1
|
Jiang C, Zhang X, Rao J, Luo S, Luo L, Lu W, Li M, Zhao S, Ren D, Liu J, Song Y, Zheng Y, Sun YB. Enhancing Pseudomonas syringae pv. Actinidiae sensitivity in kiwifruit by repressing the NBS-LRR genes through miRNA-215-3p and miRNA-29-3p identification. FRONTIERS IN PLANT SCIENCE 2024; 15:1403869. [PMID: 39086918 PMCID: PMC11288850 DOI: 10.3389/fpls.2024.1403869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (PSA), poses a grave threat to the global kiwifruit industry. In this study, we examined the role of microRNAs (miRNAs) in kiwifruit's response to PSA. Kiwifruit seedlings subjected to PSA treatment showed significant changes in both miRNA and gene expression compared to the control group. We identified 364 differentially expressed miRNAs (DEMs) and 7170 differentially expressed genes (DEGs). Further analysis revealed 180 miRNAs negatively regulating 641 mRNAs. Notably, two miRNAs from the miRNA482 family, miRNA-215-3p and miRNA-29-3p, were found to increase kiwifruit's sensitivity to PSA when overexpressed. These miRNAs were linked to the regulation of NBS-LRR target genes, shedding light on their role in kiwifruit's defence against PSA. This study offers insights into the miRNA482-NBS-LRR network as a crucial component in enhancing kiwifruit bioresistance to PSA infestation and provides promising candidate genes for further research.
Collapse
Affiliation(s)
- Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoying Zhang
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiahui Rao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shu Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Liang Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shumei Zhao
- Key Laboratory of Agricultural Engineering in Structure and Environment, China Agricultural University, Beijing, China
| | - Dan Ren
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiaming Liu
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Yu Song
- Research Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Ren C, Fan P, Li S, Liang Z. Advances in understanding cold tolerance in grapevine. PLANT PHYSIOLOGY 2023:kiad092. [PMID: 36789447 DOI: 10.1093/plphys/kiad092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely low temperatures, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| |
Collapse
|
3
|
He R, Tang Y, Wang D. Coordinating Diverse Functions of miRNA and lncRNA in Fleshy Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:411. [PMID: 36679124 PMCID: PMC9866404 DOI: 10.3390/plants12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Non-coding RNAs play vital roles in the diverse biological processes of plants, and they are becoming key topics in horticulture research. In particular, miRNAs and long non-coding RNAs (lncRNAs) are receiving increased attention in fruit crops. Recent studies in horticulture research provide both genetic and molecular evidence that miRNAs and lncRNAs regulate biological function and stress responses during fruit development. Here, we summarize multiple regulatory modules of miRNAs and lncRNAs and their biological roles in fruit sets and stress responses, which would guide the development of molecular breeding techniques on horticultural crops.
Collapse
Affiliation(s)
- Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yajun Tang
- Shandong Laboratory of Advanced Agricultural Sciences, Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Jafari M, Shiran B, Rabiei G, Ravash R, Sayed Tabatabaei BE, Martínez-Gómez P. Identification and verification of seed development related miRNAs in kernel almond by small RNA sequencing and qPCR. PLoS One 2021; 16:e0260492. [PMID: 34851991 PMCID: PMC8635354 DOI: 10.1371/journal.pone.0260492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Many studies have investigated the role of miRNAs on the yield of various plants, but so far, no report is available on the identification and role of miRNAs in fruit and seed development of almonds. In this study, preliminary analysis by high-throughput sequencing of short RNAs of kernels from the crosses between almond cultivars 'Sefid' × 'Mamaee' (with small and large kernels, respectively) and 'Sefid' × 'P. orientalis' (with small kernels) showed that the expressions of several miRNAs such as Pdu-miR395a-3p, Pdu-miR8123-5p, Pdu-miR482f, Pdu-miR6285, and Pdu-miR396a were significantly different. These miRNAs targeted genes encoding different proteins such as NYFB-3, SPX1, PGSIP3 (GUX2), GH3.9, and BEN1. The result of RT-qPCR revealed that the expression of these genes showed significant differences between the crosses and developmental stages of the seeds, suggesting that these genes might be involved in controlling kernel size because the presence of these miRNAs had a negative effect on their target genes. Pollen source can influence kernel size by affecting hormonal signaling and metabolic pathways through related miRNAs, a phenomenon known as xenia.
Collapse
Affiliation(s)
- Marjan Jafari
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Gholamreza Rabiei
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Roudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
5
|
Hetero/Homo-Complexes of Sucrose Transporters May Be a Subtle Mode to Regulate Sucrose Transportation in Grape Berries. Int J Mol Sci 2021; 22:ijms222112062. [PMID: 34769493 PMCID: PMC8584533 DOI: 10.3390/ijms222112062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The sugar distribution mechanism in fruits has been the focus of research worldwide; however, it remains unclear. In order to elucidate the relevant mechanisms in grape berries, the expression, localization, function, and regulation of three sucrose transporters were studied in three representative Vitis varieties. Both SUC11 and SUC12 expression levels were positively correlated with sugar accumulation in grape berries, whereas SUC27 showed a negative relationship. The alignment analysis and sucrose transport ability of isolated SUCs were determined to reflect coding region variations among V. vinifera, V. amurensis Ruper, and V. riparia, indicating that functional variation existed in one SUT from different varieties. Furthermore, potentially oligomerized abilities of VvSUCs colocalized in the sieve elements of the phloem as plasma membrane proteins were verified. The effects of oligomerization on transport properties were characterized in yeast. VvSUC11 and VvSUC12 are high-affinity/low-capacity types of SUTs that stimulate each other by upregulating Vmax and Km, inhibiting sucrose transport, and downregulating the Km of VvSUC27. Thus, changes in the distribution of different SUTs in the same cell govern functional regulation. The activation and inhibition of sucrose transport could be achieved in different stages and tissues of grape development to achieve an effective distribution of sugar.
Collapse
|
6
|
Wang P, Xuan X, Su Z, Wang W, Abdelrahman M, Jiu S, Zhang X, Liu Z, Wang X, Wang C, Fang J. Identification of miRNAs-mediated seed and stone-hardening regulatory networks and their signal pathway of GA-induced seedless berries in grapevine (V. vinifera L.). BMC PLANT BIOLOGY 2021; 21:442. [PMID: 34587914 PMCID: PMC8480016 DOI: 10.1186/s12870-021-03188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Stone-hardening stage is crucial to the development of grape seed and berry quality. A significant body of evidence supports the important roles of MicroRNAs in grape-berry development, but their specific molecular functions during grape stone-hardening stage remain unclear. RESULTS Here, a total of 161 conserved and 85 species-specific miRNAs/miRNAs* (precursor) were identified in grape berries at stone-hardening stage using Solexa sequencing. Amongst them, 30 VvmiRNAs were stone-hardening stage-specific, whereas 52 exhibited differential expression profiles during berry development, potentially participating in the modulation of berry development as verified by their expression patterns. GO and KEGG pathway analysis showed that 13 VvmiRNAs might be involved in the regulation of embryo development, another 11 in lignin and cellulose biosynthesis, and also 28 in the modulation of hormone signaling, sugar, and proline metabolism. Furthermore, the target genes for 4 novel VvmiRNAs related to berry development were validated using RNA Ligase-Mediated (RLM)-RACE and Poly(A) Polymerase-Mediated (PPM)-RACE methods, and their cleavage mainly occurred at the 9th-11th sites from the 5' ends of miRNAs at their binding regions. In view of the regulatory roles of GA in seed embryo development and stone-hardening in grape, we investigated the expression modes of VvmiRNAs and their target genes during GA-induced grape seedless-berry development, and we validated that GA induced the expression of VvmiR31-3p and VvmiR8-5p to negatively regulate the expression levels of CAFFEOYL COENZYME A-3-O-METHYLTRANSFERASE (VvCCoAOMT), and DDB1-CUL4 ASSOCIATED FACTOR1 (VvDCAF1). The series of changes might repress grape stone hardening and embryo development, which might be a potential key molecular mechanism in GA-induced grape seedless-berry development. Finally, a schematic model of miRNA-mediated grape seed and stone-hardening development was proposed. CONCLUSION This work identified 30 stone-hardening stage-specific VvmiRNAs and 52 significant differential expression ones, and preliminary interpreted the potential molecular mechanism of GA-induced grape parthenocarpy. GA negatively manipulate the expression of VvCCoAOMT and VvDCAF1 by up-regulation the expression of VvmiR31-3p and VvmiR8-5p, thereby repressing seed stone and embryo development to produce grape seedless berries.
Collapse
Affiliation(s)
- Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwen Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenran Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, 81528, Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-001, Japan
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xicheng Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Waziri A, Singh DK, Sharma T, Chatterjee S, Purty RS. Genome-wide analysis of PHD finger gene family and identification of potential miRNA and their PHD finger gene specific targets in Oryza sativa indica. Noncoding RNA Res 2020; 5:191-200. [PMID: 33163736 PMCID: PMC7610035 DOI: 10.1016/j.ncrna.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 11/24/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important cereal crops for one third of the world population. However, the grain quality as well as yield of rice is severely affected by various abiotic stresses. Environmental stresses affect the expression of various microRNAs (miRNAs) which in turn negatively regulate gene expression at the post-transcriptional level either by degrading the target mRNA genes or suppressing translation in plants. Plant homeo-domain (PHD) finger proteins are known to be involved in the plant response to salinity stress. In the present study, we identified 44 putative OsPHD finger genes in Oryza sativa Indica, using Ensembl Plants Database. Using computational approach, potential miRNAs that target OsPHD finger genes were identified. Out of the 44 OsPHD finger genes only three OsPHD finger genes i.e., OsPHD2, OsPHD35 and OsPHD11, were found to be targeted by five newly identified putative miRNAs i.e., ath-miRf10010-akr, ath-miRf10110-akr, osa-miR1857–3p, osa-miRf10863-akr, and osa-miRf11806-akr. This is the first report of these five identified miRNAs on targeting PHD finger in Oryza sativa Indica. Further, expression analysis of 44 PHD finger genes under salinity was also performed using quantitative Real-Time PCR. The expression profile of 8 genes were found to be differentially regulated, among them two genes were significantly up regulated i.e., OsPHD6 and OsPHD12. In silico protein-protein interaction analysis using STRING database showed interaction of the OsPHD finger proteins with other protein partners that are directly or indirectly involved in development and abiotic stress tolerance. Total of 44 Plant homeo-domain (PHD) finger proteins were identified & classified into 10 groups in Oryza sativa Indica. This is the first report showing 5 newly identified putative miRNAs targeting three OsPHD genes i.e., OsPHD2, 11 and 35. Expression analysis of PHD finger genes showed up-regulation of the 2 genes OsPHD 6 & 12 under salinity stress treatment. Protein-protein network of OsPHDs showed protein partners that are involved in plant growth and abiotic stress tolerance.
Collapse
Affiliation(s)
- Aafrin Waziri
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Deepak Kumar Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Tarun Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Sayan Chatterjee
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| |
Collapse
|
8
|
Li X, Hou Y, Xie X, Li H, Li X, Zhu Y, Zhai L, Zhang C, Bian S. A blueberry MIR156a-SPL12 module coordinates the accumulation of chlorophylls and anthocyanins during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5976-5989. [PMID: 32686829 DOI: 10.1093/jxb/eraa327] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/14/2020] [Indexed: 05/24/2023]
Abstract
Color change is an important event during fruit maturation in blueberry, usually depending on chlorophyll degradation and anthocyanin accumulation. MicroRNA156 (miR156)-SPL modules are an important group of regulatory hubs involved in the regulation of anthocyanin biosynthesis. However, little is known regarding their roles in blueberry or in chlorophyll metabolism during color change. In this study, a MIR156 gene (VcMIR156a) was experimentally identified in blueberry (Vaccinium corymbosum). Overexpression of VcMIR156a in tomato (Solanum lycopersicum) enhanced anthocyanin biosynthesis and chlorophyll degradation in the stem by altering pigment-associated gene expression. Further investigation indicated that the VcSPL12 transcript could be targeted by miR156, and showed the reverse accumulation patterns during blueberry fruit development and maturation. Noticeably, VcSPL12 was highly expressed at green fruit stages, while VcMIR156a transcripts mainly accumulated at the white fruit stage when expression of VcSPL12 was dramatically decreased, implying that VcMIR156a-VcSPL12 is a key regulatory hub during fruit coloration. Moreover, VcSPL12 decreased the expression of several anthocyanin biosynthetic and regulatory genes, and a yeast two-hybrid assay indicated that VcSPL12 interacted with VcMYBPA1. Intriguingly, expression of VcSPL12 significantly enhanced chlorophyll accumulation and altered the expression of several chlorophyll-associated genes. Additionally, the chloroplast ultrastructure was altered by the expression of VcMIR156a and VcSPL12. These findings provide a novel insight into the functional roles of miR156-SPLs in plants, especially in blueberry fruit coloration.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Yanming Hou
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xin Xie
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Hongxue Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiaodong Li
- Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Singh DK, Mehra S, Chatterjee S, Purty RS. In silico identification and validation of miRNA and their DIR specific targets in Oryza sativa Indica under abiotic stress. Noncoding RNA Res 2020; 5:167-177. [PMID: 33024905 PMCID: PMC7522899 DOI: 10.1016/j.ncrna.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 11/08/2022] Open
Abstract
Several biotic (bacterial and viral pathogenesis) and abiotic stress factors like salt, drought, cold, and extreme temperatures significantly reduce crop productivity and grain quality throughout the world. MicroRNAs (miRNAs) are small (~22 nucleotides) non-coding endogenous RNA molecules which negatively regulate gene expression at the post-transcriptional level either by degrading the target protein-coding mRNA genes or suppressing translation in plants. Dirigent (DIR) gene protein plays a crucial role as they are involved to dictate the stereochemistry of a compound synthesized by other enzymes as well as in lignifications against biotic and abiotic stress. In plants, several miRNAs, as well as their targets, are known to regulate stress response but systematic identification of the same is limited. The present work has been designed for in silico identification of miRNAs against a total of sixty-one DIR genes in Oryza sativa Indica followed by target prediction of identified miRNAs through the computational approach and thereafter validation of potential miRNAs in rice genotypes. We systematically identified 3 miRNA and their respective DIR specific target gene in Oryza sativa Indica. The expression of these three miRNAs and their respective DIR specific targets were validated in rice seedlings subjected to five different abiotic stress conditions (heavy metal, high temperature, low temperature, salinity and drought) by quantitative Real-Time PCR (qRT-PCR). Expression analysis indicated that miRNA under stress conditions regulates the gene expression of the DIR gene in rice. To the best of our knowledge this is this is the first report in any organism showing the expression of ath-miRf10317-akr, and osamiRf10761-akr miRNAs in response to various abiotic stresses. Total 61 DIR proteins were identified & classified into 6 groups based on phylogeny analysis in Oryza sativa Indica. Three miRNAs ath-miRf10317-akr, cre-miR910 and osa-miRf10761-akr were identified via computational approach. These 3 miRNAs in response to abiotic stresses showed inverse expression pattern in the respective target genes. This is the first report on expression of ath-miRf10317-akr, and osa-miRf10761-akr miRNAs in response to abiotic stresses.
Collapse
Affiliation(s)
- Deepak Kumar Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Shourya Mehra
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Sayan Chatterjee
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| |
Collapse
|
10
|
Ma L, Shi YN, Grierson D, Chen KS. Research advance in regulation of fruit quality characteristics by microRNAs. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyz039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
MicroRNAs (miRNAs) are short (19–24 nucleotides in length) noncoding RNAs that have a profound effect on gene expression. By completely or almost perfectly base-pairing with their individual target mRNAs they cause mRNA cleavage or repression of translation. As important regulators, miRNAs plays an important role in the regulation of fruit quality. Extensive studies have been reported in fruits, however current studies are mostly focused on the identification of miRNAs and the prediction and validation of target genes. This review summarizes research progress on the role of miRNAs in regulating fruit ripening and senescence and quality characteristics, such as coloration, flavor metabolism, and texture for providing information for future research.
Collapse
Affiliation(s)
- Li Ma
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Yan-na Shi
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Don Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kun-song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| |
Collapse
|
11
|
Daldoul S, Boubakri H, Gargouri M, Mliki A. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Mol Biol Rep 2020; 47:3141-3153. [PMID: 32130616 DOI: 10.1007/s11033-020-05363-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.
| | - Hatem Boubakri
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| |
Collapse
|
12
|
Liu S, Yang C, Wu L, Cai H, Li H, Xu M. The peu-miR160a-PeARF17.1/PeARF17.2 module participates in the adventitious root development of poplar. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:457-469. [PMID: 31314168 PMCID: PMC6953198 DOI: 10.1111/pbi.13211] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 05/12/2023]
Abstract
Deep roots give rise to flourishing leaves, and the two complement each other. However, the genetic mechanisms underlying adventitious rooting for forest trees have remained elusive. In this study, we verified that peu-miR160a targets six poplar genes AUXIN RESPONSE FACTORS (ARFs), PeARF10.1, PeARF16.1, PeARF16.2, PeARF16.3, PeARF17.1 and PeARF17.2, using 5'RLM-RACE. Interaction experiments with peu-miR160a and PeARFs in poplar protoplasts further confirmed that peu-miR160a targets and negatively regulates the six PeARFs. Peu-miR160a and its target genes exhibited obvious temporal expression in different stages of adventitious root development, and they could also be induced by IAA and abscisic acid. Peu-miR160a-overexpressing lines exhibited a significant shortening of adventitious root length, an increase in the number of lateral roots, severe dwarfing and shortened internodes. In addition, the overexpression of PeARF17.1 or mPeARF17.2 (peu-miR160a-resistant version of PeARF17.2) significantly increased the number of adventitious roots. Furthermore, PeARF17.1-overexpressing lines had multiple branches with no visible trunk, although the adventitious root length of the PeARF17.1-overexpressing lines was significantly increased. Our findings reveal that the peu-miR160a - PeARF17.1/PeARF17.2 module is an important regulator involved in the development of the adventitious roots of poplar.
Collapse
Affiliation(s)
- Sian Liu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Chunxia Yang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangxi Academy of ForestryNanchangJiangxiChina
| | - Ling Wu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Heng Cai
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Huogen Li
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Meng Xu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| |
Collapse
|
13
|
Wang C, Wang Q, Zhu X, Cui M, Jia H, Zhang W, Tang W, Leng X, Shen W. Characterization on the conservation and diversification of miRNA156 gene family from lower to higher plant species based on phylogenetic analysis at the whole genomic level. Funct Integr Genomics 2019; 19:933-952. [PMID: 31172301 DOI: 10.1007/s10142-019-00679-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 01/18/2023]
Abstract
miRNA156 family members (miR156s) participate in regulating the transition of plant vegetative and reproductive growth, flower development, and formation of berry skin color by negatively modulating their target gene SPLs. However, the evolution and functional diversification of miR156s in plants remain elusive. Phylogenetic analysis on 310 miR156s from 51 plant species on miRBase 21.0 showed that only miR156a could be conserved in the 51 plant species, but their sequences exhibited variation; another set of miR156s, such as miR156m/n/o/p/q/r/s/t/u/v/w/x/y/z, was identified only in certain special plant species (Glycine max and Malus); also, all base variations in the sequences of 310 miR156s occurred within one miR156 seed sequence, "TGACAGAAGAGAGTGAGCAC," and the changed base sites were mainly located at the 11th and 14th bases from the 5' end of the miR156 seed sequence, in which some base variations of miR156s resulted in a difference in miR156 targeting modes; by contrast, miR156 precursor sequences are highly divergent across diverse species. Similarly, cis-regulatory motifs on the promoter sequence of MIR156s in various plants also exhibited significant discrepancy. The intragenic MIR156 genes overlapped their target SBP genes, thereby suggesting that some microRNAs (miRNAs) originate from duplication of target genes. These traits might be the reasons of the conservation and diversification of miR156 gene family. This study identified the conserved seed sequence "TGACAGAAGAGAGTGAGCAC," and the sequence variation characterization, of miR156 family evolution, also investigated the varied traits of their promoters, precursors, and mature sequences in sequence evolutions and found some miRNAs might originate from duplication of target genes. Our findings will contribute to our understanding of the functional diversification of miRNAs and the interactions of miRNA/target pairs based on the evolutionary history of miRNA genes.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qinglian Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menjie Cui
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenying Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Li T, Wang YH, Liu JX, Feng K, Xu ZS, Xiong AS. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Crit Rev Biotechnol 2019; 39:680-692. [DOI: 10.1080/07388551.2019.1608153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Zhang W, Abdelrahman M, Jiu S, Guan L, Han J, Zheng T, Jia H, Song C, Fang J, Wang C. VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC PLANT BIOLOGY 2019; 19:111. [PMID: 30898085 PMCID: PMC6429806 DOI: 10.1186/s12870-019-1719-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/14/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Grape (Vitis vinifera) is highly sensitive to gibberellin (GA), which effectively induce grape parthenocarpy. Studies showed that miR160s and their target AUXIN RESPONSIVE FACTOR (ARF) responding hormones are indispensable for various aspects of plant growth and development, but their functions in GA-induced grape parthenocarpy remain elusive. RESULTS In this study, the morphological changes during flower development in response to GA treatments were examined in the 'Rosario Bianco' cultivar. The precise sequences of VvmiR160a/b/c/d/e and their VvARF10/16/17 target genes were cloned, sequenced and characterized. The phylogenetic relationship and intron-exon structure of VvARFs and other ARF family members derived from different species were investigated. All VvmiR160s (except VvmiR160b) and VvARF10/16/17 had the common cis-elements responsive to GA, which support their function in GA-mediated grape parthenocarpy. The cleavage role of VvmiR160s-mediated VvARF10/16/17 was verified in grape flowers. Moreover, spatio-temporal expression analysis demonstrated that among VvmiR160 family, VvmiR160a/b/c highly expressed at late stage of flower/berry development, while VvARF10/16/17showed a reverse expression trend. Interestingly, GA exhibited a long-term effect through inducing the expression of VvmiR160a/b/c/e to increase their cleavage product accumulations from 5 to 9 days after treatment, but GA enhanced the expressions of VvARF10/16/17 only at short term. Pearson correlation analysis based on expression data revealed a negative correlation between VvmiR160a/b/c and VvARF10/16/17 in flowers not berries during GA-induced grape parthenocarpy. CONCLUSIONS This work demonstrated that the negative regulation of VvARF10/16/17 expression by VvmiR160a/b/c as key regulatory factors is critical for GA-mediated grape parthenocarpy, and provide significant implications for molecular breeding of high-quality seedless berry.
Collapse
Affiliation(s)
- Wenying Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, 81528 Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-001 Japan
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changnian Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
16
|
The Role of UV-B light on Small RNA Activity During Grapevine Berry Development. G3-GENES GENOMES GENETICS 2019; 9:769-787. [PMID: 30647106 PMCID: PMC6404619 DOI: 10.1534/g3.118.200805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We explored the effects of ultraviolet B radiation (UV-B) on the developmental dynamics of microRNAs and phased small-interfering-RNA (phasi-RNAs)-producing loci by sequencing small RNAs in vegetative and reproductive organs of grapevine (Vitis vinifera L.). In particular, we tested different UV-B conditions in in vitro-grown plantlets (high-fluence exposition) and in berries from field-grown (radiation filtering) and greenhouse-grown (low- and high-fluence expositions) adult plants throughout fruit development and ripening. The functional significance of the observed UV-coordinated miRNA responses was supported by degradome evidences of ARGONAUTE (AGO)-programmed slicing of mRNAs. Co-expression patterns of the up-regulated miRNAs miR156, miR482, miR530, and miR828 with cognate target gene expressions in response to high-fluence UV-B was tested by q-RT-PCR. The observed UV-response relationships were also interrogated against two published UV-stress and developmental transcriptome datasets. Together, the dynamics observed between miRNAs and targets suggest that changes in target abundance are mediated transcriptionally and, in some cases, modulated post-transcriptionally by miRNAs. Despite the major changes in target abundance are being controlled primarily by those developmental effects that are similar between treatments, we show evidence for novel miRNA-regulatory networks in grape. A model is proposed where high-fluence UV-B increases miR168 and miR530 that target ARGONAUTE 1 (AGO1) and a Plus-3 domain mRNA, respectively, while decreasing miR403 that targets AGO2, thereby coordinating post-transcriptional gene silencing activities by different AGOs. Up-regulation of miR3627/4376 could facilitate anthocyanin accumulation by antagonizing a calcium effector, whereas miR395 and miR399, induced by micronutrient deficiencies known to trigger anthocyanin accumulation, respond positively to UV-B radiation. Finally, increases in the abundance of an anthocyanin-regulatory MYB-bHLH-WD40 complex elucidated in Arabidopsis, mediated by UV-B-induced changes in miR156/miR535, could contribute to the observed up-regulation of miR828. In turn, miR828 would regulate the AtMYB113-ortologues MYBA5, A6 and A7 (and thereby anthocyanins) via a widely conserved and previously validated auto-regulatory loop involving miR828 and phasi TAS4abc RNAs.
Collapse
|
17
|
Jiu S, Leng X, Haider MS, Dong T, Guan L, Xie Z, Li X, Shangguan L, Fang J. Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180735. [PMID: 30800341 PMCID: PMC6366190 DOI: 10.1098/rsos.180735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/24/2018] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded non-coding small RNAs (sRNAs) that are 20-24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play important roles in plant growth, development and stress responses. With more copper (Cu) and copper containing compounds used as bactericides and fungicides in plants, Cu stress has become one of the serious environmental problems that affect plant growth and development. In order to uncover the hidden response mechanisms of Cu stress, two small RNA libraries were constructed from Cu-treated and water-treated (Control) leaves of 'Summer Black' grapevine. Following high-throughput sequencing and filtering, a total of 158 known and 98 putative novel miRNAs were identified in the two libraries. Among these, 100 known and 47 novel miRNAs were identified as differentially expressed under Cu stress. Subsequently, the expression patterns of nine Cu-responsive miRNAs were validated by quantitative real-time PCR (qRT-PCR). There existed some consistency in expression levels of Cu-responsive miRNAs between high throughput sequencing and qRT-PCR assays. The targets prediction of miRNAs indicates that miRNA may regulate some transcription factors, including AP2, SBP, NAC, MYB and ARF during Cu stress. The target genes for two known and two novel miRNAs showed specific cleavage sites at the 10th and/or 11th nucleotide from the 5'-end of the miRNA corresponding to their miRNA complementary sequences. The findings will lay the foundation for exploring the role of the regulation of miRNAs in response to Cu stress and provide valuable gene information for breeding some Cu-tolerant grapevine cultivars.
Collapse
Affiliation(s)
- Songtao Jiu
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Le Guan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhenqiang Xie
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaopeng Li
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lingfei Shangguan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
18
|
Nadiya F, Anjali N, Thomas J, Gangaprasad A, Sabu KK. Deep sequencing identified potential miRNAs involved in defence response, stress and plant growth characteristics of wild genotypes of cardamom. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:3-14. [PMID: 30098091 DOI: 10.1111/plb.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses. In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer. We identified 161 potential miRNAs representing 42 families, including monocot/tissue-specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars. Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT-PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA-mRNA target pairing using RNA ligase-mediated 5' Rapid Amplification of cDNA Ends (5'RLM-RACE) PCR.
Collapse
Affiliation(s)
- F Nadiya
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - N Anjali
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - J Thomas
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - A Gangaprasad
- Department of Botany, University of Kerala, Thiruvananthapuram, India
| | - K K Sabu
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| |
Collapse
|
19
|
Qiu Z, He Y, Zhang Y, Guo J, Zhang L. Genome-wide identification and profiling of microRNAs in Paulownia tomentosa cambial tissues in response to seasonal changes. Gene 2018; 677:32-40. [PMID: 30036657 DOI: 10.1016/j.gene.2018.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
MicroRNAs (miRNAs), a group of endogenous small non-coding RNAs, have been shown to play essential roles in the regulation of gene expression at the post-transcriptional level. Although Paulownia tomentosa is an ecologically and economically important timber species due to its rapid growth, few efforts have focused on small RNAs (sRNAs) in the cambial tissues during winter and summer transition. In the present study, we identified 33 known miRNA families and 29 novel miRNAs which include 20 putative novel miRNAs* in P. tomentosa cambial tissues during winter and summer transition. Through differential expression analysis, we showed that 15 known miRNAs and 8 novel miRNAs were preferentially abundant in certain stage of cambial tissues. Based on the P. tomentosa mRNA transcriptome database, 1667 and 78 potential targets were predicted for 29 known and 20 novel miRNAs, respectively and the predicted targets are mostly transcription factors and functional genes. The targets of these miRNAs were enriched in "metabolic process" and "transcription regulation" by using Gene Ontology enrichment analysis. In addition, KEGG pathway analyses revealed the involvement of miRNAs in starch and sucrose metabolism and plant-pathogen interaction metabolism pathways. Noticeably, qRT-PCR expression analysis demonstrated that 9 miRNAs and their targets were existed a negative correlation in P. tomentosa cambial tissues. This study is the first to examine known and novel miRNAs and their potential targets in P. tomentosa cambial tissues during winter and summer transition and identify several candidate genes potentially regulating cambial phase transition, and thus provide a framework for further understanding of miRNAs functions in the regulation of cambial phase transition and wood formation in trees.
Collapse
Affiliation(s)
- Zongbo Qiu
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Yanyan He
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Yimeng Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Junli Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
20
|
Zhu X, Jiu S, Li X, Zhang K, Wang M, Wang C, Fang J. In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages. Genes Genomics 2018; 40:801-817. [PMID: 30047108 DOI: 10.1007/s13258-018-0679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Small interfering RNAs (siRNAs) are effectors of regulatory pathways underlying plant development, metabolism, and stress- and nutrient-signaling regulatory networks. The endogenous siRNAs are generally not conserved between plants; consequently, it is necessary and important to identify and characterize siRNAs from various plants. To address the nature and functions of siRNAs, and understand the biological roles of the huge siRNA population in grapevine (Vitis vinifera L.). The high-throughput sequencing technology was used to identify a large set of putative endogenous siRNAs from six grapevine tissues/organs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to classify the target genes of siRNA. In total, 520,519 candidate siRNAs were identified and their expression profiles exhibited typical temporal characters during grapevine development. In addition, we identified two grapevine trans-acting siRNA (TAS) gene homologs (VvTAS3 and VvTAS4) and the derived trans-acting siRNAs (tasiRNAs) that could target grapevine auxin response factor (ARF) and myeloblastosis (MYB) genes. Furthermore, the GO and KEGG analysis of target genes showed that most of them covered a broad range of functional categories, especially involving in disease-resistance process. The large-scale and completely genome-wide level identification and characterization of grapevine endogenous siRNAs from the diverse tissues by high throughput technology revealed the nature and functions of siRNAs in grapevine.
Collapse
Affiliation(s)
- Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Songtao Jiu
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Kekun Zhang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Mengqi Wang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.
| |
Collapse
|
21
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
22
|
Wang C, Jogaiah S, Zhang W, Abdelrahman M, Fang JG. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3639-3650. [PMID: 29905866 DOI: 10.1093/jxb/ery172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/22/2018] [Indexed: 05/18/2023]
Abstract
Grapevine, Vitis vinifera, is an important economic fruit crop that is highly sensitive to gibberellin (GA), and the exogenous application of GA can efficiently induce grapevine parthenocarpy. However, the molecular mechanisms underlying this process remain elusive. In this study, morphological changes during flower development in response to GA treatments were examined in the 'Zuijinxiang' cultivar. To obtain insights into the roles of miRNA159s in GA-induced grapevine parthenocarpy, VvmiR159a, VvmiR159b, VvmiR159c, and their target gene VvGAMYB were isolated, sequenced and characterized. Spatial-temporal expression analyses showed that VvmiR159c exhibited the highest expression levels at 4 d before flowering, followed by a gradual decrease, while VvGAMYB displayed an opposite pattern of expression with the lowest expression at the corresponding stage in response to GA treatment. A cleavage interaction between VvmiR159s and VvGAMYB and variations of their cleavage roles were confirmed in grapevine floral development. In addition, the potential roles of VvmiR159s in GA signaling were investigated through DELLA-protein repressors, indicating that GA-DELLA (SLR1)-VvmiR159c-VvGAMYB is the key signaling regulatory module in grapevine. Our findings provide novel insights into the GA-responsive roles of VvmiR159s in modulating grapevine floral development, which have important implications for the molecular breeding of high-quality seedless grapevine berry.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, India
| | - WenYing Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, Egypt
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Japan
| | - Jing Gui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Hou Y, Zhai L, Li X, Xue Y, Wang J, Yang P, Cao C, Li H, Cui Y, Bian S. Comparative Analysis of Fruit Ripening-Related miRNAs and Their Targets in Blueberry Using Small RNA and Degradome Sequencing. Int J Mol Sci 2017; 18:ijms18122767. [PMID: 29257112 PMCID: PMC5751366 DOI: 10.3390/ijms18122767] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the regulation of fruit development and ripening. Blueberry is an important small berry fruit crop with economical and nutritional value. However, nothing is known about the miRNAs and their targets involved in blueberry fruit ripening. In this study, using high-throughput sequencing of small RNAs, 84 known miRNAs belonging to 28 families and 16 novel miRNAs were identified in white fruit (WF) and blue fruit (BF) libraries, which represent fruit ripening onset and in progress, respectively. Among them, 41 miRNAs were shown to be differentially expressed during fruit maturation, and 16 miRNAs representing 16 families were further chosen to validate the sRNA sequencing data by stem-loop qRT-PCR. Meanwhile, 178 targets were identified for 41 known and 7 novel miRNAs in WF and BF libraries using degradome sequencing, and targets of miR160 were validated using RLM-RACE (RNA Ligase-Mediated (RLM)-Rapid Amplification of cDNA Ends) approach. Moreover, the expression patterns of 6 miRNAs and their targets were examined during fruit development and ripening. Finally, integrative analysis of miRNAs and their targets revealed a complex miRNA-mRNA regulatory network involving a wide variety of biological processes. The findings will facilitate future investigations of the miRNA-mediated mechanisms that regulate fruit development and ripening in blueberry.
Collapse
Affiliation(s)
- Yanming Hou
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Yu Xue
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jingjing Wang
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Pengjie Yang
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Chunmei Cao
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Hongxue Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
24
|
Zhang H, Yin L, Wang H, Wang G, Ma X, Li M, Wu H, Fu Q, Zhang Y, Yi H. Genome-wide identification of Hami melon miRNAs with putative roles during fruit development. PLoS One 2017; 12:e0180600. [PMID: 28742088 PMCID: PMC5524408 DOI: 10.1371/journal.pone.0180600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Hami melon is famous for its attractive flavor and excellent nutritional value, however, the mechanisms underlying the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the roles of miRNAs during Hami melon fruit development. Two batches of flesh samples were collected at four fruit development stages. Small RNA sequencing yielded a total of 54,553,424 raw reads from eight libraries. 113 conserved miRNAs belonging to 30 miRNA families and nine novel miRNAs comprising nine miRNA families were identified. The expression of 42 conserved miRNAs and three Hami melon-specific miRNAs significantly changed during fruit development. Furthermore, 484 and 124 melon genes were predicted as putative targets of 29 conserved and nine Hami melon-specific miRNA families, respectively. GO enrichment analysis were performed on target genes, "transcription, DNA-dependent", "rRNA processing", "oxidation reduction", "signal transduction", "regulation of transcription, DNA-dependent", and "metabolic process" were the over-represented biological process terms. Cleavage sites of six target genes were validated using 5' RACE. Our results present a comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis towards understanding the regulatory mechanisms in programmed process of normal Hami fruit development and ripening. Specific miRNAs could be selected for further research and applications in breeding practices.
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Lan Yin
- ABLife, Inc., Wuhan, Hubei, China
| | - Huaisong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangzhi Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Xinli Ma
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Meihua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Haibo Wu
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qiushi Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zhang
- ABLife, Inc., Wuhan, Hubei, China
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
25
|
Li J, Wu L, Foster R, Ruan YL. Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:322-335. [PMID: 28304127 DOI: 10.1111/jipb.12539] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Sucrose (Suc) is the major end product of photosynthesis in mesophyll cells of most vascular plants. It is loaded into phloem of mature leaves for long-distance translocation to non-photosynthetic organs where it is unloaded for diverse uses. Clearly, Suc transport and metabolism is central to plant growth and development and the functionality of the entire vascular system. Despite vast information in the literature about the physiological roles of individual sugar metabolic enzymes and transporters, there is a lack of systematic evaluation about their molecular regulation from transcriptional to post-translational levels. Knowledge on this topic is essential for understanding and improving plant development, optimizing resource distribution and increasing crop productivity. We therefore focused our analyses on molecular control of key players in Suc metabolism and transport, including: (i) the identification of promoter elements responsive to sugars and hormones or targeted by transcription factors and microRNAs degrading transcripts of target genes; and (ii) modulation of enzyme and transporter activities through protein-protein interactions and other post-translational modifications. We have highlighted major remaining questions and discussed opportunities to exploit current understanding to gain new insights into molecular control of carbon partitioning for improving plant performance.
Collapse
Affiliation(s)
- Jun Li
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Limin Wu
- CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - Ryan Foster
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| |
Collapse
|
26
|
Fan G, Wang L, Dong Y, Zhao Z, Deng M, Niu S, Zhang X, Cao X. Genome of Paulownia (Paulownia fortunei) illuminates the related transcripts, miRNA and proteins for salt resistance. Sci Rep 2017; 7:1285. [PMID: 28455522 PMCID: PMC5430789 DOI: 10.1038/s41598-017-01360-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/27/2017] [Indexed: 11/21/2022] Open
Abstract
Polyploidy in plants can bestow long-term evolutionary flexibility and resistance to biotic and abiotic stresses. The upstream activation mechanisms of salt response remain unknown. Here we integrated transcriptome, miRNA and proteome data to describe the link between abscisic acid (ABA)-effectors and salt resistance against the background of Paulownia genome. Combing GO and KEGG pathway annotation of differentially expressed genes and proteins, as well as differentially expressed miRNA, these results reflect endogenous signal ABA activate the downstream effectors, such as ion channel effectors and oxido-reduction effectors, to maintain the homeostasis of Paulownia’s growth. The cascaded metabolic network involved ABA biosynthesis, signaling transduction and the response of effectors. Our results will contribute to a comprehensive understanding of the genetic basis of salt tolerance, which may help to expand the available arable land for P. fortunei cultivation.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Limin Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, China
| | - Suyan Niu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaoshen Zhang
- Zhengzhou Agriculture & Forestry Scientific Research Institute, Zhengzhou, Henan, China
| | - Xibing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Wang K, Dantec C, Lemaire P, Onuma TA, Nishida H. Genome-wide survey of miRNAs and their evolutionary history in the ascidian, Halocynthia roretzi. BMC Genomics 2017; 18:314. [PMID: 28427349 PMCID: PMC5399378 DOI: 10.1186/s12864-017-3707-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND miRNAs play essential roles in the modulation of cellular functions via degradation and/or translation attenuation of target mRNAs. They have been surveyed in a single ascidian genus, Ciona. Recently, an annotated draft genome sequence for a distantly related ascidian, Halocynthia roretzi, has become available, but miRNAs in H. roretzi have not been previously studied. RESULTS We report the prediction of 319 candidate H. roretzi miRNAs, obtained through three complementary methods. Experimental validation suggests that more than half of these candidate miRNAs are expressed during embryogenesis. The majority of predicted H. roretzi miRNAs appear specific to ascidians or tunicates, and only 32 candidates, belonging to 25 families, are widely conserved across metazoans. CONCLUSION Our study presents a comprehensive identification of candidate H. roretzi miRNAs. This resource will facilitate the study of the mechanisms for miRNA-controlled gene regulatory networks during ascidian development. Further, our analysis suggests that the majority of Halocynthia miRNAs are specific to ascidian or tunicates, with only a small number of widely conserved miRNAs. This result is consistent with the general notion that animal miRNAs are less conserved between taxa than plant ones.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan. .,Present address: Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Science, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, People's Republic of China.
| | - Christelle Dantec
- Centre de Recherches de Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090, Montpellier, France
| | - Patrick Lemaire
- Centre de Recherches de Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090, Montpellier, France
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
28
|
Pagliarani C, Vitali M, Ferrero M, Vitulo N, Incarbone M, Lovisolo C, Valle G, Schubert A. The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine. PLANT PHYSIOLOGY 2017; 173:2180-2195. [PMID: 28235889 PMCID: PMC5373040 DOI: 10.1104/pp.16.01119] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Department of Agricultural, Forest, and Food Sciences, University of Turin, I-10095 Grugliasco, Italy (C.P., M.V., M.F., M.I., C.L., A.S.); and
- Department of Biology, University of Padua, I-35121 Padua, Italy (N.V., G.V.)
| | - Marco Vitali
- Department of Agricultural, Forest, and Food Sciences, University of Turin, I-10095 Grugliasco, Italy (C.P., M.V., M.F., M.I., C.L., A.S.); and
- Department of Biology, University of Padua, I-35121 Padua, Italy (N.V., G.V.)
| | - Manuela Ferrero
- Department of Agricultural, Forest, and Food Sciences, University of Turin, I-10095 Grugliasco, Italy (C.P., M.V., M.F., M.I., C.L., A.S.); and
- Department of Biology, University of Padua, I-35121 Padua, Italy (N.V., G.V.)
| | - Nicola Vitulo
- Department of Agricultural, Forest, and Food Sciences, University of Turin, I-10095 Grugliasco, Italy (C.P., M.V., M.F., M.I., C.L., A.S.); and
- Department of Biology, University of Padua, I-35121 Padua, Italy (N.V., G.V.)
| | - Marco Incarbone
- Department of Agricultural, Forest, and Food Sciences, University of Turin, I-10095 Grugliasco, Italy (C.P., M.V., M.F., M.I., C.L., A.S.); and
- Department of Biology, University of Padua, I-35121 Padua, Italy (N.V., G.V.)
| | - Claudio Lovisolo
- Department of Agricultural, Forest, and Food Sciences, University of Turin, I-10095 Grugliasco, Italy (C.P., M.V., M.F., M.I., C.L., A.S.); and
- Department of Biology, University of Padua, I-35121 Padua, Italy (N.V., G.V.)
| | - Giorgio Valle
- Department of Agricultural, Forest, and Food Sciences, University of Turin, I-10095 Grugliasco, Italy (C.P., M.V., M.F., M.I., C.L., A.S.); and
- Department of Biology, University of Padua, I-35121 Padua, Italy (N.V., G.V.)
| | - Andrea Schubert
- Department of Agricultural, Forest, and Food Sciences, University of Turin, I-10095 Grugliasco, Italy (C.P., M.V., M.F., M.I., C.L., A.S.); and
- Department of Biology, University of Padua, I-35121 Padua, Italy (N.V., G.V.)
| |
Collapse
|
29
|
Characterization of miR061 and its target genes in grapevine responding to exogenous gibberellic acid. Funct Integr Genomics 2017; 17:537-549. [PMID: 28247088 DOI: 10.1007/s10142-017-0554-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs), as an important growth regulator, are also involved in gibberellic acid (GA) signaling, revealing much relationship between miRNAs and GA in various plant responses. Grape is highly sensitive to GA3, which plays a significant regulatory role in regulation of flower development, berry expansion, berry set, berry ripening, and seedlessness induction; further, it was found that grapevine miR061 (VvmiR061) is a GA3 responsive miRNA. In this study, grapevine REV (VvREV) and HOX32 (VvHOX32), two target genes of VvmiR061, were predicted, verified, and cloned; homologous conservation was analyzed in various plants. The expression profiles of both VvmiR061 and its target genes (VvREV and VvHOX32) under GA3 treatment were detected by qRT-PCR during grapevine flower and berry development. Results revealed that GA3 treatment has upregulated the transcription of VvREV and VvHOX32, while it downregulated the expression of VvmiR061. The function of VvmiR061 in cleaving target genes VvREV and VvHOX32 was diminished by GA3 treatment during flower developmental process. The results of this study exhibited the importance of VvmiR061 in regulating flower development and GA3 signaling pathway and also contributed some to the knowledge of small RNA-mediated regulation in grape.
Collapse
|
30
|
Liu D, Mewalal R, Hu R, Tuskan GA, Yang X. New technologies accelerate the exploration of non-coding RNAs in horticultural plants. HORTICULTURE RESEARCH 2017; 4:17031. [PMID: 28698797 PMCID: PMC5496985 DOI: 10.1038/hortres.2017.31] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 05/06/2023]
Abstract
Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants and discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs.
Collapse
Affiliation(s)
- Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Ritesh Mewalal
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
- ()
| |
Collapse
|
31
|
Zhao F, Wang C, Han J, Zhu X, Li X, Wang X, Fang J. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level. Funct Integr Genomics 2016; 17:213-235. [PMID: 27696076 DOI: 10.1007/s10142-016-0514-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.
Collapse
Affiliation(s)
- Fanggui Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xicheng Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
32
|
Wang B, Wang J, Wang C, Shen W, Jia H, Zhu X, Li X. Study on Expression Modes and Cleavage Role of miR156b/c/d and its Target Gene Vv-SPL9 During the Whole Growth Stage of Grapevine. J Hered 2016; 107:626-634. [PMID: 27660497 DOI: 10.1093/jhered/esw030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 11/14/2022] Open
Abstract
miR156 regulates the expression of its target SPL (PROMOTER BINDING-LIKE) genes during flower and fruit development, diverse developmental stage transitions, especially from vegetative to reproductive growth phases, by cleaving the target mRNA SPL of one plant-specific transcription factor. However, systematic reports on grapevine have yet to be presented. Here, the precise sequence of miR156 (vvi-miR156b/c/d) in grapevine "Takatsuma" was cloned with a previously cloned grapevine SPL (Vv-SPL9). Expression profiles in 18 grapevine tissues were identified through stem-loop RT-PCR. The interaction mode between vvi-miR156b/c/d and Vv-SPL9 was further validated by detecting the cleavage site and cleavage products of 3'- and 5'-ends via an integrated approach of 5'-RLM-RACE (RNA ligase-mediated 5'-rapid amplification of cDNA ends), 3'-PPM-RACE (poly(A) polymerase-mediated 3'-rapid amplification of cDNA ends), and qRT-PCR (real time reverse transcriptase-polymerase chain reaction). The variation in their cleavage roles in the whole growth stage of grapevine was also systematically investigated. Results showed that vvi-miR156b/c/d exhibited typical temporal-spatial-specific expression levels. The expression levels were higher in vegetative organs, such as leaf, than in reproductive organs, such as tendrils, flowers, and berries. A significant variation was observed during vegetative-to-reproductive transition. The expression patterns of Vv-SPL9 showed the opposite trends with those of vvi-miR156b. We confirmed that the cleavage site was at the 10th site of vvi-miR156b/c/d complementary to Vv-SPL9 in "Takatsuma" grapevine. We also identified the temporal-spatial variation of the cleavage products. This variation can indicate the regulatory function of miR156 on SPL in grapevines. Our findings provide further insights into the functions of vvi-miR156b/c/d and its target Vv-SPL9, and also help enrich our knowledge of small RNA-mediated regulation in grapevine.
Collapse
Affiliation(s)
- Baoju Wang
- From the College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (B. Wang, J. Wang, C. Wang, Jia, Zhu, and Li); and College of Life Science, Nanjing Agricultural University, Nanjing 210095, China (Shen)
| | - Jian Wang
- From the College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (B. Wang, J. Wang, C. Wang, Jia, Zhu, and Li); and College of Life Science, Nanjing Agricultural University, Nanjing 210095, China (Shen)
| | - Chen Wang
- From the College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (B. Wang, J. Wang, C. Wang, Jia, Zhu, and Li); and College of Life Science, Nanjing Agricultural University, Nanjing 210095, China (Shen).
| | - Wenbiao Shen
- From the College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (B. Wang, J. Wang, C. Wang, Jia, Zhu, and Li); and College of Life Science, Nanjing Agricultural University, Nanjing 210095, China (Shen)
| | - Haifeng Jia
- From the College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (B. Wang, J. Wang, C. Wang, Jia, Zhu, and Li); and College of Life Science, Nanjing Agricultural University, Nanjing 210095, China (Shen)
| | - Xudong Zhu
- From the College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (B. Wang, J. Wang, C. Wang, Jia, Zhu, and Li); and College of Life Science, Nanjing Agricultural University, Nanjing 210095, China (Shen)
| | - Xiaopeng Li
- From the College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (B. Wang, J. Wang, C. Wang, Jia, Zhu, and Li); and College of Life Science, Nanjing Agricultural University, Nanjing 210095, China (Shen)
| |
Collapse
|
33
|
Reyes CA, Ocolotobiche EE, Marmisollé FE, Robles Luna G, Borniego MB, Bazzini AA, Asurmendi S, García ML. Citrus psorosis virus 24K protein interacts with citrus miRNA precursors, affects their processing and subsequent miRNA accumulation and target expression. MOLECULAR PLANT PATHOLOGY 2016; 17:317-29. [PMID: 26033697 PMCID: PMC6638441 DOI: 10.1111/mpp.12282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sweet orange (Citrus sinensis), one of the most important fruit crops worldwide, may suffer from disease symptoms induced by virus infections, thus resulting in dramatic economic losses. Here, we show that the infection of sweet orange plants with two isolates of Citrus psorosis virus (CPsV) expressing different symptomatology alters the accumulation of a set of endogenous microRNAs (miRNAs). Within these miRNAs, miR156, miR167 and miR171 were the most down-regulated, with almost a three-fold reduction in infected samples. This down-regulation led to a concomitant up-regulation of some of their targets, such as Squamosa promoter-binding protein-like 9 and 13, as well as Scarecrow-like 6. The processing of miRNA precursors, pre-miR156 and pre-miR171, in sweet orange seems to be affected by the virus. For instance, virus infection increases the level of unprocessed precursors, which is accompanied by a concomitant decrease in mature species accumulation. miR156a primary transcript accumulation remained unaltered, thus strongly suggesting a processing deregulation for this transcript. The co-immunoprecipitation of viral 24K protein with pre-miR156a or pre-miR171a suggests that the alteration in the processing of these precursors might be caused by a direct or indirect interaction with this particular viral protein. This result is also consistent with the nuclear localization of both miRNA precursors and the CPsV 24K protein. This study contributes to the understanding of the manner in which a virus can alter host regulatory mechanisms, particularly miRNA biogenesis and target expression.
Collapse
Affiliation(s)
- Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Eliana E Ocolotobiche
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Facundo E Marmisollé
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - María B Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Ariel A Bazzini
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - Sebastian Asurmendi
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
| | - María L García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
34
|
Huang JH, Qi YP, Wen SX, Guo P, Chen XM, Chen LS. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci Rep 2016; 6:22900. [PMID: 26962011 PMCID: PMC4790630 DOI: 10.1038/srep22900] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying tolerance to B-toxicity in plants are still controversial. Our previous studies indicated that B-toxicity is mainly limited to leaves in Citrus and that alternations of cell-wall structure in vascular bundles are involved in tolerance to B-toxicity. Here, miRNAs and their expression patterns were first identified in B-treated Citrus sinensis (tolerant) and C. grandis (intolerant) leaves via high-throughput sequencing. Candidate miRNAs were then verified with molecular and anatomical approaches. The results showed that 51 miRNAs in C. grandis and 20 miRNAs in C. sinensis were differentially expressed after B-toxic treatment. MiR395a and miR397a were the most significantly up-regulated miRNAs in B-toxic C. grandis leaves, but both were down-regulated in B-toxic C. sinensis leaves. Four auxin response factor genes and two laccase (LAC) genes were confirmed through 5′-RACE to be real targets of miR160a and miR397a, respectively. Up-regulation of LAC4 resulted in secondary deposition of cell-wall polysaccharides in vessel elements of C. sinensis, whereas down-regulation of both LAC17 and LAC4, led to poorly developed vessel elements in C. grandis. Our findings demonstrated that miR397a plays a pivotal role in woody Citrus tolerance to B-toxicity by targeting LAC17 and LAC4, both of which are responsible for secondary cell-wall synthesis.
Collapse
Affiliation(s)
- Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Shou-Xing Wen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China
| | - Xiao-Min Chen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China.,Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
35
|
Paim Pinto DL, Brancadoro L, Dal Santo S, De Lorenzis G, Pezzotti M, Meyers BC, Pè ME, Mica E. The Influence of Genotype and Environment on Small RNA Profiles in Grapevine Berry. FRONTIERS IN PLANT SCIENCE 2016; 7:1459. [PMID: 27761135 PMCID: PMC5050227 DOI: 10.3389/fpls.2016.01459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/13/2016] [Indexed: 05/21/2023]
Abstract
Understanding the molecular mechanisms involved in the interaction between the genetic composition and the environment is crucial for modern viticulture. We approached this issue by focusing on the small RNA transcriptome in grapevine berries of the two varieties Cabernet Sauvignon and Sangiovese, growing in adjacent vineyards in three different environments. Four different developmental stages were studied and a total of 48 libraries of small RNAs were produced and sequenced. Using a proximity-based pipeline, we determined the general landscape of small RNAs accumulation in grapevine berries. We also investigated the presence of known and novel miRNAs and analyzed their accumulation profile. The results showed that the distribution of small RNA-producing loci is variable between the two cultivars, and that the level of variation depends on the vineyard. Differently, the profile of miRNA accumulation mainly depends on the developmental stage. The vineyard in Riccione maximizes the differences between the varieties, promoting the production of more than 1000 specific small RNA loci and modulating their expression depending on the cultivar and the maturation stage. In total, 89 known vvi-miRNAs and 33 novel vvi-miRNA candidates were identified in our samples, many of them showing the accumulation profile modulated by at least one of the factors studied. The in silico prediction of miRNA targets suggests their involvement in berry development and in secondary metabolites accumulation such as anthocyanins and polyphenols.
Collapse
Affiliation(s)
| | - Lucio Brancadoro
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Silvia Dal Santo
- Laboratory of Plant Genetics, Department of Biotechnology, University of VeronaVerona, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Mario Pezzotti
- Laboratory of Plant Genetics, Department of Biotechnology, University of VeronaVerona, Italy
| | - Blake C. Meyers
- Donald Danforth Plant Science CenterSt. Louis, MO, USA
- Division of Plant Sciences, University of Missouri–ColumbiaColumbia, MO, USA
| | - Mario E. Pè
- Institute of Life Sciences, Sant'Anna School of Advanced StudiesPisa, Italy
| | - Erica Mica
- Institute of Life Sciences, Sant'Anna School of Advanced StudiesPisa, Italy
- Genomics Research Centre, Agricultural Research CouncilFiorenzuola d'Arda, Italy
- *Correspondence: Erica Mica
| |
Collapse
|
36
|
Pulvirenti A, Giugno R, Distefano R, Pigola G, Mongiovi M, Giudice G, Vendramin V, Lombardo A, Cattonaro F, Ferro A. A knowledge base for Vitis vinifera functional analysis. BMC SYSTEMS BIOLOGY 2015; 9 Suppl 3:S5. [PMID: 26050794 PMCID: PMC4464603 DOI: 10.1186/1752-0509-9-s3-s5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Vitis vinifera (Grapevine) is the most important fruit species in the modern world. Wine and table grapes sales contribute significantly to the economy of major wine producing countries. The most relevant goals in wine production concern quality and safety. In order to significantly improve the achievement of these objectives and to gain biological knowledge about cultivars, a genomic approach is the most reliable strategy. The recent grapevine genome sequencing offers the opportunity to study the potential roles of genes and microRNAs in fruit maturation and other physiological and pathological processes. Although several systems allowing the analysis of plant genomes have been reported, none of them has been designed specifically for the functional analysis of grapevine genomes of cultivars under environmental stress in connection with microRNA data. Description Here we introduce a novel knowledge base, called BIOWINE, designed for the functional analysis of Vitis vinifera genomes of cultivars present in Sicily. The system allows the analysis of RNA-seq experiments of two different cultivars, namely Nero d'Avola and Nerello Mascalese. Samples were taken under different climatic conditions of phenological phases, diseases, and geographic locations. The BIOWINE web interface is equipped with data analysis modules for grapevine genomes. In particular users may analyze the current genome assembly together with the RNA-seq data through a customized version of GBrowse. The web interface allows users to perform gene set enrichment by exploiting third-party databases. Conclusions BIOWINE is a knowledge base implementing a set of bioinformatics tools for the analysis of grapevine genomes. The system aims to increase our understanding of the grapevine varieties and species of Sicilian products focusing on adaptability to different climatic conditions, phenological phases, diseases, and geographic locations.
Collapse
|
37
|
Belli Kullan J, Lopes Paim Pinto D, Bertolini E, Fasoli M, Zenoni S, Tornielli GB, Pezzotti M, Meyers BC, Farina L, Pè ME, Mica E. miRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics 2015; 16:393. [PMID: 25981679 PMCID: PMC4434875 DOI: 10.1186/s12864-015-1610-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background miRNAs are the most abundant class of small non-coding RNAs, and they are involved in post-transcriptional regulations, playing a crucial role in the refinement of genetic programming during plant development. Here we present a comprehensive picture of miRNA regulation in Vitis vinifera L. plant during its complete life cycle. Furthering our knowledge about the post-transcriptional regulation of plant development is fundamental to understand the biology of such an important crop. Results We analyzed 70 small RNA libraries, prepared from berries, inflorescences, tendrils, buds, carpels, stamens and other samples at different developmental stages. One-hundred and ten known and 175 novel miRNAs have been identified and a wide grapevine expression atlas has been described. The distribution of miRNA abundance reveals that 22 novel miRNAs are specific to stamen, and two of them are, interestingly, involved in ethylene biosynthesis, while only few miRNAs are highly specific to other organs. Thirty-eight miRNAs are present in all our samples, suggesting a role in key regulatory circuit. On the basis of miRNAs abundance and distribution across samples and on the estimated correlation, we suggest that miRNA expression define organ identity. We performed target prediction analysis and focused on miRNA expression analysis in berries and inflorescence during their development, providing an initial functional description of the identified miRNAs. Conclusions Our findings represent a very extensive miRNA expression atlas in grapevine, allowing the definition of how the spatio-temporal distribution of miRNAs defines organ identity. We describe miRNAs abundance in specific tissues not previously described in grapevine and contribute to future targeted functional analyses. Finally, we present a deep characterization of miRNA involvement in berry and inflorescence development, suggesting a role for miRNA-driven hormonal regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1610-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jayakumar Belli Kullan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Daniela Lopes Paim Pinto
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Marianna Fasoli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | | | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, 15 Innovation Way, 19711, Newark, DE, USA.
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, University of Rome "La Sapienza", Via Ariosto 25, 00185, Rome, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Erica Mica
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy. .,Genomics Research Centre, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Via S. Protaso 302, 29017, Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
38
|
Identification and Characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak. PLoS One 2015; 10:e0127184. [PMID: 25978425 PMCID: PMC4433266 DOI: 10.1371/journal.pone.0127184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Ginkgo biloba, a dioecious plant known as a living fossil, is an ancient gymnosperm that stands distinct from other gymnosperms and angiosperms. Ginkgo biloba var. epiphylla (G. biloba var. epiphylla), with ovules borne on the leaf blade, is an unusual germplasm derived from G. biloba. MicroRNAs (miRNAs) are post-transcriptional gene regulators that play critical roles in diverse biological and metabolic processes. Currently, little is known about the miRNAs involved in the key stage of partly epiphyllous ovule germination in G. biloba var. epiphylla. Two small RNA libraries constructed from epiphyllous ovule leaves and normal leaves of G. biloba var. epiphylla were sequenced on an Illumina/Solexa platform. A total of 82 miRNA sequences belonging to 23 families and 53 putative novel miRNAs were identified in the two libraries. Differential expression analysis showed that 25 conserved and 21 novel miRNAs were differentially expressed between epiphyllous ovule leaves and normal leaves. The expression patterns of partially differentially expressed miRNAs and the transcript levels of their predicted target genes were validated by quantitative real time RT-PCR. All the expression profiles of the 21 selected miRNAs were similar to those detected by Solexa deep sequencing. Additionally, the transcript levels of almost all the putative target genes of 9 selected miRNAs were opposite to those of the corresponding miRNAs. The putative target genes of the differentially expressed miRNAs were annotated with Gene Ontology terms related to reproductive process, metabolic process and responding to stimulus. This work presents a broad range of small RNA transcriptome data obtained from epiphyllous ovule and normal leaves of G. biloba var. epiphylla, which may provide insights into the miRNA-mediated regulation in the epiphyllous ovule germination process.
Collapse
|
39
|
Rosas-Cárdenas FDF, Caballero-Pérez J, Gutiérrez-Ramos X, Marsch-Martínez N, Cruz-Hernández A, de Folter S. miRNA expression during prickly pear cactus fruit development. PLANTA 2015. [PMID: 25366556 DOI: 10.1007/s00425-014-21932190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.
Collapse
Affiliation(s)
- Flor de Fátima Rosas-Cárdenas
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico,
| | | | | | | | | | | |
Collapse
|
40
|
Rosas-Cárdenas FDF, Caballero-Pérez J, Gutiérrez-Ramos X, Marsch-Martínez N, Cruz-Hernández A, de Folter S. miRNA expression during prickly pear cactus fruit development. PLANTA 2015; 241:435-48. [PMID: 25366556 DOI: 10.1007/s00425-014-2193-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/14/2014] [Indexed: 05/06/2023]
Abstract
miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.
Collapse
Affiliation(s)
- Flor de Fátima Rosas-Cárdenas
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico,
| | | | | | | | | | | |
Collapse
|
41
|
Luo Y, Zhang X, Luo Z, Zhang Q, Liu J. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC PLANT BIOLOGY 2015; 15:11. [PMID: 25604351 PMCID: PMC4308916 DOI: 10.1186/s12870-014-0400-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/22/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND microRNAs (miRNAs) have been shown to play key roles in regulating gene expression at post-transcriptional level, but miRNAs associated with natural deastringency of Chinese pollination-constant nonastringent persimmon (CPCNA) have never been identified. RESULTS In this study, two small RNA libraries established using 'Eshi No. 1' persimmon (Diospyros kaki Thunb.; CPCNA) fruits collected at 15 and 20 weeks after flowering (WAF) were sequenced through Solexa platform in order to identify miRNAs involved in deastringency of persimmon. A total of 6,258,487 and 7,634,169 reads were generated for the libraries at 15 and 20 WAF, respectively. Based on sequence similarity and hairpin structure prediction, 236 known miRNAs belonging to 65 miRNA families and 33 novel miRNAs were identified using persimmon transcriptome data. Sixty one of the characterized miRNAs exhibited pronounced difference in the expression levels between 15 and 20 WAF, 17 up-regulated and 44 down-regulated. Expression profiles of 12 conserved and 10 novel miRNAs were validated by stem loop qRT-PCR. A total of 198 target genes were predicted for the differentially expressed miRNAs, including several genes that have been reported to be implicated in proanthocyanidins (PAs, or called tannin) accumulation. In addition, two transcription factors, a GRF and a bHLH, were experimentally confirmed as the targets of dka-miR396 and dka-miR395, respectively. CONCLUSIONS Taken together, the present data unraveled several important miRNAs in persimmon. Among them, miR395p-3p and miR858b may regulate bHLH and MYB, respectively, which are influenced by SPL under the control of miR156j-5p and in turn regulate the structural genes involved in PA biosynthesis. In addition, dka-miR396g and miR2911a may regulate their target genes associated with glucosylation and insolubilization of tannin precursors. All of these miRNAs might play key roles in the regulation of (de)astringency in persimmon fruits under normal development conditions.
Collapse
Affiliation(s)
- Yujie Luo
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaona Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jihong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
42
|
Fang J, Sun X. A method for validating microRNAs in plants by miR-RACE. Methods Mol Biol 2015; 1287:139-145. [PMID: 25740362 DOI: 10.1007/978-1-4939-2453-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
miRNA prediction algorithms often fail to predict the accurate location of the mature miRNA in a precursor sequence with nucleotide-level precision. miRNAs-rapid amplification of cDNA ends (miR-RACE) is an efficient method to determine the precise sequences of computationally predicted microRNAs (miRNAs). miR-RACE includes the following steps: miRNA-enriched library preparation, two specific 5'- and 3'-miRNA RACE (miR-RACE) PCR reactions, and sequence-directed cloning. The most challenging step is the two gene-specific primers designed for the two RACE reactions. The miR-RACE protocol is rapid and can be executed and completed in 2-3 days.
Collapse
Affiliation(s)
- Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China,
| | | |
Collapse
|
43
|
Sun X, Fan G, Su L, Wang W, Liang Z, Li S, Xin H. Identification of cold-inducible microRNAs in grapevine. FRONTIERS IN PLANT SCIENCE 2015; 6:595. [PMID: 26300896 PMCID: PMC4523783 DOI: 10.3389/fpls.2015.00595] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/20/2015] [Indexed: 05/21/2023]
Abstract
Low temperature is one of the most important environmental factors that limits the geographical distribution and productivity of grapevine. However, the molecular mechanisms on how grapevine responds to cold stress remains to be elucidated. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play an essential role during plant development and stress responses. Although miRNAs and their targets have been identified in several Vitis species, their participation during cold accumulation in grapevine remains unknown. In this study, two small RNA libraries were generated from micropropagated 'Muscat Hamburg' (V. vinifera) plantlets under normal and low temperatures (4°C). A total of 163 known miRNAs and 67 putative novel miRNAs were detected from two small RNA libraries by Solexa sequencing. Forty-four cold-inducible miRNAs were identified through differentially expressed miRNAs (DEMs) analysis; among which, 13 belonged to upregulated DEMs while 31 belonged downregulated DEMs. The expression patterns of the 13 DEMs were verified by real-time RT-PCR analysis. The prediction of the target genes for DEMs indicated that miRNA may regulate transcription factors, including AP2, SBP, MYB, bHLH, GRAS, and bZIP under cold stress. The 5'-RLM RACE were conducted to verify the cleavage site of predicted targets. Seven predicted target genes for four known and three novel vvi-miRNAs showed specific cleavage sites corresponding to their miRNA complementary sequences. The expression pattern of these seven target genes revealed negative correlation with the expression level of the corresponding vvi-miRNAs. Our results indicated that a diverse set of miRNAs in V. vinifera are cold-inducible and may play an important role in cold stress response.
Collapse
Affiliation(s)
- Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Gaotao Fan
- Department of Biological Engineering, School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Lingye Su
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Wanjun Wang
- Department of Biological Engineering, School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Shaohua Li, Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Haiping Xin, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, No. 1 Lumo Road, Wuhan 430074, China
| |
Collapse
|
44
|
Wu J, Wang D, Liu Y, Wang L, Qiao X, Zhang S. Identification of miRNAs involved in pear fruit development and quality. BMC Genomics 2014; 15:953. [PMID: 25366381 PMCID: PMC4233070 DOI: 10.1186/1471-2164-15-953] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/23/2014] [Indexed: 01/16/2023] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small, endogenous RNAs that take part in regulating genes through mediating gene expressions at the post-transcriptional level in plants. Previous studies have reported miRNA identification in various plants ranging from model plants to perennial fruit trees. However, the role of miRNAs in pear (Pyrus bretschneideri) fruit development is not clear. Here, we investigated the miRNA profiles of pear fruits from different time stages during development with Illumina HiSeq 2000 platform and bioinformatics analysis. Quantitative real-time PCR was used to validate the expression levels of miRNAs. Results Both conserved and species-specific miRNAs in pear have been identified in this study. Total reads, ranging from 19,030,925 to 25,576,773, were obtained from six small RNA libraries constructed for different stages of fruit development after flowering. Comparative profiling showed that an average of 90 miRNAs was expressed with significant differences between various developmental stages. KEGG pathway analysis on 2,216 target genes of 188 known miRNAs and 1,127 target genes of 184 novel miRNAs showed that miRNAs are widely involved in the regulation of fruit development. Among these, a total of eleven miRNAs putatively participate in the pathway of lignin biosynthesis, nine miRNAs were identified to take part in sugar and acid metabolism, and MiR160 was identified to regulate auxin response factor. Conclusion Comparative analysis of miRNAomes during pear fruit development is presented, and miRNAs were proved to be widely involved in the regulation of fruit development and formation of fruit quality, for example through lignin synthesis, sugar and acid metabolism, and hormone signaling. Combined with computational analysis and experimental confirmation, the research contributes valuable information for further functional research of microRNA in fruit development for pear and other species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-953) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | |
Collapse
|
45
|
Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene 2014; 554:181-95. [PMID: 25445288 DOI: 10.1016/j.gene.2014.10.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/08/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small endogenous non-coding RNAs of ~19-24 nucleotides and perform regulatory roles in many plant processes. To identify miRNAs involved in regulatory networks controlling diverse biological processes including secondary metabolism in Catharanthus roseus, an important medicinal plant, we employed deep sequencing of small RNA from leaf tissue. A total of 88 potential miRNAs comprising of 81 conserved miRNAs belonging to 35 families and seven novel miRNAs were identified. Precursors for 16 conserved and seven novel cro-miRNAs were identified, and their stem-loop hairpin structures were predicted. Selected cro-miRNAs were analyzed by stem-loop qRT-PCR and differential expression patterns were observed in different vegetative tissues of C. roseus. Targets were predicted for conserved and novel cro-miRNAs, which were found to be involved in diverse biological role(s) including secondary metabolism. Our study enriches available resources and information regarding miRNAs and their potential targets for better understanding of miRNA-mediated gene regulation in plants.
Collapse
|
46
|
Sun X, Zhang Y, Zhu X, Korir NK, Tao R, Wang C, Fang J. Advances in identification and validation of plant microRNAs and their target genes. PHYSIOLOGIA PLANTARUM 2014; 152:203-18. [PMID: 24641625 DOI: 10.1111/ppl.12191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/19/2014] [Accepted: 02/12/2014] [Indexed: 05/27/2023]
Abstract
Developments in the field of molecular biology and genetics, such as microarray, gene transfer and discovery of small regulatory RNAs, have led to significant advances in plant biotechnology. Among the small RNAs, microRNAs (miRNAs) have elicited much interest as key post-transcriptional regulators in eukaryotic gene expression. Advances in genome and transcriptome sequencing of plants have facilitated the generation of a huge wealth of sequence information that can find much use in the discovery of novel miRNAs and their target genes. In this review, we present an overview of the developments in the strategies and methods used to identify and study miRNAs, their target genes and the mechanisms by which these miRNAs interact with their target genes since the discovery of the first miRNA. The approaches discussed include both reverse and forward genetics. We observed that despite the availability of advanced methods, certain limitations ranging from the cost of materials, equipment and personnel to the availability of genome sequences for many plant species present a number of challenges for the development and utilization of modern scientific methods for the elucidation and development of miRNAs in many important plant species.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Cloning, expression, and characterization of miR058 and its target PPO during the development of grapevine berry stone. Gene 2014; 548:166-73. [DOI: 10.1016/j.gene.2014.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/19/2022]
|
48
|
Solofoharivelo MC, van der Walt AP, Stephan D, Burger JT, Murray SL. MicroRNAs in fruit trees: discovery, diversity and future research directions. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:856-65. [PMID: 24750383 DOI: 10.1111/plb.12153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/14/2013] [Indexed: 05/04/2023]
Abstract
Since the first description of microRNAs (miRNAs) 20 years ago, the number of miRNAs identified in different eukaryotic organisms has exploded, largely due to the recent advances in DNA sequencing technologies. Functional studies, mostly from model species, have revealed that miRNAs are major post-transcriptional regulators of gene expression in eukaryotes. In plants, they are implicated in fundamental biological processes, from plant development and morphogenesis, to regulation of plant pathogen and abiotic stress responses. Although a substantial number of miRNAs have been identified in fruit trees to date, their functions remain largely uncharacterised. The present review aims to summarise the progress made in miRNA research in fruit trees, focusing specifically on the economically important species Prunus persica, Malus domestica, Citrus spp, and Vitis vinifera. We also discuss future miRNA research prospects in these plants and highlight potential applications of miRNAs in the on-going improvement of fruit trees.
Collapse
Affiliation(s)
- M C Solofoharivelo
- Vitis Lab, Department of Genetics, Stellenbosch University, Matieland, South Africa
| | | | | | | | | |
Collapse
|
49
|
Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 2014; 15:695. [PMID: 25142253 PMCID: PMC4158063 DOI: 10.1186/1471-2164-15-695] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, microRNAs (miRNAs) regulate gene expression mainly at the post-transcriptional level. Previous studies have demonstrated that miRNA-mediated gene silencing pathways play vital roles in plant development. Here, we used a high-throughput sequencing approach to characterize the miRNAs and their targeted transcripts in the leaf, flower and fruit of sweet orange. RESULTS A total of 183 known miRNAs and 38 novel miRNAs were identified. An in-house script was used to identify all potential secondary siRNAs derived from miRNA-targeted transcripts using sRNA and degradome sequencing data. Genome mapping revealed that these miRNAs were evenly distributed across the genome with several small clusters, and 69 pre-miRNAs were co-localized with simple sequence repeats (SSRs). Noticeably, the loop size of pre-miR396c was influenced by the repeat number of CUU unit. The expression pattern of miRNAs among different tissues and developmental stages were further investigated by both qRT-PCR and RNA gel blotting. Interestingly, Csi-miR164 was highly expressed in fruit ripening stage, and was validated to target a NAC transcription factor. This study depicts a global picture of miRNAs and their target genes in the genome of sweet orange, and focused on the comparison among leaf, flower and fruit tissues. CONCLUSIONS This study provides a global view of miRNAs and their target genes in different tissue of sweet orange, and focused on the identification of miRNA involved in the regulation of fruit ripening. The results of this study lay a foundation for unraveling key regulators of orange fruit development and ripening on post-transcriptional level.
Collapse
|
50
|
Dynamic expression of novel and conserved microRNAs and their targets in diploid and tetraploid of Paulownia tomentosa. Biochimie 2014; 102:68-77. [DOI: 10.1016/j.biochi.2014.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 02/14/2014] [Indexed: 01/27/2023]
|