1
|
He Y, Li D, Zhang M, Li F. Bioinformatic analysis reveals the relationship between macrophage infiltration and Cybb downregulation in hyperoxia-induced bronchopulmonary dysplasia. Sci Rep 2024; 14:20089. [PMID: 39209930 PMCID: PMC11362550 DOI: 10.1038/s41598-024-70877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common sequela of prematurity and is characterized by alveolar simplification and lung angiogenesis failure. The aim of this study was to explore the immune signatures of BPD. Differentially expressed gene analysis and immune infiltration analysis were conducted to identify key immune cell types and related genes by using the mRNA-seq dataset GSE25286. The expression patterns of key genes were validated in the scRNA-seq dataset GSE209664 and in experiments. The cell-cell crosstalk of key immune cells was explored with CellChat. We found that differentially expressed genes between BPD mice and controls were mostly enriched in leukocyte migration and M1 macrophages were highly enriched in BPD lungs. Hub genes (Cybb, Papss2, F7 and Fpr2) were validated at the single-cell level, among which the downregulation of Cybb was most closely related to macrophage infiltration. The reduced mRNA and protein levels of Cybb were further validated in animal experiments. Colocalization analysis of Cybb and macrophage markers demonstrated a significant decrease of Cybb in M1 macrophages. Cell-cell crosstalk found that alveolar epithelial cells interacted actively with macrophages through MIF-(CD74 + CD44) signalling. In conclusion, M1 macrophages played important roles in promoting BPD-like lung injury, which was correlated with a specific reduction of Cybb in macrophages and the potential activation of MIF signalling.
Collapse
Affiliation(s)
- Yi He
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children; Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing, 401147, China
| | - Decai Li
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children; Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing, 401147, China
| | - Meiyu Zhang
- Department of Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400015, China
| | - Fang Li
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children; Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing, 401147, China.
| |
Collapse
|
2
|
Liu G, Zhang S, Yang S, Shen C, Shi C, Diao W. CircDiaph3 influences PASMC apoptosis by regulating PI3K/AKT/mTOR pathway through IGF1R. 3 Biotech 2023; 13:342. [PMID: 37705862 PMCID: PMC10495302 DOI: 10.1007/s13205-023-03739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
The pathogenesis of pulmonary hypertension has not been elucidated. We investigated the role of a circular ribonucleic acid, circDiaph3, in the proliferation and migration of pulmonary artery smooth muscle cells during pulmonary hypertension. CircDiaph3 overexpression in blood samples of patients with pulmonary hypertension was analyzed by real-time quantitative polymerase chain reaction. Subsequently, a rat model of pulmonary arterial hypertension was established under hypoxic conditions. Pulmonary artery smooth muscle cells were harvested from the rat model for subsequent experiments with small interfering ribonucleic acid-mediated knockdown of circDiaph3. In cell model, we found that PI3K, AKT, mTOR and insulin-like growth factor 1 signaling pathway (IGF1R) and smooth muscle cell marker genes (α-SMA, Vcam1) were significantly downregulated. The overexpression of Igf1r in pulmonary artery smooth muscle cells rescued the downregulated smooth muscle cell genes, IGF1R signaling pathway proteins, increased smooth muscle cell proliferation, and reduced apoptosis. CircDiaph3 regulates the PI3K/AKT/mTOR signaling pathway via IGF1R to inhibit apoptosis and promote proliferation of smooth muscle cells. Additionally, adenovirus-mediated in vivo inhibition of circDiaph3 was carried out in rats with pulmonary arterial hypertension, followed by harvesting of their pulmonary artery smooth muscle cells for subsequent experiments. Excessive proliferation of smooth muscle cells in the pulmonary artery has narrowed the pulmonary artery lumen, thereby causing pulmonary hypertension, and our results suggest that circDiaph3 has important value in the treatment of pulmonary hypertension. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03739-0.
Collapse
Affiliation(s)
- Ge Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui People’s Republic of China
| | - Shengqiang Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui People’s Republic of China
| | - Shaofeng Yang
- Department of Cardiac Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui People’s Republic of China
| | - Chongwen Shen
- Department of Cardiac Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui People’s Republic of China
| | - Chao Shi
- Department of Cardiac Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui People’s Republic of China
| | - Wenjie Diao
- Department of Cardiac Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui People’s Republic of China
| |
Collapse
|
3
|
Tong Y, Zhang S, Riddle S, Song R, Yue D. Circular RNAs in the Origin of Developmental Lung Disease: Promising Diagnostic and Therapeutic Biomarkers. Biomolecules 2023; 13:biom13030533. [PMID: 36979468 PMCID: PMC10046088 DOI: 10.3390/biom13030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Circular RNA (circRNA) is a newly discovered noncoding RNA that regulates gene transcription, binds to RNA-related proteins, and encodes protein microRNAs (miRNAs). The development of molecular biomarkers such as circRNAs holds great promise in the diagnosis and prognosis of clinical disorders. Importantly, circRNA-mediated maternal-fetus risk factors including environmental (high altitude), maternal (preeclampsia, smoking, and chorioamnionitis), placental, and fetal (preterm birth and low birth weight) factors are the early origins and likely to contribute to the occurrence and progression of developmental and pediatric cardiopulmonary disorders. Although studies of circRNAs in normal cardiopulmonary development and developmental diseases have just begun, some studies have revealed their expression patterns. Here, we provide an overview of circRNAs’ biogenesis and biological functions. Furthermore, this review aims to emphasize the importance of circRNAs in maternal-fetus risk factors. Likewise, the potential biomarker and therapeutic target of circRNAs in developmental and pediatric lung diseases are explored.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Correspondence: (R.S.); (D.Y.); Tel.: +01-909-558-4325 (R.S.); +86-24-9661551125 (D.Y.)
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (R.S.); (D.Y.); Tel.: +01-909-558-4325 (R.S.); +86-24-9661551125 (D.Y.)
| |
Collapse
|
4
|
Kimble A, Robbins ME, Perez M. Pathogenesis of Bronchopulmonary Dysplasia: Role of Oxidative Stress from 'Omics' Studies. Antioxidants (Basel) 2022; 11:2380. [PMID: 36552588 PMCID: PMC9774798 DOI: 10.3390/antiox11122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common respiratory complication of prematurity as younger and smaller infants are surviving beyond the immediate neonatal period. The recognition that oxidative stress (OS) plays a key role in BPD pathogenesis has been widely accepted since at least the 1980s. In this article, we examine the interplay between OS and genetic regulation and review 'omics' data related to OS in BPD. Data from animal models (largely models of hyperoxic lung injury) and from human studies are presented. Epigenetic and transcriptomic analyses have demonstrated several genes related to OS to be differentially expressed in murine models that mimic BPD as well as in premature infants at risk of BPD development and infants with established lung disease. Alterations in the genetic regulation of antioxidant enzymes is a common theme in these studies. Data from metabolomics and proteomics have also demonstrated the potential involvement of OS-related pathways in BPD. A limitation of many studies includes the difficulty of obtaining timely and appropriate samples from human patients. Additional 'omics' studies could further our understanding of the role of OS in BPD pathogenesis, which may prove beneficial for prevention and timely diagnosis, and aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Ashley Kimble
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mary E. Robbins
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| | - Marta Perez
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Wang C, Zhang S, Zhu L, Duan J, Huang B, Zhang X. Integrated MicroRNA-mRNA Analyses of Distinct Expression Profiles in Hyperoxia-Induced Bronchopulmonary Dysplasia in Neonatal Mice. Am J Perinatol 2022; 39:1702-1710. [PMID: 33757141 DOI: 10.1055/s-0041-1726124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Bronchopulmonary dysplasia (BPD) is a common chronic lung disease of preterm neonates; the underlying pathogenesis is not fully understood. Recent studies suggested microRNAs (miRNAs) may be involved in BPD. STUDY DESIGN miRNA and mRNA microarrays were performed to analyze the expression profiles of miRNA and mRNA in BPD and control lung tissues after oxygen and air exposure on day 21. Bioinformatics methods, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), were performed to predict the potential functions of differentially expressed genes. Then, miRNA-mRNA regulatory network was constructed by protein-protein interaction (PPI) data and TarBase data. RESULTS Our results showed that a total of 192 differentially expressed miRNAs (74 downregulated and 118 upregulated) and 1,225 differentially expressed mRNAs (479 downregulated and 746 upregulated) were identified between BPD mice and normoxia-control mice. GO and KEGG analysis showed that for downregulated genes, the top significant enriched GO terms and KEGG pathways were both mainly related to immune and inflammation processes; for upregulated genes, the top significant enriched GO terms and KEGG pathways were both mainly related to extracellular matrix (ECM) remodeling. PPI network and miRNA-mRNA regulatory network construction revealed that the key genes and pathways associated with inflammation and immune regulation. CONCLUSION Our findings revealed the integrated miRNA-mRNA data of distinct expression profiles in hyperoxia-induced BPD mice, and may provide some clues of the potential biomarkers for BPD, and provide novel insights into the development of new promising biomarkers for the treatment of BPD. KEY POINTS · Integrated advanced bioinformatics methods may offer a better way to understand the molecular expression profiles involved in BPD.. · ECM remodeling, inflammation, and immune regulation may be essential to BPD.. · The miRNA-mRNA regulatory network construction may contribute to develop new biomarkers for the treatment of BPD..
Collapse
Affiliation(s)
- Chengqiang Wang
- Public Health, Guilin Medical University, Lingui, Guilin, People's Republic of China
| | - Sheng Zhang
- Affiliated BaYi Children's Hospital, Seventh Medical Center of People's Liberation Army General Hospital, Dongcheng, Beijing, People's Republic of China.,Beijing Key Laboratory of Pediatric Organ Failure, Dongcheng, Beijing, People's Republic of China
| | - Lina Zhu
- Affiliated BaYi Children's Hospital, Seventh Medical Center of People's Liberation Army General Hospital, Dongcheng, Beijing, People's Republic of China
| | - Jun Duan
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Shushan, Hefei, People's Republic of China
| | - Bo Huang
- Public Health, Guilin Medical University, Lingui, Guilin, People's Republic of China
| | - Xiaoying Zhang
- Public Health, Guilin Medical University, Lingui, Guilin, People's Republic of China.,Affiliated BaYi Children's Hospital, Seventh Medical Center of People's Liberation Army General Hospital, Dongcheng, Beijing, People's Republic of China
| |
Collapse
|
6
|
Bao T, Zhu H, Zheng Y, Hu J, Wang H, Cheng H, Zhang Y, Tian Z. Expression of long noncoding RNA uc.375 in bronchopulmonary dysplasia and its function in the proliferation and apoptosis of mouse alveolar epithelial cell line MLE 12. Front Physiol 2022; 13:971732. [PMID: 36111163 PMCID: PMC9468891 DOI: 10.3389/fphys.2022.971732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: According to our previous gene ChIP results, long noncoding RNA uc.375 was down-regulated in lung tissue of bronchopulmonary dysplasia (BPD) mice induced by hyperoxia. FoxA1 gene showed higher levels in lung tissue of BPD mice and is reported to promote the apoptosis of alveolar epithelial cells. We aimed to clarify the expression pattern of uc.375 in BPD and explore the interaction between uc.375 and FoxA1.Methods: Newborn mice were placed in a 95% high-oxygen environment for 7 days. Lung tissue samples from mice were used for lncRNA microarray to screen BPD related lncRNAs. Mouse alveolar epithelial cell line MLE 12 was stably transfected with uc.375 and FoxA1 silencing or overexpression lentiviral vectors. The proliferation activity of MLE 12 cells was detected by a cell counting kit 8 (CCK-8) assay. MLE 12 cell apoptosis was determined by Hoechst/PI staining and flow cytometry analysis. The protein levels of Cleaved Caspase-3, FoxA1, SP-C and UCP2 were investigated by western blot. The relative mRNA expression levels were detected by quantitative real-time PCR.Results: uc.375 is mainly distributed in the nucleus of alveolar epithelial cells, as revealed by In Situ Hybridization assay results. uc.375 was lowly expressed in the lung tissues of BPD mice. According to the results of CCK-8 assay, analysis of Hoechst/PI staining and western blotting, uc.375 silencing inhibited cell proliferation, facilitated apoptosis of MLE 12 cells, promoted caspase 3 and FoxA1 expression, and inhibited the expression of SP-C and UCP2. On the contrary, after overexpressing uc.375, the opposite results were obtained. Silencing FoxA1 inhibited MLE 12 apoptosis, promoted proliferation, inhibited apoptosis-related factor caspase 3, and promoted the expression of SP-C and UCP2. FoxA1 silencing also reversed the effect induced by uc.375 knockdown on the proliferation and apoptosis of MLE 12 cells.Conclusion: Based on the biomedical images-derived analysis results, uc.375 negatively regulates FoxA1 expression, affects alveolar development, and plays an important role in the initiation and progression of BPD, providing a new molecular target for the prevention and treatment of BPD.
Collapse
|
7
|
Xi Y, Wang Y. Insight Into the Roles of Non-coding RNA in Bronchopulmonary Dysplasia. Front Med (Lausanne) 2021; 8:761724. [PMID: 34805228 PMCID: PMC8602187 DOI: 10.3389/fmed.2021.761724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease most commonly occurring in premature infants, and its pathological manifestations are alveolar hypoplasia and dysregulation of pulmonary vasculature development. The effective treatment for BPD has not yet been established. Non-coding RNAs, including microRNAs and long non-coding RNAs do not encode proteins, but can perform its biological functions at the RNA level. Non-coding RNAs play an important role in the incidence and development of BPD by regulating the expression of genes related to proliferation, apoptosis, angiogenesis, inflammation and other cell activities of alveolar epithelial cells and vascular endothelial cells. Here we summarize the role of non-coding RNAs in BPD, which provides possible molecular marker and therapeutic target for the diagnosis and treatment of BPD.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujia Wang
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Dong Y, Zhang X. Integrative analysis of lncRNAs, miRNAs, and mRNAs-associated ceRNA network in a neonatal mouse model of bronchopulmonary dysplasia. J Matern Fetal Neonatal Med 2021; 34:3234-3245. [PMID: 32924699 DOI: 10.1080/14767058.2020.1815700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/21/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To elucidate the potential roles of the lncRNA-mediated competitive endogenous RNA (ceRNA) network in the pathogenesis of bronchopulmonary dysplasia (BPD), we performed an integrated bioinformatics analysis based on miRNA and mRNA microarray datasets between BPD and normal samples. STUDY DESIGN The mRNA and miRNA expression profiles of BPD were downloaded from the Gene Expression Omnibus (GEO) database to perform an integrated analysis. The limma package was used to identify differentially expressed genes (DEGs) and differentially expressed miRNA (DEmiRs), followed by functional enrichment analysis of DEGs. DEmiR-DEG and DEmiRNA-lncRNA interactions were predicted. Subsequently, the lncRNA-related ceRNA network was structured. Finally, a newborn BPD mouse model was established, and quantitative real-time PCR (qPCR) was used to validate the expression of the selected mRNAs, miRNAs, and lncRNAs. RESULTS A total of 445 DEGs and 155 DEmiRs were obtained by comparing BPD samples and normal samples. Functional enrichment analysis showed that DEGs were primarily enriched in GO terms such as cell division and inflammatory response; and DEGs were mainly involved in the p53 signaling pathway. The miR17hg-miR-130b-3p-roundabout guidance receptor 2 (Robo2) and GM20455-miR-34a-5p-BMP/retinoic acid-inducible neural specific 1 (Brinp1) ceRNA axes were obtained by constructing the ceRNA network. In addition, the upregulation of Robo2 and miR17hg while the downregulation of miR-130b-3p; as well as the upregulation of Brinp1 and GM20455 but the downregulation of miR-34a-5p were validated by qPCR. CONCLUSION The miR17hg-miR-130b-3p-Robo2 and GM20455-miR-34a-5p-Brinp1 axes may serve important role in the development of BPD. These findings might provide novel insight for a comprehensive understanding of molecular mechanisms in BPD, and genes in the ceRNA network might be considered as potential biomarkers and therapeutic targets against BPD.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaoying Zhang
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhang ZQ, Hong H, Li J, Li XX, Huang XM. MicroRNA-214 promotes alveolarization in neonatal rat models of bronchopulmonary dysplasia via the PlGF-dependent STAT3 pathway. Mol Med 2021; 27:109. [PMID: 34530740 PMCID: PMC8444414 DOI: 10.1186/s10020-021-00374-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/05/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recently, the role of several microRNAs (miRNAs or miRs) in pulmonary diseases has been described. The molecular mechanisms by which miR-214 is possibly implicated in bronchopulmonary dysplasia (BPD) have not yet been addressed. Hence, this study aimed to investigate a putative role of miR-214 in alveolarization among preterm neonates with BPD. METHODS Microarray-based gene expression profiling data from BPD was employed to identify differentially expressed genes. A BPD neonatal rat model was induced by hyperoxia. Pulmonary epithelial cells were isolated from rats and exposed to hyperoxia to establish cell injury models. Gain- and loss-of-function experiments were performed in BPD neonatal rats and hyperoxic pulmonary epithelial cells. MiR-214 and PlGF expression in BPD neonatal rats, and eNOS, Bcl-2, c-myc, Survivin, α-SMA and E-cadherin expression in hyperoxic pulmonary epithelial cells were measured using RT-qPCR and Western blot analysis. The interaction between PlGF and miR-214 was identified using dual luciferase reporter gene and RIP assays. IL-1β, TNF-a, IL-6, ICAM-1 and Flt-1 expression in the rat models was measured using ELISA. RESULTS The lung tissues of neonatal rats with BPD showed decreased miR-214 expression with elevated PlGF expression. PlGF was found to be a target of miR-214, whereby miR-214 downregulated PlGF to inactivate the STAT3 pathway. miR-214 overexpression or PlGF silencing decreased the apoptosis of hyperoxic pulmonary epithelial cells in vitro and restored alveolarization in BPD neonatal rats. CONCLUSION Overall, the results demonstrated that miR-214 could facilitate alveolarization in preterm neonates with BPD by suppressing the PlGF-dependent STAT3 pathway.
Collapse
Affiliation(s)
- Zhi-Qun Zhang
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China.
| | - Hui Hong
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China
| | - Jing Li
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China
| | - Xiao-Xia Li
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China
| | - Xian-Mei Huang
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China
| |
Collapse
|
10
|
Wen X, Zhang H, Xiang B, Zhang W, Gong F, Li S, Chen H, Luo X, Deng J, You Y, Hu Z, Jiang C. Hyperoxia-induced miR-342-5p down-regulation exacerbates neonatal bronchopulmonary dysplasia via the Raf1 regulator Spred3. Br J Pharmacol 2021; 178:2266-2283. [PMID: 33434946 DOI: 10.1111/bph.15371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/10/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Bronchopulmonary dysplasia (BPD) is the most prevalent chronic paediatric lung disease and is linked to the development of chronic obstructive pulmonary disease. MicroRNA-based regulation of type II alveolar epithelial cell (T2AEC) proliferation and apoptosis is an important factor in the pathogenesis of BPD and warrants further investigation. EXPERIMENTAL APPROACH Two murine models of hyperoxic lung injury (with or without miR-342-5p or Sprouty-related, EVH1 domain-containing protein 3 [Spred3] modulation) were employed: a hyperoxia-induced acute lung injury model (100% O2 on postnatal days 1-7) and the BPD model (100% O2 on postnatal days 1-4, followed by room air for 10 days). Tracheal aspirate pellets from healthy control and moderate/severe BPD neonates were randomly selected for clinical miR-342-5p analysis. KEY RESULTS Hyperoxia decreased miR-342-5p levels in primary T2AECs, MLE12 cells and neonatal mouse lungs. Transgenic miR-342 overexpression in neonatal mice ameliorated survival rates and improved the BPD phenotype and BPD-associated pulmonary arterial hypertension (PAH). T2AEC-specific miR-342 transgenic overexpression, as well as miR-342-5p mimic therapy, also ameliorated the BPD phenotype and associated PAH. miR-342-5p targets the 3'UTR of the Raf1 regulator Spred3, inhibiting Spred3 expression. Treatment with recombinant Spred3 exacerbated the BPD phenotype and associated PAH. Notably, miR-342-5p inhibition under room air conditions did not mimic the BPD phenotype. Moderate/severe BPD tracheal aspirate pellets exhibited decreased miR-342-5p levels relative to healthy control pellets. CONCLUSION AND IMPLICATIONS These findings suggest that miR-342-5p mimic therapy may show promise in the treatment or prevention of BPD.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zhang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Xiang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyu Zhang
- Department of Pediatrics, Chongqing Jiulongpo District Maternity Child Health Care Hospital, Chongqing, China
| | - Fang Gong
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shiling Li
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Chen
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Luo
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Deng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yaoyao You
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zhangxue Hu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Changke Jiang
- Department of Pediatrics, Chongqing Yongchuan District Maternity Child Health Care Hospital, Chongqing, China.,Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
MicroRNA Targets for Asthma Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:89-105. [PMID: 33788189 DOI: 10.1007/978-3-030-63046-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory obstructive lung disease that is stratified into endotypes. Th2 high asthma is due to an imbalance of Th1/Th2 signaling leading to abnormally high levels of Th2 cytokines, IL-4, IL-5, and IL-13 and in some cases a reduction in type I interferons. Some asthmatics express Th2 low, Th1/Th17 high phenotypes with or without eosinophilia. Most asthmatics with Th2 high phenotype respond to beta-adrenergic agonists, muscarinic antagonists, and inhaled corticosteroids. However, 5-10% of asthmatics are not well controlled by these therapies despite significant advances in lung immunology and the pathogenesis of severe asthma. This problem is being addressed by developing novel classes of anti-inflammatory agents. Numerous studies have established efficacy of targeting pro-inflammatory microRNAs in mouse models of mild/moderate and severe asthma. Current approaches employ microRNA mimics and antagonists designed for use in vivo. Chemically modified oligonucleotides have enhanced stability in blood, increased cell permeability, and optimized target specificity. Delivery to lung tissue limits clinical applications, but it is a tractable problem. Future studies need to define the most effective microRNA targets and effective delivery systems. Successful oligonucleotide drug candidates must have adequate lung cell uptake, high target specificity, and efficacy with tolerable off-target effects.
Collapse
|
12
|
Oji-Mmuo CN, Siddaiah R, Montes DT, Pham MA, Spear D, Donnelly A, Fuentes N, Imamura-Kawasawa Y, Howrylak JA, Thomas NJ, Silveyra P. Tracheal aspirate transcriptomic and miRNA signatures of extreme premature birth with bronchopulmonary dysplasia. J Perinatol 2021; 41:551-561. [PMID: 33177681 DOI: 10.1038/s41372-020-00868-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Extreme preterm infants are a growing population in neonatal intensive care units who carry a high mortality and morbidity. Multiple factors play a role in preterm birth, resulting in major impact on organogenesis leading to complications including bronchopulmonary dysplasia (BPD). The goal of this study was to identify biomarker signatures associated with prematurity and BPD. STUDY DESIGN We analyzed miRNA and mRNA profiles in tracheal aspirates (TAs) from 55 infants receiving invasive mechanical ventilation. Twenty-eight infants were extremely preterm and diagnosed with BPD, and 27 were term babies receiving invasive mechanical ventilation for elective procedures. RESULT We found 22 miRNAs and 33 genes differentially expressed (FDR < 0.05) in TAs of extreme preterm infants with BPD vs. term babies without BPD. Pathway analysis showed associations with inflammatory response, cellular growth/proliferation, and tissue development. CONCLUSIONS Specific mRNA-miRNA signatures in TAs may serve as biomarkers for BPD pathogenesis, a consequence of extreme prematurity.
Collapse
Affiliation(s)
| | - Roopa Siddaiah
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Deborah T Montes
- Biobehavioral Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melody A Pham
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Debra Spear
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Ann Donnelly
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Nathalie Fuentes
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Yuka Imamura-Kawasawa
- Institute for Personalized Medicine, Departments of Biochemistry and Molecular Biology and Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Judie A Howrylak
- Division of Pulmonary and Critical Care Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Neal J Thomas
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Patricia Silveyra
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA. .,Biobehavioral Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Ji L, Liu Z, Dong C, Wu D, Yang S, Wu L. LncRNA CASC2 targets CAV1 by competitively binding with microRNA-194-5p to inhibit neonatal lung injury. Exp Mol Pathol 2020; 118:104575. [PMID: 33212124 DOI: 10.1016/j.yexmp.2020.104575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) are vital regulators of different biological processes during bronchopulmonary dysplasia (BPD). This study was conducted to probe the biological roles of lncRNA CASC2 in the pathogenesis of BPD and neonatal lung injury. Firstly, a hyperoxia-induced mouse model with BPD was established. LncRNAs with differential expression in lung tissues of normal and BPD mice were analyzed by microarray. An adenovirus vector overexpressing CASC2 was constructed and its functions on BPD symptoms in model mice were analyzed. Gain- and loss-of function studies of CASC2 were performed in a bronchial epithelial cell line BEAS-2B to determine its role in cell apoptosis and proliferation under normoxic and hyperoxic conditions. The downstream mechanical molecules of lncRNA CASC2 were predicted on bioinformatics systems and confirmed by luciferase assays. The functional interactions among lncRNA CASC2, miR-194-5p, and CAV1 in BPD were determined by rescue experiments. Consequently, lncRNA CASC2 was found to be poorly expressed in BPD mice. Besides, overexpressed CASC2 was found to relieve the symptoms of BPD in neonatal mice and suppress apoptosis as well as promote proliferation in hyperoxia-induced BEAS-2B cells. Importantly, CASC2 was found to regulate CAV1 expression by competitively binding to miR-194-5p and downregulate the activity of the TGF-β1 signaling pathway, thereby suppressing lung injury. Either miR-194-5p upregulation or CAV1 downregulation blocked the roles of CASC2. To sum up, this study evidenced that CASC2 alleviates hyperoxia-induced lung injury in mouse and cell models with the involvement of a miR-194-5p-CAV1 crosstalk and the TGF-β1 inactivation.
Collapse
Affiliation(s)
- Lili Ji
- Department of Paediatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, PR China
| | - Zunjie Liu
- Department of Neonatology, Beijing Obsterics and Gynecology Hospital, Capital Medical University, Beijing 100026, PR China
| | - Chengya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Dongping Wu
- Department of Neonatology, Yiwu Central Hospital, Yiwu 322000, Zhejiang, PR China
| | - Shimei Yang
- Department of Pediatrics, Yiwu Maternity and Children Hospital, Yiwu 322000, Zhejiang, PR China
| | - Limei Wu
- Department of Pediatrics, Yiwu Maternity and Children Hospital, Yiwu 322000, Zhejiang, PR China.
| |
Collapse
|
14
|
Perinatal inflammation alters histone 3 and histone 4 methylation patterns: Effects of MiR-29b supplementation. Redox Biol 2020; 38:101783. [PMID: 33202301 PMCID: PMC7677713 DOI: 10.1016/j.redox.2020.101783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023] Open
Abstract
Preterm birth is still a major health problem and maternal inflammation has been shown to play a role. The combination of maternal inflammation and neonatal hyperoxia contributes to epigenetic changes that influence gene expression and the development of bronchopulmonary dysplasia (BPD). We have previously demonstrated suppression of miR-29b and increases in DNA methylation in infants with severe BPD and in our mouse model of maternal inflammation and neonatal hyperoxia exposure. The present studies further explored epigenetic changes in the murine model to include histone methylation. We identified a global suppression of histone methylation in exposed mice and validated decreases in expression in well-defined histone modifications, specifically H3K4me3, H3K27me3, H3K36me2, H3K79me2, and H4K20me3. We further tested the hypothesis that restoration of miR-29b expression would restore the histone methylation marks. Using lipid nanoparticle delivery of miR-29b, partial to full methylation was reestablished for H3K4me3, H3K27me3, and H4K20me3; all tri-methylation marks. To identify the causes of decreased methylation in exposed mice, we measured commonly identified methylases and demethylases. We found a decreased expression of SUV40H2, a methylase primarily associated with H4K20me3. Further studies are needed to identify the causes for the decreased global histone methylation and potential therapeutic opportunities.
Collapse
|
15
|
Involvement of Hdac3-mediated inhibition of microRNA cluster 17-92 in bronchopulmonary dysplasia development. Mol Med 2020; 26:99. [PMID: 33143661 PMCID: PMC7640435 DOI: 10.1186/s10020-020-00237-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background The incidence of bronchopulmonary dysplasia (BPD), a chronic lung disease of newborns, has been paradoxically rising despite medical advances. Histone deacetylase 3 (Hdac3) has been reported to be a crucial regulator in alveologenesis. Hence, this study aims to investigate the mechanism of Hdac3 in the abnormal pulmonary angiogenesis and alveolarization of BPD. Methods A hyperoxia-induced BPD model of was developed in newborn mice, and primary lung fibroblasts were isolated from adult mice. Hdac3 was knocked out in vivo and knocked down in vitro, while microRNA (miR)-17 was downregulated in vivo and in vitro to clarify their roles in abnormal pulmonary angiogenesis and alveolarization. Mechanistic investigations were performed on the interplay of Hdac3, miR-17-92 cluster, enhancer of zeste homolog 1 (EZH1), p65 and placental growth factor (Pgf). Results Hdac3 was involved in abnormal alveolarization and angiogenesis in BPD mice. Further, the expression of the miR-17-92 cluster in BPD mice was downregulated by Hdac3. miR-17 was found to target EZH1, and Hdac3 rescued the inhibited EZH1 expression by miR-17 in lung fibroblasts. Additionally, EZH1 augmented Pgf expression by recruiting p65 thus enhancing the progression of BPD. Hdac3 augmented the recruitment of p65 in the Pgf promoter region through the miR-17/EZH1 axis, thus enhancing the transcription and expression of Pgf, which elicited abnormal angiogenesis and alveolarization of BPD mice. Conclusions Altogether, the present study revealed that Hdac3 activated the EZH1-p65-Pgf axis through inhibiting miR-17 in the miR-17-92 cluster, leading to accelerated abnormal pulmonary angiogenesis and alveolarization of BPD mice.
Collapse
|
16
|
Chao CM, Chong L, Chu X, Shrestha A, Behnke J, Ehrhardt H, Zhang J, Chen C, Bellusci S. Targeting Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension (BPD-PH): Potential Role of the FGF Signaling Pathway in the Development of the Pulmonary Vascular System. Cells 2020; 9:cells9081875. [PMID: 32796770 PMCID: PMC7464452 DOI: 10.3390/cells9081875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
More than 50 years after the first description of Bronchopulmonary dysplasia (BPD) by Northway, this chronic lung disease affecting many preterm infants is still poorly understood. Additonally, approximately 40% of preterm infants suffering from severe BPD also suffer from Bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH), leading to a significant increase in total morbidity and mortality. Until today, there is no curative therapy for both BPD and BPD-PH available. It has become increasingly evident that growth factors are playing a central role in normal and pathologic development of the pulmonary vasculature. Thus, this review aims to summarize the recent evidence in our understanding of BPD-PH from a basic scientific point of view, focusing on the potential role of Fibroblast Growth Factor (FGF)/FGF10 signaling pathway contributing to disease development, progression and resolution.
Collapse
Affiliation(s)
- Cho-Ming Chao
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
- Correspondence: (C.-M.C.); (S.B.)
| | - Lei Chong
- Institute of Pediatrics, National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China;
| | - Xuran Chu
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Amit Shrestha
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
| | - Jinsan Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- International Collaborative Center on Growth Factor Research, Life Science Institute, Wenzhou University, Wenzhou 325035, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- Correspondence: (C.-M.C.); (S.B.)
| |
Collapse
|
17
|
Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, Eltzschig HK. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev 2020; 72:639-667. [PMID: 32554488 PMCID: PMC7300323 DOI: 10.1124/pr.119.019026] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer and organ injury-such as that occurring in the perioperative period, including acute lung injury, myocardial infarction, and acute gut injury-are among the leading causes of death in the United States and impose a significant impact on quality of life. MicroRNAs (miRNAs) have been studied extensively during the last two decades for their role as regulators of gene expression, their translational application as diagnostic markers, and their potential as therapeutic targets for disease treatment. Despite promising preclinical outcomes implicating miRNA targets in disease treatment, only a few miRNAs have reached clinical trials. This likely relates to difficulties in the delivery of miRNA drugs to their targets to achieve efficient inhibition or overexpression. Therefore, understanding how to efficiently deliver miRNAs into diseased tissues and specific cell types in patients is critical. This review summarizes current knowledge on various approaches to deliver therapeutic miRNAs or miRNA inhibitors and highlights current progress in miRNA-based disease therapy that has reached clinical trials. Based on ongoing advances in miRNA delivery, we believe that additional therapeutic approaches to modulate miRNA function will soon enter routine medical treatment of human disease, particularly for cancer or perioperative organ injury. SIGNIFICANCE STATEMENT: MicroRNAs have been studied extensively during the last two decades in cancer and organ injury, including acute lung injury, myocardial infarction, and acute gut injury, for their regulation of gene expression, application as diagnostic markers, and therapeutic potentials. In this review, we specifically emphasize the pros and cons of different delivery approaches to modulate microRNAs, as well as the most recent exciting progress in the field of therapeutic targeting of microRNAs for disease treatment in patients.
Collapse
Affiliation(s)
- Tae Jin Lee
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaoyi Yuan
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Keith Kerr
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K Eltzschig
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
18
|
Hu Y, Xie L, Yu J, Fu H, Zhou D, Liu H. Inhibition of microRNA-29a alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice via upregulation of GAB1. Mol Med 2019; 26:3. [PMID: 31892308 PMCID: PMC6938623 DOI: 10.1186/s10020-019-0127-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background The main features of bronchopulmonary dysplasia (BPD) are alveolar simplification, pulmonary growth arrest, and abnormal lung function. Multiple studies have highlighted microRNA-29 (miR-29) as a potential biomarker for lung diseases and cancers. Upregulation of miR-29a has been known to downregulate GRB2-associated-binding protein 1 (GAB1), which is often highly expressed in the lung. The current study was designed to investigate the potential role of miR-29a in hyperoxia-induced BPD by targeting GAB1 in a neonatal mouse model. Methods The expression of miR-29a and GAB1 in lung tissues of neonatal mice with hyperoxia-induced BPD and mouse alveolar epithelial cells (MLE-12) was determined using RT-qPCR and western blot analysis. Subsequently, the relationship between miR-29a and GAB1 was verified using in silico analysis. In order to assess the effects of miR-29a or GAB1 on BPD, the pathological characteristics of alveoli, as well as proliferation and apoptosis of cells were measured through gain- and loss-of-function studies. Results Upregulation of miR-29a and downregulation of GAB1 were evident in both lung tissues and MLE-12 cells following BPD modeling. GAB1 was a direct target gene of miR-29a. Inhibition of miR-29a and overexpression of GAB1 were shown to alleviate lung injury, promote cell proliferation and inhibit apoptosis but reduce chord length in lung tissues of neonatal mice following hyperoxia-induced BPD modeling. Conclusion Altogether, down-regulation of miR-29a can potentially elevate GAB1 expression, reducing cell apoptosis and stimulating proliferation, ultimately retarding the development of BPD in mice. This study highlights the potential of a promising new target for preventing BPD.
Collapse
Affiliation(s)
- Yu Hu
- West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China.,Mianyang Central Hospital, Department of Pediatrics, Mianyang, People's Republic of China
| | - Liang Xie
- , Mianyang, 621000, People's Republic of China
| | - Jing Yu
- Mianyang Central Hospital, Department of Pediatrics, Mianyang, People's Republic of China
| | - Hongling Fu
- West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dan Zhou
- West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanmin Liu
- , Mianyang, 621000, People's Republic of China. .,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
19
|
Zhang X, Chu X, Gong X, Zhou H, Cai C. The expression of miR-125b in Nrf2-silenced A549 cells exposed to hyperoxia and its relationship with apoptosis. J Cell Mol Med 2019; 24:965-972. [PMID: 31713992 PMCID: PMC6933325 DOI: 10.1111/jcmm.14808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/24/2019] [Accepted: 10/19/2019] [Indexed: 01/09/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects the quality of life of infants. At present, premature exposure to hyperoxia for extended periods of time is believed to affect the development of lung tissue and vascularity, resulting in BPD. The oxidative stress caused by hyperoxia exposure is an important risk factor for BPD in premature infants. Nuclear factor E2‐related factor 2 (Nrf2) is an important regulator of antioxidant mechanisms. As a microRNA, microRNA‐125b (miR‐125b) plays an important role in cell proliferation, differentiation and apoptosis. Although the Nrf2/ARE pathway has been extensively studied, little is known about the regulatory role of microRNAs in Nrf2 expression. In this study, the expression levels of Nrf2 and miR‐125b in the lung tissues of premature Sprague Dawley (SD) rats and A549 cells exposed to hyperoxia were detected by quantitative real‐time polymerase chain reaction (qRT‐PCR), and the apoptosis of A549 cells was detected by flow cytometry. The results showed that Nrf2 and miRNA‐125b in the lung tissues of premature rats increased significantly upon exposure to hyperoxia and played a protective role. Nrf2 was suppressed by small interfering RNA (siRNA) in A549 cells, miR‐125b was similarly inhibited, and apoptosis was significantly increased. These results suggest that miR‐125b helps protect against BPD as a downstream target of Nrf2.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Chu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huilin Zhou
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Philpot PA, Bhandari V. Predicting the likelihood of bronchopulmonary dysplasia in premature neonates. Expert Rev Respir Med 2019; 13:871-884. [PMID: 31340666 DOI: 10.1080/17476348.2019.1648215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Bronchopulmonary dysplasia (BPD) is the most common serious pulmonary morbidity in premature infants. Despite ongoing advances in neonatal care, the incidence of BPD has not improved. A potential explanation for this phenomenon is the limited ability for accurate early prediction of the risk of BPD. BPD continues to represent a therapeutic challenge and no single effective therapy exists for this condition. Areas covered: Here, we review risk factors of BPD derived from clinical data, biological fluid biomarkers, respiratory management data, and scientific advancements using 'omics' technologies, and their ability to predict the pathogenesis of BPD in preterm neonates. Risk factors and biomarkers were identified via literature search with a focus on the last 5 years of data. Expert opinion: The most accurate predictive tools utilize risk factors that encompass a variety of categories. Numerous predictive models have been proposed but suffer from a lack of adequate validation. An ideal model should include multiple, easily measurable variables validated across a heterogeneous population. In addition to evaluating recent BPD prediction models, we suggest approaches to enhance future models.
Collapse
Affiliation(s)
- Patrick A Philpot
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Thomas Jefferson University College of Medicine, Nemours/Alfred I. DuPont Hospital for Children , Philadelphia , PA , USA
| | - Vineet Bhandari
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children , Philadelphia , PA , USA
| |
Collapse
|
21
|
Shen YQ, Pan JJ, Sun ZY, Chen XQ, Zhou XG, Zhou XY, Cheng R, Yang Y. Differential expression of circRNAs during rat lung development. Int J Mol Med 2019; 44:1399-1413. [PMID: 31432143 PMCID: PMC6713411 DOI: 10.3892/ijmm.2019.4299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
At present, thousands of circular RNAs (circRNAs) have been found in cancer and various tissues from different species. However, the expression of circRNAs during rat lung development remains largely unknown. In the present study, circRNA expression profiles were screened in three mixed rat lung tissues at 3 time-points [embryonic day (E) 19, E21 and post-natal (P) day 3] during fetal rat development with circRNA high-throughput sequencing. Preliminary results were verified by reverse transcription-PCR (RT-PCR) at 4 time-points (E16, E19, E21 and P3). A total of 375 circRNAs were differently expressed in E19 vs. E21 (fold change ≥1.5; P<0.05). At the same time, a total of 358 circRNAs were differently expressed in E21 vs. P3 (fold change ≥1.5; P<0.05). A total of 3 circRNAs (rno_circ:chr7:24777879-24784993, r n o _c i r c:c h r14:14 62 0 910 −14 62 49 33 a n d r n o _circ:chr3:1988750- 1998592) were characterized by having consistent fold changes (≥1.5) between 3 time-points (E19, E21 and P3) and were selected for RT-PCR at 4 time-points (E16, E19, E21 and P3). Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of parent genes of the differentially expressed circRNAs revealed that these circRNAs may serve important roles in lung development. The present results support that these new found circRNAs participate in lung development. Furthermore, these findings may help to clarify the physiopathological mechanism of normal rat lung development, and may further provide a physiopatho-logical basis of lung developmental diseases.
Collapse
Affiliation(s)
- Yan-Qing Shen
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing-Jing Pan
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhong-Yi Sun
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Qing Chen
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Guang Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Yu Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Rui Cheng
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yang Yang
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
22
|
Yuan HS, Xiong DQ, Huang F, Cui J, Luo H. MicroRNA-421 inhibition alleviates bronchopulmonary dysplasia in a mouse model via targeting Fgf10. J Cell Biochem 2019; 120:16876-16887. [PMID: 31144392 DOI: 10.1002/jcb.28945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 11/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common and refractory disease affecting newborn children and infants with alveolar dysplasia and declined pulmonary function. Several microRNAs (miRNAs) have been found to be differentially expressed in BPD progression. This study further explores the role of miR-421 via fibroblast growth factor 10 (Fgf10) in mice with BPD. A mouse model of BPD was established through the induction of hyperoxia, in which the expression pattern of miR-421 and Fgf10 was identified. Furthermore, adenovirus-packed vectors were injected in mice to intervene miR-421 and Fgf10 expression, including miR-421 mimics or inhibitors, and si-Fgf10 to explore the role of miR-421 and Fgf10 in BPD. The target relationship between miR-421 and Fgf10 was investigated. Inflammatory response and cell apoptosis were observed in the mice, with inflammatory cytokines and apoptosis-related factors detected by applying Reverse transcription quantitative polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbent assay. Fgf10 was confirmed as a target gene of miR-421. Elevated expression of miR-421 was evident, while Fgf10 was poorly expressed in BPD. upregulation of miR-421 and silence of Fgf10 aggravated inflammatory response in lung tissue and promoted lung cell apoptosis in BPD. The aforementioned alterations could be reversed by downregulation of miR-421. Collectively, inhibition of miR-421 can assist in the development of BPD in mice BPD by upregulating Fgf10. Therefore, the present study provides a probable target for the treatment of BPD.
Collapse
Affiliation(s)
- Hua-Shu Yuan
- Department of Oncology, People's Hospital of Taihe County of Jiangxi Province, Taihe, People's Republic of China
| | - Dai-Qun Xiong
- Department of Oncology, The Third Hospital of Nanchang, Nanchang, People's Republic of China
| | - Fang Huang
- Department of Radiotherapy, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jian Cui
- Department of Radiotherapy, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Hui Luo
- The 1st Department of Radiotherapy, Cancer Hospital of Jiangxi Province, Nanchang, People's Republic of China
| |
Collapse
|
23
|
Zhang Y, Coarfa C, Dong X, Jiang W, Hayward-Piatkovskyi B, Gleghorn JP, Lingappan K. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD. Am J Physiol Lung Cell Mol Physiol 2019; 316:L144-L156. [PMID: 30382766 PMCID: PMC6383497 DOI: 10.1152/ajplung.00372.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Premature male neonates are at a greater risk of developing bronchopulmonary dysplasia (BPD). The reasons underlying sexually dimorphic outcomes in premature neonates are not known. The role of miRNAs in mediating sex biases in BPD is understudied. Analysis of the pulmonary transcriptome revealed that a large percentage of angiogenesis-related differentially expressed genes are miR-30a targets. We tested the hypothesis that there is differential expression of miR-30a in vivo and in vitro in neonatal human pulmonary microvascular endothelial cells (HPMECs) upon exposure to hyperoxia. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% fraction of inspired oxygen (FiO2), postnatal day ( PND) 1-5] and euthanized on PND 7 and 21. HPMECs (18-24-wk gestation donors) were subjected to hyperoxia (95% O2 and 5% CO2) or normoxia (air and 5% CO2) up to 72 h. miR-30a expression was increased in both males and females in the acute phase ( PND 7) after hyperoxia exposure. However, at PND 21 (recovery phase), female mice showed significantly higher miR-30a expression in the lungs compared with male mice. Female HPMECs showed greater expression of miR-30a in vitro upon exposure to hyperoxia. Delta-like ligand 4 (Dll4) was an miR-30a target in HPMECs and showed sex-specific differential expression. miR-30a increased angiogenic sprouting in vitro in female HPMECs. Lastly, we show decreased expression of miR-30a and increased expression of DLL4 in human BPD lung samples compared with controls. These results support the hypothesis that miR-30a could, in part, contribute to the sex-specific molecular mechanisms in play that lead to the sexual dimorphism in BPD.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | - Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine , Houston, Texas
| | - Xiaoyu Dong
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | | | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware , Newark, Delaware
- Department of Biomedical Engineering, University of Delaware , Newark, Delaware
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
24
|
The critical role of microRNAs in stress response: Therapeutic prospect and limitation. Pharmacol Res 2018; 142:294-302. [PMID: 30553824 DOI: 10.1016/j.phrs.2018.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Stress response refers to the systemic nonspecific response upon exposure to strong stimulation or chronic stress, such as severe trauma, shock, infection, burn, major surgery or improper environment, which disturb organisms and damage their physical and psychological health. However, the pathogenesis of stress induced disorder remains complicated and diverse under different stress exposure. Recently, studies have revealed a specific role of microRNAs (miRNAs) in regulating cellular function under different types of stress, suggesting a significant role in the treatment and prevention of stress-related diseases, such as stress ulcer, posttraumatic stress disorder, stress-induced cardiomyopathy and so on. This paper have reviewed the literature on microRNA related stress diseases in different databases including PubMed, Web of Science, and the MiRbase. It considers only peer-reviewed papers published in English between 2004 and 2018. This review summarizes new advances in principles and mechanisms of miRNAs regulating stress signalling pathway and the role of miRNAs in human stress diseases. This comprehensive review is to provide an integrated account of how different stresses affect miRNAs and how stress-miRNA pathways may, in turn, be linked with disease, which offers some potential strategies for stress disorder treatment. Furthermore, the limitation of current studies and challenges for clinical use are discussed.
Collapse
|
25
|
Shrestha AK, Gopal VYN, Menon RT, Hagan JL, Huang S, Shivanna B. Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model. Am J Physiol Lung Cell Mol Physiol 2018; 315:L734-L741. [PMID: 30047283 DOI: 10.1152/ajplung.00183.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, is associated with long-term morbidities, including pulmonary hypertension (PH). Importantly, hyperoxia causes BPD and PH; however, the underlying mechanisms remain unclear. Herein, we performed high-throughput transcriptomic and proteomic studies using a clinically relevant murine model of BPD with PH. Neonatal wild-type C57BL6J mice were exposed to 21% oxygen (normoxia) or 70% oxygen (hyperoxia) during postnatal days (PNDs) 1-7. Lung tissues were collected for proteomic and genomic analyses on PND 7, and selected genes and proteins were validated by real-time quantitative PCR and immunoblotting analysis, respectively. Hyperoxia exposure dysregulated the expression of 344 genes and 21 proteins. Interestingly, hyperoxia downregulated genes involved in neuronal development and maturation in lung tissues. Gene set enrichment and gene ontology analyses identified apoptosis, oxidoreductase activity, plasma membrane integrity, organ development, angiogenesis, cell proliferation, and mitophagy as the predominant processes affected by hyperoxia. Furthermore, selected deregulated proteins strongly correlated with the expression of specific genes. Collectively, our results identified several potential therapeutic targets for hyperoxia-mediated BPD and PH in infants.
Collapse
Affiliation(s)
- Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Vashisht Y N Gopal
- Department of Melanoma Medical Oncology and Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Joseph L Hagan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Shixia Huang
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine , Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
26
|
Li QR, Tan SR, Yu J, Yang J. MicroRNA-124 alleviates hyperoxia-induced inflammatory response in pulmonary epithelial cell by inhibiting TLR4/NF-κB/CCL2. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:76-87. [PMID: 31938089 PMCID: PMC6957945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lung epithelial cell dysfunction induced by hyperoxia-associated oxidative stress is a prominent feature involved in the development of acute lung injury (ALI). How the underlying molecular mechanisms contributed to this process are poorly defined. In the present study, we sought to identify the role of miR-124 in hyperoxia-induced cell apoptosis and excessive inflammatory response in pulmonary epithelial cell. METHODS The miR-124 levels in pulmonary epithelial cell were assayed by qRT-PCR. MiR-124 mimics and inhibitors were transfected to gain or loss of miR-124 function. Cell proliferation was analyzed by CCK8 assay. Cell apoptosis was analyzed by flow cytometry. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. The protein levels were assayed by western blotting. RESULTS The results showed that miR-124 was significantly down-regulated in Beas2B cells and primary LECs upon hyperoxia exposure conditions. However, overexpression of miR-124 dramatically attenuated hyperoxia-provoked TLR4, NF-κB and pro-inflammatory cytokines production. In vitro, the cell viability and apoptosis was significantly reversed following transfection with miR-124 mimics in the presence of hyperoxia. Furthermore, the 3'-untranslated region (3'-UTR) of CCL2 was bound by miR-124. CONCLUSION It was concluded that miR-124 inhibited hyperoxia-induced apoptosis and excessive inflammatory response in Beas2B cells and primary LECs, at least partially, through the inhibition of TLR4/NF-κB/CCL2 signaling cascades.
Collapse
Affiliation(s)
- Qing-Rong Li
- The Second Affiliated Hospital of Kunming Medical UniversityKunming 650101, China
| | - Shi-Rui Tan
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunming 650500, China
| | - Junxu Yu
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunming 650500, China
| | - Jinghui Yang
- The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunming, China
| |
Collapse
|
27
|
Dravet-Gounot P, Morin C, Jacques S, Dumont F, Ely-Marius F, Vaiman D, Jarreau PH, Méhats C, Zana-Taïeb E. Lung microRNA deregulation associated with impaired alveolarization in rats after intrauterine growth restriction. PLoS One 2017; 12:e0190445. [PMID: 29287116 PMCID: PMC5747455 DOI: 10.1371/journal.pone.0190445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) was recently described as an independent risk factor of bronchopulmonary dysplasia, the main respiratory sequelae of preterm birth. We previously showed impaired alveolarization in rat pups born with IUGR induced by a low-protein diet (LPD) during gestation. We conducted a genome-wide analysis of gene expression and found the involvement of several pathways such as cell adhesion. Here, we describe our unbiased microRNA (miRNA) profiling by microarray assay and validation by qPCR at postnatal days 10 and 21 (P10 and P21) in lungs of rat pups with LPD-induced lung-alveolarization disorder after IUGR. We identified 13 miRNAs with more than two-fold differential expression between control lungs and LPD-induced IUGR lungs. Validated and predicted target genes of these miRNAs were related to “tissue repair” at P10 and “cellular communication regulation” at P21. We predicted the deregulation of several genes associated with these pathways. Especially, E2F3, a transcription factor involved in cell cycle control, was expressed in developing alveoli, and its mRNA and protein levels were significantly increased at P21 after IUGR. Hence, IUGR affects the expression of selected miRNAs during lung alveolarization. These results provide a basis for deciphering the mechanistic contributions of IUGR to impaired alveolarization.
Collapse
Affiliation(s)
- Pauline Dravet-Gounot
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Maternité Port Royal, Service de Médecine et Réanimation Néonatales, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
| | - Cécile Morin
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
| | - Sébastien Jacques
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Florent Dumont
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Fabiola Ely-Marius
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Daniel Vaiman
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
| | - Pierre-Henri Jarreau
- Université Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Maternité Port Royal, Service de Médecine et Réanimation Néonatales, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
- Inserm U1141, Paris, France
- Premup, Paris, France
| | - Céline Méhats
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
- * E-mail:
| | - Elodie Zana-Taïeb
- Université Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Maternité Port Royal, Service de Médecine et Réanimation Néonatales, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
- Inserm U1141, Paris, France
- Premup, Paris, France
| |
Collapse
|
28
|
Cai C, Qiu J, Qiu G, Chen Y, Song Z, Li J, Gong X. Long non-coding RNA MALAT1 protects preterm infants with bronchopulmonary dysplasia by inhibiting cell apoptosis. BMC Pulm Med 2017; 17:199. [PMID: 29237426 PMCID: PMC5729463 DOI: 10.1186/s12890-017-0524-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/24/2017] [Indexed: 01/10/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a neonatal chronic lung disease characterized by impaired pulmonary alveolar development in preterm infants. Until now, little is known about the molecular and cellular basis of BPD. There is increasing evidence that lncRNAs regulate cell proliferation and apoptosis during lung organogenesis. The potential role of lncRNAs in the pathogenesis of BPD is unclear. This study aims to clarify the role of MALAT1 during the process of BPD in preterm infants and illustrate the protective effect of MALAT1 involved in preterm infants. Methods We assessed the expression of MALAT1 in BPD mice lung tissues by reanalyzing dataset GSE25286 (Mouse GEO Genome 4302 Array) from gene expression database gene expression omnibus (GEO), and verified MALAT1 expression in BPD patients by realtime q-PCR. Then the role of MALAT1 in regulating cell biology was examined by profiling dataset GSE43830. The expression of CDC6, a known antiapoptopic gene was verified in BPD patients and the alveolar epithelial cell line A549 cells in which MALAT1 was knocked down. Cell apoptosis was determined by FACS using PI/Annexin-V staining. Results The expression of MALAT1 was significantly evaluated in lung tissues of BPD mice at day 14 and day 29 compared to WT (P < 0.05). In consistent with mRNA array profiling analysis, MALAT1 expression level in blood samples from preterm infants with BPD was significantly increased. Bioinformative data analysis of MALAT1 knockdown in WI-38 cells showed various differentially expressed genes were found enriched in apoptosis related pathway. Down-regulation of antiapoptopic gene, CDC6 expression was further verified by q-PCR result. PI/Annexin-V apoptisis assay results showed that MALAT1 knocked down in the alveolar epithelial cell line (A549) promotes cell apoptosis. Conclusions In our study, we found that up-regulation of lncRNA MALAT1 could protect preterm infants with BPD by inhibiting cell apoptosis. These data provide novel insights into MALAT1 regulation which may be relevant to cell fate and shed light on BPD prevention and treatment. Electronic supplementary material The online version of this article (10.1186/s12890-017-0524-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Jiajun Qiu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Gang Qiu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Yihuan Chen
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Zhijun Song
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Juan Li
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China, 200062.
| |
Collapse
|
29
|
Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs. Nat Commun 2017; 8:1173. [PMID: 29079808 PMCID: PMC5660088 DOI: 10.1038/s41467-017-01349-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Hyperoxia-induced acute lung injury (HALI) is a key contributor to the pathogenesis of bronchopulmonary dysplasia (BPD) in neonates, for which no specific preventive or therapeutic agent is available. Here we show that lung micro-RNA (miR)-34a levels are significantly increased in lungs of neonatal mice exposed to hyperoxia. Deletion or inhibition of miR-34a improves the pulmonary phenotype and BPD-associated pulmonary arterial hypertension (PAH) in BPD mouse models, which, conversely, is worsened by miR-34a overexpression. Administration of angiopoietin-1, which is one of the downstream targets of miR34a, is able to ameliorate the BPD pulmonary and PAH phenotypes. Using three independent cohorts of human samples, we show that miR-34a expression is increased in type 2 alveolar epithelial cells in neonates with respiratory distress syndrome and BPD. Our data suggest that pharmacologic miR-34a inhibition may be a therapeutic option to prevent or ameliorate HALI/BPD in neonates.
Collapse
|
30
|
Durrani-Kolarik S, Pool CA, Gray A, Heyob KM, Cismowski MJ, Pryhuber G, Lee LJ, Yang Z, Tipple TE, Rogers LK. miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L339-L349. [PMID: 28473324 PMCID: PMC5582933 DOI: 10.1152/ajplung.00273.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
Abstract
Even with advances in the care of preterm infants, chronic lung disease or bronchopulmonary dysplasia (BPD) continues to be a significant pulmonary complication. Among those diagnosed with BPD, a subset of infants develop severe BPD with disproportionate pulmonary morbidities. In addition to decreased alveolarization, these infants develop obstructive and/or restrictive lung function due to increases in or dysregulation of extracellular matrix proteins. Analyses of plasma obtained from preterm infants during the first week of life indicate that circulating miR-29b is suppressed in infants that subsequently develop BPD and that decreased circulating miR-29b is inversely correlated with BPD severity. Our mouse model mimics the pathophysiology observed in infants with severe BPD, and we have previously reported decreased pulmonary miR-29b expression in this model. The current studies tested the hypothesis that adeno-associated 9 (AAV9)-mediated restoration of miR-29b in the developing lung will improve lung alveolarization and minimize the deleterious changes in matrix deposition. Pregnant C3H/HeN mice received an intraperitoneal LPS injection on embryonic day 16 and newborn pups were exposed to 85% oxygen from birth to 14 days of life. On postnatal day 3, AAV9-miR-29b or AAV9-control was administered intranasally. Mouse lung tissues were then analyzed for changes in miR-29 expression, alveolarization, and matrix protein levels and localization. Although only modest improvements in alveolarization were detected in the AAV9-miR29b-treated mice at postnatal day 28, treatment completely attenuated defects in matrix protein expression and localization. Our data suggest that miR-29b restoration may be one component of a novel therapeutic strategy to treat or prevent severe BPD in prematurely born infants.
Collapse
Affiliation(s)
- Shaheen Durrani-Kolarik
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Caylie A Pool
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ashley Gray
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kathryn M Heyob
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mary J Cismowski
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - L James Lee
- The Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio
| | - Zhaogang Yang
- The Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio;
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
31
|
Sun M, Ramchandran R, Chen J, Yang Q, Raj JU. Smooth Muscle Insulin-Like Growth Factor-1 Mediates Hypoxia-Induced Pulmonary Hypertension in Neonatal Mice. Am J Respir Cell Mol Biol 2017; 55:779-791. [PMID: 27438786 DOI: 10.1165/rcmb.2015-0388oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Insulin-like growth factor (IGF)-1 is a potent mitogen of vascular smooth muscle cells (SMCs), but its role in pulmonary vascular remodeling associated with pulmonary hypertension (PH) is not clear. In an earlier study, we implicated IGF-1 in the pathogenesis of hypoxia-induced PH in neonatal mice. In this study, we hypothesized that hypoxia-induced up-regulation of IGF-1 in vascular smooth muscle is directly responsible for pulmonary vascular remodeling and PH. We studied neonatal and adult mice with smooth muscle-specific deletion of IGF-1 and also used an inhibitor of IGF-1 receptor (IGF-1R), OSI-906, in neonatal mice. We found that, in neonatal mice, SMC-specific deletion of IGF-1 or IGF-1R inhibition with OSI-906 attenuated hypoxia-induced pulmonary vascular remodeling in small arteries, right ventricular hypertrophy, and right ventricular systolic pressure. Pulmonary arterial SMCs from IGF-1-deleted mice or after OSI-906 treatment exhibited reduced proliferative potential. However, in adult mice, smooth muscle-specific deletion of IGF-1 had no effect on hypoxia-induced PH. Our data suggest that vascular smooth muscle-derived IGF-1 plays a critical role in hypoxia-induced PH in neonatal mice but not in adult mice. We speculate that the IGF-1/IGF-1R axis is important in pathogenesis of PH in the developing lung and may be amenable to therapeutic manipulation in this age group.
Collapse
Affiliation(s)
| | | | - Jiwang Chen
- 2 Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, and
| | | | - J Usha Raj
- 1 Department of Pediatrics.,3 Children's Hospital, University of Illinois, Chicago, Illinois
| |
Collapse
|
32
|
Ameis D, Khoshgoo N, Iwasiow BM, Snarr P, Keijzer R. MicroRNAs in Lung Development and Disease. Paediatr Respir Rev 2017; 22:38-43. [PMID: 28237418 DOI: 10.1016/j.prrv.2016.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small (∼22 nucleotides), non-coding RNA molecules that regulate gene expression post-transcriptionally by inhibiting target mRNAs. Research into the roles of miRNAs in lung development and disease is at the early stages. In this review, we discuss the role of miRNAs in pediatric respiratory disease, including cystic fibrosis, asthma, and bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Dustin Ameis
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Naghmeh Khoshgoo
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara M Iwasiow
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Phillip Snarr
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Pediatrics and Child Health and Physiology and Pathophysiology, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
33
|
Möbius MA, Thébaud B. Cell Therapy for Bronchopulmonary Dysplasia: Promises and Perils. Paediatr Respir Rev 2016; 20:33-41. [PMID: 27425012 DOI: 10.1016/j.prrv.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
Despite great achievements in neonatal and perinatal medicine over the past decades, the immature lung remains the most critical organ to care for after premature birth. As a consequence, bronchopulmonary dysplasia (BPD) remains the most common complication of extreme prematurity. BPD impairs normal development and may cause lifelong morbidities. At present, there is no effective treatment for BPD - including preventing premature birth. Recent insights into the biology of stem and progenitor cells have ignited the hope of protecting the immature lung, and even regenerating an already damaged lung by using exogenous stem- or progenitor cells as therapeutics. These therapies are still experimental, and knowledge on the exact mechanisms behind the beneficial effects seen in various animal models of BPD is limited. Nevertheless, early phase clinical trials have started, and encouraging steps towards the therapeutic use of these cells are being made. This review aims to (I) provide an overview of the role of stem/progenitor cells in development and therapy of BPD for the practicing clinician, (II) discuss the potential clinical applications of cell products as therapeutic agents to prevent neonatal lung injury and (III) examine potential obstacles towards the manufacturing of clinical grade cell products for use in the care for premature infants.
Collapse
Affiliation(s)
- Marius Alexander Möbius
- Department of Neonatology and Pediatric Critical Care Medicine, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany; Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
34
|
Meiners S, Hilgendorff A. Early injury of the neonatal lung contributes to premature lung aging: a hypothesis. Mol Cell Pediatr 2016; 3:24. [PMID: 27406259 PMCID: PMC4942446 DOI: 10.1186/s40348-016-0052-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic lung disease of the newborn, also known as bronchopulmonary dysplasia (BPD), is the most common chronic lung disease in early infancy and results in an increased risk for long-lasting pulmonary impairment in the adult. BPD develops upon injury of the immature lung by oxygen toxicity, mechanical ventilation, and infections which trigger sustained inflammatory immune responses and extensive remodeling of the extracellular matrix together with dysregulated growth factor signaling. Histopathologically, BPD is characterized by impaired alveolarization, disrupted vascular development, and saccular wall fibrosis. Here, we explore the hypothesis that development of BPD involves disturbance of conserved pathways of molecular aging that may contribute to premature aging of the lung and an increased susceptibility to chronic lung diseases in adulthood.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.,Perinatal Center Grosshadern, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
35
|
Go H, La P, Namba F, Ito M, Yang G, Brydun A, Igarashi K, Dennery PA. MiR-196a regulates heme oxygenase-1 by silencing Bach1 in the neonatal mouse lung. Am J Physiol Lung Cell Mol Physiol 2016; 311:L400-11. [PMID: 27343195 DOI: 10.1152/ajplung.00428.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/18/2016] [Indexed: 12/30/2022] Open
Abstract
In the lung, heme oxygenase-1 (HO-1) is developmentally regulated, with its highest expression in the first days of life. In addition, neonatal mice have limited HO-1 induction in hyperoxia compared with adults. However, few reports have addressed the functional effect of microRNAs (miRNAs) in the regulation of HO-1 in vivo. The aims of the present study were to characterize changes in lung miRNA expression during postnatal development and in response to hyperoxic exposure, and to identify miRNAs that target lung HO-1 gene expression. Neonatal (<12 h old) and adult (2 mo old) mice were exposed to room air or hyperoxia (95% oxygen) for 72 h. TaqMan low-density array rodent miRNA assays were used to calculate miRNA expression changes between control and hyperoxia groups in neonatal and adult lungs. In neonates, we identified miR-196a, which binds to the 3'-untranslated region of the transcriptional repressor BTB and CNC homology 1 (Bach1) and regulates its expression, and subsequently leads to higher levels of lung HO-1 mRNA compared with levels in adults. Despite the increase at baseline, miR-196a was degraded in hyperoxia resulting in limited HO-1 induction in neonatal mice lungs. Furthermore, the developmental differences in lung HO-1 gene expression can be explained in part by the variation in miRNA-196a and its effect on Bach1. This report is the first to show developmental differences in lung miR-196a and its effect on Bach1 and HO-1 expression at baseline and in hyperoxia.
Collapse
Affiliation(s)
- Hayato Go
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ping La
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Fumihiko Namba
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Saitama Medical Center, Saitama, Japan
| | - Masato Ito
- Department of Pediatrics, Saitama Medical Center, Saitama, Japan
| | - Guang Yang
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrey Brydun
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Phyllis A Dennery
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania and Alpert Medical School at Brown University, Providence, Rhode Island; and
| |
Collapse
|
36
|
Nardiello C, Morty RE. MicroRNA in late lung development and bronchopulmonary dysplasia: the need to demonstrate causality. Mol Cell Pediatr 2016; 3:19. [PMID: 27216745 PMCID: PMC4877338 DOI: 10.1186/s40348-016-0047-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNA are emerging as powerful regulators of cell differentiation and tissue and organ development. Several microRNA have been described to play a role in branching morphogenesis, a key step in early lung development. However, considerably less attention has been paid to microRNA as regulators of the process of secondary septation, which drives lung alveolarization during late lung development. Secondary septation is severely perturbed in bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by blunted alveolarization. A number of studies to date have reported microRNA microarray screens in animal models of BPD; however, only two studies have attempted to demonstrate causality. Although the expression of miR-150 was altered in experimental BPD, a miR-150−/− knockout mouse did not exhibit appreciable protection in a BPD animal model. Similarly, while the expression of miR-489 in the lung was reduced in clinical and experimental BPD, antagomiR and over-expression approaches could not validate a role for miR-489 in the impaired alveolarization associated with experimental BPD. This mini-review aims to highlight microRNA that have been revealed by multiple microarray studies to be potential causal players in normal and pathological alveolarization. Additionally, the challenges faced in attempting to demonstrate a causal role for microRNA in lung alveolarization are discussed. These include the tremendous variability in the animal models employed, and the limitations and advantages offered by the available tools, including antagomiRs and approaches for the validation of a specific microRNA-mRNA interaction during lung alveolarization.
Collapse
Affiliation(s)
- Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
37
|
Bouhaddioui W, Provost PR, Tremblay Y. Expression profile of androgen-modulated microRNAs in the fetal murine lung. Biol Sex Differ 2016; 7:20. [PMID: 27042289 PMCID: PMC4818395 DOI: 10.1186/s13293-016-0072-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 11/14/2022] Open
Abstract
Background Androgens are known to delay lung development. As a consequence, the incidence and morbidity of respiratory distress syndrome of the neonate are higher for male than for female premature infants. We previously reported that many genes were expressed with a sex difference in the mouse developing lung and that several genes were under the control of androgens in the male fetal lung. microRNAs are small non-coding RNAs known to negatively regulate the expression of specific genes. In this study, we examined whether murine miRNAs are under the control of androgens in the male developing lung. Methods Expression profiling of microRNAs was performed by microarrays using RNA extracted from male fetal lungs isolated on gestational day (GD) 17.0 and GD 18.0 after daily injection of pregnant mice from GD 10.0 with the antiandrogen flutamide or vehicle only. To identify putative miRNA target genes, the data obtained here were combined with gene profiling data reported previously using the same RNA preparations. qPCR was used to confirm microarray data with fetal lungs from other litters than those used in microarrays. Results Flutamide induced downregulation and upregulation of several miRNAs on GD 17.0 and GD 18.0. Of the 43 mature miRNAs modulated by flutamide on GD 17.0, 60 % were downregulated, whereas this proportion was only of 34 % for the 35 mature miRNAs modulated on GD 18.0. For 29 and 26 flutamide-responsive miRNAs, we found a corresponding target inversely regulated by androgens on GD 17.0 and 18.0, respectively. The androgen-regulated target genes were involved in several biological processes (lipid metabolism, cell proliferation, and lung development) and molecular functions, mainly transcription factor binding. Conclusions Regulation of male lung development involves several miRNAs that are under androgen modulation in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0072-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wafae Bouhaddioui
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Pierre R Provost
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| |
Collapse
|
38
|
Pierro M, Ciarmoli E, Thébaud B. Bronchopulmonary Dysplasia and Chronic Lung Disease: Stem Cell Therapy. Clin Perinatol 2015; 42:889-910. [PMID: 26593085 DOI: 10.1016/j.clp.2015.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bronchopulmonary dysplasia (BPD), a major complication of premature birth, still lacks safe and effective treatment. Mesenchymal stem cells (MSCs) have been proven to ameliorate critical aspects of the BPD pathogenesis. MSCs seem to exert therapeutic effects through the paracrine secretion of anti-inflammatory, antioxidant, antiapoptotic, trophic, and proangiogenic factors. Although these findings are promising, understanding the mechanism of action of MSCs and MSC manufacturing is still evolving. Several aspects can affect the efficacy of MSC therapy. Further research is required to optimize this potentially game-changing treatment but the translation of regenerative cell therapies for patients has begun.
Collapse
Affiliation(s)
- Maria Pierro
- Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Via della Commenda 12, Milan 20122, Italy; Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, Genova 16148, Italy.
| | - Elena Ciarmoli
- Neonatal Intensive Care Unit, MBBM Foundation, San Gerardo Hospital, Via Pergolesi 33, Monza 20900, Italy
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada; Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario K1H8L6, Canada; Department of Cellular and Molecular Medicine, Sinclair Institute of Regenerative Medicine, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
39
|
Abstract
This article highlights some of the significant advances in our understanding of lung developmental biology made over the last few years, which challenge existing paradigms and are relevant to a fundamental understanding of this process. Additional comments address how these new insights may be informative for chronic lung diseases that occur, or initiate, in the neonatal period. This is not meant to be an exhaustive review of the molecular biology of lung development. For a more comprehensive, contemporary review of the cellular and molecular aspects of lung development, readers can refer to recent reviews by others.
Collapse
|
40
|
Li J, Yu KH, Oehlert J, Jeliffe-Pawlowski LL, Gould JB, Stevenson DK, Snyder M, Shaw GM, O'Brodovich HM. Exome Sequencing of Neonatal Blood Spots and the Identification of Genes Implicated in Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 2015; 192:589-96. [PMID: 26030808 PMCID: PMC4595691 DOI: 10.1164/rccm.201501-0168oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD), a prevalent severe lung disease of premature infants, has a strong genetic component. Large-scale genome-wide association studies for common variants have not revealed its genetic basis. OBJECTIVES Given the historical high mortality rate of extremely preterm infants who now survive and develop BPD, we hypothesized that risk loci underlying this disease are under severe purifying selection during evolution; thus, rare variants likely explain greater risk of the disease. METHODS We performed exome sequencing on 50 BPD-affected and unaffected twin pairs using DNA isolated from neonatal blood spots and identified genes affected by extremely rare nonsynonymous mutations. Functional genomic approaches were then used to systematically compare these affected genes. MEASUREMENTS AND MAIN RESULTS We identified 258 genes with rare nonsynonymous mutations in patients with BPD. These genes were highly enriched for processes involved in pulmonary structure and function including collagen fibril organization, morphogenesis of embryonic epithelium, and regulation of Wnt signaling pathway; displayed significantly elevated expression in fetal and adult lungs; and were substantially up-regulated in a murine model of BPD. Analyses of mouse mutants revealed their phenotypic enrichment for embryonic development and the cyanosis phenotype, a clinical manifestation of BPD. CONCLUSIONS Our study supports the role of rare variants in BPD, in contrast with the role of common variants targeted by genome-wide association studies. Overall, our study is the first to sequence BPD exomes from newborn blood spot samples and identify with high confidence genes implicated in BPD, thereby providing important insights into its biology and molecular etiology.
Collapse
Affiliation(s)
- Jingjing Li
- 1 Department of Genetics, Center for Genomics and Personalized Medicine
| | - Kun-Hsing Yu
- 1 Department of Genetics, Center for Genomics and Personalized Medicine.,2 Biomedical Informatics Program, and
| | - John Oehlert
- 3 Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Laura L Jeliffe-Pawlowski
- 4 California Department of Public Health, Richmond, California; and.,5 Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Jeffrey B Gould
- 3 Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- 3 Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Michael Snyder
- 1 Department of Genetics, Center for Genomics and Personalized Medicine
| | - Gary M Shaw
- 3 Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Hugh M O'Brodovich
- 3 Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
41
|
Xing Y, Fu J, Yang H, Yao L, Qiao L, Du Y, Xue X. MicroRNA expression profiles and target prediction in neonatal Wistar rat lungs during the development of bronchopulmonary dysplasia. Int J Mol Med 2015; 36:1253-63. [PMID: 26398774 PMCID: PMC4601749 DOI: 10.3892/ijmm.2015.2347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the mechanisms through which microRNAs (miRNAs or miRs) regulate lung development after birth, as well as the role of miRNAs in the development of bronchopulmonary dysplasia (BPD). For this purpose, a total of 90 neonatal Wistar rats were randomly and equally assigned to either a model group or a control group. On postnatal days 3, 7 and 14, the lung tissues were collected for histological analysis to determine morphological changes. The expression levels of proliferating cell nuclear antigen (PCNA) and platelet endothelial cell adhesion molecule-1 (PECAM-1, also known as CD31) were measured by RT-qPCR and western blot analysis. A miRCURY™ LNA array was employed to screen for differentially expressed miRNAs, and the possible target genes of those miRNAs were predicted. Our results revealed that, compared with the control group, the following changes induced by hyperoxia were observed in the model group over time: a decrease in the number, but an increase in the size of the alveoli, and a decrease in the number of secondary septa formed. In the model group, from postnatal days 3–14, the mRNA and protein expression levels of PCNA and CD31 were significantly lower than those in the control group. The differentially expressed miRNAs between the 2 groups were identified on days 3, 7 and 14 after birth. Possible target genes were identified for 32 differentially expressed miRNAs. Taken together, these findings suggest that during the development of BPD, an alveolarization disorder with microvascular dysplasia co-exists with the differential expression of certain miRNAs during the different stages of alveolar development in a neonatal rat model of hyperoxia-induced BPD. This indicates that miRNAs may participate in the occurrence and development of BPD.
Collapse
Affiliation(s)
- Yujiao Xing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haiping Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Yao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lin Qiao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yanna Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
42
|
Stabler CT, Lecht S, Lazarovici P, Lelkes PI. Mesenchymal stem cells for therapeutic applications in pulmonary medicine. Br Med Bull 2015; 115:45-56. [PMID: 26063231 DOI: 10.1093/bmb/ldv026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) of different biological sources are in Phase 1 clinical trials and are being considered for Phase 2 therapy of lung disorders, and lung (progenitor) cells derived from pluripotent stem cells (SCs) are under development in preclinical animal models. SOURCES OF DATA PubMed.gov and ClinicalTrials.gov. AREAS OF AGREEMENT There is consensus about the therapeutic potential of transplanted SCs, mainly MSCs, primarily involves paracrine 'bystander' effects that confer protection of the epithelial and endothelial linings of the lung caused by inflammation and/or fibrosis and lead to increased survival in animal models. Clinical trials of Phase 1 indicate safety and suggest that the efficacy of SC therapy in patients with various lung diseases will require a higher dosage than previously evaluated. AREAS OF CONTROVERSY A growing interest in the re-epithelialization and re-endothelialization of damaged lung tissue involves the putative pulmonary differentiation of exogenous MSCs. Currently, it is not clear whether or not the observed regeneration of distal airways/vasculature is derived from lung-resident and/or transplanted SCs. GROWING POINTS Important topics under investigation include optimization of the cell source with a decrease in cell population heterogeneity characterized by defined markers, route of delivery for effective treatment, potential dose and therapeutic protocol of SC application, development of quantitative assays and biomarkers of lung disease and repair, and the potential use of tissue engineered lung. AREAS TIMELY FOR DEVELOPING RESEARCH Ability of MSCs to differentiate into epithelial cells of the lung, use of autologous induced pluripotent SCs (iPSCs) derived from the patients, complete biochemical characterization of the secretome of SCs used for therapy, and the incorporation of simultaneous and/or subsequent treatment with drugs which also aid in lung repair and regeneration. CAUTIONARY NOTE Although safety of MSC-based cell therapy was proved in Phase 1, efficacy, long-term survival and preservation of lung respiratory function need to be further evaluated, cautioning against hastily translating SCs therapy from animal models of lung injury to clinical trials of patients with lung disorders.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Philip Lazarovici
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA Temple Institute for Regenerative Medicine and Engineering (TIME), Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
43
|
Joss-Moore LA, Lane RH, Albertine KH. Epigenetic contributions to the developmental origins of adult lung disease. Biochem Cell Biol 2015; 93:119-27. [PMID: 25493710 PMCID: PMC5683896 DOI: 10.1139/bcb-2014-0093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Perinatal insults, including intrauterine growth restriction, preterm birth, maternal exposure to toxins, or dietary deficiencies produce deviations in the epigenome of lung cells. Occurrence of perinatal insults often coincides with the final stages of lung development. The result of epigenome disruptions in response to perinatal insults during lung development may be long-term structural and functional impairment of the lung and development of lung disease. Understanding the contribution of epigenetic mechanisms to life-long lung disease following perinatal insults is the focus of the developmental origins of adult lung disease field. DNA methylation, histone modifications, and microRNA changes are all observed in various forms of lung disease. However, the perinatal contribution to such epigenetic mechanisms is poorly understood. Here we discuss the developmental origins of adult lung disease, the interplay between perinatal events, lung development and disease, and the role that epigenetic mechanisms play in connecting these events.
Collapse
Affiliation(s)
- Lisa A Joss-Moore
- Division of Neonatology, Department of Pediatrics, University of Utah, P.O. Box 581289, Salt Lake City, UT 84158, USA
| | | | | |
Collapse
|
44
|
Yin K, Hacia JG, Zhong Z, Paine ML. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis. BMC Genomics 2014; 15:998. [PMID: 25406666 PMCID: PMC4254193 DOI: 10.1186/1471-2164-15-998] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. RESULTS Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). CONCLUSIONS In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.
Collapse
Affiliation(s)
- Kaifeng Yin
- />Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA 90033 USA
| | - Joseph G Hacia
- />Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSA140, Los Angeles, CA 90033 USA
| | - Zhe Zhong
- />Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA 90033 USA
| | - Michael L Paine
- />Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA 90033 USA
| |
Collapse
|
45
|
Martin YN, Manlove L, Dong J, Carey WA, Thompson MA, Pabelick CM, Pandya HC, Martin RJ, Wigle DA, Prakash YS. Hyperoxia-induced changes in estradiol metabolism in postnatal airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2014; 308:L141-6. [PMID: 25399436 DOI: 10.1152/ajplung.00266.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Supplemental oxygen, used to treat hypoxia in preterm and term neonates, increases the risk of neonatal lung diseases, such as bronchopulmonary dysplasia (BPD) and asthma. There is a known sex predilection for BPD, but the underlying mechanisms are not clear. We tested the hypothesis that altered, local estradiol following hyperoxia contributes to pathophysiological changes observed in immature lung. In human fetal airway smooth muscle (fASM) cells exposed to normoxia or hyperoxia, we measured the expression of proteins involved in estrogen metabolism and cell proliferation responses to estradiol. In fASM cells, CYP1a1 expression was increased by hyperoxia, whereas hyperoxia-induced enhancement of cell proliferation was blunted by estradiol. Pharmacological studies indicated that these effects were attributable to upregulation of CYP1a1 and subsequent increased metabolism of estradiol to a downstream intermediate 2-methoxyestradiol. Microarray analysis of mouse lung exposed to 14 days of hyperoxia showed the most significant alteration in CYP1a1 expression, with minimal changes in expression of five other genes related to estrogen receptors, synthesis, and metabolism. Our novel results on estradiol metabolism in fetal and early postnatal lung in the context of hyperoxia indicate CYP1a1 as a potential mechanism for the protective effect of estradiol in hyperoxia-exposed immature lung, which may help explain the sex difference in neonatal lung diseases.
Collapse
Affiliation(s)
- Yvette N Martin
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Logan Manlove
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Jie Dong
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - William A Carey
- Division of Neonatal Medicine Mayo Clinic, Rochester, Minnesota
| | | | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Hitesh C Pandya
- Department of Pediatrics, University of Leicester, Leicester, United Kingdom
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies Children's Hospital, Case Western Reserve University, Cleveland, Ohio; and
| | - Dennis A Wigle
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
46
|
Yang H, Fu J, Xue X, Yao L, Qiao L, Hou A, Jin L, Xing Y. Epithelial-mesenchymal transitions in bronchopulmonary dysplasia of newborn rats. Pediatr Pulmonol 2014; 49:1112-23. [PMID: 24729542 DOI: 10.1002/ppul.22969] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/05/2013] [Indexed: 11/05/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a major threat to the health of premature infants yet its pathogenesis is not fully understood. Epithelial-mesenchymal transition (EMT) of lung epithelial cells may lead to BPD. OBJECTIVE To investigate the potential occurrence of EMT in a newborn rat model of BPD. METHODS Newborn rats were exposed to a hyperoxic environment within 12 hr of birth. Lung tissue and isolated alveolar epithelial type II cells (AT2 cells) were collected on Days 1, 3, 7, 14, and 21 after hyperoxic exposure. Pathological changes in lung tissue, alveolar development, ultrastructural changes in AT2 cells, co-expression of surfactant associated surfactant protein C (SPC), and α-smooth muscle actin (α-SMA) were investigated. The relative expression of SPC, α-SMA, E-cadherin, and N-cadherin were investigated in lung tissue and isolated AT2 cells. RESULTS In lung tissue, alveolar development was attenuated from Day 7 onwards in the BPD model group; co-expression of SPC and α-SMA and ultrastructural changes typical of EMT were observed in AT2 cells from rats in the BPD group. SPC and α-SMA expression levels were higher in tissue samples from the BPD group than in control samples. Beginning on Day 7, evidence of a switch from E-cadherin to N-cadherin expression was observed in BPD lung tissue sample and in isolated AT2 cells. CONCLUSION EMT of AT2 cells occurred in the hyperoxia-induced newborn rat BPD model and resulted in attenuated alveolar development as a portion of the myofibroblasts accumulated in the lung originated from AT2 cells via EMT.
Collapse
Affiliation(s)
- Haiping Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Martin CR, Zaman MM, Gilkey C, Salguero MV, Hasturk H, Kantarci A, Van Dyke TE, Freedman SD. Resolvin D1 and lipoxin A4 improve alveolarization and normalize septal wall thickness in a neonatal murine model of hyperoxia-induced lung injury. PLoS One 2014; 9:e98773. [PMID: 24892762 PMCID: PMC4043836 DOI: 10.1371/journal.pone.0098773] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
Background The critical fatty acids Docosahexaenoic Acid (DHA) and Arachidonic Acid (AA) decline in preterm infants within the first postnatal week and are associated with neonatal morbidities, including bronchopulmonary dysplasia (BPD). DHA and AA are precursors to downstream metabolites that terminate the inflammatory response. We hypothesized that treatment with Resolvin D1 and/or Lipoxin A4 would prevent lung injury in a murine model of BPD. Objective To determine the effect of Resolvin D1 and/or Lipoxin A4 on hyperoxia-induced lung injury. Methods C57/BL6 pups were randomized at birth to Room Air, Hyperoxia (>90% oxygen), Hyperoxia + Resolvin D1, Hyperoxia + Lipoxin A4, or Hyperoxia + Resolvin D1/Lipoxin A4. Resolvin D1 and/or Lipoxin A4 (2 ng/g) were given IP on days 0, 3, 6, and 9. On day 10, mice were sacrificed and lungs collected for morphometric analyses including Mean Linear Intercept (MLI), Radial Alveolar Count (RAC), and Septal Thickness (ST); RT-PCR analyses of biomarkers of lung development and inflammation; and ELISA for TGFβ1 and TGFβ2. Result The increased ST observed with hyperoxia exposure was normalized by both Resolvin D1 and Lipoxin A4; while, hyperoxia-induced alveolar simplification was attenuated by Lipoxin A4. Relative to hyperoxia, Resolvin D1 reduced the gene expression of CXCL2 (2.9 fold), TIMP1 (6.7 fold), and PPARγ (4.8 fold). Treatment with Lipoxin A4 also led to a reduction of CXCL2 (2.4 fold) while selectively increasing TGFβ2 (2.1 fold) and Smad3 (1.58 fold). Conclusion The histologic and biochemical changes seen in hyperoxia-induced lung injury in this murine model can be reversed by the addition of DHA and AA fatty acid downstream metabolites that terminate the inflammatory pathways and modulate growth factors. These fatty acids or their metabolites may be novel therapies to prevent or treat lung injury in preterm infants.
Collapse
Affiliation(s)
- Camilia R. Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Translational Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| | - Munir M. Zaman
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Calvin Gilkey
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Maria V. Salguero
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hatice Hasturk
- Department of Applied Oral Sciences, Center for Periodontology, Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, Center for Periodontology, Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Thomas E. Van Dyke
- Department of Applied Oral Sciences, Center for Periodontology, Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Steven D. Freedman
- Division of Translational Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
48
|
Abstract
Bronchopulmonary dysplasia, the chronic lung disease of prematurity, is the most common complication in extremely premature infants (born before 28 wk gestation). Despite advances in perinatal care, modern clinical management remains devoid of therapies specifically promoting lung repair and lung growth. Recent progress in stem cell biology has uncovered the promise of stem/progenitor cells to repair damaged organs. Contrary to the original theory that stem cells engraft and repopulate the damaged organ, evidence suggests that stem cells act via a paracrine mechanism. This review highlights the preclinical evidence for the therapeutic potential of cell-based therapies in animal models of neonatal chronic lung injury and the multiple therapeutic avenues offered by soluble stem cell-derived factors.
Collapse
|
49
|
Madurga A, Mizíková I, Ruiz-Camp J, Morty RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L893-905. [PMID: 24213917 DOI: 10.1152/ajplung.00267.2013] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to early lung development, a process exemplified by the branching of the developing airways, the later development of the immature lung remains very poorly understood. A key event in late lung development is secondary septation, in which secondary septa arise from primary septa, creating a greater number of alveoli of a smaller size, which dramatically expands the surface area over which gas exchange can take place. Secondary septation, together with architectural changes to the vascular structure of the lung that minimize the distance between the inspired air and the blood, are the objectives of late lung development. The process of late lung development is disturbed in bronchopulmonary dysplasia (BPD), a disease of prematurely born infants in which the structural development of the alveoli is blunted as a consequence of inflammation, volutrauma, and oxygen toxicity. This review aims to highlight notable recent developments in our understanding of late lung development and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | |
Collapse
|
50
|
MicroRNA profiling implicates the insulin-like growth factor pathway in bleomycin-induced pulmonary fibrosis in mice. FIBROGENESIS & TISSUE REPAIR 2013; 6:16. [PMID: 23987664 PMCID: PMC3766165 DOI: 10.1186/1755-1536-6-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/31/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a disease characterized by alveolar epithelial cell injury, inflammatory cell infiltration and deposition of extracellular matrix in lung tissue. As mouse models of bleomycin-induced pulmonary fibrosis display many of the same phenotypes observed in patients with idiopathic pulmonary fibrosis, they have been used to study various aspects of the disease, including altered expression of microRNAs. RESULTS In this work, microRNA expression profiling of the lungs from treated C57BL/6J mice, relative to that of untreated controls, was undertaken to determine which alterations in microRNAs could in part regulate the fibrosis phenotype induced by bleomycin delivered through mini-osmotic pumps. We identified 11 microRNAs, including miR-21 and miR-34a, to be significantly differentially expressed (P < 0.01) in lungs of bleomycin treated mice and confirmed these data with real time PCR measurements. In situ hybridization of both miR-21 and miR-34a indicated that they were expressed in alveolar macrophages. Using a previously reported gene expression profile, we identified 195 genes to be both predicted targets of the 11 microRNAs and of altered expression in bleomycin-induced lung disease of C57BL/6J mice. Pathway analysis with these 195 genes indicated that altered microRNA expression may be associated with hepatocyte growth factor signaling, cholecystokinin/gastrin-mediated signaling, and insulin-like growth factor (IGF-1) signaling, among others, in fibrotic lung disease. The relevance of the IGF-1 pathway in this model was then demonstrated by showing lung tissue of bleomycin treated C57BL/6J mice had increased expression of Igf1 and that increased numbers of Igf-1 positive cells, predominantly in macrophages, were detected in the lungs. CONCLUSIONS We conclude that altered microRNA expression in macrophages is a feature which putatively influences the insulin-like growth factor signaling component of bleomycin-induced pulmonary fibrosis.
Collapse
|