1
|
Gomez RA, Dallai R, Sims-West DJ, Mercati D, Sinka R, Ahmed-Braimah Y, Pitnick S, Dorus S. Proteomic diversification of spermatostyles among six species of whirligig beetles. Mol Reprod Dev 2024; 91:e23745. [PMID: 38785179 PMCID: PMC11246569 DOI: 10.1002/mrd.23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser-known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male-derived materials to females.
Collapse
Affiliation(s)
- R. Antonio Gomez
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Dylan J. Sims-West
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - David Mercati
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Yasir Ahmed-Braimah
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
2
|
Sánchez JM, Rabaglino MB, Bagés-Arnal S, McDonald M, Behura SK, Spencer TE, Lonergan P, Fernandez-Fuertes B. Sperm exposure to accessory gland secretions alters the transcriptomic response of the endometrium in cattle. Theriogenology 2024; 218:26-34. [PMID: 38295677 DOI: 10.1016/j.theriogenology.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 03/01/2024]
Abstract
In cattle, mating to intact, but not vasectomised, bulls has been shown to modify the endometrial transcriptome, suggesting an important role of sperm in the modulation of the uterine environment in this species. However, it is not clear whether these changes are driven by intrinsic sperm factors, or by factors of accessory gland (AG) origin that bind to sperm at ejaculation. Therefore, the aim of the present study was to determine whether ejaculated sperm, which are suspended in the secretions of the AGs, elicit a different endometrial transcriptomic response than epididymal sperm, which have never been exposed to AG factors. To this end, bovine endometrial explants collected from heifers in oestrus were (co-)incubated for 6 h alone (control), or with epididymal sperm or ejaculated sperm, following which transcriptomic changes in the endometrium were evaluated. Epididymal sperm elicited a more dramatic endometrial response than ejaculated sperm, in terms of the number of differentially expressed genes (DEGs). Indeed, RNA-sequencing data analysis revealed 1912 DEGs in endometrial explants exposed to epididymal sperm compared with control explants, whereas 115 DEGs were detected between endometrial explants exposed to ejaculated sperm in comparison to control explants. The top pathways associated with genes upregulated by epididymal sperm included T cell regulation and TNF, NF-KB and IL17 signalling. Interestingly, ejaculated sperm induced downregulation of genes associated with T cell immunity and Th17 differentiation, and upregulation of genes involved in NF-KB signalling, in comparison to epididymal sperm. These data indicate that factors of AG origin modulate the interaction between sperm and the endometrium in cattle.
Collapse
Affiliation(s)
- José María Sánchez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - María Belén Rabaglino
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Beatriz Fernandez-Fuertes
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. Curr Biol 2023; 33:4926-4936.e4. [PMID: 37865094 PMCID: PMC10901455 DOI: 10.1016/j.cub.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin (5-HT) is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and 5-HT neural activity in females is poorly understood. Here, we investigated dorsal raphe 5-HT neural activity in female mice during sexual behavior. We found that 5-HT neural activity in mating females peaked specifically upon male ejaculation and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis expansion ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit 5-HT neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L Troconis
- Biological and Biomedical Sciences Program, Cornell University, Ithaca, NY 14853, USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Fernandez-Fuertes B. Review: The role of male reproductive tract secretions in ruminant fertility. Animal 2023; 17 Suppl 1:100773. [PMID: 37567680 DOI: 10.1016/j.animal.2023.100773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 08/13/2023] Open
Abstract
Male fertility largely depends on the ability to produce sperm that can transmit the paternal information onto the next generation. However, the factors that are critical for sperm function and the subsequent development of healthy offspring are still not completely understood in ruminants. Importantly, sperm function is not completely encoded by germ cell DNA, but rather, depends on sequential acquisition, loss, and modification of elements through interaction with secretions from the testes, epididymides, and accessory glands (collectively termed seminal plasma). In addition, these secretions can play a role in the inheritance of paternal environmental effects by progeny. This is likely achieved directly, by the regulation of sperm epigenetic effectors, and indirectly, by altering the female environment in which the individual develops. This review will provide an overview of the different organs that contribute to seminal plasma in ruminants, and summarise how their secretions shape sperm function and modulate the female reproductive tract. Finally, some consideration will be given to the potential of paternal factors to affect embryo development and offspring health in ruminants.
Collapse
Affiliation(s)
- B Fernandez-Fuertes
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Doroftei B, Ilie OD, Maftei R, Scripcariu IS, Armeanu T, Stoian IL, Ilea C. A Narrative Review Discussing Vasectomy-Related Impact upon the Status of Oxidative Stress and Inflammation Biomarkers and Semen Microbiota. J Clin Med 2023; 12:jcm12072671. [PMID: 37048754 PMCID: PMC10095584 DOI: 10.3390/jcm12072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Male contraceptive approaches besides tubal sterilization involve vasectomy and represent the method of choice among midlife men in developing countries thanks to many advantages. However, the subsidiary consequences of this intervention are insufficiently explored since the involved mechanisms may offer insight into a much more complex picture. Methods: Thus, in this manuscript, we aimed to reunite all available data by searching three separate academic database(s) (PubMed, Web of Knowledge, and Scopus) published in the past two decades by covering the interval 2000–2023 and using a predefined set of keywords and strings involving “oxidative stress” (OS), “inflammation”, and “semen microbiota” in combination with “humans”, “rats”, and “mice”. Results: By following all evidence that fits in the pre-, post-, and vasectomy reversal (VR) stages, we identified a total of n = 210 studies from which only n = 21 were finally included following two procedures of eligibility evaluation. Conclusions: The topic surrounding this intricate landscape has created debate since the current evidence is contradictory, limited, or does not exist. Starting from this consideration, we argue that further research is mandatory to decipher how a vasectomy might disturb homeostasis.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue no 20A, 700505 Iasi, Romania
| | - Radu Maftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ioana-Sadyie Scripcariu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| | - Theodora Armeanu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Irina-Liviana Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| |
Collapse
|
6
|
Hurtado J, Almeida FC, Belliard SA, Revale S, Hasson E. Research gaps and new insights in the evolution of Drosophila seminal fluid proteins. INSECT MOLECULAR BIOLOGY 2022; 31:139-158. [PMID: 34747062 DOI: 10.1111/imb.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
While the striking effects of seminal fluid proteins (SFPs) on females are fairly conserved among Diptera, most SFPs lack detectable homologues among the SFP repertoires of phylogenetically distant species. How such a rapidly changing proteome conserves functions across taxa is a fascinating question. However, this and other pivotal aspects of SFPs' evolution remain elusive because discoveries on these proteins have been mainly restricted to the model Drosophila melanogaster. Here, we provide an overview of the current knowledge on the inter-specific divergence of the SFP repertoire in Drosophila and compile the increasing amount of relevant genomic information from multiple species. Capitalizing on the accumulated knowledge in D. melanogaster, we present novel sets of high-confidence SFP candidates and transcription factors presumptively involved in regulating the expression of SFPs. We also address open questions by performing comparative genomic analyses that failed to support the existence of many conserved SFPs shared by most dipterans and indicated that gene co-option is the most frequent mechanism accounting for the origin of Drosophila SFP-coding genes. We hope our update establishes a starting point to integrate further data and thus widen the understanding of the intricate evolution of these proteins.
Collapse
Affiliation(s)
- Juan Hurtado
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Francisca Cunha Almeida
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Silvina Anahí Belliard
- Laboratorio de Insectos de Importancia Agronómica, IGEAF (INTA), GV-IABIMO (CONICET), Buenos Aires, Argentina
| | - Santiago Revale
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
7
|
McDonough-Goldstein CE, Pitnick S, Dorus S. Drosophila female reproductive glands contribute to mating plug composition and the timing of sperm ejection. Proc Biol Sci 2022; 289:20212213. [PMID: 35105240 PMCID: PMC8808094 DOI: 10.1098/rspb.2021.2213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023] Open
Abstract
Reproductive traits that influence female remating and competitive fertilization rapidly evolve in response to sexual selection and sexual conflict. One such trait, observed across diverse animal taxa, is the formation of a structural plug inside the female reproductive tract (FRT), either during or shortly after mating. In Drosophila melanogaster, male seminal fluid forms a mating plug inside the female bursa, which has been demonstrated to influence sperm entry into storage and latency of female remating. Processing of the plug, including its eventual ejection from the female's reproductive tract, influences the competitive fertilization success of her mates and is mediated by female × male genotypic interactions. However, female contributions to plug formation and processing have received limited attention. Using developmental mutants that lack glandular FRT tissues, we reveal that these tissues are essential for mating plug ejection. We further use proteomics to demonstrate that female glandular proteins, and especially proteolytic enzymes, contribute to mating plug composition and have a widespread impact on plug formation and composition. Together, these phenotypic and molecular data identify female contributions to intersexual interactions that are a potential mechanism of post-copulatory sexual selection.
Collapse
Affiliation(s)
| | - Scott Pitnick
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY 13244, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
8
|
Smyth SP, Nixon B, Anderson AL, Murray HC, Martin JH, MacDougall LA, Robertson SA, Skerrett-Byrne DA, Schjenken JE. Elucidation of the protein composition of mouse seminal vesicle fluid. Proteomics 2022; 22:e2100227. [PMID: 35014747 DOI: 10.1002/pmic.202100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023]
Abstract
The seminal vesicles are male accessory sex glands that contribute the major portion of the seminal plasma in which mammalian spermatozoa are bathed during ejaculation. In addition to conveying sperm through the ejaculatory duct, seminal vesicle secretions support sperm survival after ejaculation, and influence the female reproductive tract to promote receptivity to pregnancy. Analysis of seminal vesicle fluid (SVF) composition by proteomics has proven challenging, due to its highly biased protein signature with a small subset of dominant proteins and the difficulty of solubilizing this viscous fluid. As such, publicly available proteomic datasets identify only 85 SVF proteins in total. To address this limitation, we report a new preparative methodology involving sequential solubilization of mouse SVF in guanidine hydrochloride, acetone precipitation, and analysis by label-free mass spectrometry. Using this strategy, we identified 126 SVF proteins, including 83 previously undetected in SVF. Members of the seminal vesicle secretory protein family were the most abundant, accounting for 79% of all peptide spectrum matches. Functional analysis identified inflammation and formation of the vaginal plug as the two most prominent biological processes. Other notable processes included modulation of sperm function and regulation of the female reproductive tract immune environment. Together, these findings provide a robust methodological framework for future SVF studies and identify novel proteins with potential to influence both male and female reproductive physiology.
Collapse
Affiliation(s)
- Shannon P Smyth
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, NSW, Australia.,Infertility and Reproduction Research Program, Hunter Medical Research Institute, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, NSW, Australia.,Infertility and Reproduction Research Program, Hunter Medical Research Institute, NSW, Australia
| | - Amanda L Anderson
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, NSW, Australia.,Infertility and Reproduction Research Program, Hunter Medical Research Institute, NSW, Australia
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jacinta H Martin
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, NSW, Australia.,Infertility and Reproduction Research Program, Hunter Medical Research Institute, NSW, Australia
| | - Lily A MacDougall
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, NSW, Australia.,Infertility and Reproduction Research Program, Hunter Medical Research Institute, NSW, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David A Skerrett-Byrne
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, NSW, Australia.,Infertility and Reproduction Research Program, Hunter Medical Research Institute, NSW, Australia
| | - John E Schjenken
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, NSW, Australia.,Infertility and Reproduction Research Program, Hunter Medical Research Institute, NSW, Australia
| |
Collapse
|
9
|
Keeble S, Firman RC, Sarver BAJ, Clark NL, Simmons LW, Dean MD. Evolutionary, proteomic, and experimental investigations suggest the extracellular matrix of cumulus cells mediates fertilization outcomes†. Biol Reprod 2021; 105:1043-1055. [PMID: 34007991 PMCID: PMC8511658 DOI: 10.1093/biolre/ioab082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Studies of fertilization biology often focus on sperm and egg interactions. However, before gametes interact, mammalian sperm must pass through the cumulus layer; in mice, this consists of several thousand cells tightly glued together with hyaluronic acid and other proteins. To better understand the role of cumulus cells and their extracellular matrix, we perform proteomic experiments on cumulus oophorus complexes (COCs) in house mice (Mus musculus), producing over 24,000 mass spectra to identify 711 proteins. Seven proteins known to stabilize hyaluronic acid and the extracellular matrix were especially abundant (using spectral counts as an indirect proxy for abundance). Through comparative evolutionary analyses, we show that three of these evolve rapidly, a classic signature of genes that influence fertilization rate. Some of the selected sites overlap regions of the protein known to impact function. In a follow-up experiment, we compared COCs from females raised in two different social environments. Female mice raised in the presence of multiple males produced COCs that were smaller and more resistant to dissociation by hyaluronidase compared to females raised in the presence of a single male, consistent with a previous study that demonstrated such females produced COCs that were more resistant to fertilization. Although cumulus cells are often thought of as enhancers of fertilization, our evolutionary, proteomic, and experimental investigations implicate their extracellular matrix as a potential mediator of fertilization outcomes.
Collapse
Affiliation(s)
- Sara Keeble
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
McDonough-Goldstein CE, Whittington E, McCullough EL, Buel SM, Erdman S, Pitnick S, Dorus S. Pronounced Postmating Response in the Drosophila Female Reproductive Tract Fluid Proteome. Mol Cell Proteomics 2021; 20:100156. [PMID: 34597791 PMCID: PMC9357439 DOI: 10.1016/j.mcpro.2021.100156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Fertility depends on the progression of complex and coordinated postmating processes within the extracellular environment of the female reproductive tract (FRT). Molecular interactions between ejaculate and FRT proteins regulate many of these processes, including sperm motility, migration, storage, and modification, along with concurrent changes in the female. Although extensive progress has been made in the proteomic characterization of the male-derived components of sperm and seminal fluid, investigations into the FRT have remained more limited. To achieve a comparable level of knowledge regarding female-derived proteins that comprise the reproductive environment, we utilized semiquantitative MS-based proteomics to study the composition of the FRT tissue and, separately, the luminal fluid, before and after mating in Drosophila melanogaster. Our approach leveraged whole-fly isotopic labeling to delineate female proteins from transferred male ejaculate proteins. Our results revealed several characteristics that distinguish the FRT fluid proteome from the FRT tissue proteome: (1) the fluid proteome is encoded by genes with higher overall levels of FRT gene expression and tissue specificity, including many genes with enriched expression in the fat body, (2) fluid-biased proteins are enriched for metabolic functions, and (3) the fluid exhibits pronounced postmating compositional changes. The dynamic mating-induced proteomic changes in the FRT fluid inform our understanding of secretory mechanisms of the FRT, serve as a foundation for establishing female contributions to the ejaculate-female interactions that regulate fertility, and highlight the importance of applying proteomic approaches to characterize the composition and dynamics of the FRT environment.
Collapse
Affiliation(s)
| | - Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Erin L McCullough
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Sharleen M Buel
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Scott Erdman
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA.
| |
Collapse
|
11
|
Bayram HL, Franco C, Brownridge P, Claydon AJ, Koch N, Hurst JL, Beynon RJ, Stockley P. Social status and ejaculate composition in the house mouse. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200083. [PMID: 33070725 PMCID: PMC7661446 DOI: 10.1098/rstb.2020.0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Sperm competition theory predicts that males should tailor ejaculates according to their social status. Here, we test this in a model vertebrate, the house mouse (Mus musculus domesticus), combining experimental data with a quantitative proteomics analysis of seminal fluid composition. Our analyses reveal that both sperm production and the composition of proteins found in seminal vesicle secretions differ according to social status. Dominant males invested more in ejaculate production overall. Their epididymides contained more sperm than those of subordinate or control males, despite similar testes size between the groups. Dominant males also had larger seminal vesicle glands than subordinate or control males, despite similar body size. However, the seminal vesicle secretions of subordinate males had a significantly higher protein concentration than those of dominant males. Moreover, detailed proteomic analysis revealed subtle but consistent differences in the composition of secreted seminal vesicle proteins according to social status, involving multiple proteins of potential functional significance in sperm competition. These findings have significant implications for understanding the dynamics and outcome of sperm competition, and highlight the importance of social status as a factor influencing both sperm and seminal fluid investment strategies. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Helen L. Bayram
- Mammalian Behaviour and Evolution Group, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
- Centre for Proteome Research, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Catarina Franco
- Centre for Proteome Research, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Philip Brownridge
- Centre for Proteome Research, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Amy J. Claydon
- Mammalian Behaviour and Evolution Group, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
- Centre for Proteome Research, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Natalie Koch
- Mammalian Behaviour and Evolution Group, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
- Centre for Proteome Research, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Jane L. Hurst
- Mammalian Behaviour and Evolution Group, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| | - Robert J. Beynon
- Centre for Proteome Research, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Paula Stockley
- Mammalian Behaviour and Evolution Group, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| |
Collapse
|
12
|
Abstract
Promiscuous mating by females leads to competition between males for fertilization success. When fertilization is internal, this means that rival males’ sperm must compete within the female reproductive tract to reach the eggs. Males of diverse species deposit a mating plug during copulation, which is hypothesized to assist in the race for fertilization following multiple mating. Here, we tested this by using stable isotope labeling to discriminate the ejaculates of competing male voles in direct competition. This revealed that the mating plug simultaneously inhibits the sperm of rival males while promoting transport of a male’s own sperm, both of which are beneficial in the competition for fertilizations. Mating plugs are produced by many sexually reproducing animals and are hypothesized to promote male fertilization success under promiscuous mating. However, tests of this hypothesis have been constrained by an inability to discriminate ejaculates of different males in direct competition. Here, we use stable isotope labeling in vivo and proteomics to achieve this in a promiscuous rodent, Myodes glareolus. We show that, although the first male’s plug is usually dislodged, it can be retained throughout the second male’s copulation. Retained plugs did not completely block rival sperm but did significantly limit their numbers. Differences in the number of each male’s sperm progressing through the female reproductive tract were also explained by natural variation in the size of mating plugs and reproductive accessory glands from which major plug proteins originate. Relative sperm numbers in turn predicted the relative fertilization success of rival males. Our application of stable isotopes to label ejaculates resolves a longstanding debate by revealing how rodent mating plugs promote fertilization success under competitive conditions. This approach opens new opportunities to reveal cryptic mechanisms of postcopulatory sexual selection among diverse animal taxa.
Collapse
|
13
|
Recuero S, Sánchez JM, Mateo-Otero Y, Bagés-Arnal S, McDonald M, Behura SK, Spencer TE, Kenny DA, Yeste M, Lonergan P, Fernandez-Fuertes B. Mating to Intact, but Not Vasectomized, Males Elicits Changes in the Endometrial Transcriptome: Insights From the Bovine Model. Front Cell Dev Biol 2020; 8:547. [PMID: 32766237 PMCID: PMC7381276 DOI: 10.3389/fcell.2020.00547] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
An appropriate female reproductive environment is essential for pregnancy success. In several species, including mice, pigs and horses, seminal plasma (SP) components have been shown to modulate this environment, leading to increased embryo viability and implantation. Due to the characteristics of mating in the aforementioned species, SP comes into direct contact with the uterus. However, it is questionable whether any SP reaches the uterus in species that ejaculate inside the vagina, such as humans and cattle. Hence, we hypothesized that sperm, perhaps acting as a vehicle for SP factors, play a more important role in the modulation of the maternal uterine environment in these species. In addition, changes elicited by SP and/or sperm may originate in the vagina and propagate to more distal regions of the female reproductive tract. To test these hypotheses, a bovine model in which heifers were mated to intact or vasectomized bulls or were left unmated was used. RNA-sequencing of endometrial samples collected 24 h after mating with a vasectomized bull did not reveal any differentially expressed genes (DEGs) in comparison with control samples. However, the endometrium of heifers mated with intact bulls exhibited 24 DEGs when compared to heifers mated with vasectomized bulls, and 22 DEGs when compared to unmated control heifers. The expression of a set of cytokines (IL6, IL1A, IL8, and TNFA) and candidate genes identified in the endometrial RNA-sequencing (PLA2G10, CX3CL1, C4BPA, PRSS2, BLA-DQB, and CEBPD) were assessed by RT-qPCR in the vagina and oviductal ampulla. No differences in expression of these genes were observed between treatments in any region. However, mating to both intact and vasectomized bulls induced an increase in IL1A and TNFA expression in the vagina compared to the oviduct. These data indicate that sperm, but not secretions from the accessory glands alone, induce modest changes in endometrial gene expression after natural mating in cattle. However, it is not clear whether this effect is triggered by inherent sperm proteins or SP proteins bound to sperm surface at the time of ejaculation.
Collapse
Affiliation(s)
- Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - David A Kenny
- Animal and Bioscience Research Centre, Teagasc Grange, Meath, Ireland
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Beatriz Fernandez-Fuertes
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| |
Collapse
|
14
|
Mateo-Otero Y, Sánchez JM, Recuero S, Bagés-Arnal S, McDonald M, Kenny DA, Yeste M, Lonergan P, Fernandez-Fuertes B. Effect of Exposure to Seminal Plasma Through Natural Mating in Cattle on Conceptus Length and Gene Expression. Front Cell Dev Biol 2020; 8:341. [PMID: 32478076 PMCID: PMC7235327 DOI: 10.3389/fcell.2020.00341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that paternal factors have an impact on offspring development. These studies have been mainly carried out in mice, where seminal plasma (SP) has been shown to regulate endometrial gene expression and impact embryo development and subsequent offspring health. In cattle, infusion of SP into the uterus also induces changes in endometrial gene expression, however, evidence for an effect of SP on early embryo development is lacking. In addition, during natural mating, the bull ejaculates in the vagina; hence, it is not clear whether any SP reaches the uterus in this species. Thus, the aim of the present study was to determine whether SP exposure leads to improved early embryo survival and developmental rates in cattle. To this end, Day 7 in vitro produced blastocysts were transferred to heifers (12-15 per heifer) previously mated to vasectomized bulls (n = 13 heifers) or left unmated (n = 12 heifers; control). At Day 14, heifers were slaughtered, and conceptuses were recovered to assess size, morphology and expression of candidate genes involved in different developmental pathways. Additionally, CL volume at Day 7, and weight and volume of CL at Day 14 were recorded. No effect of SP on CL volume and weight not on conceptus recovery rate was observed. However, filamentous conceptuses recovered from SP-exposed heifers were longer in comparison to the control group and differed in expression of CALM1, CITED1, DLD, HNRNPDL, PTGS2, and TGFB3. In conclusion, data indicate that female exposure to SP during natural mating can affect conceptus development in cattle. This is probably achieved through modulation of the female reproductive environment at the time of mating.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Ireland
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Beatriz Fernandez-Fuertes
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
15
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
16
|
Brennan PL, Orbach DN. Copulatory behavior and its relationship to genital morphology. ADVANCES IN THE STUDY OF BEHAVIOR 2020. [DOI: 10.1016/bs.asb.2020.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Simmons LW, Sloan NS, Firman RC. Sexual Selection Shapes Seminal Vesicle Secretion Gene Expression in House Mice. Mol Biol Evol 2019; 37:1114-1117. [DOI: 10.1093/molbev/msz295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Reproductive proteins typically have high rates of molecular evolution, and are assumed to be under positive selection from sperm competition and cryptic female choice. However, ascribing evolutionary divergence in the genome to these processes of sexual selection from patterns of association alone is problematic. Here, we use an experimental manipulation of postmating sexual selection acting on populations of house mice and explore its consequences for the expression of seminal vesicle secreted (SVS) proteins. Following 25 generations of selection, males from populations subjected to postmating sexual selection had evolved increased expression of at least two SVS genes that exhibit the signature of positive selection at the molecular level, SVS1 and SVS2. These proteins contribute to mating plug formation and sperm survival in the female reproductive tract. Our data thereby support the view that sexual selection is responsible for the evolution of these seminal fluid proteins.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Nadia S Sloan
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
18
|
Fernandez-Fuertes B, Sánchez JM, Bagés-Arnal S, McDonald M, Yeste M, Lonergan P. Species-specific and collection method-dependent differences in endometrial susceptibility to seminal plasma-induced RNA degradation. Sci Rep 2019; 9:15072. [PMID: 31636362 PMCID: PMC6803643 DOI: 10.1038/s41598-019-51413-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to determine the effect of bull seminal plasma (SP) and sperm on endometrial function. Bovine endometrial explants were incubated with: ejaculated sperm with or without SP, epididymal sperm, or SP alone. Neither ejaculated nor epididymal sperm induced differential expression of IL1A, IL1B, IL6, IL8, PTGES2, TNFA, and LIF. Interestingly, SP had a detrimental effect on endometrial RNA integrity. Addition of an RNase inactivation reagent to SP blocked this effect, evidencing a role for a SP-RNase. Because bulls deposit the ejaculate in the vagina, we hypothesized that the bovine endometrium is more sensitive to SP-RNase than vaginal and cervical tissues (which come into contact with SP during mating), or to endometrium from intrauterine ejaculators (such as the horse). In addition, due to differences in SP-RNase abundance depending on SP collection method (i.e., with an artificial vagina, AV, or by electroejaculation, EE), this effect was also tested. Bull SP, collected by AV, degrades RNA of mare endometrium, and bovine vagina, cervix and endometrium. However, stallion SP or bull SP collected by EE did not elicit this effect. Thus, results do not support a role for SP in modulating endometrial function to establish pregnancy in cattle.
Collapse
Affiliation(s)
- Beatriz Fernandez-Fuertes
- Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Marc Yeste
- Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
19
|
Balu R, Ramachandran SS, Paramasivam SG. Evidence for mouse sulfhydryl oxidase-assisted cross-linking of major seminal vesicle proteins. Mol Reprod Dev 2019; 86:1682-1693. [PMID: 31448842 DOI: 10.1002/mrd.23258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023]
Abstract
Copulatory plug formation in animals is a general phenomenon by which competition is reduced among rival males. In mouse, the copulatory plug formation results from the coagulation of highly viscous seminal vesicle secretion (SVS) that is rich in proteins, such as dimers of SVS I, SVS I + II + III, and SVS II. These high-molecular-weight complexes (HMWCs) are also reported to be the bulk of proteins in the copulatory plug of the female mouse following copulation. In addition, mouse SVS contributes to the existence of sulfhydryl oxidase (Sox), which mediates the disulfide bond formation between cysteine residues. In this study, flavin adenine dinucleotide (FAD)-dependent Sox was purified from mouse SVS using ion exchange and high-performance liquid chromatography. The purified enzyme was identified to be Sox, based on western blot analysis with Sox antiserum and its capability of oxidizing dithiothreitol as substrate. The pH optima and thermal stability of the enzyme were determined. Among the metal ions tested, zinc showed an inhibitory effect on Sox activity. A prosthetic group of the enzyme was identified as FAD. The Km and Vmax of the enzyme was also determined. In addition to purification and biochemical characterization of seminal vesicle Sox, the major breakthrough of this study was proving its cross-linking activity among SVS I-III monomers to form HMWCs in SVS.
Collapse
Affiliation(s)
- Rubhadevi Balu
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | | | | |
Collapse
|
20
|
Sepil I, Hopkins BR, Dean R, Thézénas ML, Charles PD, Konietzny R, Fischer R, Kessler BM, Wigby S. Quantitative Proteomics Identification of Seminal Fluid Proteins in Male Drosophila melanogaster. Mol Cell Proteomics 2019; 18:S46-S58. [PMID: 30287546 PMCID: PMC6427238 DOI: 10.1074/mcp.ra118.000831] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Seminal fluid contains some of the fastest evolving proteins currently known. These seminal fluid proteins (Sfps) play crucial roles in reproduction, such as supporting sperm function, and particularly in insects, modifying female physiology and behavior. Identification of Sfps in small animals is challenging, and often relies on samples taken from the female reproductive tract after mating. A key pitfall of this method is that it might miss Sfps that are of low abundance because of dilution in the female-derived sample or rapid processing in females. Here we present a new and complementary method, which provides added sensitivity to Sfp identification. We applied label-free quantitative proteomics to Drosophila melanogaster, male reproductive tissue - where Sfps are unprocessed, and highly abundant - and quantified Sfps before and immediately after mating, to infer those transferred during copulation. We also analyzed female reproductive tracts immediately before and after copulation to confirm the presence and abundance of known and candidate Sfps, where possible. Results were cross-referenced with transcriptomic and sequence databases to improve confidence in Sfp detection. Our data were consistent with 125 previously reported Sfps. We found nine high-confidence novel candidate Sfps, which were both depleted in mated versus, unmated males and identified within the reproductive tract of mated but not virgin females. We also identified 42 more candidates that are likely Sfps based on their abundance, known expression and predicted characteristics, and revealed that four proteins previously identified as Sfps are at best minor contributors to the ejaculate. The estimated copy numbers for our candidate Sfps were lower than for previously identified Sfps, supporting the idea that our technique provides a deeper analysis of the Sfp proteome than previous studies. Our results demonstrate a novel, high-sensitivity approach to the analysis of seminal fluid proteomes, whose application will further our understanding of reproductive biology.
Collapse
Affiliation(s)
- Irem Sepil
- From the ‡Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK;.
| | - Ben R Hopkins
- From the ‡Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Marie-Laëtitia Thézénas
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip D Charles
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Konietzny
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stuart Wigby
- From the ‡Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Oviedo-Diego MA, Mattoni CI, Peretti AV. Specificity of the female's local cellular immune response in genital plug producing scorpion species. PLoS One 2019; 14:e0208682. [PMID: 30742645 PMCID: PMC6370188 DOI: 10.1371/journal.pone.0208682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 02/05/2023] Open
Abstract
Immune defense is a key feature in the life history of organisms, expensive to maintain, highly regulated by individuals and exposed to physiological and evolutionary trade-offs. In chelicerates, relatively scarce are the studies that relate postcopulatory mechanisms and immune response parameters. This work makes an approximation to the female’s immunological consequences produced after the placement of a foreign body in the genitalia of three scorpions species, two species that normally receive genital plugs during mating (Urophonius brachycentrus and U. achalensis) and one that does not (Zabius fuscus). Here we performed the first morphological description of the natural plugs of the two Urophonius species. We described complex three zoned structure anchored to the female genital atrium and based on this information we placed implants in the genitalia (for eliciting the local immune response) of virgin females of the three species and measured the immune encapsulation response to this foreign body. We found a greater and heterogeneous response in different zones of the implants in the plug producing species. To corroborate the specificity of this immune response, we compared the local genital reaction with the triggered response at a systemic level by inserting implants into the female body cavity of U. brachycentrus and Zabius fuscus. We found that the systemic response did not differ between species and that only in the plug producing species the local response in the genitalia was higher than the systemic one. We also compared the total hemocyte load before and after the genital implantation to see if this parameter was compromised by the immunological challenge. We confirmed that in Urophonius species the presence of a strange body in the genitalia caused a decrease in the hemocyte load. Besides, we find correlations between the body weight and the immunological parameters, as well as between different immunological parameters with each other. Complementarily, we characterized the hemocytes of the three scorpion species for the first time. This comparative study can help to provide a wider framework of the immunological characteristics of the species, their differences and their relationship with the particular postcopulatory mechanism such as the genital plugs.
Collapse
Affiliation(s)
- Mariela A. Oviedo-Diego
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba Capital, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba Capital, Cordoba, Argentina
- * E-mail:
| | - Camilo I. Mattoni
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba Capital, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba Capital, Cordoba, Argentina
| | - Alfredo V. Peretti
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba Capital, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba Capital, Cordoba, Argentina
| |
Collapse
|
22
|
Bayram H, Sayadi A, Immonen E, Arnqvist G. Identification of novel ejaculate proteins in a seed beetle and division of labour across male accessory reproductive glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:50-57. [PMID: 30529580 DOI: 10.1016/j.ibmb.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The male ejaculate contains a multitude of seminal fluid proteins (SFPs), many of which are key reproductive molecules, as well as sperm. However, the identification of SFPs is notoriously difficult and a detailed understanding of this complex phenotype has only been achieved in a few model species. We employed a recently developed proteomic method involving whole-organism stable isotope labelling coupled with proteomic and transcriptomic analyses to characterize ejaculate proteins in the seed beetle Callosobruchus maculatus. We identified 317 proteins that were transferred to females at mating, and a great majority of these showed signals of secretion and were highly male-biased in expression in the abdomen. These male-derived proteins were enriched with proteins involved in general metabolic and catabolic processes but also with proteolytic enzymes and proteins involved in protection against oxidative stress. Thirty-seven proteins showed significant homology with SFPs previously identified in other insects. However, no less than 92 C. maculatus ejaculate proteins were entirely novel, receiving no significant blast hits and lacking homologs in extant data bases, consistent with a rapid and divergent evolution of SFPs. We used 3D micro-tomography in conjunction with proteomic methods to identify 5 distinct pairs of male accessory reproductive glands and to show that certain ejaculate proteins were only recovered in certain male glands. Finally, we provide a tentative list of 231 candidate female-derived reproductive proteins, some of which are likely important in ejaculate processing and/or sperm storage.
Collapse
Affiliation(s)
- Helen Bayram
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
23
|
Weber M, Wunderer J, Lengerer B, Pjeta R, Rodrigues M, Schärer L, Ladurner P, Ramm SA. A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm. BMC Evol Biol 2018; 18:81. [PMID: 29848299 PMCID: PMC5977470 DOI: 10.1186/s12862-018-1187-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Along with sperm, in many taxa ejaculates also contain large numbers of seminal fluid proteins (SFPs). SFPs and sperm are transferred to the mating partner, where they are thought to play key roles in mediating post-mating sexual selection. They modulate the partner's behavior and physiology in ways that influence the reproductive success of both partners, thus potentially leading to sexual conflict. Despite the presumed general functional and evolutionary significance of SFPs, their identification and characterization has to date focused on just a few animal groups, predominantly insects and mammals. Moreover, until now seminal fluid profiling has mainly focused on species with separate sexes. Here we report a comprehensive screen for putative SFPs in the simultaneously hermaphroditic flatworm Macrostomum lignano. RESULTS Based on existing transcriptomic data, we selected 150 transcripts known to be (a) predominantly expressed in the tail region of the worms, where the seminal fluid-producing prostate gland cells are located, and (b) differentially expressed in social environments differing in sperm competition level, strongly implying that they represent a phenotypically plastic aspect of male reproductive allocation in this species. For these SFP candidates, we then performed whole-mount in situ hybridization (ISH) experiments to characterize tissue-specific expression. In total, we identified 98 transcripts that exhibited prostate-specific expression, 76 of which we found to be expressed exclusively in the prostate gland cells; additional sites of expression for the remaining 22 included the testis or other gland cells. Bioinformatics analyses of the prostate-limited candidates revealed that at least 64 are predicted to be secretory proteins, making these especially strong candidates to be SFPs that are transferred during copulation. CONCLUSIONS Our study represents a first comprehensive analysis using a combination of transcriptomic and ISH screen data to identify SFPs based on transcript expression in seminal fluid-producing tissues. We thereby extend the range of taxa for which seminal fluid has been characterized to a flatworm species with a sequenced genome and for which several methods such as antibody staining, transgenesis and RNA interference have been established. Our data provide a basis for testing the functional and evolutionary significance of SFPs.
Collapse
Affiliation(s)
- Michael Weber
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Marcelo Rodrigues
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Current address: School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne, England NE1 7RU UK
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Steven A. Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
24
|
Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation. G3-GENES GENOMES GENETICS 2018; 8:353-362. [PMID: 29162683 PMCID: PMC5765362 DOI: 10.1534/g3.117.300281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reproductive proteins are often observed to be the most rapidly evolving elements within eukaryotic genomes. The major sperm protein (MSP) is unique to the phylum Nematoda and is required for proper sperm locomotion and fertilization. Here, we annotate the MSP gene family and analyze their molecular evolution in 10 representative species across Nematoda. We show that MSPs are hyper-conserved across the phylum, having maintained an amino acid sequence identity of 83.5–97.7% for over 500 million years. This extremely slow rate of evolution makes MSPs some of the most highly conserved genes yet identified. However, at the gene family level, we show hyper-variability in both gene copy number and genomic position within species, suggesting rapid, lineage-specific gene family evolution. Additionally, we find evidence that extensive gene conversion contributes to the maintenance of sequence identity within chromosome-level clusters of MSP genes. Thus, while not conforming to the standard expectation for the evolution of reproductive proteins, our analysis of the molecular evolution of the MSP gene family is nonetheless consistent with the widely repeatable observation that reproductive proteins evolve rapidly, in this case in terms of the genomic properties of gene structure, copy number, and genomic organization. This unusual evolutionary pattern is likely generated by strong pleiotropic constraints acting on these genes at the sequence level, balanced against expansion at the level of the whole gene family.
Collapse
|
25
|
Evolutionary Dynamics of Male Reproductive Genes in the Drosophila virilis Subgroup. G3-GENES GENOMES GENETICS 2017; 7:3145-3155. [PMID: 28739599 PMCID: PMC5592939 DOI: 10.1534/g3.117.1136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Postcopulatory sexual selection (PCSS) is a potent evolutionary force that can drive rapid changes of reproductive genes within species, and thus has the potential to generate reproductive incompatibilities between species. Male seminal fluid proteins (SFPs) are major players in postmating interactions, and are important targets of PCSS in males. The virilis subgroup of Drosophila exhibits strong interspecific gametic incompatibilities, and can serve as a model to study the genetic basis of PCSS and gametic isolation. However, reproductive genes in this group have not been characterized. Here we utilize short-read RNA sequencing of male reproductive organs to examine the evolutionary dynamics of reproductive genes in members of the virilis subgroup: D. americana, D. lummei, D. novamexicana, and D. virilis. We find that the majority of male reproductive transcripts are testes-biased, accounting for ∼15% of all annotated genes. Ejaculatory bulb (EB)-biased transcripts largely code for lipid metabolic enzymes, and contain orthologs of the D. melanogaster EB protein, Peb-me, which is involved in mating-plug formation. In addition, we identify 71 candidate SFPs, and show that this gene set has the highest rate of nonsynonymous codon substitution relative to testes- and EB-biased genes. Furthermore, we identify orthologs of 35 D. melanogaster SFPs that have conserved accessory gland expression in the virilis group. Finally, we show that several of the SFPs that have the highest rate of nonsynonymous codon substitution reside on chromosomal regions, which contributes to paternal gametic incompatibility between species. Our results show that SFPs rapidly diversify in the virilis group, and suggest that they likely play a role in PCSS and/or gametic isolation.
Collapse
|
26
|
McLeod DV, Day T. Female plasticity tends to reduce sexual conflict. Nat Ecol Evol 2017; 1:54. [DOI: 10.1038/s41559-016-0054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022]
|
27
|
Bayram H, Sayadi A, Goenaga J, Immonen E, Arnqvist G. Novel seminal fluid proteins in the seed beetle Callosobruchus maculatus identified by a proteomic and transcriptomic approach. INSECT MOLECULAR BIOLOGY 2017; 26:58-73. [PMID: 27779332 DOI: 10.1111/imb.12271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The seed beetle Callosobruchus maculatus is a significant agricultural pest and increasingly studied model of sexual conflict. Males possess genital spines that increase the transfer of seminal fluid proteins (SFPs) into the female body. As SFPs alter female behaviour and physiology, they are likely to modulate reproduction and sexual conflict in this species. Here, we identified SFPs using proteomics combined with a de novo transcriptome. A prior 2D-sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis identified male accessory gland protein spots that were probably transferred to the female at mating. Proteomic analysis of these spots identified 98 proteins, a majority of which were also present within ejaculates collected from females. Standard annotation workflows revealed common functional groups for SFPs, including proteases and metabolic proteins. Transcriptomic analysis found 84 transcripts differentially expressed between the sexes. Notably, genes encoding 15 proteins were highly expressed in male abdomens and only negligibly expressed within females. Most of these sequences corresponded to 'unknown' proteins (nine of 15) and may represent rapidly evolving SFPs novel to seed beetles. Our combined analyses highlight 44 proteins for which there is strong evidence that they are SFPs. These results can inform further investigation, to better understand the molecular mechanisms of sexual conflict in seed beetles.
Collapse
Affiliation(s)
- H Bayram
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - A Sayadi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - J Goenaga
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - E Immonen
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - G Arnqvist
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Multiple Genes Cause Postmating Prezygotic Reproductive Isolation in the Drosophila virilis Group. G3-GENES GENOMES GENETICS 2016; 6:4067-4076. [PMID: 27729433 PMCID: PMC5144975 DOI: 10.1534/g3.116.033340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the genetic basis of speciation is a central problem in evolutionary biology. Studies of reproductive isolation have provided several insights into the genetic causes of speciation, especially in taxa that lend themselves to detailed genetic scrutiny. Reproductive barriers have usually been divided into those that occur before zygote formation (prezygotic) and after (postzygotic), with the latter receiving a great deal of attention over several decades. Reproductive barriers that occur after mating but before zygote formation [postmating prezygotic (PMPZ)] are especially understudied at the genetic level. Here, I present a phenotypic and genetic analysis of a PMPZ reproductive barrier between two species of the Drosophila virilis group: D. americana and D. virilis This species pair shows strong PMPZ isolation, especially when D. americana males mate with D. virilis females: ∼99% of eggs laid after these heterospecific copulations are not fertilized. Previous work has shown that the paternal loci contributing to this incompatibility reside on two chromosomes, one of which (chromosome 5) likely carries multiple factors. The other (chromosome 2) is fixed for a paracentric inversion that encompasses nearly half the chromosome. Here, I present two results. First, I show that PMPZ in this species cross is largely due to defective sperm storage in heterospecific copulations. Second, using advanced intercross and backcross mapping approaches, I identify genomic regions that carry genes capable of rescuing heterospecific fertilization. I conclude that paternal incompatibility between D. americana males and D. virilis females is underlain by four or more genes on chromosomes 2 and 5.
Collapse
|
29
|
Borziak K, Álvarez-Fernández A, L Karr T, Pizzari T, Dorus S. The Seminal fluid proteome of the polyandrous Red junglefowl offers insights into the molecular basis of fertility, reproductive ageing and domestication. Sci Rep 2016; 6:35864. [PMID: 27804984 PMCID: PMC5090203 DOI: 10.1038/srep35864] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/06/2016] [Indexed: 02/03/2023] Open
Abstract
Seminal fluid proteins (SFPs) are emerging as fundamental contributors to sexual selection given their role in post-mating reproductive events, particularly in polyandrous species where the ejaculates of different males compete for fertilisation. SFP identification however remains taxonomically limited and little is known about avian SFPs, despite extensive work on sexual selection in birds. We characterize the SF proteome of the polyandrous Red junglefowl, Gallus gallus, the wild species that gave rise to the domestic chicken. We identify 1,141 SFPs, including proteins involved in immunity and antimicrobial defences, sperm maturation, and fertilisation, revealing a functionally complex SF proteome. This includes a predominant contribution of blood plasma proteins that is conserved with human SF. By comparing the proteome of young and old males with fast or slow sperm velocity in a balanced design, we identify proteins associated with ageing and sperm velocity, and show that old males that retain high sperm velocity have distinct proteome characteristics. SFP comparisons with domestic chickens revealed both qualitative and quantitative differences likely associated with domestication and artificial selection. Collectively, these results shed light onto the functional complexity of avian SF, and provide a platform for molecular studies of fertility, reproductive ageing, and domestication.
Collapse
Affiliation(s)
- Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, US
| | | | - Timothy L Karr
- Drosophila Genetic Resource Center, Kyoto Institute of Technology, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, UK
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, US
| |
Collapse
|
30
|
Schneider MR, Mangels R, Dean MD. The molecular basis and reproductive function(s) of copulatory plugs. Mol Reprod Dev 2016; 83:755-767. [PMID: 27518218 DOI: 10.1002/mrd.22689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
In many animals, male ejaculates coagulate to form what has been termed a copulatory plug, a structure that varies in size and shape but often fills and seals the female's reproductive tract. The first published observation of a copulatory plug in a mammal was made more than 160 years ago, and questions about its formation and role in reproduction continue to endear evolutionary and population geneticists, behavioral ecologists, and molecular, reproductive, and developmental biologists alike. Here, we review the current knowledge of copulatory plugs, focusing on rodents and asking two main questions: how is it formed and what does it do? An evolutionary biology perspective helps us understand the latter, potentially leading to insights into the selective regimes that have shaped the diversity of this structure. Mol. Reprod. Dev. 83: 755-767, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Rachel Mangels
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.
| |
Collapse
|
31
|
Sutter A, Lindholm AK. The copulatory plug delays ejaculation by rival males and affects sperm competition outcome in house mice. J Evol Biol 2016; 29:1617-30. [DOI: 10.1111/jeb.12898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 01/02/2023]
Affiliation(s)
- A. Sutter
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | - A. K. Lindholm
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| |
Collapse
|
32
|
Proteomics of reproductive systems: Towards a molecular understanding of postmating, prezygotic reproductive barriers. J Proteomics 2016; 135:26-37. [DOI: 10.1016/j.jprot.2015.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/11/2015] [Indexed: 11/20/2022]
|
33
|
|
34
|
Bonilla ML, Todd C, Erlandson M, Andres J. Combining RNA-seq and proteomic profiling to identify seminal fluid proteins in the migratory grasshopper Melanoplus sanguinipes (F). BMC Genomics 2015; 16:1096. [PMID: 26694822 PMCID: PMC4689059 DOI: 10.1186/s12864-015-2327-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seminal fluid proteins control many aspects of fertilization and in turn, they play a key role in post-mating sexual selection and possibly reproductive isolation. Because effective proteome profiling relies on the availability of high-quality DNA reference databases, our knowledge of these proteins is still largely limited to model organisms with ample genetic resources. New advances in sequencing technology allow for the rapid characterization of transcriptomes at low cost. By combining high throughput RNA-seq and shotgun proteomic profiling, we have characterized the seminal fluid proteins secreted by the primary male accessory gland of the migratory grasshopper (Melanoplus sanguinipes), one of the main agricultural pests in central North America. RESULTS Using RNA sequencing, we characterized the transcripts of ~ 8,100 genes expressed in the long hyaline tubules (LHT) of the accessory glands. Proteomic profiling identified 353 proteins expressed in the long hyaline tubules (LHT). Of special interest are seminal fluid proteins (SFPs), such as EJAC-SP, ACE and prostaglandin synthetases, which are known to regulate female oviposition in insects. CONCLUSIONS Our study provides new insights into the proteomic components of male ejaculate in Orthopterans, and highlights several important patterns. First, the presence of proteins that lack predicted classical secretory tags in accessory gland proteomes is common in male accessory glands. Second, the products of a few highly expressed genes dominate the accessory gland secretions. Third, accessory gland transcriptomes are enriched for novel transcripts. Fourth, there is conservation of SFPs' functional classes across distantly related taxonomic groups with very different life histories, mating systems and sperm transferring mechanisms. The identified SFPs may serve as targets of future efforts to develop species- specific genetic control strategies.
Collapse
Affiliation(s)
- Martha L Bonilla
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, A.237. Palmira, Valle del Cauca, Colombia.
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| | - Christopher Todd
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| | - Martin Erlandson
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Pl., Saskatoon, SK, S7N-0X2, Canada.
| | - Jose Andres
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| |
Collapse
|
35
|
Goenaga J, Yamane T, Rönn J, Arnqvist G. Within-species divergence in the seminal fluid proteome and its effect on male and female reproduction in a beetle. BMC Evol Biol 2015; 15:266. [PMID: 26627998 PMCID: PMC4667481 DOI: 10.1186/s12862-015-0547-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/20/2015] [Indexed: 11/30/2022] Open
Abstract
Background Male seminal fluid proteins (SFPs), transferred to females during mating, are important reproductive proteins that have multifarious effects on female reproductive physiology and that often show remarkably rapid and divergent evolution. Inferences regarding natural selection on SFPs are based primarily on interspecific comparative studies, and our understanding of natural within-species variation in SFPs and whether this relates to reproductive phenotypes is very limited. Here, we introduce an empirical strategy to study intraspecific variation in and selection upon the seminal fluid proteome. We then apply this in a study of 15 distinct populations of the seed beetle Callosobruchus maculatus. Results Phenotypic assays of these populations showed significant differences in reproductive phenotypes (male success in sperm competition and male ability to stimulate female fecundity). A quantitative proteomic study of replicated samples of male accessory glands revealed a large number of potential SFPs, of which ≥127 were found to be transferred to females at mating. Moreover, population divergence in relative SFP abundance across populations was large and remarkably multidimensional. Most importantly, variation in male SFP abundance across populations was associated with male sperm competition success and male ability to stimulate female egg production. Conclusions Our study provides the first direct evidence for postmating sexual selection on standing intraspecific variation in SFP abundance and the pattern of divergence across populations in the seminal fluid proteome match the pattern predicted by the postmating sexual selection paradigm for SFP evolution. Our findings provide novel support for the hypothesis that sexual selection on SFPs is an important engine of incipient speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0547-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julieta Goenaga
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden. .,Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 11 8000, Aarhus C, Denmark.
| | - Takashi Yamane
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | - Johanna Rönn
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
36
|
Mangels R, Young B, Keeble S, Ardekani R, Meslin C, Ferreira Z, Clark NL, Good JM, Dean MD. Genetic and phenotypic influences on copulatory plug survival in mice. Heredity (Edinb) 2015; 115:496-502. [PMID: 26103947 PMCID: PMC4806896 DOI: 10.1038/hdy.2015.50] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Across a diversity of animals, male seminal fluid coagulates upon ejaculation to form a hardened structure known as a copulatory plug. Previous studies suggest that copulatory plugs evolved as a mechanism for males to impede remating by females, but detailed investigations into the time course over which plugs survive in the female's reproductive tract are lacking. Here, we cross males from eight inbred strains to females from two inbred strains of house mice (Mus musculus domesticus). Plug survival was significantly affected by male genotype. Against intuition, plug survival time was negatively correlated with plug size: long-lasting plugs were small and relatively more susceptible to proteolysis. Plug size was associated with divergence in major protein composition of seminal vesicle fluid, suggesting that changes in gene expression may play an important role in plug dynamics. In contrast, we found no correlation to genetic variation in the protein-coding regions of five genes thought to be important in copulatory plug formation (Tgm4, Svs1, Svs2, Svs4 and Svs5). Our study demonstrates a complex relationship between copulatory plug characteristics and survival. We discuss several models to explain unexpected variation in plug phenotypes.
Collapse
Affiliation(s)
- R Mangels
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - B Young
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - S Keeble
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - R Ardekani
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
| | - C Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z Ferreira
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - N L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - M D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Ramm SA, Edward DA, Claydon AJ, Hammond DE, Brownridge P, Hurst JL, Beynon RJ, Stockley P. Sperm competition risk drives plasticity in seminal fluid composition. BMC Biol 2015; 13:87. [PMID: 26507392 PMCID: PMC4624372 DOI: 10.1186/s12915-015-0197-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Ejaculates contain a diverse mixture of sperm and seminal fluid proteins, the combination of which is crucial to male reproductive success under competitive conditions. Males should therefore tailor the production of different ejaculate components according to their social environment, with particular sensitivity to cues of sperm competition risk (i.e. how likely it is that females will mate promiscuously). Here we test this hypothesis using an established vertebrate model system, the house mouse (Mus musculus domesticus), combining experimental data with a quantitative proteomics analysis of seminal fluid composition. Our study tests for the first time how both sperm and seminal fluid components of the ejaculate are tailored to the social environment. Results Our quantitative proteomics analysis reveals that the relative production of different proteins found in seminal fluid – i.e. seminal fluid proteome composition – differs significantly according to cues of sperm competition risk. Using a conservative analytical approach to identify differential expression of individual seminal fluid components, at least seven of 31 secreted seminal fluid proteins examined showed consistent differences in relative abundance under high versus low sperm competition conditions. Notably three important proteins with potential roles in sperm competition – SVS 6, SVS 5 and CEACAM 10 – were more abundant in the high competition treatment groups. Total investment in both sperm and seminal fluid production also increased with cues of heightened sperm competition risk in the social environment. By contrast, relative investment in different ejaculate components was unaffected by cues of mating opportunities. Conclusions Our study reveals significant plasticity in different ejaculate components, with the production of both sperm and non-sperm fractions of the ejaculate strongly influenced by the social environment. Sperm competition risk is thus shown to be a key factor in male ejaculate production decisions, including driving plasticity in seminal fluid composition. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven A Ramm
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK. .,Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany.
| | - Dominic A Edward
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| | - Amy J Claydon
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK. .,Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Dean E Hammond
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Philip Brownridge
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| | - Paula Stockley
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| |
Collapse
|
38
|
Wilburn DB, Swanson WJ. From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins. J Proteomics 2015; 135:12-25. [PMID: 26074353 DOI: 10.1016/j.jprot.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Sexual reproduction and the exchange of genetic information are essential biological processes for species across all branches of the tree of life. Over the last four decades, biochemists have continued to identify many of the factors that facilitate reproduction, but the molecular mechanisms that mediate this process continue to elude us. However, a recurring observation in this research has been the rapid evolution of reproductive proteins. In animals, the competing interests of males and females often result in arms race dynamics between pairs of interacting proteins. This phenomenon has been observed in all stages of reproduction, including pheromones, seminal fluid components, and gamete recognition proteins. In this article, we review how the integration of evolutionary theory with biochemical experiments can be used to study interacting reproductive proteins. Examples are included from both model and non-model organisms, and recent studies are highlighted for their use of state-of-the-art genomic and proteomic techniques. SIGNIFICANCE Despite decades of research, our understanding of the molecular mechanisms that mediate fertilization remain poorly characterized. To date, molecular evolutionary studies on both model and non-model organisms have provided some of the best inferences to elucidating the molecular underpinnings of animal reproduction. This review article details how biochemical and evolutionary experiments have jointly enhanced the field for 40 years, and how recent work using high-throughput genomic and proteomic techniques have shed additional insights into this crucial biological process.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Genome Sciences, University of Washington, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, United States
| |
Collapse
|
39
|
Abstract
Egg and sperm have, understandably, been the "stars" of mammalian fertilization biology, particularly because artificial reproductive technologies allow for fertilization to occur outside of the female reproductive tract without other apparent contributions from either sex. Yet, recent research, including an exciting new paper, reveals unexpected and important contributions of seminal plasma to fertility. For example, seminal plasma proteins play critical roles in modulating female reproductive physiology, and a new study in mice demonstrates that effects of some of these proteins on the female can even affect the health of her progeny. Furthermore, although several actions of seminal plasma have been conserved across taxa, male accessory glands and their products are diverse - even among mammals. Taken together, these studies suggest that the actions of seminal plasma components are important to understand, and also to consider in future development of assisted reproductive technologies (ART) for humans, farm species and endangered species of mammals.
Collapse
Affiliation(s)
- Lisa A McGraw
- Department of Biological Sciences, NC State University, Raleigh, NC, USA
| | | | | |
Collapse
|
40
|
Edward DA, Stockley P, Hosken DJ. Sexual conflict and sperm competition. Cold Spring Harb Perspect Biol 2014; 7:a017707. [PMID: 25301931 DOI: 10.1101/cshperspect.a017707] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Traits that increase a male's fertilization success during sperm competition can be harmful to females and therefore represent a source of sexual conflict. In this review, we consider the variety of male adaptations to sperm competition (MASC) that may give rise to sexual conflict-including mate guarding, prolonged copulations, the transfer of large numbers of sperm, and the manipulation of females through nonsperm components of the ejaculate. We then reflect on the fitness economics influencing the escalation of these sexual conflicts, considering the likelihood of females evolving traits to offset the negative effects of MASC when compared with the strong selection on males that lead to MASC. We conclude by discussing the potential evolutionary outcomes of sexual conflict arising from MASC, including the opportunities for females to mitigate conflict costs and the prospects for conflict resolution.
Collapse
Affiliation(s)
- Dominic A Edward
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, United Kingdom
| | - Paula Stockley
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, United Kingdom
| | - David J Hosken
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
41
|
|
42
|
|
43
|
Boes KE, Ribeiro JMC, Wong A, Harrington LC, Wolfner MF, Sirot LK. Identification and characterization of seminal fluid proteins in the Asian tiger mosquito, Aedes albopictus. PLoS Negl Trop Dis 2014; 8:e2946. [PMID: 24945155 PMCID: PMC4063707 DOI: 10.1371/journal.pntd.0002946] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
The Asian tiger mosquito (Aedes albopictus) is an important vector for pathogens that affect human health, including the viruses that cause dengue and Chikungunya fevers. It is also one of the world's fastest-spreading invasive species. For these reasons, it is crucial to identify strategies for controlling the reproduction and spread of this mosquito. During mating, seminal fluid proteins (Sfps) are transferred from male mosquitoes to females, and these Sfps modulate female behavior and physiology in ways that influence reproduction. Despite the importance of Sfps on female reproductive behavior in mosquitoes and other insects, the identity of Sfps in Ae. albopictus has not previously been reported. We used transcriptomics and proteomics to identify 198 Sfps in Ae. albopictus. We discuss possible functions of these Sfps in relation to Ae. albopictus reproduction-related biology. We additionally compare the sequences of these Sfps with proteins (including reported Sfps) in several other species, including Ae. aegypti. While only 72 (36.4%) of Ae. albopictus Sfps have putative orthologs in Ae. aegypti, suggesting low conservation of the complement of Sfps in these species, we find no evidence for an elevated rate of evolution or positive selection in the Sfps that are shared between the two Aedes species, suggesting high sequence conservation of those shared Sfps. Our results provide a foundation for future studies to investigate the roles of individual Sfps on feeding and reproduction in this mosquito. Functional analysis of these Sfps could inform strategies for managing the rate of pathogen transmission by Ae. albopictus.
Collapse
Affiliation(s)
- Kathryn E. Boes
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Laura K. Sirot
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| |
Collapse
|
44
|
Finseth FR, Iacovelli SR, Harrison RG, Adkins-Regan EK. A nonsemen copulatory fluid influences the outcome of sperm competition in Japanese quail. J Evol Biol 2013; 26:1875-89. [DOI: 10.1111/jeb.12189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/01/2022]
Affiliation(s)
- F. R. Finseth
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY USA
| | - S. R. Iacovelli
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY USA
| | - R. G. Harrison
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY USA
| | - E. K. Adkins-Regan
- Department of Neurobiology and Behavior; Cornell University; Ithaca NY USA
- Department of Psychology; Cornell University; Ithaca NY USA
| |
Collapse
|
45
|
Perry JC, Sirot L, Wigby S. The seminal symphony: how to compose an ejaculate. Trends Ecol Evol 2013; 28:414-22. [PMID: 23582755 DOI: 10.1016/j.tree.2013.03.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/17/2013] [Accepted: 03/13/2013] [Indexed: 02/06/2023]
Abstract
Ejaculates are fundamental to fitness in sexually reproducing animals: males gain all their direct fitness via the ejaculate and females require ejaculates to reproduce. Both sperm and non-sperm components of the ejaculate (including parasperm, seminal proteins, water, and macromolecules) play vital roles in postcopulatory sexual selection and conflict, processes that can potentially drive rapid evolutionary change and reproductive isolation. Here, we assess the increasing evidence that considering ejaculate composition as a whole (and potential trade-offs among ejaculate components) has important consequences for predictions about male reproductive investment and female responses to ejaculates. We review current theory and empirical work, and detail how social and environmental effects on ejaculate composition have potentially far-reaching fitness consequences for both sexes.
Collapse
Affiliation(s)
- Jennifer C Perry
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | | | | |
Collapse
|
46
|
Kvarnemo C, Simmons LW. Polyandry as a mediator of sexual selection before and after mating. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120042. [PMID: 23339234 PMCID: PMC3576577 DOI: 10.1098/rstb.2012.0042] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The Darwin–Bateman paradigm recognizes competition among males for access to multiple mates as the main driver of sexual selection. Increasingly, however, females are also being found to benefit from multiple mating so that polyandry can generate competition among females for access to multiple males, and impose sexual selection on female traits that influence their mating success. Polyandry can reduce a male's ability to monopolize females, and thus weaken male focused sexual selection. Perhaps the most important effect of polyandry on males arises because of sperm competition and cryptic female choice. Polyandry favours increased male ejaculate expenditure that can affect sexual selection on males by reducing their potential reproductive rate. Moreover, sexual selection after mating can ameliorate or exaggerate sexual selection before mating. Currently, estimates of sexual selection intensity rely heavily on measures of male mating success, but polyandry now raises serious questions over the validity of such approaches. Future work must take into account both pre- and post-copulatory episodes of selection. A change in focus from the products of sexual selection expected in males, to less obvious traits in females, such as sensory perception, is likely to reveal a greater role of sexual selection in female evolution.
Collapse
Affiliation(s)
- Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | | |
Collapse
|
47
|
Genetic disruption of the copulatory plug in mice leads to severely reduced fertility. PLoS Genet 2013; 9:e1003185. [PMID: 23341775 PMCID: PMC3547826 DOI: 10.1371/journal.pgen.1003185] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 11/06/2012] [Indexed: 01/13/2023] Open
Abstract
Seminal fluid proteins affect fertility at multiple stages in reproduction. In many species, a male's ejaculate coagulates to form a copulatory plug. Although taxonomically widespread, the molecular details of plug formation remain poorly understood, limiting our ability to manipulate the structure and understand its role in reproduction. Here I show that male mice knockouts for transglutaminase IV (Tgm4) fail to form a copulatory plug, demonstrating that this gene is necessary for plug formation and lending a powerful new genetic tool to begin characterizing plug function. Tgm4 knockout males show normal sperm count, sperm motility, and reproductive morphology. However, very little of their ejaculate migrates into the female's reproductive tract, suggesting the plug prevents ejaculate leakage. Poor ejaculate migration leads to a reduction in the proportion of oocytes fertilized. However, Tgm4 knockout males fertilized between 3-11 oocytes, which should be adequate for a normal litter. Nevertheless, females mated to Tgm4 knockout males for approximately 14 days were significantly less likely to give birth to a litter compared to females mated to wild-type males. Therefore, it appears that the plug also affects post-fertilization events such as implantation and/or gestation. This study shows that a gene influencing the viscosity of seminal fluid has a major influence on male fertility.
Collapse
|
48
|
Laflamme BA, Wolfner MF. Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev 2012; 80:80-101. [PMID: 23109270 DOI: 10.1002/mrd.22130] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/20/2012] [Indexed: 01/17/2023]
Abstract
Proteins in the seminal fluid of animals with internal fertilization effect numerous responses in mated females that impact both male and female fertility. Among these proteins is the highly represented class of proteolysis regulators (proteases and their inhibitors). Though proteolysis regulators have now been identified in the seminal fluid of all animals in which proteomic studies of the seminal fluid have been conducted (as well as several other species in which they have not), a unified understanding of the importance of proteolysis to male fertilization success and other reproductive processes has not yet been achieved. In this review, we provide an overview of the identification of proteolysis regulators in the seminal fluid of humans and Drosophila melanogaster, the two species with the most comprehensively known seminal fluid proteomes. We also highlight reports demonstrating the functional significance of specific proteolysis regulators in reproductive and post-mating processes. Finally, we make broad suggestions for the direction of future research into the roles of both active seminal fluid proteolysis regulators and their inactive homologs, another significant class of seminal fluid proteins. We hope that this review aids researchers in pursuing a coordinated study of the functional significance of proteolysis regulators in semen.
Collapse
Affiliation(s)
- Brooke A Laflamme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
49
|
Abstract
Females frequently mate with several males, whose sperm then compete to fertilize available ova. Sperm competition represents a potent selective force that is expected to shape male expenditure on the ejaculate. Here, we review empirical data that illustrate the evolutionary consequences of sperm competition. Sperm competition favors the evolution of increased testes size and sperm production. In some species, males appear capable of adjusting the number of sperm ejaculated, depending on the perceived levels of sperm competition. Selection is also expected to act on sperm form and function, although the evidence for this remains equivocal. Comparative studies suggest that sperm length and swimming speed may increase in response to selection from sperm competition. However, the mechanisms driving this pattern remain unclear. Evidence that sperm length influences sperm swimming speed is mixed and fertilization trials performed across a broad range of species demonstrate inconsistent relationships between sperm form and function. This ambiguity may in part reflect the important role that seminal fluid proteins (sfps) play in affecting sperm function. There is good evidence that sfps are subject to selection from sperm competition, and recent work is pointing to an ability of males to adjust their seminal fluid chemistry in response to sperm competition from rival males. We argue that future research must consider sperm and seminal fluid components of the ejaculate as a functional unity. Research at the genomic level will identify the genes that ultimately control male fertility.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, , School of Animal Biology (M092), The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | |
Collapse
|
50
|
Janoušek V, Wang L, Luzynski K, Dufková P, Vyskočilová MM, Nachman MW, Munclinger P, Macholán M, Piálek J, Tucker PK. Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Mus musculus musculus and M. m. domesticus. Mol Ecol 2012; 21:3032-47. [PMID: 22582810 PMCID: PMC3872452 DOI: 10.1111/j.1365-294x.2012.05583.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies of a hybrid zone between two house mouse subspecies (Mus musculus musculus and M. m. domesticus) along with studies using laboratory crosses reveal a large role for the X chromosome and multiple autosomal regions in reproductive isolation as a consequence of disrupted epistasis in hybrids. One limitation of previous work has been that most of the identified genomic regions have been large. The goal here is to detect and characterize precise genomic regions underlying reproductive isolation. We surveyed 1401 markers evenly spaced across the genome in 679 mice collected from two different transects. Comparisons between transects provide a means for identifying common patterns that likely reflect intrinsic incompatibilities. We used a genomic cline approach to identify patterns that correspond to epistasis. From both transects, we identified contiguous regions on the X chromosome in which markers were inferred to be involved in epistatic interactions. We then searched for autosomal regions showing the same patterns and found they constitute about 5% of autosomal markers. We discovered substantial overlap between these candidate regions underlying reproductive isolation and QTL for hybrid sterility identified in laboratory crosses. Analysis of gene content in these regions suggests a key role for several mechanisms, including the regulation of transcription, sexual conflict and sexual selection operating at both the postmating prezygotic and postzygotic stages of reproductive isolation. Taken together, these results indicate that speciation in two recently diverged (c. 0.5 Ma) house mouse subspecies is complex, involving many genes dispersed throughout the genome and associated with distinct functions.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|