1
|
Liu Z, Pei Y, Chen T, Yang Z, Jiang W, Feng X, Li X. Molecular quantification of fritillariae cirrhosae bulbus and its adulterants. Chin Med 2024; 19:138. [PMID: 39380014 PMCID: PMC11460136 DOI: 10.1186/s13020-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Fritillariae Cirrhosae Bulbus (FCB) is frequently adulterated with its closely related species due to personal or non-man made factors, leading to alterations in the composition of its constituents and compromising the efficacy of its products. METHODS The specific single nucleotide polymorphisms (SNPs) were screened by comparing candidate barcodes of Fritillaria and verified by amplification and sequencing. Herb molecular quantification (Herb-Q) was established by detecting specific SNPs, and the methodological validation was performed. Quantitative standard curves were established for FCB mixed with each adulterated species, and the quantitative validity of this method was verified based on external standard substance. In addition, eight commercial Shedan Chuanbei capsules (SDCBs) randomly selected were detected. RESULTS FCB and its five adulterants can be distinguished based on the ITS 341 site. The methodological investigation of Herb-Q shows optimal accuracy, and repeatability, which exhibited good linearity with an R2 of 0.9997 (> 0.99). An average bias in quantitative validity was 5.973% between the measured and actual values. Four of eight commercial SDCBs were adulterated with F. ussuriensis or F. thunbergia with adulteration levels ranging from 9 to 15% of the total weight. CONCLUSION This study confirmed that Herb-Q can quantitatively detect both the mixed herbs and Chinese patent medicines (CPMs) containing FCB with high reproducibility and accuracy. This method provides technical support for market regulation and helps safeguard patient rights.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yifei Pei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tiezhu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Zemin Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenjun Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiwen Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Noor MMA, Tahjib-Ul-Arif M, Alim SMA, Islam MM, Hasan MT, Babar MA, Hossain MA, Jewel ZA, Murata Y, Mostofa MG. Lentil adaptation to drought stress: response, tolerance, and breeding approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1403922. [PMID: 39228838 PMCID: PMC11368723 DOI: 10.3389/fpls.2024.1403922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024]
Abstract
Lentil (Lens culinaris Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield. To withstand drought-induced multiple negative effects, lentil plants evolved a variety of adaptation strategies that can be classified within three broad categories of drought tolerance mechanisms (i.e., escape, avoidance, and tolerance). Lentil adapts to drought by the modulation of various traits in the root system, leaf architecture, canopy structure, branching, anatomical features, and flowering process. Furthermore, the activation of certain defensive biochemical pathways as well as the regulation of gene functions contributes to lentil drought tolerance. Plant breeders typically employ conventional and mutational breeding approaches to develop lentil varieties that can withstand drought effects; however, little progress has been made in developing drought-tolerant lentil varieties using genomics-assisted technologies. This review highlights the current understanding of morpho-physiological, biochemical, and molecular mechanisms of lentil adaptation to drought stress. We also discuss the potential application of omics-assisted breeding approaches to develop lentil varieties with superior drought tolerance traits.
Collapse
Affiliation(s)
- Md. Mahmud Al Noor
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - S. M. Abdul Alim
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Mohimenul Islam
- Horticulture Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Md. Toufiq Hasan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ali Babar
- Agronomy Departments, University of Florida, Gainesville, FL, United States
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Zilhas Ahmed Jewel
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Yoshiyuki Murata
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Shivaprasad KM, Aski M, Mishra GP, Sinha SK, Gupta S, Mishra DC, Singh AK, Singh A, Tripathi K, Kumar RR, Kumar A, Kumar S, Dikshit HK. Genome-wide discovery of InDels and validation of PCR-Based InDel markers for earliness in a RIL population and genotypes of lentil (Lens culinaris Medik.). PLoS One 2024; 19:e0302870. [PMID: 38776345 PMCID: PMC11111061 DOI: 10.1371/journal.pone.0302870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties.
Collapse
Affiliation(s)
- K. M. Shivaprasad
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Forestry Research and Education-Institute of Forest Biodiversity, Hyderabad, India
| | - Muraleedhar Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan Prakash Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Subodh Kumar Sinha
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology, New Delhi, India
| | - Soma Gupta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | | | - Amit Kumar Singh
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Akanksha Singh
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science Complex, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science Complex, New Delhi, India
| | - Harsh K. Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Nishmitha K, Singh R, Akhtar J, Bashyal BM, Dubey SC, Tripathi A, Kamil D. Expression profiling and characterization of key RGA involved in lentil Fusarium wilt Race 5 resistance. World J Microbiol Biotechnol 2023; 39:306. [PMID: 37713019 DOI: 10.1007/s11274-023-03748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Fusarium wilt is a major threat to lentil production in India and worldwide. The presence of evolving virulent races has imposed the necessity of reliable management practices including breeding for resistance using unexplored germplasms. The magnitude of resistance by the plant is determined by rapid recognition of the pathogen and induction of defence genes. Resistance gene analogues have been key factors involved in the recognition and induction of defence response. In the present study, the expression of key RGA previously cloned was determined in three resistant accessions (L65, L83 and L90) and a susceptible accession (L27). The expression was assessed via qPCR at 24, 48 and 72 hpi against virulent race5 (CG-5). All the RGAs differentially transcribed in resistant and susceptible accession showed temporal variation. RGA Lc2, Lc8, Ln1 and Lo6 produced cDNA signals during early infection (24 hpi) predicting its involvement in recognition. LoRGA6 showed significant upregulation in L65 and L83 while downregulating in L27 and the full length of LoRGA6 loci was isolated by 5' and 3' RACE PCR. In-silico characterization revealed LoRGA6 loci code for 912 amino acids long polypeptide with a TIR motif at the N terminal and eight LRR motifs at the C terminal. The tertiary structure revealed a concave pocket-like structure at the LRR domain potentially involved in pathogen effectors interaction. The loci have ADP binding domain and ATPase activity. This has further paved the path for functional analysis of the loci by VIGS to understand the molecular mechanism of resistance.
Collapse
Affiliation(s)
- K Nishmitha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Jameel Akhtar
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S C Dubey
- Indian Council of Agricultural Research, New Delhi, 110001, India
| | - Aradhika Tripathi
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
5
|
Rajpal VR, Singh A, Kathpalia R, Thakur RK, Khan MK, Pandey A, Hamurcu M, Raina SN. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1127239. [PMID: 36998696 PMCID: PMC10044020 DOI: 10.3389/fpls.2023.1127239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 05/31/2023]
Abstract
Crop wild relatives (CWRs), landraces and exotic germplasm are important sources of genetic variability, alien alleles, and useful crop traits that can help mitigate a plethora of abiotic and biotic stresses and crop yield reduction arising due to global climatic changes. In the pulse crop genus Lens, the cultivated varieties have a narrow genetic base due to recurrent selections, genetic bottleneck and linkage drag. The collection and characterization of wild Lens germplasm resources have offered new avenues for the genetic improvement and development of stress-tolerant, climate-resilient lentil varieties with sustainable yield gains to meet future food and nutritional requirements. Most of the lentil breeding traits such as high-yield, adaptation to abiotic stresses and resistance to diseases are quantitative and require the identification of quantitative trait loci (QTLs) for marker assisted selection and breeding. Advances in genetic diversity studies, genome mapping and advanced high-throughput sequencing technologies have helped identify many stress-responsive adaptive genes, quantitative trait loci (QTLs) and other useful crop traits in the CWRs. The recent integration of genomics technologies with plant breeding has resulted in the generation of dense genomic linkage maps, massive global genotyping, large transcriptomic datasets, single nucleotide polymorphisms (SNPs), expressed sequence tags (ESTs) that have advanced lentil genomic research substantially and allowed for the identification of QTLs for marker-assisted selection (MAS) and breeding. Assembly of lentil and its wild species genomes (~4Gbp) opens up newer possibilities for understanding genomic architecture and evolution of this important legume crop. This review highlights the recent strides in the characterization of wild genetic resources for useful alleles, development of high-density genetic maps, high-resolution QTL mapping, genome-wide studies, MAS, genomic selections, new databases and genome assemblies in traditionally bred genus Lens for future crop improvement amidst the impending global climate change.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Renu Kathpalia
- Department of Botany, Kirori Mal College, University of Delhi, Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| |
Collapse
|
6
|
Dutta H, Mishra GP, Aski MS, Bosamia TC, Mishra DC, Bhati J, Sinha SK, Vijay D, C. T. MP, Das S, Pawar PAM, Kumar A, Tripathi K, Kumar RR, Yadava DK, Kumar S, Dikshit HK. Comparative transcriptome analysis, unfolding the pathways regulating the seed-size trait in cultivated lentil (Lens culinaris Medik.). Front Genet 2022; 13:942079. [PMID: 36035144 PMCID: PMC9399355 DOI: 10.3389/fgene.2022.942079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Market class, cooking time, quality, and milled grain yield are largely influenced by the seed size and shape of the lentil (Lens culinaris Medik.); thus, they are considered to be important quality traits. To unfold the pathways regulating seed size in lentils, a transcriptomic approach was performed using large-seeded (L4602) and small-seeded (L830) genotypes. The study has generated nearly 375 million high-quality reads, of which 98.70% were properly aligned to the reference genome. Among biological replicates, very high similarity in fragments per kilobase of exon per million mapped fragments values (R > 0.9) showed the consistency of RNA-seq results. Various differentially expressed genes associated mainly with the hormone signaling and cell division pathways, transcription factors, kinases, etc. were identified as having a role in cell expansion and seed growth. A total of 106,996 unigenes were used for differential expression (DE) analysis. String analysis identified various modules having certain key proteins like Ser/Thr protein kinase, seed storage protein, DNA-binding protein, microtubule-associated protein, etc. In addition, some growth and cell division–related micro-RNAs like miR3457 (cell wall formation), miR1440 (cell proliferation and cell cycles), and miR1533 (biosynthesis of plant hormones) were identified as having a role in seed size determination. Using RNA-seq data, 5254 EST-SSR primers were generated as a source for future studies aiming for the identification of linked markers. In silico validation using Genevestigator® was done for the Ser/Thr protein kinase, ethylene response factor, and Myb transcription factor genes. It is of interest that the xyloglucan endotransglucosylase gene was found differentially regulated, suggesting their role during seed development; however, at maturity, no significant differences were recorded for various cell wall parameters including cellulose, lignin, and xylose content. This is the first report on lentils that has unfolded the key seed size regulating pathways and unveiled a theoretical way for the development of lentil genotypes having customized seed sizes.
Collapse
Affiliation(s)
- Haragopal Dutta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan P. Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Muraleedhar S. Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Tejas C. Bosamia
- Plant Omics Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jyotika Bhati
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dunna Vijay
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Manjunath Prasad C. T.
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, Faridabad, India
| | | | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | | | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, NASC Complex, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| |
Collapse
|
7
|
Song J, Mavraganis I, Shen W, Yang H, Cram D, Xiang D, Patterson N, Zou J. Transcriptome dissection of candidate genes associated with lentil seed quality traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:815-826. [PMID: 35395134 DOI: 10.1111/plb.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Lentils provide a rich plant-based protein source and staple food in many parts of the world. Despite numerous nutritional benefits, lentil seeds also possess undesirable elements, such as anti-nutritional factors. Understanding the genetic networks of seed metabolism is of great importance for improving the seed nutritional profile. We applied RNA sequencing analysis to survey the transcriptome of developing lentil seeds and compared this with that of the pod shells and leaves. In total, we identified 2622 genes differentially expressed among the tissues examined. Genes preferentially expressed in seeds were enriched in the Gene Ontology (GO) terms associated with development, nitrogen and carbon (N/C) metabolism and lipid synthesis. We further categorized seed preferentially expressed genes based on their involvement in storage protein production, starch accumulation, lipid and suberin metabolism, phytate, saponin and phenylpropanoid biosynthesis. The availability of transcript profile datasets on lentil seed metabolism and a roadmap of candidate genes presented here will be of great value for breeding strategies towards further improvement of lentil seed quality traits.
Collapse
Affiliation(s)
- J Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - I Mavraganis
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - W Shen
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - H Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - D Cram
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - D Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - N Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - J Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Salgotra RK, Stewart CN. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. PLANTS (BASEL, SWITZERLAND) 2022; 11:1866. [PMID: 35890499 PMCID: PMC9325189 DOI: 10.3390/plants11141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | | |
Collapse
|
9
|
Rajandran V, Ortega R, Vander Schoor JK, Butler JB, Freeman JS, Hecht VFG, Erskine W, Murfet IC, Bett KE, Weller JL. Genetic analysis of early phenology in lentil identifies distinct loci controlling component traits. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3963-3977. [PMID: 35290451 PMCID: PMC9238442 DOI: 10.1093/jxb/erac107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/11/2022] [Indexed: 05/25/2023]
Abstract
Modern-day domesticated lentil germplasm is generally considered to form three broad adaptation groups: Mediterranean, South Asian, and northern temperate, which correspond to the major global production environments. Reproductive phenology plays a key role in lentil adaptation to this diverse ecogeographic variation. Here, we dissect the characteristic earliness of the pilosae ecotype, suited to the typically short cropping season of South Asian environments. We identified two loci, DTF6a and DTF6b, at which dominant alleles confer early flowering, and we show that DTF6a alone is sufficient to confer early flowering under extremely short photoperiods. Genomic synteny confirmed the presence of a conserved cluster of three florigen (FT) gene orthologues among potential candidate genes, and expression analysis in near-isogenic material showed that the early allele is associated with a strong derepression of the FTa1 gene in particular. Sequence analysis revealed a 7.4 kb deletion in the FTa1-FTa2 intergenic region in the pilosae parent, and a wide survey of >350 accessions with diverse origin showed that the dtf6a allele is predominant in South Asian material. Collectively, these results contribute to understanding the molecular basis of global adaptation in lentil, and further emphasize the importance of this conserved genomic region for adaptation in temperate legumes generally.
Collapse
Affiliation(s)
- Vinodan Rajandran
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Raul Ortega
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | | | - Jakob B Butler
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Jules S Freeman
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
- Forest Genetics and Biotechnology, Scion, Private Bag 3020, Rotorua 3046, New Zealand
| | - Valerie F G Hecht
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Willie Erskine
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ian C Murfet
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | | |
Collapse
|
10
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
11
|
Tiwari M, Singh B, Min D, Jagadish SVK. Omics Path to Increasing Productivity in Less-Studied Crops Under Changing Climate-Lentil a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:813985. [PMID: 35615121 PMCID: PMC9125188 DOI: 10.3389/fpls.2022.813985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Conventional breeding techniques for crop improvement have reached their full potential, and hence, alternative routes are required to ensure a sustained genetic gain in lentils. Although high-throughput omics technologies have been effectively employed in major crops, less-studied crops such as lentils have primarily relied on conventional breeding. Application of genomics and transcriptomics in lentils has resulted in linkage maps and identification of QTLs and candidate genes related to agronomically relevant traits and biotic and abiotic stress tolerance. Next-generation sequencing (NGS) complemented with high-throughput phenotyping (HTP) technologies is shown to provide new opportunities to identify genomic regions and marker-trait associations to increase lentil breeding efficiency. Recent introduction of image-based phenotyping has facilitated to discern lentil responses undergoing biotic and abiotic stresses. In lentil, proteomics has been performed using conventional methods such as 2-D gel electrophoresis, leading to the identification of seed-specific proteome. Metabolomic studies have led to identifying key metabolites that help differentiate genotypic responses to drought and salinity stresses. Independent analysis of differentially expressed genes from publicly available transcriptomic studies in lentils identified 329 common transcripts between heat and biotic stresses. Similarly, 19 metabolites were common across legumes, while 31 were common in genotypes exposed to drought and salinity stress. These common but differentially expressed genes/proteins/metabolites provide the starting point for developing high-yielding multi-stress-tolerant lentils. Finally, the review summarizes the current findings from omic studies in lentils and provides directions for integrating these findings into a systems approach to increase lentil productivity and enhance resilience to biotic and abiotic stresses under changing climate.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- *Correspondence: Manish Tiwari,
| | - Baljinder Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - S. V. Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- S. V. Krishna Jagadish,
| |
Collapse
|
12
|
Genomics Associated Interventions for Heat Stress Tolerance in Cool Season Adapted Grain Legumes. Int J Mol Sci 2021; 23:ijms23010399. [PMID: 35008831 PMCID: PMC8745526 DOI: 10.3390/ijms23010399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cool season grain legumes occupy an important place among the agricultural crops and essentially provide multiple benefits including food supply, nutrition security, soil fertility improvement and revenue for farmers all over the world. However, owing to climate change, the average temperature is steadily rising, which negatively affects crop performance and limits their yield. Terminal heat stress that mainly occurred during grain development phases severely harms grain quality and weight in legumes adapted to the cool season, such as lentils, faba beans, chickpeas, field peas, etc. Although, traditional breeding approaches with advanced screening procedures have been employed to identify heat tolerant legume cultivars. Unfortunately, traditional breeding pipelines alone are no longer enough to meet global demands. Genomics-assisted interventions including new-generation sequencing technologies and genotyping platforms have facilitated the development of high-resolution molecular maps, QTL/gene discovery and marker-assisted introgression, thereby improving the efficiency in legumes breeding to develop stress-resilient varieties. Based on the current scenario, we attempted to review the intervention of genomics to decipher different components of tolerance to heat stress and future possibilities of using newly developed genomics-based interventions in cool season adapted grain legumes.
Collapse
|
13
|
Mishra GP, Aski MS, Bosamia T, Chaurasia S, Mishra DC, Bhati J, Kumar A, Javeria S, Tripathi K, Kohli M, Kumar RR, Singh AK, Devi J, Kumar S, Dikshit HK. Insights into the Host-Pathogen Interaction Pathways through RNA-Seq Analysis of Lens culinaris Medik. in Response to Rhizoctonia bataticola Infection. Genes (Basel) 2021; 13:genes13010090. [PMID: 35052429 PMCID: PMC8774501 DOI: 10.3390/genes13010090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Dry root rot (Rhizoctonia bataticola) is an important disease of lentils (Lens culinaris Medik.).To gain an insight into the molecular aspects of host-pathogen interactions, the RNA-seq approach was used in lentils following inoculation with R.bataticola. The RNA-Seq has generated >450 million high-quality reads (HQRs) and nearly 96.97% were properly aligned to the reference genome. Very high similarity in FPKM (fragments per kilobase of exon per million mapped fragments) values (R > 0.9) among biological replicates showed the consistency of the RNA-Seq results. The study revealed various DEGs (differentially expressed genes) that were associated with changes in phenolic compounds, transcription factors (TFs), antioxidants, receptor kinases, hormone signals which corresponded to the cell wall modification enzymes, defense-related metabolites, and jasmonic acid (JA)/ethylene (ET) pathways. Gene ontology (GO) categorization also showed similar kinds of significantly enriched similar GO terms. Interestingly, of the total unigenes (42,606), 12,648 got assembled and showed significant hit with Rhizoctonia species. String analysis also revealed the role of various disease responsive proteins viz., LRR family proteins, LRR-RLKs, protein kinases, etc. in the host-pathogen interaction. Insilico validation analysis was performed using Genevestigator® and DEGs belonging to six major defense-response groups viz., defense-related enzymes, disease responsive genes, hormones, kinases, PR (pathogenesis related) proteins, and TFs were validated. For the first time some key miRNA targets viz. miR156, miR159, miR167, miR169, and miR482 were identified from the studied transcriptome, which may have some vital role in Rhizoctonia-based responses in lentils. The study has revealed the molecular mechanisms of the lentil/R.bataticola interactions and also provided a theoretical approach for the development of lentil genotypes resistant to R.bataticola.
Collapse
Affiliation(s)
- Gyan P. Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India; (G.P.M.); (M.S.A.); (S.C.); (M.K.)
| | - Muraleedhar S. Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India; (G.P.M.); (M.S.A.); (S.C.); (M.K.)
| | - Tejas Bosamia
- Plant Omics Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India;
| | - Shiksha Chaurasia
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India; (G.P.M.); (M.S.A.); (S.C.); (M.K.)
| | - Dwijesh Chandra Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (D.C.M.); (J.B.)
| | - Jyotika Bhati
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi 110012, India; (D.C.M.); (J.B.)
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.); (S.J.)
| | - Shaily Javeria
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.); (S.J.)
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi 110012, India;
| | - Manju Kohli
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India; (G.P.M.); (M.S.A.); (S.C.); (M.K.)
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Amit Kumar Singh
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, New Delhi 110012, India;
| | - Jyoti Devi
- Division of Crop Improvement, Indian Institute of Vegetable Research, Varanasi 221305, India;
| | - Shiv Kumar
- Biodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas, Avenue HafianeCherkaoui, Rabat 10112, Morocco
- Correspondence: (S.K.); (H.K.D.)
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India; (G.P.M.); (M.S.A.); (S.C.); (M.K.)
- Correspondence: (S.K.); (H.K.D.)
| |
Collapse
|
14
|
Guerra-García A, Gioia T, von Wettberg E, Logozzo G, Papa R, Bitocchi E, Bett KE. Intelligent Characterization of Lentil Genetic Resources: Evolutionary History, Genetic Diversity of Germplasm, and the Need for Well-Represented Collections. Curr Protoc 2021; 1:e134. [PMID: 34004055 DOI: 10.1002/cpz1.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genetic and phenotypic characterization of crops allows us to elucidate their evolutionary and domestication history, the genetic basis of important traits, and the use of variation present in landraces and wild relatives to enhance resilience. In this context, we aim to provide an overview of the main genetic resources developed for lentil and their main outcomes, and to suggest protocols for continued work on this important crop. Lens culinaris is the third-most-important cool-season grain and its use is increasing as a quick-cooking, nutritious, plant-based source of protein. L. culinaris was domesticated in the Fertile Crescent, and six additional wild taxa (L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans) are recognized. Numerous genetic diversity studies have shown that wild relatives present high levels of genetic variation and provide a reservoir of alleles that can be used for breeding programs. Furthermore, the integration of genetics/genomics and breeding techniques has resulted in identification of quantitative trait loci and genes related to attributes of interest. Genetic maps, massive genotyping, marker-assisted selection, and genomic selection are some of the genetic resources generated and applied in lentil. In addition, despite its size (∼4 Gbp) and complexity, the L. culinaris genome has been assembled, allowing a deeper understanding of its architecture. Still, major knowledge gaps exist in lentil, and a deeper understanding and characterization of germplasm resources, including wild relatives, is critical to lentil breeding and improvement. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Recording of lentil seed descriptors Basic Protocol 2: Lentil seed imaging Basic Protocol 3: Lentil seed increase Basic Protocol 4: Recording of primary lentil seed INCREASE descriptors.
Collapse
Affiliation(s)
- Azalea Guerra-García
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tania Gioia
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Eric von Wettberg
- Department of Plant and Soil Sciences and Gund Institute for the Environment, University of Vermont, Burlington, Vermont
| | - Giuseppina Logozzo
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Kumar J, Sen Gupta D. Prospects of next generation sequencing in lentil breeding. Mol Biol Rep 2020; 47:9043-9053. [PMID: 33037962 DOI: 10.1007/s11033-020-05891-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
Lentil is an important food legume crop that has large and complex genome. During past years, considerable attention has been given on the use of next generation sequencing for enriching the genomic resources including identification of SSR and SNP markers, development of unigenes, transcripts, and identification of candidate genes for biotic and abiotic stresses, analysis of genetic diversity and identification of genes/ QTLs for agronomically important traits. However, in other crops including pulses, next generation sequencing has revolutionized the genomic research and helped in genomic assisted breeding rapidly and cost effectively. The present review discuss current status and future prospects of the use NGS based breeding in lentil.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, 208024, India
| |
Collapse
|
16
|
Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Sci Rep 2020; 10:6790. [PMID: 32321933 PMCID: PMC7176738 DOI: 10.1038/s41598-020-63664-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Faba bean (Vicia faba L.) is a pulse crop of high nutritional value and high importance for sustainable agriculture and soil protection. With the objective of identifying gene-based SNPs, transcriptome sequencing was performed in order to reduce faba bean genome complexity. A set of 1,819 gene-based SNP markers polymorphic in three recombinant line populations was selected to enable the construction of a high-density consensus genetic map encompassing 1,728 markers well distributed in six linkage groups and spanning 1,547.71 cM with an average inter-marker distance of 0.89 cM. Orthology-based comparison of the faba bean consensus map with legume genome assemblies highlighted synteny patterns that partly reflected the phylogenetic relationships among species. Solid blocks of macrosynteny were observed between faba bean and the most closely-related sequenced legume species such as pea, barrel medic or chickpea. Numerous blocks could also be identified in more divergent species such as common bean or cowpea. The genetic tools developed in this work can be used in association mapping, genetic diversity, linkage disequilibrium or comparative genomics and provide a backbone for map-based cloning. This will make the identification of candidate genes of interest more efficient and will accelerate marker-assisted selection (MAS) and genomic-assisted breeding (GAB) in faba bean.
Collapse
|
17
|
Ma Y, Marzougui A, Coyne CJ, Sankaran S, Main D, Porter LD, Mugabe D, Smitchger JA, Zhang C, Amin MN, Rasheed N, Ficklin SP, McGee RJ. Dissecting the Genetic Architecture of Aphanomyces Root Rot Resistance in Lentil by QTL Mapping and Genome-Wide Association Study. Int J Mol Sci 2020; 21:ijms21062129. [PMID: 32244875 PMCID: PMC7139309 DOI: 10.3390/ijms21062129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Lentil (Lens culinaris Medikus) is an important source of protein for people in developing countries. Aphanomyces root rot (ARR) has emerged as one of the most devastating diseases affecting lentil production. In this study, we applied two complementary quantitative trait loci (QTL) analysis approaches to unravel the genetic architecture underlying this complex trait. A recombinant inbred line (RIL) population and an association mapping population were genotyped using genotyping by sequencing (GBS) to discover novel single nucleotide polymorphisms (SNPs). QTL mapping identified 19 QTL associated with ARR resistance, while association mapping detected 38 QTL and highlighted accumulation of favorable haplotypes in most of the resistant accessions. Seven QTL clusters were discovered on six chromosomes, and 15 putative genes were identified within the QTL clusters. To validate QTL mapping and genome-wide association study (GWAS) results, expression analysis of five selected genes was conducted on partially resistant and susceptible accessions. Three of the genes were differentially expressed at early stages of infection, two of which may be associated with ARR resistance. Our findings provide valuable insight into the genetic control of ARR, and genetic and genomic resources developed here can be used to accelerate development of lentil cultivars with high levels of partial resistance to ARR.
Collapse
Affiliation(s)
- Yu Ma
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (Y.M.); (D.M.); (S.P.F.)
| | - Afef Marzougui
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA; (A.M.); (S.S.); (C.Z.)
| | - Clarice J. Coyne
- USDA-ARS Plant Germplasm Introduction and Testing Unit, Washington State University, Pullman, WA 99164, USA;
| | - Sindhuja Sankaran
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA; (A.M.); (S.S.); (C.Z.)
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (Y.M.); (D.M.); (S.P.F.)
| | - Lyndon D. Porter
- USDA-ARS Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Deus Mugabe
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (D.M.); (J.A.S.)
| | - Jamin A. Smitchger
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (D.M.); (J.A.S.)
| | - Chongyuan Zhang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA; (A.M.); (S.S.); (C.Z.)
| | - Md. Nurul Amin
- Breeder Seed Production Center, Bangladesh Agricultural Research Institute, Debiganj-5020, Panchagarh, Bangladesh;
| | - Naser Rasheed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Stephen P. Ficklin
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (Y.M.); (D.M.); (S.P.F.)
| | - Rebecca J. McGee
- USDA-ARS Grain Legume Genetics and Physiology Research Unit, Pullman, WA 99164, USA
- Correspondence: ; Tel.: +1-509-335-0300
| |
Collapse
|
18
|
Rubinstein M, Eshed R, Rozen A, Zviran T, Kuhn DN, Irihimovitch V, Sherman A, Ophir R. Genetic diversity of avocado (Persea americana Mill.) germplasm using pooled sequencing. BMC Genomics 2019; 20:379. [PMID: 31092188 PMCID: PMC6521498 DOI: 10.1186/s12864-019-5672-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/08/2019] [Indexed: 12/25/2022] Open
Abstract
Background Discovering a genome-wide set of avocado (Persea americana Mill.) single nucleotide polymorphisms and characterizing the diversity of germplasm collection is a powerful tool for breeding. However, discovery is a costly process, due to loss of loci that are proven to be non-informative when genotyping the germplasm. Results Our study on a collection of 100 accessions comprised the three race types, Guatemalan, Mexican, and West Indian. To increase the chances of discovering polymorphic loci, three pools of genomic DNA, one from each race, were sequenced and the reads were aligned to a reference transcriptome. In total, 507,917 polymorphic loci were identified in the entire collection. Of these, 345,617 were observed in all three pools, 117,692 in two pools, 44,552 in one of the pools, and only 56 (0.0001%) were homozygous in the three pools but for different alleles. The polymorphic loci were validated using 192 randomly selected SNPs by genotyping the accessions within each pool. The sensitivity of polymorphic locus prediction ranged from 0.77 to 0.94. The correlation between the allele frequency estimated from the pooled sequences and actual allele frequency from genotype calling of individual accessions was r = 0.8. A subset of 109 SNPs were then used to evaluate the genetic relationships among avocado accessions and the genetic diversity of the collection. The three races were distinctly clustered by projecting the genetic variation on a PCA plot. As expected, by estimating the kinship coefficient for all the accessions, many of the cultivars from the California breeding program were closely related to each other, especially, the Hass-like ones. The green-skin avocados, e.g., ‘Bacon’, ‘Zutano’, ‘Ettinger’ and ‘Fuerte’ were also closely related to each other. Conclusions A framework for SNP discovery and genetically characterizing of a breeder‘s accessions was described. Sequencing pools of gDNA is a cost-effective approach to create a genome-wide stock of polymorphic loci for a breeding program. Reassessing the botanical and the genetic knowledge about the germplasm accessions is valuable for future breeding. Kinship analysis may be used as a first step in finding a parental candidates in a parentage analyses. Electronic supplementary material The online version of this article (10.1186/s12864-019-5672-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mor Rubinstein
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Ravit Eshed
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Ada Rozen
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Tali Zviran
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - David N Kuhn
- Subtropical Horticulture Research Station, United States Department of Agriculture-Agriculture Research Service, Miami, FL, USA
| | - Vered Irihimovitch
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Amir Sherman
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Ron Ophir
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| |
Collapse
|
19
|
Polanco C, Sáenz de Miera LE, González AI, García P, Fratini R, Vaquero F, Vences FJ, Pérez de la Vega M. Construction of a high-density interspecific (Lens culinaris x L. odemensis) genetic map based on functional markers for mapping morphological and agronomical traits, and QTLs affecting resistance to Ascochyta in lentil. PLoS One 2019; 14:e0214409. [PMID: 30917174 PMCID: PMC6436743 DOI: 10.1371/journal.pone.0214409] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/12/2019] [Indexed: 01/13/2023] Open
Abstract
Usage of high-throughput sequencing approaches allow for the generation and characterization of reference transcriptome datasets that support gene-based marker discovery, which in turn can be used to build genetic maps among other purposes. We have obtained a transcriptome assembly including 49,453 genes for the lentil (Lens culinaris Medik.) cultivar Alpo using RNAseq methodology. This transcriptome was used as reference to obtain 6,306 quality polymorphic markers (SNPs and short indels) analyzing genotype data from a RIL population at F7 generation derived from the interspecific cross between L. culinaris cv. Alpo and L. odemensis accession ILWL235. L. odemensis is a wild species included in the secondary gene pool and can be used as a source for gene introgression in lentil breeding programs. Marker data were used to construct the first genetic interspecific map between these two species. This linkage map has been used to precisely identify regions of the CDC-Redberry lentil draft genome in which the candidate genes for some qualitative traits (seed coat spotting pattern, flower color, and stem pigmentation) could be located. The genome regions corresponding to a significant single quantitative trait locus (QTL) controlling "time to flowering" located in chromosome 6 and three QTLs regulating seed size and positioned in chromosomes 1 and 5 (two QTLs) were also identified. Significant QTLs for Ascochyta blight resistance in lentil were mapped to chromosome 6 in the genome region or close to it where QTLs for Ascochyta blight resistance have previously been reported.
Collapse
Affiliation(s)
- Carlos Polanco
- Área de Genética, Departamento de Biología Molecular, Universidad de León, León, Spain
- * E-mail:
| | | | - Ana Isabel González
- Área de Genética, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Pedro García
- Área de Genética, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Richard Fratini
- Área de Genética, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Francisca Vaquero
- Área de Genética, Departamento de Biología Molecular, Universidad de León, León, Spain
| | | | | |
Collapse
|
20
|
Sinha R, Sharma TR, Singh AK. Validation of reference genes for qRT-PCR data normalisation in lentil ( Lens culinaris) under leaf developmental stages and abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:123-134. [PMID: 30804635 PMCID: PMC6352542 DOI: 10.1007/s12298-018-0609-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 05/07/2023]
Abstract
Lentil (Lens culinaris) is one of the most important staple food crops of developing countries. Transcriptome based global gene expression profiling followed by validation of expression of important genes through quantitative real time-PCR (qRT-PCR) has achieved significance in recent years. However, there is a severe scarcity of information regarding stable reference genes in lentil, which is mandatory for qRT-PCR data normalisation. Hence, the present study was under-taken to identify the most stable reference gene(s) in lentil. Expression stability of eight candidate genes viz. ribulose 1,5-bisphosphate carboxylase large subunit (Rbcl), ribosomal protein L2 (RPL2), 18S rRNA, tubulin (Tub), elongation factor 1α (EF1α), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), heat shock protein (HSP70), and Maturase (mat K) was evaluated in five varieties of lentil at three different stages of leaf development and abiotic stress conditions using qRT-PCR. The results were analysed using four types of statistical software viz., geNorm, BestKeeper, NormFinder and RefFinder; all softwares identified RPL2 as most stable under abiotic stress conditions and developmental stages followed by Tub and Rbcl; while, HSP70 was identified as least stable. Relative expression of the target genes, defensin and PR4, was evaluated under abiotic stress conditions and data normalisation was done using two stable reference genes, RPL2 and Tub, either alone or in combination and with two least stable genes, HSP70 and 18S. The present work provides a list of potential reference genes in lentil, which will help in selection of appropriate reference gene for qRT-PCR data normalization depending upon the experiment.
Collapse
Affiliation(s)
- Ragini Sinha
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834 010 India
| | - T. R. Sharma
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834 010 India
| | - Anil Kumar Singh
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834 010 India
| |
Collapse
|
21
|
Ogutcen E, Ramsay L, von Wettberg EB, Bett KE. Capturing variation in Lens (Fabaceae): Development and utility of an exome capture array for lentil. APPLICATIONS IN PLANT SCIENCES 2018; 6:e01165. [PMID: 30131907 PMCID: PMC6055568 DOI: 10.1002/aps3.1165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/16/2018] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Lentil is an important legume crop with reduced genetic diversity caused by domestication bottlenecks. Due to its large and complex genome, tools for reduced representation sequencing are needed. We developed an exome capture array for use in various genetic diversity studies. METHODS Based on the CDC Redberry draft genome, we developed an exome capture array using multiple sources of transcript resources. The probes were designed to target not only the cultivated lentil, but also wild species. We assessed the utility of the developed method by applying the generated data set to population structure and phylogenetic analyses. RESULTS The data set includes 16 wild lentils and 22 cultivar accessions of lentil. Alignment rates were over 90%, and the genic regions were well represented in the capture array. After stringent filtering, 6.5 million high-quality variants were called, and the data set was used to assess the interspecific relationships within the genus Lens. DISCUSSION The developed exome capture array provides large amounts of genomic data to be used in many downstream analyses. The method will have useful applications in marker-assisted breeding programs aiming to improve the quality of cultivated lentil.
Collapse
Affiliation(s)
- Ezgi Ogutcen
- Department of Plant SciencesUniversity of Saskatchewan51 Campus DriveSaskatoonSaskatchewanS7N 5A8Canada
| | - Larissa Ramsay
- Department of Plant SciencesUniversity of Saskatchewan51 Campus DriveSaskatoonSaskatchewanS7N 5A8Canada
| | - Eric Bishop von Wettberg
- Department of Plant and Soil ScienceUniversity of Vermont63 Carrigan DriveBurlingtonVermont05405USA
| | - Kirstin E. Bett
- Department of Plant SciencesUniversity of Saskatchewan51 Campus DriveSaskatoonSaskatchewanS7N 5A8Canada
| |
Collapse
|
22
|
QTL Mapping of Genome Regions Controlling Manganese Uptake in Lentil Seed. G3-GENES GENOMES GENETICS 2018; 8:1409-1416. [PMID: 29588380 PMCID: PMC5940135 DOI: 10.1534/g3.118.200259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study evaluated Mn concentration in the seeds of 120 RILs of lentil developed from the cross “CDC Redberry” × “ILL7502”. Micronutrient analysis using atomic absorption spectrometry indicated mean seed manganese (Mn) concentrations ranging from 8.5 to 26.8 mg/kg, based on replicated field trials grown at three locations in Turkey in 2012 and 2013. A linkage map of lentil was constructed and consisted of seven linkage groups with 5,385 DNA markers. The total map length was 973.1 cM, with an average distance between markers of 0.18 cM. A total of 6 QTL for Mn concentration were identified using composite interval mapping (CIM). All QTL were statistically significant and explained 15.3–24.1% of the phenotypic variation, with LOD scores ranging from 3.00 to 4.42. The high-density genetic map reported in this study will increase fundamental knowledge of the genome structure of lentil, and will be the basis for the development of micronutrient-enriched lentil genotypes to support biofortification efforts.
Collapse
|
23
|
Khorramdelazad M, Bar I, Whatmore P, Smetham G, Bhaaskaria V, Yang Y, Bai SH, Mantri N, Zhou Y, Ford R. Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics 2018; 19:108. [PMID: 29385986 PMCID: PMC5793396 DOI: 10.1186/s12864-018-4488-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/17/2018] [Indexed: 09/14/2023] Open
Abstract
Background Ascochyta blight, caused by the fungus Ascochyta lentis, is one of the most destructive lentil diseases worldwide, resulting in over $16 million AUD annual loss in Australia alone. The use of resistant cultivars is currently considered the most effective and environmentally sustainable strategy to control this disease. However, little is known about the genes and molecular mechanisms underlying lentil resistance against A. lentis. Results To uncover the genetic basis of lentil resistance to A. lentis, differentially expressed genes were profiled in lentil plants during the early stages of A. lentis infection. The resistant ‘ILL7537’ and susceptible ‘ILL6002’ lentil genotypes were examined at 2, 6, and 24 h post inoculation utilising high throughput RNA-Sequencing. Genotype and time-dependent differential expression analysis identified genes which play key roles in several functions of the defence response: fungal elicitors recognition and early signalling; structural response; biochemical response; transcription regulators; hypersensitive reaction and cell death; and systemic acquired resistance. Overall, the resistant genotype displayed an earlier and faster detection and signalling response to the A. lentis infection and demonstrated higher expression levels of structural defence-related genes. Conclusions This study presents a first-time defence-related transcriptome of lentil to A. lentis, including a comprehensive characterisation of the molecular mechanism through which defence against A. lentis is induced in the resistant lentil genotype. Electronic supplementary material The online version of this article (10.1186/s12864-018-4488-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahsa Khorramdelazad
- Glycomics institute, School of Sciences, Griffith University, 58 Parklands Dr., Southport, Gold Coast, 4215, QLD, Australia
| | - Ido Bar
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, 170 Kessels Rd., Nathan, 4111, QLD, Australia.
| | - Paul Whatmore
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, 170 Kessels Rd., Nathan, 4111, QLD, Australia.,Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, 4558, Queensland, Australia
| | - Gabrielle Smetham
- Fish Nutrition and Feed Safety, the National Institute of Nutrition and Seafood Research (NIFES), Strandgaten 229, Bergen, 5002, Norway
| | - Vijay Bhaaskaria
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 142 University St., Parkville, 3053, VIC, Australia
| | - Yuedong Yang
- Pangenomics Group, School of Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Shahla Hosseini Bai
- Glycomics institute, School of Sciences, Griffith University, 58 Parklands Dr., Southport, Gold Coast, 4215, QLD, Australia
| | - Nitin Mantri
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, 170 Kessels Rd., Nathan, 4111, QLD, Australia.,Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, 4558, Queensland, Australia
| | - Yaoqi Zhou
- Pangenomics Group, School of Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Rebecca Ford
- Glycomics institute, School of Sciences, Griffith University, 58 Parklands Dr., Southport, Gold Coast, 4215, QLD, Australia
| |
Collapse
|
24
|
Ates D, Aldemir S, Alsaleh A, Erdogmus S, Nemli S, Kahriman A, Ozkan H, Vandenberg A, Tanyolac B. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations. PLoS One 2018; 13:e0191375. [PMID: 29351563 PMCID: PMC5774769 DOI: 10.1371/journal.pone.0191375] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Background Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. Materials and methods A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including “CDC Redberry” x “ILL7502” (LR8), “ILL8006” x “CDC Milestone” (LR11) and “PI320937” x “Eston” (LR39). Results The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. Conclusion This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.
Collapse
Affiliation(s)
- Duygu Ates
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Secil Aldemir
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Ahmad Alsaleh
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Semih Erdogmus
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Seda Nemli
- Department of Bieoengineering and Genetics, Gumushane University, Gumushane, Turkey
| | - Abdullah Kahriman
- Department of Field Crops, Faculty of Agriculture, Harran University, Sanlı Urfa, Turkey
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Albert Vandenberg
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bahattin Tanyolac
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
- * E-mail:
| |
Collapse
|
25
|
Thilakarathna MS, Moroz N, Raizada MN. A Biosensor-Based Leaf Punch Assay for Glutamine Correlates to Symbiotic Nitrogen Fixation Measurements in Legumes to Permit Rapid Screening of Rhizobia Inoculants under Controlled Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:1714. [PMID: 29062319 PMCID: PMC5640704 DOI: 10.3389/fpls.2017.01714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Legumes are protein sources for billions of humans and livestock. These traits are enabled by symbiotic nitrogen fixation (SNF), whereby root nodule-inhabiting rhizobia bacteria convert atmospheric nitrogen (N) into usable N. Unfortunately, SNF rates in legume crops suffer from undiagnosed incompatible/suboptimal interactions between crop varieties and rhizobia strains. There are opportunities to test much large numbers of rhizobia strains if cost/labor-effective diagnostic tests become available which may especially benefit researchers in developing countries. Inside root nodules, fixed N from rhizobia is assimilated into amino acids including glutamine (Gln) for export to shoots as the major fraction (amide-exporting legumes) or as the minor fraction (ureide-exporting legumes). Here, we have developed a new leaf punch based technique to screen rhizobia inoculants for SNF activity following inoculation of both amide exporting and ureide exporting legumes. The assay is based on measuring Gln output using the GlnLux biosensor, which consists of Escherichia coli cells auxotrophic for Gln and expressing a constitutive lux operon. Subsistence farmer varieties of an amide exporter (lentil) and two ureide exporters (cowpea and soybean) were inoculated with different strains of rhizobia under controlled conditions, then extracts of single leaf punches were incubated with GlnLux cells, and light-output was measured using a 96-well luminometer. In the absence of external N and under controlled conditions, the results from the leaf punch assay correlated with 15N-based measurements, shoot N percentage, and shoot total fixed N in all three crops. The technology is rapid, inexpensive, high-throughput, requires minimum technical expertise and very little tissue, and hence is relatively non-destructive. We compared and contrasted the benefits and limitations of this novel diagnostic assay to methods.
Collapse
|
26
|
Rodda MS, Davidson J, Javid M, Sudheesh S, Blake S, Forster JW, Kaur S. Molecular Breeding for Ascochyta Blight Resistance in Lentil: Current Progress and Future Directions. FRONTIERS IN PLANT SCIENCE 2017; 8:1136. [PMID: 28706526 PMCID: PMC5489742 DOI: 10.3389/fpls.2017.01136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/13/2017] [Indexed: 05/24/2023]
Abstract
Lentil (Lens culinaris Medik.) is a diploid (2n = 2x = 14), self-pollinating, cool-season, grain legume that is cultivated worldwide and is highly valuable due to its high protein content. However, lentil production is constrained by many factors including biotic stresses, majority of which are fungal diseases such as ascochyta blight (AB), fusarium wilt, rust, stemphylium blight, anthracnose, and botrytis gray mold. Among various diseases, AB is a major -problem in many lentil-producing countries and can significantly reduce crop production. Breeding for AB resistance has been a priority for breeding programs across the globe and consequently, a number of resistance sources have been identified and extensively exploited. In order to increase the efficiency of combining genes from different genetic backgrounds, molecular genetic tools can be integrated with conventional breeding methods. A range of genetic linkage maps have been generated based on DNA-based markers, and quantitative trait loci (QTLs) for AB resistance have been identified. Molecular markers linked to these QTLs may potentially be used for efficient pyramiding of the AB disease resistance genes. Significant genomic resources have been established to identify and characterize resistance genes, including an integrated genetic map, expressed sequence tag libraries, gene based markers, and draft genome sequences. These resources are already being utilized for lentil crop improvement, to more effectively select for disease resistance, as a case study of the Australian breeding program will show. The combination of genomic resources, effective molecular genetic tools and high resolution phenotyping tools will improve the efficiency of selection for ascochyta blight resistance and accelerate varietal development of global lentil breeding programs.
Collapse
Affiliation(s)
- Matthew S. Rodda
- Agriculture Victoria, Grains Innovation ParkHorsham, VIC, Australia
| | - Jennifer Davidson
- Pulse and Oilseed Pathology, Plant Health and Biosecurity, Sustainable Systems, South Australian Research and Development Institute, UrrbraeAdelaide, SA, Australia
| | - Muhammad Javid
- Agriculture Victoria, Grains Innovation ParkHorsham, VIC, Australia
| | - Shimna Sudheesh
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe UniversityBundoora, VIC, Australia
| | - Sara Blake
- Pulse and Oilseed Pathology, Plant Health and Biosecurity, Sustainable Systems, South Australian Research and Development Institute, UrrbraeAdelaide, SA, Australia
| | - John W. Forster
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe UniversityBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe UniversityBundoora, VIC, Australia
| |
Collapse
|
27
|
Muñoz N, Liu A, Kan L, Li MW, Lam HM. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement. Int J Mol Sci 2017; 18:E328. [PMID: 28165413 PMCID: PMC5343864 DOI: 10.3390/ijms18020328] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/14/2023] Open
Abstract
Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.
Collapse
Affiliation(s)
- Nacira Muñoz
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Centro de Investigaciones Agropecuarias-INTA, Instituto de Fisiología y Recursos Genéticos Vegetales, Córdoba X5000, Argentina.
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000, Argentina.
| | - Ailin Liu
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Leo Kan
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Man-Wah Li
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hon-Ming Lam
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Sudheesh S, Verma P, Forster JW, Cogan NOI, Kaur S. Generation and Characterisation of a Reference Transcriptome for Lentil (Lens culinaris Medik.). Int J Mol Sci 2016; 17:E1887. [PMID: 27845747 PMCID: PMC5133886 DOI: 10.3390/ijms17111887] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/19/2016] [Accepted: 10/31/2016] [Indexed: 01/14/2023] Open
Abstract
RNA-Seq using second-generation sequencing technologies permits generation of a reference unigene set for a given species, in the absence of a well-annotated genome sequence, supporting functional genomics studies, gene characterisation and detailed expression analysis for specific morphophysiological or environmental stress response traits. A reference unigene set for lentil has been developed, consisting of 58,986 contigs and scaffolds with an N50 length of 1719 bp. Comparison to gene complements from related species, reference protein databases, previously published lentil transcriptomes and a draft genome sequence validated the current dataset in terms of degree of completeness and utility. A large proportion (98%) of unigenes were expressed in more than one tissue, at varying levels. Candidate genes associated with mechanisms of tolerance to both boron toxicity and time of flowering were identified, which can eventually be used for the development of gene-based markers. This study has provided a comprehensive, assembled and annotated reference gene set for lentil that can be used for multiple applications, permitting identification of genes for pathway-specific expression analysis, genetic modification approaches, development of resources for genotypic analysis, and assistance in the annotation of a future lentil genome sequence.
Collapse
Affiliation(s)
- Shimna Sudheesh
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Preeti Verma
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
| | - John W Forster
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Noel O I Cogan
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Sukhjiwan Kaur
- Biosciences Research, Agriculture Victoria, AgriBio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
29
|
Sudheesh S, Rodda MS, Davidson J, Javid M, Stephens A, Slater AT, Cogan NOI, Forster JW, Kaur S. SNP-Based Linkage Mapping for Validation of QTLs for Resistance to Ascochyta Blight in Lentil. FRONTIERS IN PLANT SCIENCE 2016; 7:1604. [PMID: 27853461 PMCID: PMC5091049 DOI: 10.3389/fpls.2016.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/12/2016] [Indexed: 05/23/2023]
Abstract
Lentil (Lens culinaris Medik.) is a self-pollinating, diploid, annual, cool-season, food legume crop that is cultivated throughout the world. Ascochyta blight (AB), caused by Ascochyta lentis Vassilievsky, is an economically important and widespread disease of lentil. Development of cultivars with high levels of durable resistance provides an environmentally acceptable and economically feasible method for AB control. A detailed understanding of the genetic basis of AB resistance is hence highly desirable, in order to obtain insight into the number and influence of resistance genes. Genetic linkage maps based on single nucleotide polymorphisms (SNP) and simple sequence repeat (SSR) markers have been developed from three recombinant inbred line (RIL) populations. The IH × NF map contained 460 loci across 1461.6 cM, while the IH × DIG map contained 329 loci across 1302.5 cM and the third map, NF × DIG contained 330 loci across 1914.1 cM. Data from these maps were combined with a map from a previously published study through use of bridging markers to generate a consensus linkage map containing 689 loci distributed across seven linkage groups (LGs), with a cumulative length of 2429.61 cM at an average density of one marker per 3.5 cM. Trait dissection of AB resistance was performed for the RIL populations, identifying totals of two and three quantitative trait loci (QTLs) explaining 52 and 69% of phenotypic variation for resistance to infection in the IH × DIG and IH × NF populations, respectively. Presence of common markers in the vicinity of the AB_IH1- and AB_IH2.1/AB_IH2.2-containing regions on both maps supports the inference that a common genomic region is responsible for conferring resistance and is associated with the resistant parent, Indianhead. The third QTL was derived from Northfield. Evaluation of markers associated with AB resistance across a diverse lentil germplasm panel revealed that the identity of alleles associated with AB_IH1 predicted the phenotypic responses with high levels of accuracy (~86%), and therefore have the potential to be widely adopted in lentil breeding programs. The availability of RIL-based maps, a consensus map, and validated markers linked to AB resistance provide important resources for lentil improvement.
Collapse
Affiliation(s)
- Shimna Sudheesh
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
| | - Matthew S. Rodda
- Biosciences Research, Agriculture VictoriaHorsham, VIC, Australia
| | - Jenny Davidson
- South Australia Research and Development Institute, Plant Research CentreUrrbrae, SA, Australia
| | - Muhammad Javid
- Biosciences Research, Agriculture VictoriaHorsham, VIC, Australia
| | - Amber Stephens
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
| | - Anthony T. Slater
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
| | - Noel O. I. Cogan
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - John W. Forster
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - Sukhjiwan Kaur
- Biosciences Research, Agriculture Victoria, AgriBio, La Trobe UniversityBundoora, VIC, Australia
| |
Collapse
|
30
|
Mirali M, Purves RW, Stonehouse R, Song R, Bett K, Vandenberg A. Genetics and Biochemistry of Zero-Tannin Lentils. PLoS One 2016; 11:e0164624. [PMID: 27788158 PMCID: PMC5082924 DOI: 10.1371/journal.pone.0164624] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
The zero-tannin trait in lentil is controlled by a single recessive gene (tan) that results in a phenotype characterized by green stems, white flowers, and thin, transparent, or translucent seed coats. Genes that result in zero-tannin characteristics are useful for studies of seed coat pigmentation and biochemical characters because they have altered pigmentation. In this study, one of the major groups of plant pigments, phenolic compounds, was compared among zero-tannin and normal phenotypes and genotypes of lentil. Biochemical data were obtained by liquid chromatography-mass spectrometry (LC-MS). Genomic sequencing was used to identify a candidate gene for the tan locus. Phenolic compound profiling revealed that myricetin, dihydromyricetin, flavan-3-ols, and proanthocyanidins are only detected in normal lentil phenotypes and not in zero-tannin types. The molecular analysis showed that the tan gene encodes a bHLH transcription factor, homologous to the A gene in pea. The results of this study suggest that tan as a bHLH transcription factor interacts with the regulatory genes in the biochemical pathway of phenolic compounds starting from flavonoid-3',5'-hydroxylase (F3'5'H) and dihydroflavonol reductase (DFR).
Collapse
Affiliation(s)
- Mahla Mirali
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Randy W. Purves
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rob Stonehouse
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rui Song
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kirstin Bett
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Albert Vandenberg
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
31
|
Vatanparast M, Shetty P, Chopra R, Doyle JJ, Sathyanarayana N, Egan AN. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Sci Rep 2016; 6:29070. [PMID: 27356763 PMCID: PMC4928180 DOI: 10.1038/srep29070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- US National Herbarium (US), Department of Botany, Smithsonian Institution-NMNH, 10th and Constitution Ave, Washington DC, 20013, USA
| | - Prateek Shetty
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824, USA
| | - Ratan Chopra
- United States Department of Agriculture, Agriculture Research Service, 3810 4th St., Lubbock, TX, 79415, USA
| | - Jeff J Doyle
- Section of Plant Breeding &Genetics, School of Integrative Plant Science, Cornell University, 412 Mann Library, Ithaca, NY, 14853, USA
| | - N Sathyanarayana
- Department of Botany, Sikkim University, 5th Mile, Tadong, Gangtok, Sikkim, 737102, India
| | - Ashley N Egan
- US National Herbarium (US), Department of Botany, Smithsonian Institution-NMNH, 10th and Constitution Ave, Washington DC, 20013, USA
| |
Collapse
|
32
|
Chaintreuil C, Rivallan R, Bertioli DJ, Klopp C, Gouzy J, Courtois B, Leleux P, Martin G, Rami JF, Gully D, Parrinello H, Séverac D, Patrel D, Fardoux J, Ribière W, Boursot M, Cartieaux F, Czernic P, Ratet P, Mournet P, Giraud E, Arrighi JF. A gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes. DNA Res 2016; 23:365-76. [PMID: 27298380 PMCID: PMC4991833 DOI: 10.1093/dnares/dsw020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia.
Collapse
Affiliation(s)
| | - Ronan Rivallan
- CIRAD, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
| | - David J Bertioli
- University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Christophe Klopp
- INRA, Plateforme GenoToul Bioinfo, UR 875, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | - Jérôme Gouzy
- INRA, UMR441 LIPM, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | | | - Philippe Leleux
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France INRA, Plateforme GenoToul Bioinfo, UR 875, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
| | | | - Djamel Gully
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France
| | - Dany Séverac
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France
| | - Delphine Patrel
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France IRD, Centre IRD de Montpellier France Sud, F-34394 Montpellier, France
| | - Joël Fardoux
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - William Ribière
- IRD, Centre IRD de Montpellier France Sud, F-34394 Montpellier, France
| | - Marc Boursot
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Fabienne Cartieaux
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Pierre Czernic
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91405 Orsay, France Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France
| | - Pierre Mournet
- CIRAD, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
| | - Eric Giraud
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | | |
Collapse
|
33
|
Ates D, Sever T, Aldemir S, Yagmur B, Temel HY, Kaya HB, Alsaleh A, Kahraman A, Ozkan H, Vandenberg A, Tanyolac B. Identification QTLs Controlling Genes for Se Uptake in Lentil Seeds. PLoS One 2016; 11:e0149210. [PMID: 26978666 PMCID: PMC4792374 DOI: 10.1371/journal.pone.0149210] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/28/2016] [Indexed: 01/03/2023] Open
Abstract
Lentil (Lens culinaris Medik.) is an excellent source of protein and carbohydrates and is also rich in essential trace elements for the human diet. Selenium (Se) is an essential micronutrient for human health and nutrition, providing protection against several diseases and regulating important biological systems. Dietary intake of 55 μg of Se per day is recommended for adults, with inadequate Se intake causing significant health problems. The objective of this study was to identify and map quantitative trait loci (QTL) of genes controlling Se accumulation in lentil seeds using a population of 96 recombinant inbred lines (RILs) developed from the cross “PI 320937” × “Eston” grown in three different environments for two years (2012 and 2013). Se concentration in seed varied between 119 and 883 μg/kg. A linkage map consisting of 1,784 markers (4 SSRs, and 1,780 SNPs) was developed. The map spanned a total length of 4,060.6 cM, consisting of 7 linkage groups (LGs) with an average distance of 2.3 cM between adjacent markers. Four QTL regions and 36 putative QTL markers, with LOD scores ranging from 3.00 to 4.97, distributed across two linkage groups (LG2 and LG5) were associated with seed Se concentration, explaining 6.3–16.9% of the phenotypic variation.
Collapse
Affiliation(s)
- Duygu Ates
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Tugce Sever
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Secil Aldemir
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Bulent Yagmur
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Hulya Yilmaz Temel
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Hilal Betul Kaya
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Ahmad Alsaleh
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Abdullah Kahraman
- Department of Field Crops, Faculty of Agriculture, Harran University, Sanlı Urfa, Turkey
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Albert Vandenberg
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bahattin Tanyolac
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
- * E-mail:
| |
Collapse
|
34
|
Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson LA, Debouck DG, Tar'an B, Bett KE. Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 2016; 17:239. [PMID: 26979462 PMCID: PMC4793507 DOI: 10.1186/s12864-016-2499-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Common bean (Phaseolus vulgaris) is an important grain legume and there has been a recent resurgence in interest in its relative, tepary bean (P. acutifolius), owing to this species’ ability to better withstand abiotic stresses. Genomic resources are scarce for this minor crop species and a better knowledge of the genome-level relationship between these two species would facilitate improvement in both. High-throughput genotyping has facilitated large-scale single nucleotide polymorphism (SNP) identification leading to the development of molecular markers with associated sequence information that can be used to place them in the context of a full genome assembly. Results Transcript-based SNPs were identified from six common bean and two tepary bean accessions and a subset were used to generate a 768-SNP Illumina GoldenGate assay for each species. The tepary bean assay was used to assess diversity in wild and cultivated tepary bean and to generate the first gene-based map of the tepary bean genome. Genotypic analyses of the diversity panel showed a clear separation between domesticated and cultivated tepary beans, two distinct groups within the domesticated types, and P. parvifolius was confirmed to be distinct. The genetic map of tepary bean was compared to the common bean genome assembly to demonstrate high levels of collinearity between the two species with differences limited to a few intra-chromosomal rearrangements. Conclusions The development of the first set of genomic resources specifically for tepary bean has allowed for greater insight into the structure of this species and its relationship to its agriculturally more prominent relative, common bean. These resources will be helpful in the development of efficient breeding strategies for both species and will facilitate the introgression of agriculturally important traits from one crop into the other. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2499-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neha Gujaria-Verma
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Lacey-Anne Sanderson
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Daniel G Debouck
- Genetic Resources Program, International Center for Tropical Agriculture, Km 17 recta a Palmira, AA6713, Cali, Colombia
| | - Bunyamin Tar'an
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
35
|
Khazaei H, Caron CT, Fedoruk M, Diapari M, Vandenberg A, Coyne CJ, McGee R, Bett KE. Genetic Diversity of Cultivated Lentil (Lens culinaris Medik.) and Its Relation to the World's Agro-ecological Zones. FRONTIERS IN PLANT SCIENCE 2016; 7:1093. [PMID: 27507980 PMCID: PMC4960256 DOI: 10.3389/fpls.2016.01093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 05/22/2023]
Abstract
Assessment of genetic diversity and population structure of germplasm collections plays a critical role in supporting conservation and crop genetic enhancement strategies. We used a cultivated lentil (Lens culinaris Medik.) collection consisting of 352 accessions originating from 54 diverse countries to estimate genetic diversity and genetic structure using 1194 polymorphic single nucleotide polymorphism (SNP) markers which span the lentil genome. Using principal coordinate analysis, population structure analysis and UPGMA cluster analysis, the accessions were categorized into three major groups that prominently reflected geographical origin (world's agro-ecological zones). The three clusters complemented the origins, pedigrees, and breeding histories of the germplasm. The three groups were (a) South Asia (sub-tropical savannah), (b) Mediterranean, and (c) northern temperate. Based on the results from this study, it is also clear that breeding programs still have considerable genetic diversity to mine within the cultivated lentil, as surveyed South Asian and Canadian germplasm revealed narrow genetic diversity.
Collapse
Affiliation(s)
- Hamid Khazaei
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Carolyn T. Caron
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Michael Fedoruk
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Marwan Diapari
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
- London Research and Development Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Albert Vandenberg
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | | | | | - Kirstin E. Bett
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
- *Correspondence: Kirstin E. Bett
| |
Collapse
|
36
|
Webb A, Cottage A, Wood T, Khamassi K, Hobbs D, Gostkiewicz K, White M, Khazaei H, Ali M, Street D, Duc G, Stoddard FL, Maalouf F, Ogbonnaya FC, Link W, Thomas J, O'Sullivan DM. A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:177-85. [PMID: 25865502 PMCID: PMC4973813 DOI: 10.1111/pbi.12371] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 05/20/2023]
Abstract
Faba bean (Vicia faba L.) is a globally important nitrogen-fixing legume, which is widely grown in a diverse range of environments. In this work, we mine and validate a set of 845 SNPs from the aligned transcriptomes of two contrasting inbred lines. Each V. faba SNP is assigned by BLAST analysis to a single Medicago orthologue. This set of syntenically anchored polymorphisms were then validated as individual KASP assays, classified according to their informativeness and performance on a panel of 37 inbred lines, and the best performing 757 markers used to genotype six mapping populations. The six resulting linkage maps were merged into a single consensus map on which 687 SNPs were placed on six linkage groups, each presumed to correspond to one of the six V. faba chromosomes. This sequence-based consensus map was used to explore synteny with the most closely related crop species, lentil and the most closely related fully sequenced genome, Medicago. Large tracts of uninterrupted colinearity were found between faba bean and Medicago, making it relatively straightforward to predict gene content and order in mapped genetic interval. As a demonstration of this, we mapped a flower colour gene to a 2-cM interval of Vf chromosome 2 which was highly colinear with Mt3. The obvious candidate gene from 78 gene models in the collinear Medicago chromosome segment was the previously characterized MtWD40-1 gene controlling anthocyanin production in Medicago and resequencing of the Vf orthologue showed a putative causative deletion of the entire 5' end of the gene.
Collapse
Affiliation(s)
- Anne Webb
- National Institute of Agricultural Botany, Cambridge, UK
| | - Amanda Cottage
- National Institute of Agricultural Botany, Cambridge, UK
| | - Thomas Wood
- National Institute of Agricultural Botany, Cambridge, UK
| | | | - Douglas Hobbs
- National Institute of Agricultural Botany, Cambridge, UK
| | | | | | - Hamid Khazaei
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Mohamed Ali
- Department of Crop Sciences, Georg-August-Universität, Göttingen, Germany
| | | | - Gérard Duc
- INRA, UMR1347 Agroécologie, Dijon, France
| | - Fred L Stoddard
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - Wolfgang Link
- Department of Crop Sciences, Georg-August-Universität, Göttingen, Germany
| | - Jane Thomas
- National Institute of Agricultural Botany, Cambridge, UK
| | - Donal M O'Sullivan
- National Institute of Agricultural Botany, Cambridge, UK
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, UK
| |
Collapse
|
37
|
Idrissi O, Udupa SM, De Keyser E, McGee RJ, Coyne CJ, Saha GC, Muehlbauer FJ, Van Damme P, De Riek J. Identification of Quantitative Trait Loci Controlling Root and Shoot Traits Associated with Drought Tolerance in a Lentil (Lens culinaris Medik.) Recombinant Inbred Line Population. FRONTIERS IN PLANT SCIENCE 2016; 7:1174. [PMID: 27602034 PMCID: PMC4993778 DOI: 10.3389/fpls.2016.01174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/21/2016] [Indexed: 05/20/2023]
Abstract
Drought is one of the major abiotic stresses limiting lentil productivity in rainfed production systems. Specific rooting patterns can be associated with drought avoidance mechanisms that can be used in lentil breeding programs. In all, 252 co-dominant and dominant markers were used for Quantitative Trait Loci (QTL) analysis on 132 lentil recombinant inbred lines based on greenhouse experiments for root and shoot traits during two seasons under progressive drought-stressed conditions. Eighteen QTLs controlling a total of 14 root and shoot traits were identified. A QTL-hotspot genomic region related to a number of root and shoot characteristics associated with drought tolerance such as dry root biomass, root surface area, lateral root number, dry shoot biomass and shoot length was identified. Interestingly, a QTL (QRSratioIX-2.30) related to root-shoot ratio, an important trait for drought avoidance, explaining the highest phenotypic variance of 27.6 and 28.9% for the two consecutive seasons, respectively, was detected. This QTL was closed to the co-dominant SNP marker TP6337 and also flanked by the two SNP TP518 and TP1280. An important QTL (QLRNIII-98.64) related to lateral root number was found close to TP3371 and flanked by TP5093 and TP6072 SNP markers. Also, a QTL (QSRLIV-61.63) associated with specific root length was identified close to TP1873 and flanked by F7XEM6b SRAP marker and TP1035 SNP marker. These two QTLs were detected in both seasons. Our results could be used for marker-assisted selection in lentil breeding programs targeting root and shoot characteristics conferring drought avoidance as an efficient alternative to slow and labor-intensive conventional breeding methods.
Collapse
Affiliation(s)
- Omar Idrissi
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
- Institut National de la Recherche Agronomique du Maroc (INRA), Centre Régional de SettatSettat, Morocco
- *Correspondence: Omar Idrissi ;
| | - Sripada M. Udupa
- International Center for Agricultural Research in the Dry Areas, Institut National de la Recherche Agronomique Morocco Cooperative Research ProjectRabat, Morocco
| | - Ellen De Keyser
- Plant Sciences Unit, Applied Genetics and Breeding, The Institute for Agricultural and Fisheries Research (ILVO)Melle, Belgium
| | - Rebecca J. McGee
- United States Department of Agriculture, Agricultural Research Service Grain Legume Genetics and Physiology ResearchPullman, WA, USA
| | - Clarice J. Coyne
- United States Department of Agriculture, Agricultural Research Service Western Regional Plant Introduction, Washington State UniversityPullman, WA, USA
| | | | - Fred J. Muehlbauer
- United States Department of Agriculture, Agricultural Research Service Western Regional Plant Introduction, Washington State UniversityPullman, WA, USA
| | - Patrick Van Damme
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
- Faculty of Tropical AgriSciences, Czech University of Life SciencesPrague, Czech Republic
| | - Jan De Riek
- Plant Sciences Unit, Applied Genetics and Breeding, The Institute for Agricultural and Fisheries Research (ILVO)Melle, Belgium
| |
Collapse
|
38
|
Verma P, Goyal R, Chahota RK, Sharma TR, Abdin MZ, Bhatia S. Construction of a Genetic Linkage Map and Identification of QTLs for Seed Weight and Seed Size Traits in Lentil (Lens culinaris Medik.). PLoS One 2015; 10:e0139666. [PMID: 26436554 PMCID: PMC4593543 DOI: 10.1371/journal.pone.0139666] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/16/2015] [Indexed: 01/05/2023] Open
Abstract
Seed weight and seed size both are quantitative traits and have been considered as important components of grain yield, thus identification of quantitative trait loci (QTL) for seed traits in lentil (Lens culinaris) would be beneficial for the improvement of grain yield. Hence the main objective of this study was to identify QTLs for seed traits using an intraspecific mapping population derived from a cross between L. culinaris cv. Precoz (seed weight-5.1g, seed size-5.7mm) and L. culinaris cv. L830 (seed weight-2.2g, seed size-4mm) comprising 126 F8-RILs. For this, two microsatellite genomic libraries enriched for (GA/CT) and (GAA/CTT) motif were constructed which resulted in the development of 501 new genomic SSR markers. Six hundred forty seven SSR markers (including 146 previously published) were screened for parental polymorphism and 219 (33.8%) were found to be polymorphic among the parents. Of these 216 were mapped on seven linkage groups at LOD4.0 spanning 1183.7cM with an average marker density of 5.48cM. Phenotypic data from the RILs was used to identify QTLs for the seed weight and seed size traits by single marker analysis (SMA) followed by composite interval mapping (CIM) which resulted in one QTL each for the 2 traits (qSW and qSS) that were co-localized on LG4 and explained 48.4% and 27.5% of phenotypic variance respectively. The current study would serve as a strong foundation for further validation and fine mapping for utilization in lentil breeding programs.
Collapse
Affiliation(s)
- Priyanka Verma
- National Institute of Plant Genome Research, Post Box No. 10531, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India
| | - Richa Goyal
- National Institute of Plant Genome Research, Post Box No. 10531, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - R. K. Chahota
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, 176 062, India
| | - Tilak R. Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, 176 062, India
| | - M. Z. Abdin
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, 110062, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Post Box No. 10531, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
39
|
Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One 2015; 10:e0124101. [PMID: 25874931 PMCID: PMC4395401 DOI: 10.1371/journal.pone.0124101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/26/2015] [Indexed: 01/30/2023] Open
Abstract
Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs) or on combinations of SSRs and sequence-related amplified polymorphism (SRAP). In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs). These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a ‘9930’ × ‘Gy14’ recombinant inbred line (RIL) population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs.
Collapse
|
40
|
Wong MML, Gujaria-Verma N, Ramsay L, Yuan HY, Caron C, Diapari M, Vandenberg A, Bett KE. Classification and characterization of species within the genus lens using genotyping-by-sequencing (GBS). PLoS One 2015; 10:e0122025. [PMID: 25815480 PMCID: PMC4376907 DOI: 10.1371/journal.pone.0122025] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/08/2015] [Indexed: 11/18/2022] Open
Abstract
Lentil (Lens culinaris ssp. culinaris) is a nutritious and affordable pulse with an ancient crop domestication history. The genus Lens consists of seven taxa, however, there are many discrepancies in the taxon and gene pool classification of lentil and its wild relatives. Due to the narrow genetic basis of cultivated lentil, there is a need towards better understanding of the relationships amongst wild germplasm to assist introgression of favourable genes into lentil breeding programs. Genotyping-by-sequencing (GBS) is an easy and affordable method that allows multiplexing of up to 384 samples or more per library to generate genome-wide single nucleotide Polymorphism (SNP) markers. In this study, we aimed to characterize our lentil germplasm collection using a two-enzyme GBS approach. We constructed two 96-plex GBS libraries with a total of 60 accessions where some accessions had several samples and each sample was sequenced in two technical replicates. We developed an automated GBS pipeline and detected a total of 266,356 genome-wide SNPs. After filtering low quality and redundant SNPs based on haplotype information, we constructed a maximum-likelihood tree using 5,389 SNPs. The phylogenetic tree grouped the germplasm collection into their respective taxa with strong support. Based on phylogenetic tree and STRUCTURE analysis, we identified four gene pools, namely L. culinaris/L. orientalis/L. tomentosus, L. lamottei/L. odemensis, L. ervoides and L. nigricans which form primary, secondary, tertiary and quaternary gene pools, respectively. We discovered sequencing bias problems likely due to DNA quality and observed severe run-to-run variation in the wild lentils. We examined the authenticity of the germplasm collection and identified 17% misclassified samples. Our study demonstrated that GBS is a promising and affordable tool for screening by plant breeders interested in crop wild relatives.
Collapse
Affiliation(s)
- Melissa M. L. Wong
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Neha Gujaria-Verma
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Hai Ying Yuan
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Carolyn Caron
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Marwan Diapari
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Kirstin E. Bett
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
- * E-mail:
| |
Collapse
|
41
|
Rivers J, Warthmann N, Pogson BJ, Borevitz JO. Genomic breeding for food, environment and livelihoods. Food Secur 2015. [DOI: 10.1007/s12571-015-0431-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Kumar S, Rajendran K, Kumar J, Hamwieh A, Baum M. Current knowledge in lentil genomics and its application for crop improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:78. [PMID: 25755659 PMCID: PMC4337236 DOI: 10.3389/fpls.2015.00078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/30/2015] [Indexed: 05/24/2023]
Abstract
Most of the lentil growing countries face a certain set of abiotic and biotic stresses causing substantial reduction in crop growth, yield, and production. Until-to date, lentil breeders have used conventional plant breeding techniques of selection-recombination-selection cycle to develop improved cultivars.These techniques have been successful in mainstreaming some of the easy-to-manage monogenic traits. However, in case of complex quantitative traits, these conventional techniques are less precise. As most of the economic traits are complex, quantitative, and often influenced by environments and genotype-environment interaction, the genetic improvement of these traits becomes difficult. Genomics assisted breeding is relatively powerful and fast approach to develop high yielding varieties more suitable to adverse environmental conditions. New tools such as molecular markers and bioinformatics are expected to generate new knowledge and improve our understanding on the genetics of complex traits. In the past, the limited availability of genomic resources in lentil could not allow breeders to employ these tools in mainstream breeding program.The recent application of the next generation sequencing and genotyping by sequencing technologies has facilitated to speed up the lentil genome sequencing project and large discovery of genome-wide single nucleotide polymorphism (SNP) markers. Currently, several linkage maps have been developed in lentil through the use of expressed sequenced tag (EST) derived simple sequence repeat (SSR) and SNP markers.These maps have emerged as useful genomic resources to identify quantitative trait loci imparting tolerance to biotic and abiotic stresses in lentil. In this review, the current knowledge on available genomic resources and its application in lentil breeding program are discussed.
Collapse
Affiliation(s)
- Shiv Kumar
- Biodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas, RabatMorocco
| | - Karthika Rajendran
- Biodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas, RabatMorocco
| | - Jitendra Kumar
- Division of Crop Improvement, Indian Institute of Pulses Research, KanpurIndia
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas, CairoEgypt
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, AmmanJordan
| |
Collapse
|
43
|
Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA, Singh KB. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:14-25. [PMID: 25060816 PMCID: PMC4309465 DOI: 10.1111/pbi.12229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/27/2014] [Accepted: 06/12/2014] [Indexed: 05/18/2023]
Abstract
Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Plant IndustryWembley, WA, Australia
- The UWA Institute of Agriculture, University of Western AustraliaCrawley, WA, Australia
| | | | - Matthew N Nelson
- The UWA Institute of Agriculture, University of Western AustraliaCrawley, WA, Australia
- The School of Plant Biology, University of Western AustraliaCrawley, WA, Australia
| | | | - Craig A Atkins
- The School of Plant Biology, University of Western AustraliaCrawley, WA, Australia
| | - Karam B Singh
- CSIRO Plant IndustryWembley, WA, Australia
- The UWA Institute of Agriculture, University of Western AustraliaCrawley, WA, Australia
- *Correspondence (Tel +61 8 9333 6320; fax +61 8 9383 9673; email )
| |
Collapse
|
44
|
Singh R, Bollina V, Higgins EE, Clarke WE, Eynck C, Sidebottom C, Gugel R, Snowdon R, Parkin IAP. Single-nucleotide polymorphism identification and genotyping in Camelina sativa. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:35. [PMID: 25620879 PMCID: PMC4300397 DOI: 10.1007/s11032-015-0224-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/18/2014] [Indexed: 05/09/2023]
Abstract
Camelina sativa, a largely relict crop, has recently returned to interest due to its potential as an industrial oilseed. Molecular markers are key tools that will allow C. sativa to benefit from modern breeding approaches. Two complementary methodologies, capture of 3' cDNA tags and genomic reduced-representation libraries, both of which exploited second generation sequencing platforms, were used to develop a low density (768) Illumina GoldenGate single nucleotide polymorphism (SNP) array. The array allowed 533 SNP loci to be genetically mapped in a recombinant inbred population of C. sativa. Alignment of the SNP loci to the C. sativa genome identified the underlying sequenced regions that would delimit potential candidate genes in any mapping project. In addition, the SNP array was used to assess genetic variation among a collection of 175 accessions of C. sativa, identifying two sub-populations, yet low overall gene diversity. The SNP loci will provide useful tools for future crop improvement of C. sativa.
Collapse
Affiliation(s)
- Ravinder Singh
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N 0X2 Canada
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, 180 009 JK India
| | - Venkatesh Bollina
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N 0X2 Canada
| | - Erin E. Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N 0X2 Canada
| | - Wayne E. Clarke
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N 0X2 Canada
| | - Christina Eynck
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N 0X2 Canada
| | - Christine Sidebottom
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, S7N 0W9 Canada
| | - Richard Gugel
- Plant Gene Resources Canada, 107 Science Place, Saskatoon, S7N 0X2 Canada
| | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Isobel A. P. Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N 0X2 Canada
| |
Collapse
|
45
|
Lombardi M, Materne M, Cogan NOI, Rodda M, Daetwyler HD, Slater AT, Forster JW, Kaur S. Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genet 2014; 15:150. [PMID: 25540077 PMCID: PMC4300608 DOI: 10.1186/s12863-014-0150-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022] Open
Abstract
Background Lentil is a self-pollinated annual diploid (2n = 2× = 14) crop with a restricted history of genetic improvement through breeding, particularly when compared to cereal crops. This limited breeding has probably contributed to the narrow genetic base of local cultivars, and a corresponding potential to continue yield increases and stability. Therefore, knowledge of genetic variation and relationships between populations is important for understanding of available genetic variability and its potential for use in breeding programs. Single nucleotide polymorphism (SNP) markers provide a method for rapid automated genotyping and subsequent data analysis over large numbers of samples, allowing assessment of genetic relationships between genotypes. Results In order to investigate levels of genetic diversity within lentil germplasm, 505 cultivars and landraces were genotyped with 384 genome-wide distributed SNP markers, of which 266 (69.2%) obtained successful amplification and detected polymorphisms. Gene diversity and PIC values varied between 0.108-0.5 and 0.102-0.375, with averages of 0.419 and 0.328, respectively. On the basis of clarity and interest to lentil breeders, the genetic structure of the germplasm collection was analysed separately for cultivars and landraces. A neighbour-joining (NJ) dendrogram was constructed for commercial cultivars, in which lentil cultivars were sorted into three major groups (G-I, G-II and G-III). These results were further supported by principal coordinate analysis (PCoA) and STRUCTURE, from which three clear clusters were defined based on differences in geographical location. In the case of landraces, a weak correlation between geographical origin and genetic relationships was observed. The landraces from the Mediterranean region, predominantly Greece and Turkey, revealed very high levels of genetic diversity. Conclusions Lentil cultivars revealed clear clustering based on geographical origin, but much more limited correlation between geographic origin and genetic diversity was observed for landraces. These results suggest that selection of divergent parental genotypes for breeding should be made actively on the basis of systematic assessment of genetic distance between genotypes, rather than passively based on geographical distance. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0150-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Lombardi
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - Michael Materne
- Department of Environment and Primary Industries, Biosciences Research Division, Grains Innovation Park, Horsham, 3401, Victoria, Australia.
| | - Noel O I Cogan
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - Matthew Rodda
- Department of Environment and Primary Industries, Biosciences Research Division, Grains Innovation Park, Horsham, 3401, Victoria, Australia.
| | - Hans D Daetwyler
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - Anthony T Slater
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - John W Forster
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia. .,La Trobe University, Bundoora, Melbourne, 3086, Victoria, Australia.
| | - Sukhjiwan Kaur
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| |
Collapse
|
46
|
Gujaria-Verma N, Vail SL, Carrasquilla-Garcia N, Penmetsa RV, Cook DR, Farmer AD, Vandenberg A, Bett KE. Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea. FRONTIERS IN PLANT SCIENCE 2014; 5:676. [PMID: 25538716 PMCID: PMC4256995 DOI: 10.3389/fpls.2014.00676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/13/2014] [Indexed: 05/23/2023]
Abstract
Lentil (Lens culinaris Medik.) is a global food crop with increasing importance for food security in south Asia and other regions. Lens ervoides, a wild relative of cultivated lentil, is an important source of agronomic trait variation. Lens is a member of the galegoid clade of the Papilionoideae family, which includes other important dietary legumes such as chickpea (Cicer arietinum) and pea (Pisum sativum), and the sequenced model legume Medicago truncatula. Understanding the genetic structure of Lens spp. in relation to more fully sequenced legumes would allow leveraging of genomic resources. A set of 1107 TOG-based amplicons were identified in L. ervoides and a subset thereof used to design SNP markers for mapping. A map of L. ervoides consisting of 377 SNP markers spread across seven linkage groups was developed using a GoldenGate genotyping array and single SNP marker assays. Comparison with maps of M. truncatula and L. culinaris documented considerable shared synteny and led to the identification of a few major translocations and a major inversion that distinguish Lens from M. truncatula, as well as a translocation that distinguishes L. culinaris from L. ervoides. The identification of chromosome-level differences among Lens spp. will aid in the understanding of introgression of genes from L. ervoides into cultivated L. culinaris, furthering genetic research and breeding applications in lentil.
Collapse
Affiliation(s)
- Neha Gujaria-Verma
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Sally L. Vail
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | | | - R. Varma Penmetsa
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Andrew D. Farmer
- Bioinformatics, National Centre for Genomic ResourcesSanta Fe, NM, USA
| | - Albert Vandenberg
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Kirstin E. Bett
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
47
|
Khazaei H, O'Sullivan DM, Sillanpää MJ, Stoddard FL. Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2371-85. [PMID: 25186169 DOI: 10.1007/s00122-014-2383-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 08/15/2014] [Indexed: 05/10/2023]
Abstract
We have identified QTLs for stomatal characteristics on chromosome II of faba bean by applying SNPs derived from M. truncatula , and have identified candidate genes within these QTLs using synteny between the two species. Faba bean (Vicia faba L.) is a valuable food and feed crop worldwide, but drought often limits its production, and its genome is large and poorly mapped. No information is available on the effects of genomic regions and genes on drought adaptation characters such as stomatal characteristics in this species, but the synteny between the sequenced model legume, Medicago truncatula, and faba bean can be used to identify candidate genes. A mapping population of 211 F5 recombinant inbred lines (Mélodie/2 × ILB 938/2) were phenotyped to identify quantitative trait loci (QTL) affecting stomatal morphology and function, along with seed weight, under well-watered conditions in a climate-controlled glasshouse in 2013 and 2014. Canopy temperature (CT) was evaluated in 2013 under water-deficit (CTd). In total, 188 polymorphic single nucleotide polymorphisms (SNPs), developed from M. truncatula genome data, were assigned to nine linkage groups that covered ~928 cM of the faba bean genome with an average inter-marker distance of 5.8 cM. 15 putative QTLs were detected, of which eight (affecting stomatal density, length and conductance and CT) co-located on chromosome II, in the vicinity of a possible candidate gene-a receptor-like protein kinase found in the syntenic interval of M. truncatula chromosome IV. A ribose-phosphate pyrophosphokinase from M. truncatula chromosome V, postulated as a possible candidate gene for the QTL for CTd, was found some distance away in the same chromosome. These results demonstrate that genomic information from M. truncatula can successfully be translated to the faba bean genome.
Collapse
Affiliation(s)
- Hamid Khazaei
- Department of Agricultural Sciences, University of Helsinki, P O Box 27 (Latokartanonkaari 5), 00014, Helsinki, Finland,
| | | | | | | |
Collapse
|
48
|
Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J, Shunmugam ASK, Liu Y, Jha AB, Diapari M, Burstin J, Aubert G, Tar’an B, Bett KE, Warkentin TD, Sharpe AG. Gene-based SNP discovery and genetic mapping in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2225-41. [PMID: 25119872 PMCID: PMC4180032 DOI: 10.1007/s00122-014-2375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/29/2014] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Gene-based SNPs were identified and mapped in pea using five recombinant inbred line populations segregating for traits of agronomic importance. Pea (Pisum sativum L.) is one of the world's oldest domesticated crops and has been a model system in plant biology and genetics since the work of Gregor Mendel. Pea is the second most widely grown pulse crop in the world following common bean. The importance of pea as a food crop is growing due to its combination of moderate protein concentration, slowly digestible starch, high dietary fiber concentration, and its richness in micronutrients; however, pea has lagged behind other major crops in harnessing recent advances in molecular biology, genomics and bioinformatics, partly due to its large genome size with a large proportion of repetitive sequence, and to the relatively limited investment in research in this crop globally. The objective of this research was the development of a genome-wide transcriptome-based pea single-nucleotide polymorphism (SNP) marker platform using next-generation sequencing technology. A total of 1,536 polymorphic SNP loci selected from over 20,000 non-redundant SNPs identified using deep transcriptome sequencing of eight diverse Pisum accessions were used for genotyping in five RIL populations using an Illumina GoldenGate assay. The first high-density pea SNP map defining all seven linkage groups was generated by integrating with previously published anchor markers. Syntenic relationships of this map with the model legume Medicago truncatula and lentil (Lens culinaris Medik.) maps were established. The genic SNP map establishes a foundation for future molecular breeding efforts by enabling both the identification and tracking of introgression of genomic regions harbouring QTLs related to agronomic and seed quality traits.
Collapse
Affiliation(s)
- Anoop Sindhu
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Larissa Ramsay
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
- Present Address: Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Lacey-Anne Sanderson
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Robert Stonehouse
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Rong Li
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Janet Condie
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Arun S. K. Shunmugam
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Yong Liu
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Ambuj B. Jha
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Marwan Diapari
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Judith Burstin
- UMR1347 Agroecology, INRA, 17 rue de Sully, 21065 Dijon Cedex, France
| | - Gregoire Aubert
- UMR1347 Agroecology, INRA, 17 rue de Sully, 21065 Dijon Cedex, France
| | - Bunyamin Tar’an
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Kirstin E. Bett
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Thomas D. Warkentin
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Andrew G. Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
49
|
Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, Vajja VG, Malkaram S, Reddy R, Wehner TC, Mitchell SE, Reddy UK. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics 2014; 15:767. [PMID: 25196513 PMCID: PMC4246513 DOI: 10.1186/1471-2164-15-767] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/29/2014] [Indexed: 02/08/2023] Open
Abstract
Background A large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication. Results We examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model. Conclusions Information concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-767) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Umesh K Reddy
- Gus R, Douglass Institute, Department of Biology, West Virginia State University, Dunbar, WV 25112-1000, USA.
| |
Collapse
|
50
|
Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar'an B. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 2014; 15:708. [PMID: 25150411 PMCID: PMC4158123 DOI: 10.1186/1471-2164-15-708] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the whole genome sequencing, genetic map provides an essential framework for accurate and efficient genome assembly and validation. The main objectives of this study were to develop a high-density genetic map using RAD-Seq (Restriction-site Associated DNA Sequencing) genotyping-by-sequencing (RAD-Seq GBS) and Illumina GoldenGate assays, and to examine the alignment of the current map with the kabuli chickpea genome assembly. RESULTS Genic single nucleotide polymorphisms (SNPs) totaling 51,632 SNPs were identified by 454 transcriptome sequencing of Cicer arietinum and Cicer reticulatum genotypes. Subsequently, an Illumina GoldenGate assay for 1,536 SNPs was developed. A total of 1,519 SNPs were successfully assayed across 92 recombinant inbred lines (RILs), of which 761 SNPs were polymorphic between the two parents. In addition, the next generation sequencing (NGS)-based GBS was applied to the same population generating 29,464 high quality SNPs. These SNPs were clustered into 626 recombination bins based on common segregation patterns. Data from the two approaches were used for the construction of a genetic map using a population derived from an intraspecific cross. The map consisted of 1,336 SNPs including 604 RAD recombination bins and 732 SNPs from Illumina GoldenGate assay. The map covered 653 cM of the chickpea genome with an average distance between adjacent markers of 0.5 cM. To date, this is the most extensive genetic map of chickpea using an intraspecific population. The alignment of the map with the CDC Frontier genome assembly revealed an overall conserved marker order; however, a few local inconsistencies within the Cicer arietinum pseudochromosome 1 (Ca1), Ca5 and Ca8 were detected. The map enabled the alignment of 215 unplaced scaffolds from the CDC Frontier draft genome assembly. The alignment also revealed varying degrees of recombination rates and hotspots across the chickpea genome. CONCLUSIONS A high-density genetic map using RAD-Seq GBS and Illumina GoldenGate assay was developed and aligned with the existing kabuli chickpea draft genome sequence. The analysis revealed an overall conserved marker order, although some localized inversions between draft genome assembly and the genetic map were detected. The current analysis provides an insight of the recombination rates and hotspots across the chickpea genome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bunyamin Tar'an
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|