1
|
Xu Q, Bao X, Lin Z, Tang L, He LN, Ren J, Zuo Z, Hu K. AStruct: detection of allele-specific RNA secondary structure in structuromic probing data. BMC Bioinformatics 2024; 25:91. [PMID: 38429654 PMCID: PMC11264973 DOI: 10.1186/s12859-024-05704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Uncovering functional genetic variants from an allele-specific perspective is of paramount importance in advancing our understanding of gene regulation and genetic diseases. Recently, various allele-specific events, such as allele-specific gene expression, allele-specific methylation, and allele-specific binding, have been explored on a genome-wide scale due to the development of high-throughput sequencing methods. RNA secondary structure, which plays a crucial role in multiple RNA-associated processes like RNA modification, translation and splicing, has emerged as an essential focus of relevant research. However, tools to identify genetic variants associated with allele-specific RNA secondary structures are still lacking. RESULTS Here, we develop a computational tool called 'AStruct' that enables us to detect allele-specific RNA secondary structure (ASRS) from RT-stop based structuromic probing data. AStruct shows robust performance in both simulated datasets and public icSHAPE datasets. We reveal that single nucleotide polymorphisms (SNPs) with higher AStruct scores are enriched in coding regions and tend to be functional. These SNPs are highly conservative, have the potential to disrupt sites involved in m6A modification or protein binding, and are frequently associated with disease. CONCLUSIONS AStruct is a tool dedicated to invoke allele-specific RNA secondary structure events at heterozygous SNPs in RT-stop based structuromic probing data. It utilizes allelic variants, base pairing and RT-stop information under different cell conditions to detect dynamic and functional ASRS. Compared to sequence-based tools, AStruct considers dynamic cell conditions and outperforms in detecting functional variants. AStruct is implemented in JAVA and is freely accessible at: https://github.com/canceromics/AStruct .
Collapse
Affiliation(s)
- Qingru Xu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Xiaoqiong Bao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhuobin Lin
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Tang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China
| | - Li-Na He
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Kunhua Hu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Grayeski PJ, Weidmann CA, Kumar J, Lackey L, Mustoe A, Busan S, Laederach A, Weeks KM. Global 5'-UTR RNA structure regulates translation of a SERPINA1 mRNA. Nucleic Acids Res 2022; 50:9689-9704. [PMID: 36107773 PMCID: PMC9508835 DOI: 10.1093/nar/gkac739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
SERPINA1 mRNAs encode the protease inhibitor α-1-antitrypsin and are regulated through post-transcriptional mechanisms. α-1-antitrypsin deficiency leads to chronic obstructive pulmonary disease (COPD) and liver cirrhosis, and specific variants in the 5'-untranslated region (5'-UTR) are associated with COPD. The NM_000295.4 transcript is well expressed and translated in lung and blood and features an extended 5'-UTR that does not contain a competing upstream open reading frame (uORF). We show that the 5'-UTR of NM_000295.4 folds into a well-defined multi-helix structural domain. We systematically destabilized mRNA structure across the NM_000295.4 5'-UTR, and measured changes in (SHAPE quantified) RNA structure and cap-dependent translation relative to a native-sequence reporter. Surprisingly, despite destabilizing local RNA structure, most mutations either had no effect on or decreased translation. Most structure-destabilizing mutations retained native, global 5'-UTR structure. However, those mutations that disrupted the helix that anchors the 5'-UTR domain yielded three groups of non-native structures. Two of these non-native structure groups refolded to create a stable helix near the translation initiation site that decreases translation. Thus, in contrast to the conventional model that RNA structure in 5'-UTRs primarily inhibits translation, complex folding of the NM_000295.4 5'-UTR creates a translation-optimized message by promoting accessibility at the translation initiation site.
Collapse
Affiliation(s)
- Philip J Grayeski
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jayashree Kumar
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lela Lackey
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven Busan
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
3
|
Aviran S, Incarnato D. Computational approaches for RNA structure ensemble deconvolution from structure probing data. J Mol Biol 2022; 434:167635. [PMID: 35595163 DOI: 10.1016/j.jmb.2022.167635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
RNA structure probing experiments have emerged over the last decade as a straightforward way to determine the structure of RNA molecules in a number of different contexts. Although powerful, the ability of RNA to dynamically interconvert between, and to simultaneously populate, alternative structural configurations, poses a nontrivial challenge to the interpretation of data derived from these experiments. Recent efforts aimed at developing computational methods for the reconstruction of coexisting alternative RNA conformations from structure probing data are paving the way to the study of RNA structure ensembles, even in the context of living cells. In this review, we critically discuss these methods, their limitations and possible future improvements.
Collapse
Affiliation(s)
- Sharon Aviran
- Biomedical Engineering Department and Genome Center, University of California, Davis, CA, USA.
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Zeng Z, Bromberg Y. Inferring Potential Cancer Driving Synonymous Variants. Genes (Basel) 2022; 13:778. [PMID: 35627162 PMCID: PMC9140830 DOI: 10.3390/genes13050778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Synonymous single nucleotide variants (sSNVs) are often considered functionally silent, but a few cases of cancer-causing sSNVs have been reported. From available databases, we collected four categories of sSNVs: germline, somatic in normal tissues, somatic in cancerous tissues, and putative cancer drivers. We found that screening sSNVs for recurrence among patients, conservation of the affected genomic position, and synVep prediction (synVep is a machine learning-based sSNV effect predictor) recovers cancer driver variants (termed proposed drivers) and previously unknown putative cancer genes. Of the 2.9 million somatic sSNVs found in the COSMIC database, we identified 2111 proposed cancer driver sSNVs. Of these, 326 sSNVs could be further tagged for possible RNA splicing effects, RNA structural changes, and affected RBP motifs. This list of proposed cancer driver sSNVs provides computational guidance in prioritizing the experimental evaluation of synonymous mutations found in cancers. Furthermore, our list of novel potential cancer genes, galvanized by synonymous mutations, may highlight yet unexplored cancer mechanisms.
Collapse
Affiliation(s)
- Zishuo Zeng
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08873, USA
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08873, USA
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Single Nucleotide Polymorphism of TWIST2 May Be a Modifier for the Association between High-Density Lipoprotein Cholesterol and Blood Lead (Pb) Level. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031352. [PMID: 35162374 PMCID: PMC8834775 DOI: 10.3390/ijerph19031352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022]
Abstract
The association between lead (Pb) exposure and lower high-density lipoprotein cholesterol (HDL-C) was reported; however, the mechanism was unclear. Our purpose was to investigate the association of Pb, lipid profile, and to study the associated SNPs using a genome-wide association study (GWAS). A total of 511 participants were recruited to check blood Pb levels, lipid profile, and genotypes with Taiwan Biobank version 2.0 (TWB2). Our main result shows that HDL-C was significantly negatively associated with blood Pb levels, adjusted for gender, body mass index (BMI), and potential confounders. In addition, via the TWB2 GWAS, only two SNPs were found, including rs150813626 (single-nucleotide variation in the TWIST2 gene on chromosome 2), and rs1983079 (unclear SNP on chromosome 3). Compared to the rs150813626 GG carriers, the AA and AG carriers were significantly and negatively associated with HDL-C. We analyzed the interaction of rs150813626 SNP and blood Pb, and the HDL-C was consistently and negatively associated with blood Pb, male, BMI, and the rs150813626 AA and AG carriers. Moreover, the rs150813626 AA and blood Pb interaction was significantly and positively associated with HDL-C. In conclusion, the SNPs rs150813626 and rs1983079 were significantly associated with HDL-C in Pb-exposed workers. Furthermore, the interaction of rs150813626 AA and blood Pb had a positive influence on HDL-C. TWIST may inhibit osteoblast maturation, which might relate to bone Pb deposition and calcium metabolism. The mechanism needs more investigation in the future.
Collapse
|
6
|
Yang X, Yu H, Sun W, Ding L, Li J, Cheema J, Ramirez-Gonzalez R, Zhao X, Martín AC, Lu F, Liu B, Uauy C, Ding Y, Zhang H. Wheat in vivo RNA structure landscape reveals a prevalent role of RNA structure in modulating translational subgenome expression asymmetry. Genome Biol 2021; 22:326. [PMID: 34847934 PMCID: PMC8638558 DOI: 10.1186/s13059-021-02549-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Polyploidy, especially allopolyploidy, which entails merging divergent genomes via hybridization and whole-genome duplication (WGD), is a major route to speciation in plants. The duplication among the parental genomes (subgenomes) often leads to one subgenome becoming dominant over the other(s), resulting in subgenome asymmetry in gene content and expression. Polyploid wheats are allopolyploids with most genes present in two (tetraploid) or three (hexaploid) functional copies, which commonly show subgenome expression asymmetry. It is unknown whether a similar subgenome asymmetry exists during translation. We aim to address this key biological question and explore the major contributing factors to subgenome translation asymmetry. RESULTS Here, we obtain the first tetraploid wheat translatome and reveal that subgenome expression asymmetry exists at the translational level. We further perform in vivo RNA structure profiling to obtain the wheat RNA structure landscape and find that mRNA structure has a strong impact on translation, independent of GC content. We discover a previously uncharacterized contribution of RNA structure in subgenome translation asymmetry. We identify 3564 single-nucleotide variations (SNVs) across the transcriptomes between the two tetraploid wheat subgenomes, which induce large RNA structure disparities. These SNVs are highly conserved within durum wheat cultivars but are divergent in both domesticated and wild emmer wheat. CONCLUSIONS We successfully determine both the translatome and in vivo RNA structurome in tetraploid wheat. We reveal that RNA structure serves as an important modulator of translational subgenome expression asymmetry in polyploids. Our work provides a new perspective for molecular breeding of major polyploid crops.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Haopeng Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Ling Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Ji Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jitender Cheema
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Azahara C Martín
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
7
|
Keegan NP, Fletcher S. A spotter's guide to SNPtic exons: The common splice variants underlying some SNP-phenotype correlations. Mol Genet Genomic Med 2021; 10:e1840. [PMID: 34708937 PMCID: PMC8801146 DOI: 10.1002/mgg3.1840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cryptic exons are typically characterised as deleterious splicing aberrations caused by deep intronic mutations. However, low-level splicing of cryptic exons is sometimes observed in the absence of any pathogenic mutation. Five recent reports have described how low-level splicing of cryptic exons can be modulated by common single-nucleotide polymorphisms (SNPs), resulting in phenotypic differences amongst different genotypes. METHODS We sought to investigate whether additional 'SNPtic' exons may exist, and whether these could provide an explanatory mechanism for some of the genotype-phenotype correlations revealed by genome-wide association studies. We thoroughly searched the literature for reported cryptic exons, cross-referenced their genomic coordinates against the dbSNP database of common SNPs, then screened out SNPs with no reported phenotype associations. RESULTS This method discovered five probable SNPtic exons in the genes APC, FGB, GHRL, MYPBC3 and OTC. For four of these five exons, we observed that the phenotype associated with the SNP was compatible with the predicted splicing effect of the nucleotide change, whilst the fifth (in GHRL) likely had a more complex splice-switching effect. CONCLUSION Application of our search methods could augment the knowledge value of future cryptic exon reports and aid in generating better hypotheses for genome-wide association studies.
Collapse
Affiliation(s)
- Niall Patrick Keegan
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,Perron Institute, Perth, Western Australia, Australia
| | - Sue Fletcher
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Wang H, Li J, Wang S, Lu X, Zhang G, Zhuang Y, Li L, Wang W, Lin P, Chen C, Wang H, Chen Q, Jiang Y, Qu J, Xu L. Contribution of structural accessibility to the cooperative relationship of TF-lncRNA in myopia. Brief Bioinform 2021; 22:6217725. [PMID: 33834194 DOI: 10.1093/bib/bbab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
Transcriptional regulation is associated with complicated mechanisms including multiple molecular interactions and collaborative drive. Long noncoding RNAs (lncRNAs) have highly structured characteristics and play vital roles in the regulation of transcription in organisms. However, the specific contributions of conformation feature and underlying molecular mechanisms are still unclear. In the present paper, a hypothesis regarding molecular structure effect is presented, which proposes that lncRNAs fold into a complex spatial architecture and act as a skeleton to recruit transcription factors (TF) targeted binding, and which is involved in cooperative regulation. A candidate set of TF-lncRNA coregulation was constructed, and it was found that structural accessibility affected molecular binding force. In addition, transcription factor binding site (TFBS) regions of myopia-related lncRNA transcripts were disturbed, and it was discovered that base mutations affected the occurrence of significant molecular allosteric changes in important elements and variable splicing regions, mediating the onset and development of myopia. The results originated from structureomics and interactionomics and created conditions for systematic research on the mechanisms of structure-mediated TF-lncRNA coregulation in transcriptional regulation. Finally, these findings will help further the understanding of key regulatory roles of molecular allostery in cell physiological and pathological processes.
Collapse
Affiliation(s)
- Hong Wang
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University and cooperates with College of Bioinformatics Science and Technology at Harbin Medical University, Wenzhou 325027, P. R. China
| | - Jing Li
- College of Bioinformatics Science and Technology at Harbin Medical University, Wenzhou 325027, P. R. China
| | - Siyu Wang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Xiaoyan Lu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Guosi Zhang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Youyuan Zhuang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liansheng Li
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Wencan Wang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Peng Lin
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Chong Chen
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hao Wang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Qi Chen
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology at Harbin Medical University, Wenzhou 325027, P. R. China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liangde Xu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
9
|
Genetic Variation in the Domain II, 3' Untranslated Region of Human and Mosquito Derived Dengue Virus Strains in Sri Lanka. Viruses 2021; 13:v13030421. [PMID: 33807922 PMCID: PMC8001906 DOI: 10.3390/v13030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic variations in dengue virus (DENV) play a distinct role in epidemic emergence. The DENV 3′ UTR has become a recent interest in research. The objective of the study was to examine the genetic variation in the domain II, 3′ UTR region of human and mosquito-derived DENV. DENV-infected human sera were orally infected to laboratory reared Aedes aegypti mosquitoes. The domain II, 3′ UTR of each human- and mosquito-derived sample was amplified. The nucleotide sequence variation, phylogenetic and secondary structure analysis was carried out incorporating respective regions of so far recorded Sri Lankan and the reference genotype strains of the DENV3 and DENV1 serotypes. The human- and mosquito-derived domain II, 3′ UTR were identical in nucleotide sequences within the serotypes isolated, indicating the conserved nature of the region during host switch. The sequence analysis revealed distinct variations in study isolates compared to so far recorded Sri Lankan isolates. However, despite single nucleotide variations, the maintenance of structural integrity was evident in related strains within the serotypes in the secondary structure analysis. The phylogenetic analysis revealed distinct clade segregation of the study sequences from so far reported Sri Lankan isolates and illustrated the phylogenetic relations of the study sequences to the available global isolates of respective serotypes.
Collapse
|
10
|
Wang MC, McCown PJ, Schiefelbein GE, Brown JA. Secondary Structural Model of MALAT1 Becomes Unstructured in Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer. Noncoding RNA 2021; 7:6. [PMID: 33450947 PMCID: PMC7838788 DOI: 10.3390/ncrna7010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) influence cellular function through binding events that often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancerous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work analyzes how that structural model is expected to change in K562 cells, which originated from a patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost 60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely, MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells. Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the structure of MALAT1 may mediate cancer in a cell-type specific manner.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.C.W.); (P.J.M.); (G.E.S.)
| |
Collapse
|
11
|
Lin J, Chen Y, Zhang Y, Ouyang Z. Identification and analysis of RNA structural disruptions induced by single nucleotide variants using Riprap and RiboSNitchDB. NAR Genom Bioinform 2020; 2:lqaa057. [PMID: 33575608 PMCID: PMC7671322 DOI: 10.1093/nargab/lqaa057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 11/27/2022] Open
Abstract
RNA conformational alteration has significant impacts on cellular processes and phenotypic variations. An emerging genetic factor of RNA conformational alteration is a new class of single nucleotide variant (SNV) named riboSNitch. RiboSNitches have been demonstrated to be involved in many genetic diseases. However, identifying riboSNitches is notably difficult as the signals of RNA structural disruption are often subtle. Here, we introduce a novel computational framework–RIboSNitch Predictor based on Robust Analysis of Pairing probabilities (Riprap). Riprap identifies structurally disrupted regions around any given SNVs based on robust analysis of local structural configurations between wild-type and mutant RNA sequences. Compared to previous approaches, Riprap shows higher accuracy when assessed on hundreds of known riboSNitches captured by various experimental RNA structure probing methods including the parallel analysis of RNA structure (PARS) and the selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). Further, Riprap detects the experimentally validated riboSNitch that regulates human catechol-O-methyltransferase haplotypes and outputs structurally disrupted regions precisely at base resolution. Riprap provides a new approach to interpreting disease-related genetic variants. In addition, we construct a database (RiboSNitchDB) that includes the annotation and visualization of all presented riboSNitches in this study as well as 24 629 predicted riboSNitches from human expression quantitative trait loci.
Collapse
Affiliation(s)
- Jianan Lin
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Yang Chen
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuping Zhang
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Andrews RJ, Moss WN. Computational approaches for the discovery of splicing regulatory RNA structures. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194380. [PMID: 31048028 DOI: 10.1016/j.bbagrm.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Global RNA structure and local functional motifs mediate interactions important in determining the rates and patterns of mRNA splicing. In this review, we overview approaches for the computational prediction of RNA secondary structure with a special emphasis on the discovery of motifs important to RNA splicing. The process of identifying and modeling potential splicing regulatory structures is illustrated using a recently-developed approach for RNA structural motif discovery, the ScanFold pipeline, which is applied to the identification of a known splicing regulatory structure in influenza virus.
Collapse
Affiliation(s)
- Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
13
|
Ben-Hamo R, Zilberberg A, Cohen H, Bahar-Shany K, Wachtel C, Korach J, Aviel-Ronen S, Barshack I, Barash D, Levanon K, Efroni S. Resistance to paclitaxel is associated with a variant of the gene BCL2 in multiple tumor types. NPJ Precis Oncol 2019; 3:12. [PMID: 31044156 PMCID: PMC6478919 DOI: 10.1038/s41698-019-0084-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
Paclitaxel, the most commonly used form of chemotherapy, is utilized in curative protocols in different types of cancer. The response to treatment differs among patients. Biological interpretation of a mechanism to explain this personalized response is still unavailable. Since paclitaxel is known to target BCL2 and TUBB1, we used pan-cancer genomic data from hundreds of patients to show that a single-nucleotide variant in the BCL2 sequence can predict a patient’s response to paclitaxel. Here, we show a connection between this BCL2 genomic variant, its transcript structure, and protein abundance. We demonstrate these findings in silico, in vitro, in formalin-fixed paraffin-embedded (FFPE) tissue, and in patient lymphocytes. We show that tumors with the specific variant are more resistant to paclitaxel. We also show that tumor and normal cells with the variant express higher levels of BCL2 protein, a phenomenon that we validated in an independent cohort of patients. Our results indicate BCL2 sequence variations as determinants of chemotherapy resistance. The knowledge of individual BCL2 genomic sequences prior to the choice of chemotherapy may improve patient survival. The current work also demonstrates the benefit of community-wide, integrative omics data sources combined with in-lab experimentation and validation sets.
Collapse
Affiliation(s)
- Rotem Ben-Hamo
- 1The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900 Israel.,2The Broad Institute of Harvard and MIT, Cambridge, MA USA.,3Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alona Zilberberg
- 1The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900 Israel
| | - Helit Cohen
- 1The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900 Israel
| | - Keren Bahar-Shany
- 4Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat-Gan, 52621 Israel
| | - Chaim Wachtel
- 1The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900 Israel
| | - Jacob Korach
- 5Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat-Gan, 52621 Israel
| | - Sarit Aviel-Ronen
- 6Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan, 52621 Israel.,7Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat-Gan, 52621 Israel
| | - Iris Barshack
- 6Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan, 52621 Israel.,8Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978 Israel
| | - Danny Barash
- 9Department of Computer Science, Ben Gurion University of the Negev, Beer Sheva, 84105 Israel
| | - Keren Levanon
- 4Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat-Gan, 52621 Israel.,8Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978 Israel.,10The Dr. Pinchas Borenstein Talpiot Medical Leadership Program 2012, Institute of Oncology, Chaim Sheba Medical Center, Ramat-Gan, 52621 Israel
| | - Sol Efroni
- 1The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900 Israel
| |
Collapse
|
14
|
A Functional riboSNitch in the 3' Untranslated Region of FKBP5 Alters MicroRNA-320a Binding Efficiency and Mediates Vulnerability to Chronic Post-Traumatic Pain. J Neurosci 2018; 38:8407-8420. [PMID: 30150364 DOI: 10.1523/jneurosci.3458-17.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 01/30/2023] Open
Abstract
Previous studies have shown that common variants of the gene coding for FK506-binding protein 51 (FKBP5), a critical regulator of glucocorticoid sensitivity, affect vulnerability to stress-related disorders. In a previous report, FKBP5 rs1360780 was identified as a functional variant because of its effect on gene methylation. Here we report evidence for a novel functional FKBP5 allele, rs3800373. This study assessed the association between rs3800373 and post-traumatic chronic pain in 1607 women and men from two ethnically diverse human cohorts. The molecular mechanism through which rs3800373 affects adverse outcomes was established via in silico, in vivo, and in vitro analyses. The rs3800373 minor allele predicted worse adverse outcomes after trauma exposure, such that individuals with the minor (risk) allele developed more severe post-traumatic chronic musculoskeletal pain. Among these individuals, peritraumatic circulating FKBP5 expression levels increased as cortisol and glucocorticoid receptor (NR3C1) mRNA levels increased, consistent with increased glucocorticoid resistance. Bioinformatic, in vitro, and mutational analyses indicate that the rs3800373 minor allele reduces the binding of a stress- and pain-associated microRNA, miR-320a, to FKBP5 via altering the FKBP5 mRNA 3'UTR secondary structure (i.e., is a riboSNitch). This results in relatively greater FKBP5 translation, unchecked by miR-320a. Overall, these results identify an important gene-miRNA interaction influencing chronic pain risk in vulnerable individuals and suggest that exogenous methods to achieve targeted reduction in poststress FKBP5 mRNA expression may constitute useful therapeutic strategies.SIGNIFICANCE STATEMENT FKBP5 is a critical regulator of the stress response. Previous studies have shown that dysregulation of the expression of this gene plays a role in the pathogenesis of chronic pain development as well as a number of comorbid neuropsychiatric disorders. In the current study, we identified a functional allele (rs3800373) in the 3'UTR of FKBP5 that influences vulnerability to chronic post-traumatic pain in two ethnic cohorts. Using multiple complementary experimental approaches, we show that the FKBP5 rs3800373 minor allele alters the secondary structure of FKBP5 mRNA, decreasing the binding of a stress- and pain-associated microRNA, miR-320a. This results in relatively greater FKBP5 translation, unchecked by miR-320a, increasing glucocorticoid resistance and increasing vulnerability to post-traumatic pain.
Collapse
|
15
|
Lackey L, Coria A, Woods C, McArthur E, Laederach A. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure. RNA (NEW YORK, N.Y.) 2018; 24:513-528. [PMID: 29317542 PMCID: PMC5855952 DOI: 10.1261/rna.064469.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 05/22/2023]
Abstract
The impact of inherited and somatic mutations on messenger RNA (mRNA) structure remains poorly understood. Recent technological advances that leverage next-generation sequencing to obtain experimental structure data, such as SHAPE-MaP, can reveal structural effects of mutations, especially when these data are incorporated into structure modeling. Here, we analyze the ability of SHAPE-MaP to detect the relatively subtle structural changes caused by single-nucleotide mutations. We find that allele-specific sorting greatly improved our detection ability. Thus, we used SHAPE-MaP with a novel combination of clone-free robotic mutagenesis and allele-specific sorting to perform a rapid, comprehensive survey of noncoding somatic and inherited riboSNitches in two cancer-associated mRNAs, TPT1 and LCP1 Using rigorous thermodynamic modeling of the Boltzmann suboptimal ensemble, we identified a subset of mutations that change TPT1 and LCP1 RNA structure, with approximately 14% of all variants identified as riboSNitches. To confirm that these in vitro structures were biologically relevant, we tested how dependent TPT1 and LCP1 mRNA structures were on their environments. We performed SHAPE-MaP on TPT1 and LCP1 mRNAs in the presence or absence of cellular proteins and found that both mRNAs have similar overall folds in all conditions. RiboSNitches identified within these mRNAs in vitro likely exist under biological conditions. Overall, these data reveal a robust mRNA structural landscape where differences in environmental conditions and most sequence variants do not significantly alter RNA structural ensembles. Finally, predicting riboSNitches in mRNAs from sequence alone remains particularly challenging; these data will provide the community with benchmarks for further algorithmic development.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Aaztli Coria
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chanin Woods
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Evonne McArthur
- School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
16
|
Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1474. [PMID: 29582564 DOI: 10.1002/wrna.1474] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 12/24/2022]
Abstract
Genome Wide Association Studies (GWAS) have mapped thousands of genetic variants associated with complex disease risk and regulating quantitative traits, thus exploiting an unprecedented high-resolution genetic characterization of the human genome. A small fraction (3.7%) of the identified associations is located in untranslated regions (UTRs), and the molecular mechanism has been elucidated for few of them. Genetic variations at UTRs may modify regulatory elements affecting the interaction of the UTRs with proteins and microRNAs. The overall functional consequences include modulation of messenger RNA (mRNA) transcription, secondary structure, stability, localization, translation, and access to regulators like microRNAs (miRNAs) and RNA-binding proteins (RBPs). Alterations of these regulatory mechanisms are known to modify molecular pathways and cellular processes, potentially leading to disease processes. Here, we analyze some examples of genetic risk variants mapping in the UTR regulatory elements. We describe a recently identified genetic variant localized in the 3'UTR of the TNFSF13B gene, associated with autoimmunity risk and responsible of an increased stability and translation of TNFSF13B mRNA. We discuss how the correct use and interpretation of public GWAS repositories could lead to a better understanding of etiopathogenetic mechanisms and the generation of robust biological hypothesis as starting point for further functional studies. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institute of Health, Baltimore, Maryland
| | - Michael B Whalen
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Trento, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
17
|
Woods CT, Laederach A. Classification of RNA structure change by 'gazing' at experimental data. Bioinformatics 2018; 33:1647-1655. [PMID: 28130241 PMCID: PMC5447233 DOI: 10.1093/bioinformatics/btx041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 01/20/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Mutations (or Single Nucleotide Variants) in folded RiboNucleic Acid structures that cause local or global conformational change are riboSNitches. Predicting riboSNitches is challenging, as it requires making two, albeit related, structure predictions. The data most often used to experimentally validate riboSNitch predictions is Selective 2' Hydroxyl Acylation by Primer Extension, or SHAPE. Experimentally establishing a riboSNitch requires the quantitative comparison of two SHAPE traces: wild-type (WT) and mutant. Historically, SHAPE data was collected on electropherograms and change in structure was evaluated by 'gel gazing.' SHAPE data is now routinely collected with next generation sequencing and/or capillary sequencers. We aim to establish a classifier capable of simulating human 'gazing' by identifying features of the SHAPE profile that human experts agree 'looks' like a riboSNitch. Results We find strong quantitative agreement between experts when RNA scientists 'gaze' at SHAPE data and identify riboSNitches. We identify dynamic time warping and seven other features predictive of the human consensus. The classSNitch classifier reported here accurately reproduces human consensus for 167 mutant/WT comparisons with an Area Under the Curve (AUC) above 0.8. When we analyze 2019 mutant traces for 17 different RNAs, we find that features of the WT SHAPE reactivity allow us to improve thermodynamic structure predictions of riboSNitches. This is significant, as accurate RNA structural analysis and prediction is likely to become an important aspect of precision medicine. Availability and Implementation The classSNitch R package is freely available at http://classsnitch.r-forge.r-project.org . Contact alain@email.unc.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chanin Tolson Woods
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Lin L, McKerrow WH, Richards B, Phonsom C, Lawrence CE. Characterization and visualization of RNA secondary structure Boltzmann ensemble via information theory. BMC Bioinformatics 2018; 19:82. [PMID: 29506466 PMCID: PMC5836418 DOI: 10.1186/s12859-018-2078-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/20/2018] [Indexed: 12/26/2022] Open
Abstract
Background The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. Results To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. Conclusion We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.
Collapse
Affiliation(s)
- Luan Lin
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, 20993, MD, USA
| | - Wilson H McKerrow
- Division of Applied Mathematics, Brown University, Providence, 02912, RI, USA
| | | | - Chukiat Phonsom
- Department of Mathematics, University of Southern California, Los Angeles, 90089, CA, USA
| | - Charles E Lawrence
- Division of Applied Mathematics, Brown University, Providence, 02912, RI, USA.
| |
Collapse
|
19
|
Froebel BR, Trujillo AJ, Sullivan JM. Effects of Pathogenic Variations in the Human Rhodopsin Gene (hRHO) on the Predicted Accessibility for a Lead Candidate Ribozyme. Invest Ophthalmol Vis Sci 2017; 58:3576-3591. [PMID: 28715844 PMCID: PMC5516567 DOI: 10.1167/iovs.16-20877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose The mutation-independent strategy for hammerhead ribozyme (hhRz) or RNA interference (RNAi)-based gene therapeutics to treat autosomal dominant diseases is predicated on the hypothesis that a single therapeutic would equivalently suppress all/most of the diverse mutant mRNAs in patients with the disease phenotype. However, the hypothesis has not been formally tested. We address this through a comprehensive bioinformatics study of how mutations affect target mRNA structure accessibility for a single lead hhRz therapeutic (725GUC↓), designed against human rod rhodopsin mRNA (hRHO), for patients with hRHO mutations that cause autosomal dominant retinitis pigmentosa. Methods A total of 199 in silico coding region mutations (missense, nonsense, insert, deletion, indel) were made in hRHO mRNA based on Human Gene Mutation Database and Database of Single Nucleotide Polymorphisms. Each mRNA was folded with MFold, SFold, and OligoWalk algorithms and subjected to a bioinformatics model called multiparameter prediction of RNA accessibility. Predicted accessibility of each mutant over both a broad local region and the explicit lead ribozyme annealing site were compared quantitatively to wild-type hRHO mRNA. Results Accessibility of the 725GUC↓ site is sensitive to some mutations. For single nucleotide missense mutations, proximity of the mutation to the hhRz annealing site increases the impact on predicted accessibility, but some distant mutations also influence accessibility. Conclusions A mutation-independent strategy appears viable in this specific context but certain mutations could significantly influence ribozyme or RNAi efficacy through impact on accessibility at the target annealing site/region. This possibility must be considered in applications of this gene therapy strategy.
Collapse
Affiliation(s)
- Beau R Froebel
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, State University of New York, University at Buffalo, Buffalo, New York, United States 3The Ross Eye Institute of University at Buffalo, Buffalo, New York, United States
| | - Alexandria J Trujillo
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, State University of New York, University at Buffalo, Buffalo, New York, United States 4Department of Pharmacology/Toxicology, State University of New York, University at Buffalo, Buffalo, New York, United States
| | - Jack M Sullivan
- Research Service, VA Western New York Healthcare System, Buffalo, New York, United States 2Department of Ophthalmology, State University of New York, University at Buffalo, Buffalo, New York, United States 3The Ross Eye Institute of University at Buffalo, Buffalo, New York, United States 4Department of Pharmacology/Toxicology, State University of New York, University at Buffalo, Buffalo, New York, United States 5Department of Physiology/Biophysics, State University of New York, University at Buffalo, Buffalo, New York, United States 6Neuroscience Program, State University of New York, University at Buffalo, Buffalo, New York, United States 7The RNA Institute, University at Albany-State University of New York, Albany, New York, United States
| |
Collapse
|
20
|
Woods CT, Lackey L, Williams B, Dokholyan NV, Gotz D, Laederach A. Comparative Visualization of the RNA Suboptimal Conformational Ensemble In Vivo. Biophys J 2017. [PMID: 28625696 PMCID: PMC5529173 DOI: 10.1016/j.bpj.2017.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When a ribonucleic acid (RNA) molecule folds, it often does not adopt a single, well-defined conformation. The folding energy landscape of an RNA is highly dependent on its nucleotide sequence and molecular environment. Cellular molecules sometimes alter the energy landscape, thereby changing the ensemble of likely low-energy conformations. The effects of these energy landscape changes on the conformational ensemble are particularly challenging to visualize for large RNAs. We have created a robust approach for visualizing the conformational ensemble of RNAs that is well suited for in vitro versus in vivo comparisons. Our method creates a stable map of conformational space for a given RNA sequence. We first identify single point mutations in the RNA that maximally sample suboptimal conformational space based on the ensemble’s partition function. Then, we cluster these diverse ensembles to identify the most diverse partition functions for Boltzmann stochastic sampling. By using, to our knowledge, a novel nestedness distance metric, we iteratively add mutant suboptimal ensembles to converge on a stable 2D map of conformational space. We then compute the selective 2′ hydroxyl acylation by primer extension (SHAPE)-directed ensemble for the RNA folding under different conditions, and we project these ensembles on the map to visualize. To validate our approach, we established a conformational map of the Vibrio vulnificus add adenine riboswitch that reveals five classes of structures. In the presence of adenine, projection of the SHAPE-directed sampling correctly identified the on-conformation; without the ligand, only off-conformations were visualized. We also collected the whole-transcript in vitro and in vivo SHAPE-MaP for human β-actin messenger RNA that revealed similar global folds in both conditions. Nonetheless, a comparison of in vitro and in vivo data revealed that specific regions exhibited significantly different SHAPE-MaP profiles indicative of structural rearrangements, including rearrangement consistent with binding of the zipcode protein in a region distal to the stop codon.
Collapse
Affiliation(s)
- Chanin T Woods
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benfeard Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Gotz
- Carolina Health Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alain Laederach
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
21
|
Sandhu HS, Puri S, Sharma R, Sokhi J, Singh G, Matharoo K, Bhanwer AJS. Associating genetic variation at Perilipin 1, Complement Factor D and Adiponectin loci to the bone health status in North Indian population. Gene 2017; 610:80-89. [DOI: 10.1016/j.gene.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/09/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
|
22
|
Choudhary K, Deng F, Aviran S. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. QUANTITATIVE BIOLOGY 2017; 5:3-24. [PMID: 28717530 PMCID: PMC5510538 DOI: 10.1007/s40484-017-0093-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data. RESULTS We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy. CONCLUSIONS To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.
Collapse
Affiliation(s)
| | | | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
23
|
|
24
|
Nitsche A, Stadler PF. Evolutionary clues in lncRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27436689 DOI: 10.1002/wrna.1376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022]
Abstract
The diversity of long non-coding RNAs (lncRNAs) in the human transcriptome is in stark contrast to the sparse exploration of their functions concomitant with their conservation and evolution. The pervasive transcription of the largely non-coding human genome makes the evolutionary age and conservation patterns of lncRNAs to a topic of interest. Yet it is a fairly unexplored field and not that easy to determine as for protein-coding genes. Although there are a few experimentally studied cases, which are conserved at the sequence level, most lncRNAs exhibit weak or untraceable primary sequence conservation. Recent studies shed light on the interspecies conservation of secondary structures among lncRNA homologs by using diverse computational methods. This highlights the importance of structure on functionality of lncRNAs as opposed to the poor impact of primary sequence changes. Further clues in the evolution of lncRNAs are given by selective constraints on non-coding gene structures (e.g., promoters or splice sites) as well as the conservation of prevalent spatio-temporal expression patterns. However, a rapid evolutionary turnover is observable throughout the heterogeneous group of lncRNAs. This still gives rise to questions about its functional meaning. WIREs RNA 2017, 8:e1376. doi: 10.1002/wrna.1376 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Anne Nitsche
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Institute de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Cedex, France
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology - IZI, Leipzig, Germany.,Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.,Department of Theoretical Chemistry, University of Vienna, Wien, Austria.,Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
25
|
Kutchko KM, Laederach A. Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27396578 PMCID: PMC5179297 DOI: 10.1002/wrna.1374] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Selective 2′‐hydroxyl acylation analyzed by primer extension (SHAPE) provides information on RNA structure at single‐nucleotide resolution. It is most often used in conjunction with RNA secondary structure prediction algorithms as a probabilistic or thermodynamic restraint. With the recent advent of ultra‐high‐throughput approaches for collecting SHAPE data, the applications of this technology are extending beyond structure prediction. In this review, we discuss recent applications of SHAPE data in the transcriptomic context and how this new experimental paradigm is changing our understanding of these experiments and RNA folding in general. SHAPE experiments probe both the secondary and tertiary structure of an RNA, suggesting that model‐free approaches for within and comparative RNA structure analysis can provide significant structural insight without the need for a full structural model. New methods incorporating SHAPE at different nucleotide resolutions are required to parse these transcriptomic data sets to transcend secondary structure modeling with global structural metrics. These ‘multiscale’ approaches provide deeper insights into RNA global structure, evolution, and function in the cell. WIREs RNA 2017, 8:e1374. doi: 10.1002/wrna.1374 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Katrina M Kutchko
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Cigliola V, Populaire C, Pierri CL, Deutsch S, Haefliger JA, Fadista J, Lyssenko V, Groop L, Rueedi R, Thorel F, Herrera PL, Meda P. A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells. PLoS One 2016; 11:e0150880. [PMID: 26959991 PMCID: PMC4784816 DOI: 10.1371/journal.pone.0150880] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/20/2016] [Indexed: 01/16/2023] Open
Abstract
Signalling through gap junctions contributes to control insulin secretion and, thus, blood glucose levels. Gap junctions of the insulin-producing β-cells are made of connexin 36 (Cx36), which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those observed in type 2 diabetes (T2D). GJD2 is also expressed in neurons, which share a number of common features with pancreatic β-cells. Given that a synonymous exonic single nucleotide polymorphism of human Cx36 (SNP rs3743123) associates with altered function of central neurons in a subset of epileptic patients, we investigated whether this SNP also caused alterations of β-cell function. Transfection of rs3743123 cDNA in connexin-lacking HeLa cells resulted in altered formation of gap junction plaques and cell coupling, as compared to those induced by wild type (WT) GJD2 cDNA. Transgenic mice expressing the very same cDNAs under an insulin promoter revealed that SNP rs3743123 expression consistently lead to a post-natal reduction of islet Cx36 levels and β-cell survival, resulting in hyperglycemia in selected lines. These changes were not observed in sex- and age-matched controls expressing WT hCx36. The variant GJD2 only marginally associated to heterogeneous populations of diabetic patients. The data document that a silent polymorphism of GJD2 is associated with altered β-cell function, presumably contributing to T2D pathogenesis.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Celine Populaire
- Centre Hospitalier Régional Universitaire Besançon, Besançon, France
| | - Ciro L. Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Samuel Deutsch
- Joint Genome Institute, Walnut Creek, California, United States of America
| | | | - João Fadista
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Steno Diabetes Center A/S, Gentofte, Denmark
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
27
|
Weeks KM. Review toward all RNA structures, concisely. Biopolymers 2015; 103:438-48. [PMID: 25546503 PMCID: PMC4446244 DOI: 10.1002/bip.22601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023]
Abstract
Profound insights regarding nucleic acid structure and function can be gleaned from very simple, direct, and chemistry-based strategies. Our approach strives to incorporate the elegant physical insights that Don Crothers instilled in those who trained in his laboratory. Don emphasized the advantages of focusing on direct and concise experiments even when the final objective was to understand something complex-potentially including the large-scale architectures of the genomes of RNA viruses and the transcriptomes of cells. Here, the author reviews the intellectual path, and a few detours, that led to the development of the SHAPE-MaP and RING-MaP technologies for interrogating RNA structure and function at large scales. The author also argues that greater attention to creating direct, less inferential experiments will convert "omics" investigations into lasting and definitive contributions to our understanding of biological function.
Collapse
Affiliation(s)
- Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290,
| |
Collapse
|
28
|
Kutchko KM, Sanders W, Ziehr B, Phillips G, Solem A, Halvorsen M, Weeks KM, Moorman N, Laederach A. Multiple conformations are a conserved and regulatory feature of the RB1 5' UTR. RNA (NEW YORK, N.Y.) 2015; 21:1274-85. [PMID: 25999316 PMCID: PMC4478346 DOI: 10.1261/rna.049221.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/27/2015] [Indexed: 05/22/2023]
Abstract
Folding to a well-defined conformation is essential for the function of structured ribonucleic acids (RNAs) like the ribosome and tRNA. Structured elements in the untranslated regions (UTRs) of specific messenger RNAs (mRNAs) are known to control expression. The importance of unstructured regions adopting multiple conformations, however, is still poorly understood. High-resolution SHAPE-directed Boltzmann suboptimal sampling of the Homo sapiens Retinoblastoma 1 (RB1) 5' UTR yields three distinct conformations compatible with the experimental data. Private single nucleotide variants (SNVs) identified in two patients with retinoblastoma each collapse the structural ensemble to a single but distinct well-defined conformation. The RB1 5' UTRs from Bos taurus (cow) and Trichechus manatus latirostris (manatee) are divergent in sequence from H. sapiens (human) yet maintain structural compatibility with high-probability base pairs. SHAPE chemical probing of the cow and manatee RB1 5' UTRs reveals that they also adopt multiple conformations. Luciferase reporter assays reveal that 5' UTR mutations alter RB1 expression. In a traditional model of disease, causative SNVs disrupt a key structural element in the RNA. For the subset of patients with heritable retinoblastoma-associated SNVs in the RB1 5' UTR, the absence of multiple structures is likely causative of the cancer. Our data therefore suggest that selective pressure will favor multiple conformations in eukaryotic UTRs to regulate expression.
Collapse
Affiliation(s)
- Katrina M Kutchko
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Wes Sanders
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Ben Ziehr
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Gabriela Phillips
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Amanda Solem
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Matthew Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Nathaniel Moorman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|
29
|
Solem AC, Halvorsen M, Ramos SBV, Laederach A. The potential of the riboSNitch in personalized medicine. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:517-32. [PMID: 26115028 PMCID: PMC4543445 DOI: 10.1002/wrna.1291] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/25/2015] [Accepted: 05/13/2015] [Indexed: 01/28/2023]
Abstract
RNA conformation plays a significant role in stability, ligand binding, transcription, and translation. Single nucleotide variants (SNVs) have the potential to disrupt specific structural elements because RNA folds in a sequence-specific manner. A riboSNitch is an element of RNA structure with a specific function that is disrupted by an SNV or a single nucleotide polymorphism (SNP; or polymorphism; SNVs occur with low frequency in the population, <1%). The riboSNitch is analogous to a riboswitch, where binding of a small molecule rather than mutation alters the structure of the RNA to control gene regulation. RiboSNitches are particularly relevant to interpreting the results of genome-wide association studies (GWAS). Often GWAS identify SNPs associated with a phenotype mapping to noncoding regions of the genome. Because a majority of the human genome is transcribed, significant subsets of GWAS SNPs are putative riboSNitches. The extent to which the transcriptome is tolerant of SNP-induced structure change is still poorly understood. Recent advances in ultra high-throughput structure probing begin to reveal the structural complexities of mutation-induced structure change. This review summarizes our current understanding of SNV and SNP-induced structure change in the human transcriptome and discusses the importance of riboSNitch discovery in interpreting GWAS results and massive sequencing projects.
Collapse
Affiliation(s)
- Amanda C Solem
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew Halvorsen
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.,Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Silvia B V Ramos
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.,Bioinformatics and Computational Biology Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Schwerk J, Jarret AP, Joslyn RC, Savan R. Landscape of post-transcriptional gene regulation during hepatitis C virus infection. Curr Opin Virol 2015; 12:75-84. [PMID: 25890065 DOI: 10.1016/j.coviro.2015.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/11/2022]
Abstract
Post-transcriptional regulation of gene expression plays a pivotal role in various gene regulatory networks including, but not limited to metabolism, embryogenesis and immune responses. Different mechanisms of post-transcriptional regulation, which can act individually, synergistically, or even in an antagonistic manner have been described. Hepatitis C virus (HCV) is notorious for subverting host immune responses and indeed exploits several components of the host's post-transcriptional regulatory machinery for its own benefit. At the same time, HCV replication is post-transcriptionally targeted by host cell components to blunt viral propagation. This review discusses the interplay of post-transcriptional mechanisms that affect host immune responses in the setting of HCV infection and highlights the sophisticated mechanisms both host and virus have evolved in the race for superiority.
Collapse
Affiliation(s)
- Johannes Schwerk
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Abigail P Jarret
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Rochelle C Joslyn
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
31
|
Study of Three Single Nucleotide Polymorphisms in the SLC6A14 Gene in Association with Male Infertility. Balkan J Med Genet 2015; 17:61-6. [PMID: 25937799 PMCID: PMC4413443 DOI: 10.2478/bjmg-2014-0075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although several genetic causes of male infertility are known, the condition in around 60.0–75.0% of infertile male patients appears to be idiopathic. In some, genetic causes may be polygenic and require several low-penetrance genes to produce a phenotype outcome. In others, pleiotropy, when a gene can produce several phenotypic traits, may be involved. We have investigated whether single nucleotide polymorphisms (SNPs) in the SLC6A14 [solute carrier family 6 (amino acid transporter), member 14] gene are associated with male infertility. This gene has previously been linked with obesity and cystic fibrosis, which are associated with male infertility. It has a role in the transport of tryptophan and synthesis of serotonin that are important for normal spermatogenesis and testicular function. We have analyzed three SNPs (rs2312054, rs2071877 and rs2011162) in 370 infertile men and 241 fertile controls from two different populations (Macedonian and Slovenian). We found that the rs2011162(G) allele and rs2312054(A)-rs2071877(C)-rs2011162(G) haplotype are present at lower frequencies in the infertile rather than the fertile men (p = 0.044 and p = 0.0144, respectively). We concluded that the SLC6A14 gene may be a population-specific, low-penetrance locus which confers susceptibility to male infertility/subfertility. Additional follow-up studies of a large number of infertile men of different ethnic backgrounds are needed to confirm such a susceptibility.
Collapse
|
32
|
Pei S, Anthony JS, Meyer MM. Sampled ensemble neutrality as a feature to classify potential structured RNAs. BMC Genomics 2015; 16:35. [PMID: 25649229 PMCID: PMC4333902 DOI: 10.1186/s12864-014-1203-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 12/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structured RNAs have many biological functions ranging from catalysis of chemical reactions to gene regulation. Yet, many homologous structured RNAs display most of their conservation at the secondary or tertiary structure level. As a result, strategies for structured RNA discovery rely heavily on identification of sequences sharing a common stable secondary structure. However, correctly distinguishing structured RNAs from surrounding genomic sequence remains challenging, especially during de novo discovery. RNA also has a long history as a computational model for evolution due to the direct link between genotype (sequence) and phenotype (structure). From these studies it is clear that evolved RNA structures, like protein structures, can be considered robust to point mutations. In this context, an RNA sequence is considered robust if its neutrality (extent to which single mutant neighbors maintain the same secondary structure) is greater than that expected for an artificial sequence with the same minimum free energy structure. RESULTS In this work, we bring concepts from evolutionary biology to bear on the structured RNA de novo discovery process. We hypothesize that alignments corresponding to structured RNAs should consist of neutral sequences. We evaluate several measures of neutrality for their ability to distinguish between alignments of structured RNA sequences drawn from Rfam and various decoy alignments. We also introduce a new measure of RNA structural neutrality, the structure ensemble neutrality (SEN). SEN seeks to increase the biological relevance of existing neutrality measures in two ways. First, it uses information from an alignment of homologous sequences to identify a conserved biologically relevant structure for comparison. Second, it only counts base-pairs of the original structure that are absent in the comparison structure and does not penalize the formation of additional base-pairs. CONCLUSION We find that several measures of neutrality are effective at separating structured RNAs from decoy sequences, including both shuffled alignments and flanking genomic sequence. Furthermore, as an independent feature classifier to identify structured RNAs, SEN yields comparable performance to current approaches that consider a variety of features including stability and sequence identity. Finally, SEN outperforms other measures of neutrality at detecting mutational robustness in bacterial regulatory RNA structures.
Collapse
Affiliation(s)
- Shermin Pei
- Boston College, 140 Commonwealth Ave., Chestnut Hill, 02467, MA, USA.
| | - Jon S Anthony
- Boston College, 140 Commonwealth Ave., Chestnut Hill, 02467, MA, USA.
| | - Michelle M Meyer
- Boston College, 140 Commonwealth Ave., Chestnut Hill, 02467, MA, USA.
| |
Collapse
|
33
|
Corley M, Solem A, Qu K, Chang HY, Laederach A. Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark. Nucleic Acids Res 2015; 43:1859-68. [PMID: 25618847 PMCID: PMC4330374 DOI: 10.1093/nar/gkv010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ribonucleic acid (RNA) secondary structure prediction continues to be a significant challenge, in particular when attempting to model sequences with less rigidly defined structures, such as messenger and non-coding RNAs. Crucial to interpreting RNA structures as they pertain to individual phenotypes is the ability to detect RNAs with large structural disparities caused by a single nucleotide variant (SNV) or riboSNitches. A recently published human genome-wide parallel analysis of RNA structure (PARS) study identified a large number of riboSNitches as well as non-riboSNitches, providing an unprecedented set of RNA sequences against which to benchmark structure prediction algorithms. Here we evaluate 11 different RNA folding algorithms’ riboSNitch prediction performance on these data. We find that recent algorithms designed specifically to predict the effects of SNVs on RNA structure, in particular remuRNA, RNAsnp and SNPfold, perform best on the most rigorously validated subsets of the benchmark data. In addition, our benchmark indicates that general structure prediction algorithms (e.g. RNAfold and RNAstructure) have overall better performance if base pairing probabilities are considered rather than minimum free energy calculations. Although overall aggregate algorithmic performance on the full set of riboSNitches is relatively low, significant improvement is possible if the highest confidence predictions are evaluated independently.
Collapse
Affiliation(s)
- Meredith Corley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 37599, USA Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda Solem
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 37599, USA
| | - Kun Qu
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 37599, USA Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
|
35
|
Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, Segal E, Chang HY. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 2014; 505:706-9. [PMID: 24476892 PMCID: PMC3973747 DOI: 10.1038/nature12946] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 12/16/2013] [Indexed: 02/01/2023]
Abstract
In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program1. Yet the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSS) in a human family Trio, providing a comprehensive RSS map of human coding and noncoding RNAs. We identify unique RSS signatures that demarcate open reading frames, splicing junctions, and define authentic microRNA binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1900 transcribed single nucleotide variants (~15% of all transcribed SNVs) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSS. Selective depletion of RiboSNitches versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3’UTRs, binding sites of miRNAs and RNA binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.
Collapse
Affiliation(s)
- Yue Wan
- 1] Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Stem Cell and Development, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672 [3]
| | - Kun Qu
- 1] Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2]
| | - Qiangfeng Cliff Zhang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ryan A Flynn
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ohad Manor
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel
| | - Zhengqing Ouyang
- 1] Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, ASB Call Box 901 Farmington, Connecticut 06030, USA
| | - Jiajing Zhang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert C Spitale
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel
| | - Howard Y Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
36
|
Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J. RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs. Hum Mutat 2013; 34:546-56. [PMID: 23315997 PMCID: PMC3708107 DOI: 10.1002/humu.22273] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/18/2012] [Indexed: 02/05/2023]
Abstract
Structural characteristics are essential for the functioning of many noncoding RNAs and cis-regulatory elements of mRNAs. SNPs may disrupt these structures, interfere with their molecular function, and hence cause a phenotypic effect. RNA folding algorithms can provide detailed insights into structural effects of SNPs. The global measures employed so far suffer from limited accuracy of folding programs on large RNAs and are computationally too demanding for genome-wide applications. Here, we present a strategy that focuses on the local regions of maximal structural change between mutant and wild-type. These local regions are approximated in a “screening mode” that is intended for genome-wide applications. Furthermore, localized regions are identified as those with maximal discrepancy. The mutation effects are quantified in terms of empirical P values. To this end, the RNAsnp software uses extensive precomputed tables of the distribution of SNP effects as function of length and GC content. RNAsnp thus achieves both a noise reduction and speed-up of several orders of magnitude over shuffling-based approaches. On a data set comprising 501 SNPs associated with human-inherited diseases, we predict 54 to have significant local structural effect in the untranslated region of mRNAs. RNAsnp is available at http://rth.dk/resources/rnasnp.
Collapse
|
37
|
Bulik-Sullivan B, Selitsky S, Sethupathy P. Prioritization of genetic variants in the microRNA regulome as functional candidates in genome-wide association studies. Hum Mutat 2013; 34:1049-56. [PMID: 23595788 PMCID: PMC3807557 DOI: 10.1002/humu.22337] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023]
Abstract
Comprehensive analyses of results from genome-wide association studies (GWAS) have demonstrated that complex disease/trait-associated loci are enriched in gene regulatory regions of the genome. The search for causal regulatory variation has focused primarily on transcriptional elements, such as promoters and enhancers. microRNAs (miRNAs) are now widely appreciated as critical posttranscriptional regulators of gene expression and are thought to impart stability to biological systems. Naturally occurring genetic variation in the miRNA regulome is likely an important contributor to phenotypic variation in the human population. However, the extent to which polymorphic miRNA-mediated gene regulation underlies GWAS signals remains unclear. In this study, we have developed the most comprehensive bioinformatic analysis pipeline to date for cataloging and prioritizing variants in the miRNA regulome as functional candidates in GWAS. We highlight specific findings, including a variant in the promoter of the miRNA let-7 that may contribute to human height variation. We also provide a discussion of how our approach can be expanded in the future. Overall, we believe that the results of this study will be valuable for researchers interested in determining whether GWAS signals implicate the miRNA regulome in their disease/trait of interest.
Collapse
Affiliation(s)
- Brendan Bulik-Sullivan
- Department of Genetics, University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Sara Selitsky
- Department of Genetics, University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Praveen Sethupathy
- Department of Genetics, University of North Carolina at Chapel HillChapel Hill, North Carolina
- Carolina Center for Genome Sciences, University of North Carolina at Chapel HillChapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, North Carolina
| |
Collapse
|
38
|
Evolutionary evidence for alternative structure in RNA sequence co-variation. PLoS Comput Biol 2013; 9:e1003152. [PMID: 23935473 PMCID: PMC3723493 DOI: 10.1371/journal.pcbi.1003152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
Sequence conservation and co-variation of base pairs are hallmarks of structured RNAs. For certain RNAs (e.g. riboswitches), a single sequence must adopt at least two alternative secondary structures to effectively regulate the message. If alternative secondary structures are important to the function of an RNA, we expect to observe evolutionary co-variation supporting multiple conformations. We set out to characterize the evolutionary co-variation supporting alternative conformations in riboswitches to determine the extent to which alternative secondary structures are conserved. We found strong co-variation support for the terminator, P1, and anti-terminator stems in the purine riboswitch by extending alignments to include terminator sequences. When we performed Boltzmann suboptimal sampling on purine riboswitch sequences with terminators we found that these sequences appear to have evolved to favor specific alternative conformations. We extended our analysis of co-variation to classic alignments of group I/II introns, tRNA, and other classes of riboswitches. In a majority of these RNAs, we found evolutionary evidence for alternative conformations that are compatible with the Boltzmann suboptimal ensemble. Our analyses suggest that alternative conformations are selected for and thus likely play functional roles in even the most structured of RNAs. RNA (Ribonucleic Acid) is a messenger of genetic information, master regulator, and catalyst in the cell. To carry out its function, RNA can fold into complex three-dimensional structures. Certain classes of RNAs, called riboswitches, adopt at least two alternative structures to act as a switch. We set out to detect the evolutionary signal for alternative structures in riboswitches as we hypothesize that these RNA sequences must have evolved to allow both conformations. We find that indeed such signals exist when we compare the sequences of riboswitches from multiple species. When we extend this analysis to other RNA regulators in the cell that are not thought of as switches, we detect equivalent evolutionary support for alternative structures. Viewed through the lens of evolutionary structure conservation RNA sequences appear to have adapted to adopt multiple conformations.
Collapse
|
39
|
Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J. The RNAsnp web server: predicting SNP effects on local RNA secondary structure. Nucleic Acids Res 2013; 41:W475-9. [PMID: 23630321 PMCID: PMC3977658 DOI: 10.1093/nar/gkt291] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The function of many non-coding RNA genes and cis-regulatory elements of messenger RNA largely depends on the structure, which is in turn determined by their sequence. Single nucleotide polymorphisms (SNPs) and other mutations may disrupt the RNA structure, interfere with the molecular function and hence cause a phenotypic effect. RNAsnp is an efficient method to predict the effect of SNPs on local RNA secondary structure based on the RNA folding algorithms implemented in the Vienna RNA package. The SNP effects are quantified in terms of empirical P-values, which, for computational efficiency, are derived from extensive pre-computed tables of distributions of substitution effects as a function of gene length and GC content. Here, we present a web service that not only provides an interface for RNAsnp but also features a graphical output representation. In addition, the web server is connected to a local mirror of the UCSC genome browser database that enables the users to select the genomic sequences for analysis and visualize the results directly in the UCSC genome browser. The RNAsnp web server is freely available at: http://rth.dk/resources/rnasnp/.
Collapse
Affiliation(s)
- Radhakrishnan Sabarinathan
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Karabiber F, McGinnis JL, Favorov OV, Weeks KM. QuShape: rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA (NEW YORK, N.Y.) 2013; 19. [PMID: 23188808 PMCID: PMC3527727 DOI: 10.1261/rna.036327.112] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical probing of RNA and DNA structure is a widely used and highly informative approach for examining nucleic acid structure and for evaluating interactions with protein and small-molecule ligands. Use of capillary electrophoresis to analyze chemical probing experiments yields hundreds of nucleotides of information per experiment and can be performed on automated instruments. Extraction of the information from capillary electrophoresis electropherograms is a computationally intensive multistep analytical process, and no current software provides rapid, automated, and accurate data analysis. To overcome this bottleneck, we developed a platform-independent, user-friendly software package, QuShape, that yields quantitatively accurate nucleotide reactivity information with minimal user supervision. QuShape incorporates newly developed algorithms for signal decay correction, alignment of time-varying signals within and across capillaries and relative to the RNA nucleotide sequence, and signal scaling across channels or experiments. An analysis-by-reference option enables multiple, related experiments to be fully analyzed in minutes. We illustrate the usefulness and robustness of QuShape by analysis of RNA SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experiments.
Collapse
Affiliation(s)
- Fethullah Karabiber
- Department of Computer Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Jennifer L. McGinnis
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Oleg V. Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599-7575, USA
- Corresponding authorsE-mail E-mail
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
41
|
Bromberg Y, Capriotti E. SNP-SIG Meeting 2011: identification and annotation of SNPs in the context of structure, function, and disease. BMC Genomics 2012; 13 Suppl 4:S1. [PMID: 22759647 PMCID: PMC3395891 DOI: 10.1186/1471-2164-13-s4-s1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yana Bromberg
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|