abstract
Natural killer lymphocytes are essentially involved as the first line of defense against agents such as viruses and malignant cells. The activity of these cells is regulated via interaction of specific and diverse killer cell immunoglobulin-like receptors (KIR) with the highly polymorphic cognate MHC class I proteins on target cells. Genetic variability of both KIR and MHC-I ligands has been shown to be associated with resistance to many diseases, including infection with the immunodeficiency virus. Disease course and progression to AIDS after infection with human immunodeficiency virus-1 (HIV-1) is essentially influenced by the presence of the stimulatory KIR3DS1 receptor in combination with HLA-Bw4. Knowledge of such genetic interactions that contribute to not only disease resistance but also susceptibility are just as important. Such combined genetic factors were recently reported in the rhesus macaque AIDS model. Here, we review the rhesus macaque MHC class I and KIR gene systems and the role of their polymorphisms in the SIV infection model.
Collapse
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
26
|
Reeves RK, Li H, Jost S, Blass E, Li H, Schafer JL, Varner V, Manickam C, Eslamizar L, Altfeld M, von Andrian UH, Barouch DH. Antigen-specific NK cell memory in rhesus macaques. Nat Immunol 2015; 16:927-32. [PMID: 26193080 PMCID: PMC4545390 DOI: 10.1038/ni.3227] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
Abstract
Natural killer (NK) cells have traditionally been considered nonspecific components of innate immunity, but recent studies have shown features of antigen-specific memory in mouse NK cells. However, it has remained unclear whether this phenomenon also exists in primates. We found that splenic and hepatic NK cells from SHIV(SF162P3)-infected and SIV(mac251)-infected macaques specifically lysed Gag- and Env-pulsed dendritic cells in an NKG2-dependent fashion, in contrast to NK cells from uninfected macaques. Moreover, splenic and hepatic NK cells from Ad26-vaccinated macaques efficiently lysed antigen-matched but not antigen-mismatched targets 5 years after vaccination. These data demonstrate that robust, durable, antigen-specific NK cell memory can be induced in primates after both infection and vaccination, and this finding could be important for the development of vaccines against HIV-1 and other pathogens.
Collapse
Affiliation(s)
- R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Haiying Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Stephanie Jost
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| | - Eryn Blass
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Hualin Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jamie L. Schafer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Valerie Varner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Leila Eslamizar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Marcus Altfeld
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ulrich H. von Andrian
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
27
|
Abstract
Natural killer (NK) cells play a central role in immune responses through direct cytotoxicity and the release of cytokines that prime adaptive immunity. In simian primates, NK cell responses are regulated by interactions between two highly polymorphic sets of molecules: the killer-cell immunoglobulin-like receptors (KIRs) and their major histocompatibility complex (MHC) class I ligands. KIR-MHC class I interactions in humans have been implicated in the outcome of a number viral diseases and cancers. However, studies to address the role of KIRs in animal models have been limited by the complex immunogenetics and lack of defined ligands for KIRs in non-human primates. Due to the rapid evolution of KIRs, there is little conservation among the KIR genes of different primate species and it is not possible to predict the specificity of KIRs from known KIR-MHC class I interactions in humans. Hence, the MHC class I ligands for KIRs in species other than humans are poorly defined. Here, we review the KIR genes of the rhesus macaque, an important animal model for human immunodeficiency virus infection and other infectious diseases, and the MHC class I ligands that have been identified for KIRs in this species.
Collapse
Affiliation(s)
- Benjamin N. Bimber
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR 97239
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| |
Collapse
|
28
|
Byrareddy SN, Kallam B, Arthos J, Cicala C, Nawaz F, Hiatt J, Kersh EN, McNicholl JM, Hanson D, Reimann KA, Brameier M, Walter L, Rogers K, Mayne AE, Dunbar P, Villinger T, Little D, Parslow TG, Santangelo PJ, Villinger F, Fauci AS, Ansari AA. Targeting α4β7 integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection. Nat Med 2014; 20:1397-400. [PMID: 25419708 PMCID: PMC4257865 DOI: 10.1038/nm.3715] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2014] [Accepted: 09/11/2014] [Indexed: 12/29/2022]
Abstract
α4β7 integrin-expressing CD4(+) T cells preferentially traffic to gut-associated lymphoid tissue (GALT) and have a key role in HIV and simian immunodeficiency virus (SIV) pathogenesis. We show here that the administration of an anti-α4β7 monoclonal antibody just prior to and during acute infection protects rhesus macaques from transmission following repeated low-dose intravaginal challenges with SIVmac251. In treated animals that became infected, the GALT was significantly protected from infection and CD4(+) T cell numbers were maintained in both the blood and the GALT. Thus, targeting α4β7 reduces mucosal transmission of SIV in macaques.
Collapse
Affiliation(s)
- Siddappa N Byrareddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brianne Kallam
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy &Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy &Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy &Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Joseph Hiatt
- Laboratory of Immunoregulation, National Institute of Allergy &Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ellen N Kersh
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Janet M McNicholl
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Debra Hanson
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Keith A Reimann
- Mass Biologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Kenneth Rogers
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ann E Mayne
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Paul Dunbar
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tara Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dawn Little
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tristram G Parslow
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Francois Villinger
- 1] Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA. [2] Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy &Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Albrecht C, Malzahn D, Brameier M, Hermes M, Ansari AA, Walter L. Progression to AIDS in SIV-Infected Rhesus Macaques is Associated with Distinct KIR and MHC class I Polymorphisms and NK Cell Dysfunction. Front Immunol 2014; 5:600. [PMID: 25506344 PMCID: PMC4246914 DOI: 10.3389/fimmu.2014.00600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) regulate the activity of natural killer (NK) cells and have been shown to be associated with susceptibility to a number of human infectious diseases. Here, we analyzed NK cell function and genetic associations in a cohort of 52 rhesus macaques experimentally infected with SIVmac and subsequently stratified into high viral load (HVL) and low viral load (LVL) plasma viral loads at set point. This stratification coincided with fast (HVL) and slow (LVL) disease progression indicated by the disease course and critical clinical parameters including CD4+ T cell counts. HVL animals revealed sustained proliferation of NK cells but distinct loss of peripheral blood NK cell numbers and lytic function. Genetic analyses revealed that KIR genes 3DL05, 3DS05, and 3DL10 as well as 3DSW08, 3DLW03, and 3DSW09 are correlated, most likely due to underlying haplotypes. SIV-infection outcome associated with presence of transcripts for two inhibitory KIR genes (KIR3DL02, KIR3DL10) and three activating KIR genes (KIR3DSW08, KIR3DS02, KIR3DS05). Presence of KIR3DL02 and KIR3DSW08 was associated with LVL outcome, whereas presence of KIR3DS02 was associated with HVL outcome. Furthermore, we identified epistasis between KIR and MHC class I alleles as the transcript presence of the correlated genes KIR3DL05, KIR3DS05, and KIR3DL10 increased HVL risk when Mamu-B*012 transcripts were also present or when Mamu-A1*001 transcripts were absent. These genetic associations were mirrored by changes in the numbers, the level of proliferation, and lytic capabilities of NK cells as well as overall survival time and gastro-intestinal tissue viral load.
Collapse
Affiliation(s)
- Christina Albrecht
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University , Göttingen , Germany
| | - Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Meike Hermes
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| |
Collapse
|
30
|
In vivo administration of a JAK3 inhibitor during acute SIV infection leads to significant increases in viral load during chronic infection. PLoS Pathog 2014; 10:e1003929. [PMID: 24603870 PMCID: PMC3946395 DOI: 10.1371/journal.ppat.1003929] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022] Open
Abstract
The studies reported herein are the first to document the effect of the in vivo administration of a JAK3 inhibitor for defining the potential role of NK cells during acute SIV infection of a group of 15 rhesus macaques (RM). An additional group of 16 MHC/KIR typed RM was included as controls. The previously optimized in vivo dose regimen (20 mg/kg daily for 35 days) led to a marked depletion of each of the major NK cell subsets both in the blood and gastro-intestinal tissues (GIT) during acute infection. While such depletion had no detectable effects on plasma viral loads during acute infection, there was a significant sustained increase in plasma viral loads during chronic infection. While the potential mechanisms that lead to such increased plasma viral loads during chronic infection remain unclear, several correlates were documented. Thus, during acute infection, the administration of the JAK3 inhibitor besides depleting all NK cell subsets also decreased some CD8+ T cells and inhibited the mobilization of the plasmacytoid dendritic cells in the blood and their localization to the GIT. Of interest is the finding that the administration of the JAK3 inhibitor during acute infection also resulted in the sustained maintenance during chronic infection of a high number of naïve and central memory CD4+ T cells, increases in B cells in the blood, but decreases in the frequencies and function of NKG2a+ NK cells within the GIT and blood, respectively. These data identify a unique role for JAK3 inhibitor sensitive cells, that includes NK cells during acute infection that in concert lead to high viral loads in SIV infected RM during chronic infection without affecting detectable changes in antiviral humoral/cellular responses. Identifying the precise mechanisms by which JAK3 sensitive cells exert their influence is critical with important implications for vaccine design against lentiviruses. In efforts to define the potential role of innate immune effector mechanisms in influencing the course of SIV infection during the acute infection period, our lab utilized the in vivo daily administration of 20 mg/kg orally of a compound called Tofacitinib (a Janus kinase 3 inhibitor) to a group of 15 rhesus macaques starting at day −6 and until day 28 post intravenous SIVmac239 infection. An additional group of 16 similarly SIV infected rhesus macaques served as a placebo control. This drug targets the JAK/STAT pathway that is utilized by cells including the NK cell lineage, a major cell of the innate immune system. The dosage utilized was based on extensive previous PK studies that resulted in a marked depletion of the NK cells. Of interest while such drug administration had no effect on plasma viral loads during acute infection, such drug administration led to significant increases in plasma and gastro-intestinal tissues (GIT) viral loads during chronic infection. A series of phenotypic/functional studies were performed to determine the mechanisms for this delayed effect and the correlates identified. These data are the first to document the effect of JAK-3 inhibitor during acute SIV infection with implications for HIV vaccine design.
Collapse
|
31
|
Schafer JL, Colantonio AD, Neidermyer WJ, Dudley DM, Connole M, O’Connor DH, Evans DT. KIR3DL01 recognition of Bw4 ligands in the rhesus macaque: maintenance of Bw4 specificity since the divergence of apes and Old World monkeys. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1907-17. [PMID: 24453246 PMCID: PMC4162532 DOI: 10.4049/jimmunol.1302883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
The identification of MHC class I ligands for rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to our basic understanding of KIR and MHC class I coevolution and to the study of NK cell responses in this nonhuman primate model for AIDS and other viral diseases. In this study, we show that Mamu-KIR3DL01, which is expressed by ∼90% of rhesus macaques, recognizes MHC class I molecules with a Bw4 motif. Primary NK cells expressing Mamu-KIR3DL01 were identified by staining with a mAb which, in this study, was shown to bind Mamu-KIR3DL01 allotypes with an aspartic acid at position 233. The cytolytic activity of Mamu-KIR3DL01(+) NK cells was suppressed by cell lines expressing the Bw4 molecules Mamu-B*007:01, -B*041:01, -B*058:02, and -B*065:01. The Bw4 motif was necessary for Mamu-KIR3DL01 recognition because substitutions in this region abrogated Mamu-KIR3DL01(+) NK cell inhibition. However, the presence of a Bw4 motif was not sufficient for recognition because another Bw4 molecule, Mamu-B*017:01, failed to suppress the cytolytic activity of these NK cells. Replacement of three residues in Mamu-B*017:01, predicted to be KIR contacts based on the three-dimensional structure of the human KIR3DL1-HLA-Bw4 complex, with the corresponding residues at these positions for the other Mamu-Bw4 ligands restored Mamu-KIR3DL01(+) NK cell inhibition. These results define the ligand specificity of one of the most polymorphic and commonly expressed KIRs in the rhesus macaque and reveal similarities in Bw4 recognition by Mamu-KIR3DL01 and human KIR3DL1, despite the absence of an orthologous relationship between these two KIRs or conservation of surface residues predicted to interact with MHC class I ligands.
Collapse
Affiliation(s)
- Jamie L. Schafer
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772
| | - Arnaud D. Colantonio
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772
| | - William J. Neidermyer
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Michelle Connole
- Division of Immunology, New England Primate Research Center, Southborough, MA 01772
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - David T. Evans
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772
| |
Collapse
|
32
|
Expression patterns of killer cell immunoglobulin-like receptors (KIR) of NK-cell and T-cell subsets in Old World monkeys. PLoS One 2013; 8:e64936. [PMID: 23717676 PMCID: PMC3661512 DOI: 10.1371/journal.pone.0064936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2013] [Accepted: 04/23/2013] [Indexed: 02/04/2023] Open
Abstract
The expression of killer cell immunoglobulin-like receptors (KIR) on lymphocytes of rhesus macaques and other Old World monkeys was unknown so far. We used our recently established monoclonal anti-rhesus macaque KIR antibodies in multicolour flow cytometry for phenotypic characterization of KIR protein expression on natural killer (NK) cells and T cell subsets of rhesus macaques, cynomolgus macaques, hamadryas baboons, and African green monkeys. Similar to human KIR, we found clonal expression patterns of KIR on NK and T cell subsets in rhesus macaques and differences between individuals using pan-KIR3D antibody 1C7 and antibodies specific for single KIR. Similar results were obtained with lymphocytes from the other studied species. Notably, African green monkeys show only a low frequency of KIR3D expressed on CD8+ αβT cells. Contrasting human NK cells are KIR-positive CD56bright NK cells and frequencies of KIR-expressing NK cells that are independent of the presence of their cognate MHC class I ligands in rhesus macaques. Interestingly, the frequency of KIR-expressing cells and the expression strength of KIR3D are correlated in γδ T cells of rhesus macaques and CD8+ αβT cells of baboons.
Collapse
|
33
|
Walsh AD, Bimber BN, Das A, Piaskowski SM, Rakasz EG, Bean AT, Mudd PA, Ericsen AJ, Wilson NA, Hughes AL, O'Connor DH, Maness NJ. Acute phase CD8+ T lymphocytes against alternate reading frame epitopes select for rapid viral escape during SIV infection. PLoS One 2013; 8:e61383. [PMID: 23671565 PMCID: PMC3645990 DOI: 10.1371/journal.pone.0061383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2012] [Accepted: 03/07/2013] [Indexed: 12/13/2022] Open
Abstract
CD8+ T Lymphocytes (CTL) can control AIDS virus replication. However, natural selection favoring viral variants that escape CTL recognition is a common feature of both simian immunodeficiency virus (SIV) infection of macaques and HIV infection of humans. Emerging data indicate that CTL directed against alternate reading frame (ARF)-derived epitopes (a.k.a. cryptic epitopes) are important components of the total virus-specific response in SIV and HIV infection but the contributions of these responses during the critical first several weeks of infection have not been determined. We used a focused deep sequencing approach to examine acute phase viral evolution in response to CTL targeting two polypeptides encoded by ARFs of SIVmac239 in SIV-infected rhesus macaques. We report high magnitude CTL responses as early as three weeks post-infection against epitopes within both ARFs, which both overlap the 5′ end of the env gene. Further, mutations accumulated in the epitopes by three to four weeks post infection consistent with viral escape. Interestingly, these mutations largely maintained the primary amino acid sequence of the overlapping Envelope protein. Our data show that high frequency CTL target cryptic epitopes and exert selective pressure on SIV during the acute phase, underscoring the importance of these unique immune responses.
Collapse
Affiliation(s)
- Andrew D. Walsh
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin N. Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Shari M. Piaskowski
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander T. Bean
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Philip A. Mudd
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adam J. Ericsen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy A. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
34
|
Eckels J, Nathe C, Nelson EK, Shoemaker SG, Nostrand EV, Yates NL, Ashley VC, Harris LJ, Bollenbeck M, Fong Y, Tomaras GD, Piehler B. Quality control, analysis and secure sharing of Luminex® immunoassay data using the open source LabKey Server platform. BMC Bioinformatics 2013; 14:145. [PMID: 23631706 PMCID: PMC3671158 DOI: 10.1186/1471-2105-14-145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2012] [Accepted: 03/27/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Immunoassays that employ multiplexed bead arrays produce high information content per sample. Such assays are now frequently used to evaluate humoral responses in clinical trials. Integrated software is needed for the analysis, quality control, and secure sharing of the high volume of data produced by such multiplexed assays. Software that facilitates data exchange and provides flexibility to perform customized analyses (including multiple curve fits and visualizations of assay performance over time) could increase scientists' capacity to use these immunoassays to evaluate human clinical trials. RESULTS The HIV Vaccine Trials Network and the Statistical Center for HIV/AIDS Research and Prevention collaborated with LabKey Software to enhance the open source LabKey Server platform to facilitate workflows for multiplexed bead assays. This system now supports the management, analysis, quality control, and secure sharing of data from multiplexed immunoassays that leverage Luminex xMAP® technology. These assays may be custom or kit-based. Newly added features enable labs to: (i) import run data from spreadsheets output by Bio-Plex Manager™ software; (ii) customize data processing, curve fits, and algorithms through scripts written in common languages, such as R; (iii) select script-defined calculation options through a graphical user interface; (iv) collect custom metadata for each titration, analyte, run and batch of runs; (v) calculate dose-response curves for titrations; (vi) interpolate unknown concentrations from curves for titrated standards; (vii) flag run data for exclusion from analysis; (viii) track quality control metrics across runs using Levey-Jennings plots; and (ix) automatically flag outliers based on expected values. Existing system features allow researchers to analyze, integrate, visualize, export and securely share their data, as well as to construct custom user interfaces and workflows. CONCLUSIONS Unlike other tools tailored for Luminex immunoassays, LabKey Server allows labs to customize their Luminex analyses using scripting while still presenting users with a single, graphical interface for processing and analyzing data. The LabKey Server system also stands out among Luminex tools for enabling smooth, secure transfer of data, quality control information, and analyses between collaborators. LabKey Server and its Luminex features are freely available as open source software at http://www.labkey.com under the Apache 2.0 license.
Collapse
Affiliation(s)
| | | | | | - Sara G Shoemaker
- Statistical Center for HIV/AIDS Research & Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Nicole L Yates
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Vicki C Ashley
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Linda J Harris
- Statistical Center for HIV/AIDS Research & Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark Bollenbeck
- Statistical Center for HIV/AIDS Research & Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
35
|
Bozzano F, Marras F, Biassoni R, De Maria A. Natural killer cells in hepatitis C virus infection. Expert Rev Clin Immunol 2013; 8:775-88. [PMID: 23167689 DOI: 10.1586/eci.12.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infection induces the long-term risk of liver cirrhosis or hepatocellular carcinoma and in adults represents the most common cause of liver transplantation. Natural killer (NK) cells participate in innate immune responses with efficient direct antitumor and antiviral defense. Over the years, their complex interaction with downstream adaptive responses and with the regulation of immune responses has been increasingly recognized. Considerable advances have been made particularly in understanding the role of NK cells in the pathophysiology of HCV infection and their possible use as biological markers for clinical purposes. This review summarizes the available data on the role of NK cells in the natural history of HCV infection and their role in the outcome of treatment. The main objective of this review is to summarize recent advancements in the basic understanding of NK cell function highlighting their possible translational use in clinical practice. An integrated practical view on the possible use of currently available predictive immunogenetic and NK cell functional tests is provided, to support clinical management choices for optimal treatment of patients with both standard and new drug regimens.
Collapse
Affiliation(s)
- Federica Bozzano
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | | | | | | |
Collapse
|
36
|
Wiseman RW, Karl JA, Bohn PS, Nimityongskul FA, Starrett GJ, O'Connor DH. Haplessly hoping: macaque major histocompatibility complex made easy. ILAR J 2013; 54:196-210. [PMID: 24174442 PMCID: PMC3814398 DOI: 10.1093/ilar/ilt036] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Major histocompatibility complex (MHC) gene products control the repertoire of T cell responses that an individual may create against pathogens and foreign tissues. This text will review the current understanding of MHC genetics in nonhuman primates, with a focus on Mauritian-origin cynomolgus macaques (Macaca fascicularis) and Indian-origin rhesus macaques (Macaca mulatta). These closely related macaque species provide important experimental models for studies of infectious disease pathogenesis, vaccine development, and transplantation research. Recent advances resulting from the application of several cost effective, high-throughput approaches, with deep sequencing technologies have revolutionized our ability to perform MHC genotyping of large macaque cohorts. Pyrosequencing of cDNA amplicons with a Roche/454 GS Junior instrument, provides excellent resolution of MHC class I allelic variants with semi-quantitative estimates of relative levels of transcript abundance. Introduction of the Illumina MiSeq platform significantly increased the sample throughput, since the sample loading workflow is considerably less labor intensive, and each instrument run yields approximately 100-fold more sequence data. Extension of these sequencing methods from cDNA to genomic DNA amplicons further streamlines the experimental workflow and opened opportunities for retrospective MHC genotyping of banked DNA samples. To facilitate the reporting of MHC genotypes, and comparisons between groups of macaques, this text also introduces an intuitive series of abbreviated rhesus MHC haplotype designations based on a major Mamu-A or Mamu-B transcript characteristic for ancestral allele combinations. The authors believe that the use of MHC-defined macaques promises to improve the reproducibility, and predictability of results from pre-clinical studies for translation to humans.
Collapse
Affiliation(s)
- Roger W. Wiseman
- Address correspondence and reprint requests to Dr. Roger Wiseman, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53711 or email
| | | | | | | | | | | |
Collapse
|
37
|
Characterisation of mouse monoclonal antibodies against rhesus macaque killer immunoglobulin-like receptors KIR3D. Immunogenetics 2012; 64:845-8. [PMID: 22893031 PMCID: PMC3470681 DOI: 10.1007/s00251-012-0640-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022]
Abstract
Killer immunoglobulin-like receptors (KIRs) represent a highly polymorphic and diverse gene family in rhesus macaques. Analyses of the respective gene products have been hampered until now due to non-availability of specific monoclonal antibodies and failure of cross-reactivity of anti-human KIR antibodies. We utilised one activating (KIR3DSW08) and two inhibitory (KIR3DLW03 and KIR3DL05) rhesus macaque KIR-Fc fusion proteins for generation of monoclonal antibodies in mice. Besides broadly reacting ones, we obtained anti-rhesus macaque KIR antibodies with intermediate and with single specificity. These monoclonal antibodies were tested for binding to a panel of rhesus macaque KIR proteins after heterologous expression on transiently transfected cells. Epitope mapping identified two polymorphic regions that are located next to each other in the mature KIR proteins. The availability of monoclonal antibodies against rhesus macaque KIR proteins will enable future studies on KIR at the protein level in rhesus macaques as important animal models of human infectious diseases.
Collapse
|