1
|
Caccialupi G, Milc J, Caradonia F, Nasar MF, Francia E. The Triticeae CBF Gene Cluster-To Frost Resistance and Beyond. Cells 2023; 12:2606. [PMID: 37998341 PMCID: PMC10670769 DOI: 10.3390/cells12222606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals. Triticeae crops seem to share common mechanisms characterized, however, by some peculiar aspects of the response to stress, highlighting a combined landscape of single-nucleotide variants and copy number variation involving CBF members of subgroup IV. Moreover, while chromosome 5 ploidy appears to confer species-specific levels of resistance, an important involvement of the ICE factor might explain the greater tolerance of rye. By unraveling the genetic basis of abiotic stress tolerance, researchers can develop resilient varieties better equipped to withstand extreme environmental conditions. Hence, advancing our knowledge of CBFs and their interactions represents a promising avenue for improving crop resilience and food security.
Collapse
Affiliation(s)
- Giovanni Caccialupi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (J.M.); (F.C.); (M.F.N.); (E.F.)
| | | | | | | | | |
Collapse
|
2
|
Joshi A, Yang SY, Song HG, Min J, Lee JH. Genetic Databases and Gene Editing Tools for Enhancing Crop Resistance against Abiotic Stress. BIOLOGY 2023; 12:1400. [PMID: 37997999 PMCID: PMC10669554 DOI: 10.3390/biology12111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Abiotic stresses extensively reduce agricultural crop production globally. Traditional breeding technology has been the fundamental approach used to cope with abiotic stresses. The development of gene editing technology for modifying genes responsible for the stresses and the related genetic networks has established the foundation for sustainable agriculture against environmental stress. Integrated approaches based on functional genomics and transcriptomics are now expanding the opportunities to elucidate the molecular mechanisms underlying abiotic stress responses. This review summarizes some of the features and weblinks of plant genome databases related to abiotic stress genes utilized for improving crops. The gene-editing tool based on clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has revolutionized stress tolerance research due to its simplicity, versatility, adaptability, flexibility, and broader applications. However, off-target and low cleavage efficiency hinder the successful application of CRISPR/Cas systems. Computational tools have been developed for designing highly competent gRNA with better cleavage efficiency. This powerful genome editing tool offers tremendous crop improvement opportunities, overcoming conventional breeding techniques' shortcomings. Furthermore, we also discuss the mechanistic insights of the CRISPR/Cas9-based genome editing technology. This review focused on the current advances in understanding plant species' abiotic stress response mechanism and applying the CRISPR/Cas system genome editing technology to develop crop resilience against drought, salinity, temperature, heavy metals, and herbicides.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Hyung-Geun Song
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
- Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Kumari J, Lakhwani D, Jakhar P, Sharma S, Tiwari S, Mittal S, Avashthi H, Shekhawat N, Singh K, Mishra KK, Singh R, Yadav MC, Singh GP, Singh AK. Association mapping reveals novel genes and genomic regions controlling grain size architecture in mini core accessions of Indian National Genebank wheat germplasm collection. FRONTIERS IN PLANT SCIENCE 2023; 14:1148658. [PMID: 37457353 PMCID: PMC10345843 DOI: 10.3389/fpls.2023.1148658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/11/2023] [Indexed: 07/18/2023]
Abstract
Wheat (Triticum aestivum L.) is a staple food crop for the global human population, and thus wheat breeders are consistently working to enhance its yield worldwide. In this study, we utilized a sub-set of Indian wheat mini core germplasm to underpin the genetic architecture for seed shape-associated traits. The wheat mini core subset (125 accessions) was genotyped using 35K SNP array and evaluated for grain shape traits such as grain length (GL), grain width (GW), grain length, width ratio (GLWR), and thousand grain weight (TGW) across the seven different environments (E1, E2, E3, E4, E5, E5, E6, and E7). Marker-trait associations were determined using a multi-locus random-SNP-effect Mixed Linear Model (mrMLM) program. A total of 160 non-redundant quantitative trait nucleotides (QTNs) were identified for four grain shape traits using two or more GWAS models. Among these 160 QTNs, 27, 36, 38, and 35 QTNs were associated for GL, GW, GLWR, and TGW respectively while 24 QTNs were associated with more than one trait. Of these 160 QTNs, 73 were detected in two or more environments and were considered reliable QTLs for the respective traits. A total of 135 associated QTNs were annotated and located within the genes, including ABC transporter, Cytochrome450, Thioredoxin_M-type, and hypothetical proteins. Furthermore, the expression pattern of annotated QTNs demonstrated that only 122 were differentially expressed, suggesting these could potentially be related to seed development. The genomic regions/candidate genes for grain size traits identified in the present study represent valuable genomic resources that can potentially be utilized in the markers-assisted breeding programs to develop high-yielding varieties.
Collapse
Affiliation(s)
- Jyoti Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Deepika Lakhwani
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Preeti Jakhar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shivani Sharma
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shailesh Tiwari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Jaypee University of Information Technology, Solan, India
| | | | - Neelam Shekhawat
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Jodhpur, Jodhpur, India
| | - Kartar Singh
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Jodhpur, Jodhpur, India
| | | | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mahesh C. Yadav
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
4
|
Genome-Wide Association Studies of Root-Related Traits in Brassica napus L. under Low-Potassium Conditions. PLANTS 2022; 11:plants11141826. [PMID: 35890461 PMCID: PMC9318150 DOI: 10.3390/plants11141826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Roots are essential organs for a plant’s ability to absorb water and obtain mineral nutrients, hence they are critical to its development. Plants use root architectural alterations to improve their chances of absorbing nutrients when their supply is low. Nine root traits of a Brassica napus association panel were explored in hydroponic-system studies under low potassium (K) stress to unravel the genetic basis of root growth in rapeseed. The quantitative trait loci (QTL) and candidate genes for root development were discovered using a multilocus genome-wide association study (ML-GWAS). For the nine traits, a total of 453 significant associated single-nucleotide polymorphism (SNP) loci were discovered, which were then integrated into 206 QTL clusters. There were 45 pleiotropic clusters, and qRTA04-4 and qRTC04-7 were linked to TRL, TSA, and TRV at the same time, contributing 5.25–11.48% of the phenotypic variance explained (PVE) to the root traits. Additionally, 1360 annotated genes were discovered by examining genomic regions within 100 kb upstream and downstream of lead SNPs within the 45 loci. Thirty-five genes were identified as possibly regulating root-system development. As per protein–protein interaction analyses, homologs of three genes (BnaC08g29120D, BnaA07g10150D, and BnaC04g45700D) have been shown to influence root growth in earlier investigations. The QTL clusters and candidate genes identified in this work will help us better understand the genetics of root growth traits and could be employed in marker-assisted breeding for rapeseed adaptable to various conditions with low K levels.
Collapse
|
5
|
Abstract
Winter wheat growing areas in the Northern hemisphere are regularly exposed to heavy frost. Due to the negative impact on yield, the identification of genetic factors controlling frost tolerance (FroT) and development of tools for breeding is of prime importance. Here, we detected QTL associated with FroT by genome wide association studies (GWAS) using a diverse panel of 276 winter wheat genotypes that was phenotyped at five locations in Germany and Russia in three years. The panel was genotyped using the 90 K iSelect array and SNPs in FroT candidate genes. In total, 17,566 SNPs were used for GWAS resulting in the identification of 53 markers significantly associated (LOD ≥ 4) to FroT, corresponding to 23 QTL regions located on 11 chromosomes (1A, 1B, 2A, 2B, 2D, 3A, 3D, 4A, 5A, 5B and 7D). The strongest QTL effect confirmed the importance of chromosome 5A for FroT. In addition, to our best knowledge, eight FroT QTLs were discovered for the first time in this study comprising one QTL on chromosomes 3A, 3D, 4A, 7D and two on chromosomes 1B and 2D. Identification of novel FroT candidate genes will help to better understand the FroT mechanism in wheat and to develop more effective combating strategies.
Collapse
|
6
|
Guerra D, Morcia C, Badeck F, Rizza F, Delbono S, Francia E, Milc JA, Monostori I, Galiba G, Cattivelli L, Tondelli A. Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:553-569. [PMID: 34757472 PMCID: PMC8866391 DOI: 10.1007/s00122-021-03985-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
Exome sequencing-based allele mining for frost tolerance suggests HvCBF14 rather than CNV at Fr-H2 locus is the main responsible of frost tolerance in barley. Wild relatives, landraces and old cultivars of barley represent a reservoir of untapped and potentially important genes for crop improvement, and the recent sequencing technologies provide the opportunity to mine the existing genetic diversity and to identify new genes/alleles for the traits of interest. In the present study, we use frost tolerance and vernalization requirement as case studies to demonstrate the power of allele mining carried out on exome sequencing data generated from > 400 barley accessions. New deletions in the first intron of VRN-H1 were identified and linked to a reduced vernalization requirement, while the allelic diversity of HvCBF2a, HvCBF4b and HvCBF14 was investigated by combining the analysis of SNPs and read counts. This approach has proven very effective to identify gene paralogs and copy number variants of HvCBF2 and the HvCBF4b-HvCBF2a segment. A multiple linear regression model which considers allelic variation at these genes suggests a major involvement of HvCBF14, rather than copy number variation of HvCBF4b-HvCBF2a, in controlling frost tolerance in barley. Overall, the present study provides powerful resource and tools to discover novel alleles at relevant genes in barley.
Collapse
Affiliation(s)
- Davide Guerra
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy.
| | - Caterina Morcia
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Franz Badeck
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Fulvia Rizza
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Stefano Delbono
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Enrico Francia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Justyna Anna Milc
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Istvan Monostori
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, Martonvásár, 2462, Hungary
| | - Gabor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, Martonvásár, 2462, Hungary
- Department of Environmental Sustainability, Festetics Doctoral School, IES, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, 8360, Hungary
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| |
Collapse
|
7
|
Mattia MR, Du D, Yu Q, Kahn T, Roose M, Hiraoka Y, Wang Y, Munoz P, Gmitter FG. Genome-Wide Association Study of Healthful Flavonoids among Diverse Mandarin Accessions. PLANTS (BASEL, SWITZERLAND) 2022; 11:317. [PMID: 35161299 PMCID: PMC8839032 DOI: 10.3390/plants11030317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
Mandarins have many unique flavonoids with documented health benefits and that help to prevent chronic human diseases. Flavonoids are difficult to measure and cannot be phenotyped without the use of specialized equipment; consequently, citrus breeders have not used flavonoid contents as selection criteria to develop cultivars with increased benefits for human health or increased tolerance to diseases. In this study, peel, pulp, and seed samples collected from many mandarin accessions and their hybrids were analyzed for the presence of selected flavonoids with documented human health benefits. A genome-wide association study (GWAS) was used to identify SNPs associated with biosynthesis of flavonoids in these mandarin accessions, and there were 420 significant SNPs were found to be associated with 28 compounds in peel, pulp, or seed samples. Four candidate genes involved in flavonoid biosynthesis were identified by enrichment analysis. SNPs that were found to be associated with compounds in pulp samples have the potential to be used as markers to select mandarins with improved phytonutrient content to benefit human health. Mandarin cultivars bred with increased flavonoid content may provide value to growers and consumers.
Collapse
Affiliation(s)
- Matthew R. Mattia
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, FL 33850, USA; (M.R.M.); (D.D.); (Q.Y.); (Y.W.)
| | - Dongliang Du
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, FL 33850, USA; (M.R.M.); (D.D.); (Q.Y.); (Y.W.)
| | - Qibin Yu
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, FL 33850, USA; (M.R.M.); (D.D.); (Q.Y.); (Y.W.)
| | - Tracy Kahn
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (T.K.); (M.R.); (Y.H.)
| | - Mikeal Roose
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (T.K.); (M.R.); (Y.H.)
| | - Yoko Hiraoka
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (T.K.); (M.R.); (Y.H.)
| | - Yu Wang
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, FL 33850, USA; (M.R.M.); (D.D.); (Q.Y.); (Y.W.)
| | - Patricio Munoz
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Fred G. Gmitter
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, FL 33850, USA; (M.R.M.); (D.D.); (Q.Y.); (Y.W.)
| |
Collapse
|
8
|
Sallam AH, Smith KP, Hu G, Sherman J, Baenziger PS, Wiersma J, Duley C, Stockinger EJ, Sorrells ME, Szinyei T, Loskutov IG, Kovaleva ON, Eberly J, Steffenson BJ. Cold Conditioned: Discovery of Novel Alleles for Low-Temperature Tolerance in the Vavilov Barley Collection. FRONTIERS IN PLANT SCIENCE 2021; 12:800284. [PMID: 34975991 PMCID: PMC8715003 DOI: 10.3389/fpls.2021.800284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Climate changes leading to higher summer temperatures can adversely affect cool season crops like spring barley. In the Upper Midwest region of the United States, one option for escaping this stress factor is to plant winter or facultative type cultivars in the autumn and then harvest in early summer before the onset of high-temperature stress. However, the major challenge in breeding such cultivars is incorporating sufficient winter hardiness to survive the extremely low temperatures that commonly occur in this production region. To broaden the genetic base for winter hardiness in the University of Minnesota breeding program, 2,214 accessions from the N. I. Vavilov Institute of Plant Industry (VIR) were evaluated for winter survival (WS) in St. Paul, Minnesota. From this field trial, 267 (>12%) accessions survived [designated as the VIR-low-temperature tolerant (LTT) panel] and were subsequently evaluated for WS across six northern and central Great Plains states. The VIR-LTT panel was genotyped with the Illumina 9K SNP chip, and then a genome-wide association study was performed on seven WS datasets. Twelve significant associations for WS were identified, including the previously reported frost resistance gene FR-H2 as well as several novel ones. Multi-allelic haplotype analysis revealed the most favorable alleles for WS in the VIR-LTT panel as well as another recently studied panel (CAP-LTT). Seventy-eight accessions from the VIR-LTT panel exhibited a high and consistent level of WS and select ones are being used in winter barley breeding programs in the United States and in a multiparent population.
Collapse
Affiliation(s)
- Ahmad H. Sallam
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Kevin P. Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Gongshe Hu
- USDA-ARS, Small Grains and Potato Germplasm Research, Aberdeen, ID, United States
| | - Jamie Sherman
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Peter Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jochum Wiersma
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Carl Duley
- University of Wisconsin and UW-Extension, Alma, WI, United States
| | - Eric J. Stockinger
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States
| | - Mark E. Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Tamas Szinyei
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Igor G. Loskutov
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia
| | - Olga N. Kovaleva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia
| | - Jed Eberly
- Central Agricultural Research Center, Montana State University, Moccasin, MT, United States
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
9
|
Khan SU, Saeed S, Khan MHU, Fan C, Ahmar S, Arriagada O, Shahzad R, Branca F, Mora-Poblete F. Advances and Challenges for QTL Analysis and GWAS in the Plant-Breeding of High-Yielding: A Focus on Rapeseed. Biomolecules 2021; 11:1516. [PMID: 34680149 PMCID: PMC8533950 DOI: 10.3390/biom11101516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Yield is one of the most important agronomic traits for the breeding of rapeseed (Brassica napus L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield productivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved complex traits.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Muhammad Hafeez Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| | - Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Raheel Shahzad
- Department of Biotechnology, Faculty of Science & Technology, Universitas Muhammadiyah Bandung, Bandung 40614, Indonesia;
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| |
Collapse
|
10
|
Ghomi K, Rabiei B, Sabouri H, Gholamalipour Alamdari E. Association analysis, genetic diversity and population structure of barley (Hordeum vulgare L.) under heat stress conditions using SSR and ISSR markers linked to primary and secondary metabolites. Mol Biol Rep 2021; 48:6673-6694. [PMID: 34495461 DOI: 10.1007/s11033-021-06652-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Barley is one of the major cereal crops, which can provide a significant source of genes for stress tolerance due to its high diversity and adaptability. Metabolite traits are considered to be significant for adaptation of barley to heat stress. METHODS AND RESULTS In the present study, genetic relationships between 120 barley genotypes were determined with 50 simple sequence repeat (SSR) and 26 inter simple sequence repeat (ISSR) markers under heat stress and non-stress conditions. Moreover, genetic diversity of barley accessions was investigated using the studied markers covering 7 chromosomes of barley. RESULTS In general, 153 and 85 polymorphic alleles were detected for SSR and ISSR and number of the observed polymorphic allele varied between 2-9 and 2-6, with an average of 3.26 and 3.26 alleles per locus, respectively. Markers of Bmag0223, GBMS180/180, HVM7, ISSR22, ISSR25, and ISSR48 were the most informative due to their high polymorphism information content value demonstrating that putative techniques utilized in this research can be powerful and valuable tools in breeding program of barley. Association analysis was performed between 9 important traits and SSR and ISSR markers using four statistical models. The results revealed that the model containing both population structure (Q) and general similarity in genetic background arising from shared kinship (K) factors reduced false positive associations between markers and phenotypes. CONCLUSIONS According to the results, some of markers related to more than one trait under normal conditions (ISSR31-2, HVM62, and GBMS180/180) and heat stress conditions (ISSR20-5, EBmac635, HVM14, and ISSR37-3) were determined, which can be considered to be the most interesting candidates for further studies and simultaneously will provide a useful target for the future breeding programs, such as marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Khadijeh Ghomi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Persian Gulf Highway, P.O. Box: 41635-1314, Rasht, Guilan, Iran
| | - Babak Rabiei
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Persian Gulf Highway, P.O. Box: 41635-1314, Rasht, Guilan, Iran.
| | - Hossein Sabouri
- Department of Plant Production, Faculty of Agriculture and Natural Resources, Gonbad University, Shahid Fallahi Street, Gonbad-e Kāvūs, Golestan, Iran
| | - Ebrahim Gholamalipour Alamdari
- Department of Plant Production, Faculty of Agriculture and Natural Resources, Gonbad University, Shahid Fallahi Street, Gonbad-e Kāvūs, Golestan, Iran
| |
Collapse
|
11
|
Stockinger EJ. The Breeding of Winter-Hardy Malting Barley. PLANTS 2021; 10:plants10071415. [PMID: 34371618 PMCID: PMC8309344 DOI: 10.3390/plants10071415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
In breeding winter malting barley, one recurring strategy is to cross a current preferred spring malting barley to a winter barley. This is because spring malting barleys have the greatest amalgamation of trait qualities desirable for malting and brewing. Spring barley breeding programs can also cycle their material through numerous generations each year-some managing even six-which greatly accelerates combining desirable alleles to generate new lines. In a winter barley breeding program, a single generation per year is the limit when the field environment is used and about two generations per year if vernalization and greenhouse facilities are used. However, crossing the current favored spring malting barley to a winter barley may have its downsides, as winter-hardiness too may be an amalgamation of desirable alleles assembled together that confers the capacity for prolonged cold temperature conditions. In this review I touch on some general criteria that give a variety the distinction of being a malting barley and some of the general trends made in the breeding of spring malting barleys. But the main objective of this review is to pull together different aspects of what we know about winter-hardiness from the seemingly most essential aspect, which is survival in the field, to molecular genetics and gene regulation, and then finish with ideas that might help further our insight for predictability purposes.
Collapse
Affiliation(s)
- Eric J Stockinger
- Ohio Agricultural Research and Development Center (OARDC), Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
12
|
Lee ON, Koo H, Yu JW, Park HY. Genotyping-by-Sequencing-Based Genome-Wide Association Studies of Fusarium Wilt Resistance in Radishes ( Raphanus sativus L.). Genes (Basel) 2021; 12:genes12060858. [PMID: 34205206 PMCID: PMC8228987 DOI: 10.3390/genes12060858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Fusarium wilt (FW) is a fungal disease that causes severe yield losses in radish production. The most effective method to control the FW is the development and use of resistant varieties in cultivation. The identification of marker loci linked to FW resistance are expected to facilitate the breeding of disease-resistant radishes. In the present study, we applied an integrated framework of genome-wide association studies (GWAS) using genotyping-by-sequencing (GBS) to identify FW resistance loci among a panel of 225 radish accessions, including 58 elite breeding lines. Phenotyping was conducted by manual inoculation of seedlings with the FW pathogen, and scoring for the disease index was conducted three weeks after inoculation during two constitutive years. The GWAS analysis identified 44 single nucleotide polymorphisms (SNPs) and twenty putative candidate genes that were significantly associated with FW resistance. In addition, a total of four QTLs were identified from F2 population derived from a FW resistant line and a susceptible line, one of which was co-located with the SNPs on chromosome 7, detected in GWAS study. These markers will be valuable for molecular breeding programs and marker-assisted selection to develop FW resistant varieties of R. sativus.
Collapse
Affiliation(s)
- O New Lee
- College of Life Sciences, Sejong University, Seoul 05006, Korea;
| | - Hyunjin Koo
- Department of Agricultural Biotechnology and Research, Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | | | - Han Yong Park
- College of Life Sciences, Sejong University, Seoul 05006, Korea;
- Correspondence:
| |
Collapse
|
13
|
Jabbari M, Fakheri BA, Aghnoum R, Darvishzadeh R, Mahdi Nezhad N, Ataei R, Koochakpour Z, Razi M. Association analysis of physiological traits in spring barley ( Hordeum vulgare L.) under water-deficit conditions. Food Sci Nutr 2021; 9:1761-1779. [PMID: 33747487 PMCID: PMC7958556 DOI: 10.1002/fsn3.2161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/18/2023] Open
Abstract
In the present study, 148 commercial barley cultivars were assessed by 14 AFLP primer combinations and 32 SSRs primer pairs. Population structure, linkage disequilibrium, and genomic regions associated with physiological traits under drought stress were investigated. The phenotypic results showed a high level of diversity between studied cultivars. The studied barley cultivars were divided into two subgroups. Linkage disequilibrium analysis revealed that r 2 values among all possible marker pairs have an average value of 0.0178. The mixed linear model procedure showed that totally, 207 loci had a significant association with investigated traits. 120 QTLs out of 207 were detected for traits under normal conditions, and 90 QTLs were detected for traits under drought stress conditions. Identified QTLs after validation and transferring to SCAR markers in the case of AFLPs can be used to develop MAS strategies for barley breeding programs. Some common markers were identified for a particular trait or some traits across normal and drought stress conditions. These markers show low interaction with environmental conditions (stable markers); therefore, selection by them for a trait under normal conditions will improve the trait value under stress conditions, too.
Collapse
Affiliation(s)
- Mitra Jabbari
- Faculty of AgricultureHigher Education Complex of SaravanSaravanSistan and BaluchestanIran
| | - Barat Ali Fakheri
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUniversity of ZabolZabolSistan and BaluchestanIran
| | - Reza Aghnoum
- Seed and Plant Improvement Research DepartmentKhorasan Razavi Agricultural and Natural Resources Research and Education CenterAREEOMashhadKhorasan RazaviIran
| | - Reza Darvishzadeh
- Department of Plant Production and GeneticsFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Nafiseh Mahdi Nezhad
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUniversity of ZabolZabolSistan and BaluchestanIran
| | - Reza Ataei
- Seed and Plant Improvement InstituteAgricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Zahra Koochakpour
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUniversity of ZabolZabolSistan and BaluchestanIran
| | - Mitra Razi
- Department of Plant Production and GeneticsFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| |
Collapse
|
14
|
Ferrante A, Cullis BR, Smith AB, Able JA. A Multi-Environment Trial Analysis of Frost Susceptibility in Wheat and Barley Under Australian Frost-Prone Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:722637. [PMID: 34490019 PMCID: PMC8417324 DOI: 10.3389/fpls.2021.722637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 05/22/2023]
Abstract
Low temperatures during the flowering period of cereals can lead to floret sterility, yield reduction, and economic losses in Australian crops. In order to breed for improved frost susceptibility, selection methods are urgently required to identify novel sources of frost tolerant germplasm. However, the presence of genotype by environment interactions (i.e. variety responses to a change in environment) is a major constraint to select the most appropriate varieties in any given target environment. An advanced method of analysis for multi-environment trials that includes factor analytic selection tools to summarize overall performance and stability to a specific trait across the environments could deliver useful information to guide growers and plant breeding programs in providing the most appropriate decision making-strategy. In this study, the updated selection tools approached in this multi-environment trials (MET) analysis have allowed variety comparisons with similar frost susceptibility but which have a different response to changes in the environment or vice versa. This MET analysis included a wide range of sowing dates grown at multiple locations from 2010 to 2019, respectively. These results, as far as we are aware, show for the first-time genotypic differences to frost damage through a MET analysis by phenotyping a vast number of accurate empirical measurements that reached in excess of 557,000 spikes. This has resulted in a substantial number of experimental units (10,317 and 5,563 in wheat and barley, respectively) across a wide range of sowing times grown at multiple locations from 2010 to 2019. Varieties with low frost overall performance (OP) and low frost stability (root mean square deviation -RMSD) were less frost susceptible, with performance more consistent across all environments, while varieties with low OP and high RMSD were adapted to specific environmental conditions.
Collapse
Affiliation(s)
- Ariel Ferrante
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA, Australia
- *Correspondence: Ariel Ferrante,
| | - Brian R. Cullis
- Centre for Biometrics and Data Science for Sustainable Primary Industries, National Institute for Applied Statistics Research Australia (NIARSA), School of Mathematics and Applied Statistics, Faculty of Engineering & Information Sciences, University of Wollongong, NSW, Australia
| | - Alison B. Smith
- Centre for Biometrics and Data Science for Sustainable Primary Industries, National Institute for Applied Statistics Research Australia (NIARSA), School of Mathematics and Applied Statistics, Faculty of Engineering & Information Sciences, University of Wollongong, NSW, Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
15
|
Caproni L, Raggi L, Talsma EF, Wenzl P, Negri V. European landrace diversity for common bean biofortification: a genome-wide association study. Sci Rep 2020; 10:19775. [PMID: 33188249 PMCID: PMC7666124 DOI: 10.1038/s41598-020-76417-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Mineral deficiencies represent a global challenge that needs to be urgently addressed. An adequate intake of iron and zinc results in a balanced diet that reduces chances of impairment of many metabolic processes that can lead to clinical consequences. In plants, bioavailability of such nutrients is reduced by presence of compounds such as phytic acid, that can chelate minerals and reduce their absorption. Biofortification of common bean (Phaseolus vulgaris L.) represents an important strategy to reduce mineral deficiencies, especially in areas of the world where this crop plays a key role in the diet. In this study, a panel of diversity encompassing 192 homozygous genotypes, was screened for iron, zinc and phytate seed content. Results indicate a broad variation of these traits and allowed the identification of accessions reasonably carrying favourable trait combinations. A significant association between zinc seed content and some molecular SNP markers co-located on the common bean Pv01 chromosome was detected by means of genome-wide association analysis. The gene Phvul001G233500, encoding for an E3 ubiquitin-protein ligase, is proposed to explain detected associations. This result represents a preliminary evidence that can foster future research aiming at understanding the genetic mechanisms behind zinc accumulation in beans.
Collapse
Affiliation(s)
- Leonardo Caproni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università Degli Studi Di Perugia, Borgo XX Giugno 74, 06126, Perugia, Italy
| | - Lorenzo Raggi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università Degli Studi Di Perugia, Borgo XX Giugno 74, 06126, Perugia, Italy
| | - Elise F Talsma
- Division of Human Nutrition and Health, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands
- HarvestPlus, International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali, Colombia
| | - Peter Wenzl
- Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali, Colombia
| | - Valeria Negri
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università Degli Studi Di Perugia, Borgo XX Giugno 74, 06126, Perugia, Italy.
| |
Collapse
|
16
|
Karunarathne SD, Han Y, Zhang XQ, Zhou G, Hill CB, Chen K, Angessa T, Li C. Genome-Wide Association Study and Identification of Candidate Genes for Nitrogen Use Efficiency in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:571912. [PMID: 33013994 PMCID: PMC7500209 DOI: 10.3389/fpls.2020.571912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/18/2020] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) fertilizer is largely responsible for barley grain yield potential and quality, yet excessive application leads to environmental pollution and high production costs. Therefore, efficient use of N is fundamental for sustainable agriculture. In the present study, we investigated the performance of 282 barley accessions through hydroponic screening using optimal and low NH4NO3 treatments. Low-N treatment led to an average shoot dry weight reduction of 50%, but there were significant genotypic differences among the accessions. Approximately 20% of the genotypes showed high (>75%) relative shoot dry weight under low-N treatment and were classified as low-N tolerant, whereas 20% were low-N sensitive (≤55%). Low-N tolerant accessions exhibited well-developed root systems with an average increase of 60% in relative root dry weight to facilitate more N absorption. A genome-wide association study (GWAS) identified 66 significant marker trait associations (MTAs) conferring high nitrogen use efficiency, four of which were stable across experiments. These four MTAs were located on chromosomes 1H(1), 3H(1), and 7H(2) and were associated with relative shoot length, relative shoot and root dry weight. Genes corresponding to the significant MTAs were retrieved as candidate genes, including members of the asparagine synthetase gene family, several transcription factor families, protein kinases, and nitrate transporters. Most importantly, the high-affinity nitrate transporter 2.7 (HvNRT2.7) was identified as a promising candidate on 7H for root and shoot dry weight. The identified candidate genes provide new insights into our understanding of the molecular mechanisms driving nitrogen use efficiency in barley and represent potential targets for genetic improvement.
Collapse
Affiliation(s)
- Sakura D Karunarathne
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| | - Camilla B Hill
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Kefei Chen
- SAGI West, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Tefera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
17
|
Beji S, Fontaine V, Devaux R, Thomas M, Negro SS, Bahrman N, Siol M, Aubert G, Burstin J, Hilbert JL, Delbreil B, Lejeune-Hénaut I. Genome-wide association study identifies favorable SNP alleles and candidate genes for frost tolerance in pea. BMC Genomics 2020; 21:536. [PMID: 32753054 PMCID: PMC7430820 DOI: 10.1186/s12864-020-06928-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Frost is a limiting abiotic stress for the winter pea crop (Pisum sativum L.) and identifying the genetic determinants of frost tolerance is a major issue to breed varieties for cold northern areas. Quantitative trait loci (QTLs) have previously been detected from bi-parental mapping populations, giving an overview of the genome regions governing this trait. The recent development of high-throughput genotyping tools for pea brings the opportunity to undertake genetic association studies in order to capture a higher allelic diversity within large collections of genetic resources as well as to refine the localization of the causal polymorphisms thanks to the high marker density. In this study, a genome-wide association study (GWAS) was performed using a set of 365 pea accessions. Phenotyping was carried out by scoring frost damages in the field and in controlled conditions. The association mapping collection was also genotyped using an Illumina Infinium® BeadChip, which allowed to collect data for 11,366 single nucleotide polymorphism (SNP) markers. RESULTS GWAS identified 62 SNPs significantly associated with frost tolerance and distributed over six of the seven pea linkage groups (LGs). These results confirmed 3 QTLs that were already mapped in multiple environments on LG III, V and VI with bi-parental populations. They also allowed to identify one locus, on LG II, which has not been detected yet and two loci, on LGs I and VII, which have formerly been detected in only one environment. Fifty candidate genes corresponding to annotated significant SNPs, or SNPs in strong linkage disequilibrium with the formers, were found to underlie the frost damage (FD)-related loci detected by GWAS. Additionally, the analyses allowed to define favorable haplotypes of markers for the FD-related loci and their corresponding accessions within the association mapping collection. CONCLUSIONS This study led to identify FD-related loci as well as corresponding favorable haplotypes of markers and representative pea accessions that might to be used in winter pea breeding programs. Among the candidate genes highlighted at the identified FD-related loci, the results also encourage further attention to the presence of C-repeat Binding Factors (CBF) as potential genetic determinants of the frost tolerance locus on LG VI.
Collapse
Affiliation(s)
- Sana Beji
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | - Véronique Fontaine
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | | | | | - Sandra Silvia Negro
- GQE - Le Moulon, INRAE, Univ. Paris-Sud, CNRS, AgroParisTech, Univ. Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Nasser Bahrman
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | - Mathieu Siol
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Louis Hilbert
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | - Bruno Delbreil
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | - Isabelle Lejeune-Hénaut
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| |
Collapse
|
18
|
Li Z, Lhundrup N, Guo G, Dol K, Chen P, Gao L, Chemi W, Zhang J, Wang J, Nyema T, Dawa D, Li H. Characterization of Genetic Diversity and Genome-Wide Association Mapping of Three Agronomic Traits in Qingke Barley ( Hordeum Vulgare L.) in the Qinghai-Tibet Plateau. Front Genet 2020; 11:638. [PMID: 32719715 PMCID: PMC7351530 DOI: 10.3389/fgene.2020.00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Barley (Hordeum vulgare L.) is one of the most important cereal crops worldwide. In the Qinghai-Tibet Plateau, six-rowed hulless (or naked) barley, called “qingke” in Chinese or “nas” in Tibetan, is produced mainly in Tibet. The complexity of the environment in the Qinghai-Tibet Plateau has provided unique opportunities for research on the breeding and adaptability of qingke barley. However, the genetic architecture of many important agronomic traits for qingke barley remains elusive. Heading date (HD), plant height (PH), and spike length (SL) are three prominent agronomic traits in barley. Here, we used genome-wide association (GWAS) mapping and GWAS with eigenvector decomposition (EigenGWAS) to detect quantitative trait loci (QTL) and selective signatures for HD, PH, and SL in a collection of 308 qingke barley accessions. The accessions were genotyped using a newly-developed, proprietary genotyping-by-sequencing (tGBS) technology, that yielded 14,970 high quality single nucleotide polymorphisms (SNPs). We found that the number of SNPs was higher in the varieties than in the landraces, which suggested that Tibetan varieties and varieties in the Tibetan area may have originated from different landraces in different areas. We have identified 62 QTLs associated with three important traits, and the observed phenotypic variation is well-explained by the identified QTLs. We mapped 114 known genes that include, but are not limited to, vernalization, and photoperiod genes. We found that 83.87% of the identified QTLs are located in the non-coding regulatory regions of annotated barley genes. Forty-eight of the QTLs are first reported here, 28 QTLs have pleotropic effects, and three QTL are located in the regions of the well-characterized genes HvVRN1, HvVRN3, and PpD-H2. EigenGWAS analysis revealed that multiple heading-date-related loci bear signatures of selection. Our results confirm that the barley panel used in this study is highly diverse, and showed a great promise for identifying the genetic basis of adaptive traits. This study should increase our understanding of complex traits in qingke barley, and should facilitate genome-assisted breeding for qingke barley improvement.
Collapse
Affiliation(s)
- Zhiyong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Namgyal Lhundrup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kar Dol
- Tibet Agricultural and Animal Husbandry College, Nyingchi, China
| | - Panpan Chen
- Tibet Agricultural and Animal Husbandry College, Nyingchi, China
| | - Liyun Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Wangmo Chemi
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiankang Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tashi Nyema
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Dondrup Dawa
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
19
|
Hernandez J, Meints B, Hayes P. Introgression Breeding in Barley: Perspectives and Case Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:761. [PMID: 32595671 PMCID: PMC7303309 DOI: 10.3389/fpls.2020.00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/04/2023]
Abstract
Changing production scenarios resulting from unstable climatic conditions are challenging crop improvement efforts. A deeper and more practical understanding of plant genetic resources is necessary if these assets are to be used effectively in developing improved varieties. In general, current varieties and potential varieties have a narrow genetic base, making them prone to suffer the consequences of new and different abiotic and biotic stresses that can reduce crop yield and quality. The deployment of genomic technologies and sophisticated statistical analysis procedures has generated a dramatic change in the way we characterize and access genetic diversity in crop plants, including barley. Various mapping strategies can be used to identify the genetic variants that lead to target phenotypes and these variants can be assigned coordinates in reference genomes. In this way, new genes and/or new alleles at known loci present in wild ancestors, germplasm accessions, land races, and un-adapted introductions can be located and targeted for introgression. In principle, the introgression process can now be streamlined and linkage drag reduced. In this review, we present an overview of (1) past and current efforts to identify diversity that can be tapped to improve barley yield and quality, and (2) case studies of our efforts to introgress resistance to stripe and stem rust from un-adapted germplasm. We conclude with a description of a modified Nested Association Mapping (NAM) population strategy that we are implementing for the development of multi-use naked barley for organic systems and share perspectives on the use of genome editing in introgression breeding.
Collapse
Affiliation(s)
- Javier Hernandez
- Department Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | | | | |
Collapse
|
20
|
Barros KA, Esteves-Ferreira AA, Inaba M, Meally H, Finnan J, Barth S, Davis SJ, Sulpice R. Diurnal patterns of growth and transient reserves of sink and source tissues are affected by cold nights in barley. PLANT, CELL & ENVIRONMENT 2020; 43:1404-1420. [PMID: 32012288 DOI: 10.1111/pce.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/18/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Barley is described to mostly use sucrose for night carbon requirements. To understand how the transient carbon is accumulated and utilized in response to cold, barley plants were grown in a combination of cold days and/or nights. Both daytime and night cold reduced growth. Sucrose was the main carbohydrate supplying growth at night, representing 50-60% of the carbon consumed. Under warm days and nights, starch was the second contributor with 26% and malate the third with 15%. Under cold nights, the contribution of starch was severely reduced, due to an inhibition of its synthesis, including under warm days, and malate was the second contributor to C requirements with 24-28% of the total amount of carbon consumed. We propose that malate plays a critical role as an alternative carbon source to sucrose and starch in barley. Hexoses, malate, and sucrose mobilization and starch accumulation were affected in barley elf3 clock mutants, suggesting a clock regulation of their metabolism, without affecting growth and photosynthesis however. Altogether, our data suggest that the mobilization of sucrose and malate and/or barley growth machinery are sensitive to cold.
Collapse
Affiliation(s)
- Kallyne A Barros
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Alberto A Esteves-Ferreira
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Masami Inaba
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Helena Meally
- Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - John Finnan
- Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - Susanne Barth
- Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - Seth J Davis
- Department of Biology Heslington, University of York, York YO10 5NG, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Ronan Sulpice
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| |
Collapse
|
21
|
Abed A, Belzile F. Comparing Single-SNP, Multi-SNP, and Haplotype-Based Approaches in Association Studies for Major Traits in Barley. THE PLANT GENOME 2019; 12:1-14. [PMID: 33016584 DOI: 10.3835/plantgenome2019.05.0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 05/12/2023]
Abstract
The multiple single nucleotide polymorphism (multi-SNP) and haplotype-based approaches that jointly consider multiple markers unveiled a larger number of associations, some of which were shared with the single-SNP approach. A larger overlap of quantitative trait loci (QTLs) between the single-SNP and haplotype-based approaches was obtained than with the multi-SNP approach. Despite a limited overlap between the QTLs detected by these approaches, each uncovered QTLs reported previously, suggesting that each approach is capable of uncovering a different subset of QTLs. We demonstrated the efficiency of an integrated genome-wide association study (GWAS) procedure, combining single-locus and multilocus approaches to improve the capacity and reliability of association analysis to detect key QTLs. The efficiency of barley breeding programs may be improved by the practical use of QTLs identified in this study. Genome-wide association studies (GWAS) have been widely used to identify quantitative trait loci (QTLs) underlying complex agronomic traits. The conventional GWAS model is based on a single-locus model, which may prove inaccurate if a trait is controlled by multiple loci, which is the case for most agronomic traits in barley (Hordeum vulgare L.). Additionally, an individual single nucleotide polymorphism (SNP) will prove incapable of capturing underlying allelic diversity. A multilocus model could potentially represent a better alternative for QTL identification. This study aimed to explore different GWAS approaches (single-SNP, multi-SNP, and haplotype-based) to establish SNP-trait associations and to potentially describe the complex genetic architecture of seven key traits in spring barley. The multi-SNP and haplotype-based approaches unveiled a larger number of significant associations, some of which were shared with the single-SNP approach. Globally, the multi-SNP approach explained more of the phenotypic variance (cumulative R2 ) and provided the best fit with the genetic model [Bayesian information criterion (BIC)]. Compared with the multi-SNP approach, the single-SNP and haplotype-based approaches were relatively similar in terms of cumulative R2 and BIC, with an improvement with the haplotype-based approach. Despite limited overlap between detected QTLs, each approach discovered QTLs that had been validated previously, suggesting that each approach can uncover a different subset of QTLs. An integrated GWAS procedure, considering single-locus and multilocus GWAS approaches jointly, may improve the capacity of association studies to detect key QTLs and to provide a more complete picture of the genetic architecture of complex traits in barley.
Collapse
Affiliation(s)
- Amina Abed
- Dép. de phytologie, Pavillon Charles-Eugène, Marchand 1030, Ave., de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - François Belzile
- Dép. de phytologie, Pavillon Charles-Eugène, Marchand 1030, Ave., de la Médecine, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
22
|
Lei L, Poets AM, Liu C, Wyant SR, Hoffman PJ, Carter CK, Shaw BG, Li X, Muehlbauer GJ, Katagiri F, Morrell PL. Environmental Association Identifies Candidates for Tolerance to Low Temperature and Drought. G3 (BETHESDA, MD.) 2019; 9:3423-3438. [PMID: 31439717 PMCID: PMC6778781 DOI: 10.1534/g3.119.400401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/17/2019] [Indexed: 11/24/2022]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is cultivated from the equator to the Arctic Circle. The wild progenitor species, Hordeum vulgare ssp. spontaneum, occupies a relatively narrow latitudinal range (∼30 - 40° N) primarily at low elevation (< 1,500 m). Adaptation to the range of cultivation has occurred over ∼8,000 years. The genetic basis of adaptation is amenable to study through environmental association. An advantage of environmental association in a well-characterized crop is that many loci that contribute to climatic adaptation and abiotic stress tolerance have already been identified. This provides the opportunity to determine if environmental association approaches effectively identify these loci of large effect. Using published genotyping from 7,864 SNPs in 803 barley landraces, we examined allele frequency differentiation across multiple partitions of the data and mixed model associations relative to bioclimatic variables. Using newly generated resequencing data from a subset of these landraces, we tested for linkage disequilibrium (LD) between SNPs queried in genotyping and SNPs in neighboring loci. Six loci previously reported to contribute to adaptive differences in flowering time and abiotic stress in barley and six loci previously identified in other plant species were identified in our analyses. In many cases, patterns of LD are consistent with the causative variant occurring in the immediate vicinity of the queried SNP. The identification of barley orthologs to well-characterized genes may provide a new understanding of the nature of adaptive variation and could permit a more targeted use of potentially adaptive variants in barley breeding and germplasm improvement.
Collapse
Affiliation(s)
- Li Lei
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Ana M Poets
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Skylar R Wyant
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Paul J Hoffman
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Corey K Carter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Brian G Shaw
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Xin Li
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Fumiaki Katagiri
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| |
Collapse
|
23
|
Raggi L, Caproni L, Carboni A, Negri V. Genome-Wide Association Study Reveals Candidate Genes for Flowering Time Variation in Common Bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2019; 10:962. [PMID: 31428109 PMCID: PMC6689981 DOI: 10.3389/fpls.2019.00962] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/10/2019] [Indexed: 05/13/2023]
Abstract
The common bean is one of the most important staples in many areas of the world. Extensive phenotypic and genetic characterization of unexplored bean germplasm are still needed to unlock the breeding potential of this crop. Dissecting genetic control of flowering time is of pivotal importance to foster common bean breeding and to develop new varieties able to adapt to changing climatic conditions. Indeed, flowering time strongly affects yield and plant adaptation ability. The aim of this study was to investigate the genetic control of days to flowering using a whole genome association approach on a panel of 192 highly homozygous common bean genotypes purposely developed from landraces using Single Seed Descent. The phenotypic characterization was carried out at two experimental sites throughout two growing seasons, using a randomized partially replicated experimental design. The same plant material was genotyped using double digest Restriction-site Associated DNA sequencing producing, after a strict quality control, a dataset of about 50 k Single Nucleotide Polymorphisms (SNPs). The Genome-Wide Association Study revealed significant and meaningful associations between days to flowering and several SNP markers; seven genes are proposed as the best candidates to explain the detected associations.
Collapse
Affiliation(s)
- Lorenzo Raggi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Leonardo Caproni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Andrea Carboni
- CREA Research Centre for Cereal and Industrial Crops, Bologna, Italy
| | - Valeria Negri
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
24
|
Kozlov K, Singh A, Berger J, Bishop-von Wettberg E, Kahraman A, Aydogan A, Cook D, Nuzhdin S, Samsonova M. Non-linear regression models for time to flowering in wild chickpea combine genetic and climatic factors. BMC PLANT BIOLOGY 2019; 19:94. [PMID: 30890147 PMCID: PMC6423741 DOI: 10.1186/s12870-019-1685-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Accurate prediction of crop flowering time is required for reaching maximal farm efficiency. Several models developed to accomplish this goal are based on deep knowledge of plant phenology, requiring large investment for every individual crop or new variety. Mathematical modeling can be used to make better use of more shallow data and to extract information from it with higher efficiency. Cultivars of chickpea, Cicer arietanum, are currently being improved by introgressing wild C. reticulatum biodiversity with very different flowering time requirements. More understanding is required for how flowering time will depend on environmental conditions in these cultivars developed by introgression of wild alleles. RESULTS We built a novel model for flowering time of wild chickpeas collected at 21 different sites in Turkey and grown in 4 distinct environmental conditions over several different years and seasons. We propose a general approach, in which the analytic forms of dependence of flowering time on climatic parameters, their regression coefficients, and a set of predictors are inferred automatically by stochastic minimization of the deviation of the model output from data. By using a combination of Grammatical Evolution and Differential Evolution Entirely Parallel method, we have identified a model that reflects the influence of effects of day length, temperature, humidity and precipitation and has a coefficient of determination of R2=0.97. CONCLUSIONS We used our model to test two important hypotheses. We propose that chickpea phenology may be strongly predicted by accession geographic origin, as well as local environmental conditions at the site of growth. Indeed, the site of origin-by-growth environment interaction accounts for about 14.7% of variation in time period from sowing to flowering. Secondly, as the adaptation to specific environments is blueprinted in genomes, the effects of genes on flowering time may be conditioned on environmental factors. Genotype-by-environment interaction accounts for about 17.2% of overall variation in flowering time. We also identified several genomic markers associated with different reactions to climatic factor changes. Our methodology is general and can be further applied to extend existing crop models, especially when phenological information is limited.
Collapse
Affiliation(s)
- Konstantin Kozlov
- Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 195251 Russia
| | - Anupam Singh
- Program Molecular and Computation Biology, University of California, University Park, Los-Angeles, 24105 CA USA
| | - Jens Berger
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Underwood Ave, Perth, 6014 WA Australia
| | - Eric Bishop-von Wettberg
- Department of Plant and Soil Science, University of Vermont, 63 Carrigan Drive, Burlington, 05405 VT USA
| | - Abdullah Kahraman
- Department of Field Crops, Faculty of Agriculture, Harran University, Osmanbey Campus, Sanliurfa, 63100 Turkey
| | - Abdulkadir Aydogan
- Central Research Institute for Field Crops (CRIFC), P.O. Box 226, Ankara, 06042 Turkey
| | - Douglas Cook
- Deptartment of Plant Pathology, University of California, One Shields Ave, Davis, 95616-8680 CA USA
| | - Sergey Nuzhdin
- Program Molecular and Computation Biology, University of California, University Park, Los-Angeles, 24105 CA USA
| | - Maria Samsonova
- Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 195251 Russia
| |
Collapse
|
25
|
Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA. Haplotype-based genotyping-by-sequencing in oat genome research. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1452-1463. [PMID: 29345800 PMCID: PMC6041447 DOI: 10.1111/pbi.12888] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 05/05/2023]
Abstract
In a de novo genotyping-by-sequencing (GBS) analysis of short, 64-base tag-level haplotypes in 4657 accessions of cultivated oat, we discovered 164741 tag-level (TL) genetic variants containing 241224 SNPs. From this, the marker density of an oat consensus map was increased by the addition of more than 70000 loci. The mapped TL genotypes of a 635-line diversity panel were used to infer chromosome-level (CL) haplotype maps. These maps revealed differences in the number and size of haplotype blocks, as well as differences in haplotype diversity between chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs. TL vs. CL GBS variants for mapping, high-resolution genome analysis and genomic selection in oats. A combined genome-wide association study (GWAS) of heading date from multiple locations using both TL haplotypes and individual SNP markers identified 184 significant associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their combinations demonstrated the superiority of using TL haplotype markers. Using a principal component-based genome-wide scan, genomic regions containing signatures of selection were identified. These regions may contain genes that are responsible for the local adaptation of oats to Northern American conditions. Genomic selection for heading date using TL haplotypes or SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic selection carried out in an independent calibration and test population for heading date gave promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL haplotype GBS-derived markers facilitate genome analysis and genomic selection in oat.
Collapse
Affiliation(s)
- Wubishet A. Bekele
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| | - Charlene P. Wight
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| | - Shiaoman Chao
- USDA‐ARS Cereal Crops Research UnitRed River Valley Agricultural Research CenterFargoNDUSA
| | - Catherine J. Howarth
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Nicholas A. Tinker
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| |
Collapse
|
26
|
Zou M, Zhou G, Angessa TT, Zhang XQ, Li C. Polymorphism of floral type gene Cly1 and its association with thermal stress in barley. PLoS One 2018; 13:e0193390. [PMID: 29494631 PMCID: PMC5832248 DOI: 10.1371/journal.pone.0193390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/11/2018] [Indexed: 11/28/2022] Open
Abstract
Cleistogamy refers to a type of sexual breeding system with closed flowers. Cleistogamous flowers shed their pollen before flower opening, which leads to autogamy. Two SNPs in the open reading frame region of the Cly1 gene are associated with floral type. In the present study, we investigated the floral type of 436 barley accessions. Molecular markers were developed to genotype these barley accessions based on the two SNPs in the Cly1 gene region. The molecular markers explained floral type in 90% of the accessions. The Cly1 gene was sequenced in accessions with inconsistent genotype and phenotype. Thirteen SNPs were detected with ten new SNPs in the gene region. We further investigated whether floral type was associated with temperature stress tolerance in four field trials. One site experienced frost stress with a minimum temperature of -3.4°C during flowering. Grain fertility rates as low as 85% were observed at this site but ranged from 92–96% at the other three sites. The relationship between grain fertility rate and floral type under temperature stress was inconclusive. Some lines with higher grain fertility rates were identified under frost stress, and would be useful for frost stress studies in barley.
Collapse
Affiliation(s)
- Meilin Zou
- Western Barley Genetics Alliance, Murdoch University, Murdoch, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, Murdoch University, Murdoch, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, Murdoch University, Murdoch, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Murdoch University, Murdoch, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
- * E-mail:
| |
Collapse
|
27
|
Wójcik-Jagła M, Fiust A, Kościelniak J, Rapacz M. Association mapping of drought tolerance-related traits in barley to complement a traditional biparental QTL mapping study. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:167-181. [PMID: 29071393 PMCID: PMC5750332 DOI: 10.1007/s00122-017-2994-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/27/2017] [Indexed: 05/04/2023]
Abstract
Association mapping of drought-related traits in barley was used to increase the density of existing QTL maps without recreating mapping populations. We used 109 spring barley genotypes exhibiting high or low drought tolerance to elucidate the associations between diversity array technology sequencing (DArTseq) and single nucleotide polymorphism (SNP) markers and various physiological parameters related to plant responses to drought conditions. The study was performed in controlled conditions (growth chambers), drought tolerance was phenotyped in the four-leaf seedlings. We identified 58 associations including 34 new markers (i.e., 16 DArTseq and 18 SNP markers). The results for three markers were consistent with the data obtained in an earlier traditional biparental QTL mapping study. The regions neighboring markers on linkage group 2H contained the highest number of significant marker-trait associations. Five markers related to the photosynthetic activity of photosystem II were detected on chromosome 4H. The lowest number of associations were observed for the sequences neighboring DArT markers on linkage group 6H. A chromosome 3H region related to water use efficiency and net photosynthesis rate in both biparental QTL, and association study, may be particularly valuable, as these parameters correspond to the ability of plants to remain highly productive under water deficit stress. Our findings confirm that association mapping can increase the density of existing QTL maps without recreating mapping populations.
Collapse
Affiliation(s)
- Magdalena Wójcik-Jagła
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239, Kraków, Poland.
| | - Anna Fiust
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239, Kraków, Poland
| | - Janusz Kościelniak
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239, Kraków, Poland
| | - Marcin Rapacz
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239, Kraków, Poland
| |
Collapse
|
28
|
Antony Ceasar S, Maharajan T, Ajeesh Krishna TP, Ramakrishnan M, Victor Roch G, Satish L, Ignacimuthu S. Finger Millet [ Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence. FRONTIERS IN PLANT SCIENCE 2018; 9:1054. [PMID: 30083176 PMCID: PMC6064933 DOI: 10.3389/fpls.2018.01054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 05/05/2023]
Abstract
The whole genome sequence (WGS) of the much awaited, nutrient rich and climate resilient crop, finger millet (Eleusine coracana (L.) Gaertn.) has been released recently. While possessing superior mineral nutrients and excellent shelf life as compared to other major cereals, multiploidy nature of the genome and relatively small plantation acreage in less developed countries hampered the genome sequencing of finger millet, disposing it as one of the lastly sequenced genomes in cereals. The genomic information available for this crop is very little when compared to other major cereals like rice, maize and barley. As a result, only a limited number of genetic and genomic studies has been undertaken for the improvement of this crop. Finger millet is known especially for its superior calcium content, but the high-throughput studies are yet to be performed to understand the mechanisms behind calcium transport and grain filling. The WGS of finger millet is expected to help to understand this and other important molecular mechanisms in finger millet, which may be harnessed for the nutrient fortification of other cereals. In this review, we discuss various efforts made so far on the improvement of finger millet including genetic improvement, transcriptome analysis, mapping of quantitative trait loci (QTLs) for traits, etc. We also discuss the pitfalls of modern genetic studies and provide insights for accelerating the finger millet improvement with the interventions of WGS in near future. Advanced genetic and genomic studies aided by WGS may help to improve the finger millet, which will be helpful to strengthen the nutritional security in addition to food security in the developing countries of Asia and Africa.
Collapse
Affiliation(s)
- S. Antony Ceasar
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
- Functional Genomics and Plant Molecular Imaging Lab, University of Liege, Liege, Belgium
- *Correspondence: S. Antony Ceasar, Savarimuthu Ignacimuthu,
| | - T. Maharajan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - T. P. Ajeesh Krishna
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - M. Ramakrishnan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - G. Victor Roch
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - Lakkakula Satish
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Savarimuthu Ignacimuthu
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
- *Correspondence: S. Antony Ceasar, Savarimuthu Ignacimuthu,
| |
Collapse
|
29
|
Li C, Fu Y, Sun R, Wang Y, Wang Q. Single-Locus and Multi-Locus Genome-Wide Association Studies in the Genetic Dissection of Fiber Quality Traits in Upland Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1083. [PMID: 30177935 PMCID: PMC6109694 DOI: 10.3389/fpls.2018.01083] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/04/2018] [Indexed: 05/04/2023]
Abstract
A major breeding target in Upland cotton (Gossypium hirsutum L.) is to improve the fiber quality. To address this issue, 169 diverse accessions, genotyped by 53,848 high-quality single-nucleotide polymorphisms (SNPs) and phenotyped in four environments, were used to conduct genome-wide association studies (GWASs) for fiber quality traits using three single-locus and three multi-locus models. As a result, 342 quantitative trait nucleotides (QTNs) controlling fiber quality traits were detected. Of the 342 QTNs, 84 were simultaneously detected in at least two environments or by at least two models, which include 29 for fiber length, 22 for fiber strength, 11 for fiber micronaire, 12 for fiber uniformity, and 10 for fiber elongation. Meanwhile, nine QTNs with 10% greater sizes (R2) were simultaneously detected in at least two environments and between single- and multi-locus models, which include TM80185 (D13) for fiber length, TM1386 (A1) and TM14462 (A6) for fiber strength, TM18616 (A7), TM54735 (D3), and TM79518 (D12) for fiber micronaire, TM77489 (D12) and TM81448 (D13) for fiber uniformity, and TM47772 (D1) for fiber elongation. This indicates the possibility of marker-assisted selection in future breeding programs. Among 455 genes within the linkage disequilibrium regions of the nine QTNs, 113 are potential candidate genes and four are promising candidate genes. These findings reveal the genetic control underlying fiber quality traits and provide insights into possible genetic improvements in Upland cotton fiber quality.
Collapse
Affiliation(s)
- Chengqi Li
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuanzhi Fu
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
30
|
Kumar J, Gupta S, Biradar RS, Gupta P, Dubey S, Singh NP. Association of functional markers with flowering time in lentil. J Appl Genet 2017; 59:9-21. [PMID: 29230682 DOI: 10.1007/s13353-017-0419-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
Abstract
In the present study, a diverse panel of 96 accessions of lentil germplasm was used to study flowering time over environments and to identify simple sequence repeat markers associated with flowering time through association mapping. The study showed high broad sense heritability estimate (h 2 bs=0.93) for flowering time in lentil. Screening of 534 SSR markers resulted in an identification of 75 SSR polymorphic markers (13.9%) across studied genotypes. These markers amplified 266 loci and generated 697 alleles ranging from two to 16 alleles per locus. Model-based cluster analysis used for the determination of population structure resulted in the identification of two distinct subpopulations. Distribution of flowering time was ranged from 40 to 70 days in subpopulation I and from 54 to 69 days in subpopulation II and did not skew either late or early flowering time within a subpopulation. No admixture was observed within the subpopulations. Use of the most accepted maximum likelihood model (P3D mixed linear model with optimum compression) of MTA analysis showed significant association of 26 SSR markers with flowering time at <0.05 probability. The percent of phenotypic explained by each associated marker with flowering time ranged from 2.1 to 21.8% and identified QTLs for flowering time explaining high phenotypic variation across the environments (10.7-21.8%) or in a particular environment (10.2-21.4%). In the present study, 13 EST-SSR showed significant association with flowering time and explained large phenotypic variation (2.3-21.8%) compared to genomic SSR markers (2.1-10.2%). Hence, these markers can be used as functional markers in the lentil breeding program to develop short duration cultivars.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Revanappa S Biradar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Narendra Pratap Singh
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| |
Collapse
|
31
|
Al-Abdallat AM, Karadsheh A, Hadadd NI, Akash MW, Ceccarelli S, Baum M, Hasan M, Jighly A, Abu Elenein JM. Assessment of genetic diversity and yield performance in Jordanian barley (Hordeum vulgare L.) landraces grown under Rainfed conditions. BMC PLANT BIOLOGY 2017; 17:191. [PMID: 29096621 PMCID: PMC5668982 DOI: 10.1186/s12870-017-1140-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/25/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare L.) is a major cereal crop, which is cultivated under variable environmental conditions and abiotic stresses in marginal areas around the globe. In this study, we evaluated 150 Jordanian landraces obtained from ICARDA Gene Bank and four local checks for yield and yield components related-traits in two locations across Jordan for three growing seasons under rainfed conditions. The study aims to identify superior Jordanian barley genotypes under dry conditions, to understand the genotype × environment (G × E) interactions, to analyze stability parameters and to identify markers associated with yield and yield components under rainfed conditions. RESULTS The barley accessions exhibited significant variation for all traits studied. Three accessions with high yield, cultivar superiority and stability under specific environments were identified with accession G69 is the highest yielding and superior for Madaba and overall environments and G144 is the highest yielding at Ramtha. Accession G123 was high yielding in all environments and was stable across different environments. At the genetic level, the Jordanian landraces were found to be diverse with a clustering that was based on row-type. The GWAS analysis identified 77 significant markers-traits associations for multiple traits including grain yield (GY) with three significant QTLs located at 1H, 2H and 7H, which seem important for dry environments. CONCLUSION Utilizing Jordanian barley landraces can effectively improve and adapt the current barley cultivars for cultivation under environmental stresses in dry regions. Utilization of markers associated with important agronomical traits and their incorporation in breeding using marker assisted selection can improve barley tolerance to drought stress.
Collapse
Affiliation(s)
- A. M. Al-Abdallat
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, 11942 Jordan
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 950764, Amman, 11195 Jordan
| | - A. Karadsheh
- Al-Mushaqer Regional Center, NCARE, Madaba, Jordan
| | - N. I. Hadadd
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, 11942 Jordan
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 950764, Amman, 11195 Jordan
| | - M. W. Akash
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, 11942 Jordan
| | - S. Ceccarelli
- Consultant, Rete Semi Rurali, Via di Casignano 25, 50018 Scandicci, FI Italy
| | - M. Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 950764, Amman, 11195 Jordan
| | - M. Hasan
- Department of Plant Production and Protection, Faculty of Agricultural Technology, Al-Balqa’ Applied University, Al-Salt, 19117 Jordan
| | - A. Jighly
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 950764, Amman, 11195 Jordan
- Agriculture Victoria, Bioscience Research, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Vic, Bundoora, 3083 Australia
| | - J. M. Abu Elenein
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, 11942 Jordan
| |
Collapse
|
32
|
Bellucci A, Tondelli A, Fangel JU, Torp AM, Xu X, Willats WGT, Flavell A, Cattivelli L, Rasmussen SK. Genome-wide association mapping in winter barley for grain yield and culm cell wall polymer content using the high-throughput CoMPP technique. PLoS One 2017; 12:e0173313. [PMID: 28301509 PMCID: PMC5354286 DOI: 10.1371/journal.pone.0173313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
A collection of 112 winter barley varieties (Hordeum vulgare L.) was grown in the field for two years (2008/09 and 2009/10) in northern Italy and grain and straw yields recorded. In the first year of the trial, a severe attack of barley yellow mosaic virus (BaYMV) strongly influenced final performances with an average reduction of ~ 50% for grain and straw harvested in comparison to the second year. The genetic determination (GD) for grain yield was 0.49 and 0.70, for the two years respectively, and for straw yield GD was low in 2009 (0.09) and higher in 2010 (0.29). Cell wall polymers in culms were quantified by means of the monoclonal antibodies LM6, LM11, JIM13 and BS-400-3 and the carbohydrate-binding module CBM3a using the high-throughput CoMPP technique. Of these, LM6, which detects arabinan components, showed a relatively high GD in both years and a significantly negative correlation with grain yield (GYLD). Overall, heritability (H2) was calculated for GYLD, LM6 and JIM and resulted to be 0.42, 0.32 and 0.20, respectively. A total of 4,976 SNPs from the 9K iSelect array were used in the study for the analysis of population structure, linkage disequilibrium (LD) and genome-wide association study (GWAS). Marker-trait associations (MTA) were analyzed for grain yield and cell wall determination by LM6 and JIM13 as these were the traits showing significant correlations between the years. A single QTL for GYLD containing three MTAs was found on chromosome 3H located close to the Hv-eIF4E gene, which is known to regulate resistance to BaYMV. Subsequently the QTL was shown to be tightly linked to rym4, a locus for resistance to the virus. GWAs on arabinans quantified by LM6 resulted in the identification of major QTLs closely located on 3H and hypotheses regarding putative candidate genes were formulated through the study of gene expression levels based on bioinformatics tools.
Collapse
Affiliation(s)
- Andrea Bellucci
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Alessandro Tondelli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per la Genomica Vegetale, Fiorenzuola d’Arda, Italy
| | - Jonatan U. Fangel
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anna Maria Torp
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Xin Xu
- School of Life Science, University of Dundee, Dundee, United Kingdom
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew Flavell
- School of Life Science, University of Dundee, Dundee, United Kingdom
| | - Luigi Cattivelli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per la Genomica Vegetale, Fiorenzuola d’Arda, Italy
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
33
|
Shakiba E, Edwards JD, Jodari F, Duke SE, Baldo AM, Korniliev P, McCouch SR, Eizenga GC. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS One 2017; 12:e0172133. [PMID: 28282385 PMCID: PMC5345765 DOI: 10.1371/journal.pone.0172133] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/31/2017] [Indexed: 01/11/2023] Open
Abstract
Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA accessions.
Collapse
Affiliation(s)
- Ehsan Shakiba
- University of Arkansas, Rice Research and Extension Center, Stuttgart, Arkansas, United States of America
| | - Jeremy D. Edwards
- USDA/ARS Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
| | - Farman Jodari
- Rice Experiment Station (RES), Biggs, California, United States of America
| | - Sara E. Duke
- USDA/ARS Plains Area, College Station, Texas, United States of America
| | - Angela M. Baldo
- USDA/ARS Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
| | - Pavel Korniliev
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Susan R. McCouch
- School of Integrative Plant Sciences, Plant Breeding and Genetics section, Cornell University, Ithaca, New York, United States of America
| | - Georgia C. Eizenga
- USDA/ARS Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Liu Z, Li H, Fan X, Huang W, Yang J, Wen Z, Li Y, Guan R, Guo Y, Chang R, Wang D, Chen P, Wang S, Qiu LJ. Phenotypic characterization and genetic dissection of nine agronomic traits in Tokachi nagaha and its derived cultivars in soybean (Glycine max (L.) Merr.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:72-86. [PMID: 28167041 DOI: 10.1016/j.plantsci.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
By using the soybean founder parent Tokachi nagaha and its 137 derived cultivars as materials, a genome-wide association analysis was performed to identify the single nucleotide polymorphisms (SNPs) underlying soybean yield and quality related traits at two planting densities. Results of ANOVA showed that genotype, environment, and genotype by environment interaction effects were all significant for each trait. The Tokachi nagaha-derived soybean population could be divided into two subpopulations based on molecular data, and accessions in each subpopulation were almost all from the same Chinese province. Relatedness was detected between pair-wise accessions within the population. Linkage disequilibrium was obvious and the level of intra-chromosome linkage disequilibrium was about 8370kb. A total of 40 SNPs with significant signal were detected and distributed across 18 chromosomes. Some SNP markers were located in or near regions where QTLs have been previously mapped by linkage analysis. Nineteen SNPs were identified both in low- and high- density planting treatments, indicating those loci were common and sTable Sixteen SNPs were co-associated with two or more different traits, suggesting that some of the QTLs/genes underlying those identified SNPs were likely to be pleiotropic.
Collapse
Affiliation(s)
- Zhangxiong Liu
- National Key Facility for Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Huihui Li
- National Key Facility for Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Xuhong Fan
- Institute of Soybean Research, Jilin Academy of Agricultural Sciences, Changchun 130124, China.
| | - Wen Huang
- Tonghua Academy of Agricultural Sciences, Meihekou 135007, China.
| | - Jiyu Yang
- Jilin City Academy of Agricultural Sciences, Jilin 132101, China.
| | - Zixiang Wen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, USA.
| | - Yinghui Li
- National Key Facility for Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Rongxia Guan
- National Key Facility for Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Yong Guo
- National Key Facility for Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Ruzhen Chang
- National Key Facility for Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, USA.
| | - Pengyin Chen
- Department of Crop, Soil and Environment Sciences, University of Arkansas, Fayetteville 72701, USA.
| | - Shuming Wang
- Institute of Soybean Research, Jilin Academy of Agricultural Sciences, Changchun 130124, China.
| | - Li-Juan Qiu
- National Key Facility for Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
35
|
Su J, Zhang F, Li P, Guan Z, Fang W, Chen F. Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. PLANTA 2016; 244:1241-1252. [PMID: 27522648 DOI: 10.1007/s00425-016-2583-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/08/2016] [Indexed: 05/21/2023]
Abstract
Forty-five molecular markers were detected significantly associated with chrysanthemum' waterlogging tolerance, and four favorable parental lines were identified as potential donors for improving waterlogging tolerance in chrysanthemum. The productivity of chrysanthemum is downgraded by waterlogging soils, which has driven a search for germplasm showing an enhanced level of waterlogging tolerance (WT). As yet little is known regarding the mode of inheritance of WT in chrysanthemum. The study set out to characterize the extent of genetic variation for WT represented in a collection of one hundred chrysanthemum accessions by testing them under both greenhouse and field conditions. A membership function value of waterlogging (MFVW), which integrated a wilting index, a chlorosis score and the proportion of dead leaf in waterlogged plants, was used as a measure of WT. The variation for MFVW among plants grown in the greenhouse (two experiments) was generally higher than that generated in field-grown (one experiment) plants. The MFVW broad sense heritability was 0.82, and the phenotypic coefficient of variation (31.8 %) was larger than the genetic one (28.8 %). Association mapping (AM) identified 45 markers related to WT: 25 by applying the general linear model (GLM) + principal component (PC) model, 16 by applying the mixed linear model (MLM), 31 by applying the MLM + Q matrix model and 12 by applying the MLM + PC model. Of the associated markers, eight and two were predictive in two and three experiments within all models, respectively; the proportion of the phenotypic variance explained by the eight associations ranged from 6.3 to 16.4 %. On the basis of their harboring all four of the leading markers E2M16-2, SSR150-6, E19M16-1 and E10M10-12, the varieties 'Nannong Xuefeng', 'Qx097', 'Nannong Xunzhang' and 'Finch' were identified as potential donors for future improvement of WT in chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Pirui Li
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
36
|
Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC, Deng DD, Hinchliffe DJ, Jones DC, Fang DD. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics 2016; 17:903. [PMID: 27829353 PMCID: PMC5103610 DOI: 10.1186/s12864-016-3249-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders' ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed through random-mating of multiple diverse parents has the ability to break this negative correlation. Genotyping-by-sequencing (GBS) is a method that can rapidly identify and genotype a large number of single nucleotide polymorphisms (SNP). Genotyping a MAGIC population using GBS technologies will enable us to identify marker-trait associations with high resolution. RESULTS An Upland cotton MAGIC population was developed through random-mating of 11 diverse cultivars for five generations. In this study, fiber quality data obtained from four environments and 6071 SNP markers generated via GBS and 223 microsatellite markers of 547 recombinant inbred lines (RILs) of the MAGIC population were used to conduct a genome wide association study (GWAS). By employing a mixed linear model, GWAS enabled us to identify markers significantly associated with fiber quantitative trait loci (QTL). We identified and validated one QTL cluster associated with four fiber quality traits [short fiber content (SFC), strength (STR), length (UHM) and uniformity (UI)] on chromosome A07. We further identified candidate genes related to fiber quality attributes in this region. Gene expression and amino acid substitution analysis suggested that a regeneration of bulb biogenesis 1 (GhRBB1_A07) gene is a candidate for superior fiber quality in Upland cotton. The DNA marker CFBid0004 designed from an 18 bp deletion in the coding sequence of GhRBB1_A07 in Acala Ultima is associated with the improved fiber quality in the MAGIC RILs and 105 additional commercial Upland cotton cultivars. CONCLUSION Using GBS and a MAGIC population enabled more precise fiber QTL mapping in Upland cotton. The fiber QTL and associated markers identified in this study can be used to improve fiber quality through marker assisted selection or genomic selection in a cotton breeding program. Target manipulation of the GhRBB1_A07 gene through biotechnology or gene editing may potentially improve cotton fiber quality.
Collapse
Affiliation(s)
- Md Sariful Islam
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | - Gregory N. Thyssen
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | - Johnie N. Jenkins
- Genetics & Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762 USA
| | - Linghe Zeng
- Crop Genetics Research Unit, USDA-ARS, Stoneville, MS 38772 USA
| | - Christopher D. Delhom
- Cotton Structure and Quality Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | - Jack C. McCarty
- Genetics & Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762 USA
| | - Dewayne D. Deng
- Genetics & Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762 USA
| | - Doug J. Hinchliffe
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | | | - David D. Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| |
Collapse
|
37
|
Tumino G, Voorrips RE, Rizza F, Badeck FW, Morcia C, Ghizzoni R, Germeier CU, Paulo MJ, Terzi V, Smulders MJM. Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1711-24. [PMID: 27318699 PMCID: PMC4983288 DOI: 10.1007/s00122-016-2734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/21/2016] [Indexed: 05/19/2023]
Abstract
Infinium SNP data analysed as continuous intensity ratios enabled associating genotypic and phenotypic data from heterogeneous oat samples, showing that association mapping for frost tolerance is a feasible option. Oat is sensitive to freezing temperatures, which restricts the cultivation of fall-sown or winter oats to regions with milder winters. Fall-sown oats have a longer growth cycle, mature earlier, and have a higher productivity than spring-sown oats, therefore improving frost tolerance is an important goal in oat breeding. Our aim was to test the effectiveness of a Genome-Wide Association Study (GWAS) for mapping QTLs related to frost tolerance, using an approach that tolerates continuously distributed signals from SNPs in bulked samples from heterogeneous accessions. A collection of 138 European oat accessions, including landraces, old and modern varieties from 27 countries was genotyped using the Infinium 6K SNP array. The SNP data were analyzed as continuous intensity ratios, rather than converting them into discrete values by genotype calling. PCA and Ward's clustering of genetic similarities revealed the presence of two main groups of accessions, which roughly corresponded to Continental Europe and Mediterranean/Atlantic Europe, although a total of eight subgroups can be distinguished. The accessions were phenotyped for frost tolerance under controlled conditions by measuring fluorescence quantum yield of photosystem II after a freezing stress. GWAS were performed by a linear mixed model approach, comparing different corrections for population structure. All models detected three robust QTLs, two of which co-mapped with QTLs identified earlier in bi-parental mapping populations. The approach used in the present work shows that SNP array data of heterogeneous hexaploid oat samples can be successfully used to determine genetic similarities and to map associations to quantitative phenotypic traits.
Collapse
Affiliation(s)
- Giorgio Tumino
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands.
| | - Roeland E Voorrips
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Fulvia Rizza
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Franz W Badeck
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Caterina Morcia
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Roberta Ghizzoni
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Christoph U Germeier
- Julius Kühn Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, 06484, Quedlinburg, Germany
| | - Maria-João Paulo
- Biometris, Wageningen UR, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Valeria Terzi
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Marinus J M Smulders
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| |
Collapse
|
38
|
Francia E, Morcia C, Pasquariello M, Mazzamurro V, Milc JA, Rizza F, Terzi V, Pecchioni N. Copy number variation at the HvCBF4-HvCBF2 genomic segment is a major component of frost resistance in barley. PLANT MOLECULAR BIOLOGY 2016; 92:161-75. [PMID: 27338258 DOI: 10.1007/s11103-016-0505-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/02/2016] [Indexed: 05/27/2023]
Abstract
A family of CBF transcription factors plays a major role in reconfiguring the plant transcriptome in response to low-freezing temperature in temperate cereals. In barley, more than 13 HvCBF genes map coincident with the major QTL FR-H2 suggesting them as candidates to explain the function of the locus. Variation in copy number (CNV) of specific HvCBFs was assayed in a panel of 41 barley genotypes using RT-qPCR. Taking advantage of an accurate phenotyping that combined Fv/Fm and field survival, resistance-associated variants within FR-H2 were identified. Genotypes with an increased copy number of HvCBF4 and HvCBF2 (at least ten and eight copies, respectively) showed greater frost resistance. A CAPS marker able to distinguish the CBF2A, CBF2B and CBF2A/B forms was developed and showed that all the higher-ranking genotypes in term of resistance harbour only CBF2A, while other resistant winter genotypes harbour also CBF2B, although at a lower CNV. In addition to the major involvement of the HvCBF4-HvCBF2 genomic segment in the proximal cluster of CBF elements, a negative role of HvCBF3 in the distal cluster was identified. Multiple linear regression models taking into account allelic variation at FR-H1/VRN-H1 explained 0.434 and 0.550 (both at p < 0.001) of the phenotypic variation for Fv/Fm and field survival respectively, while no interaction effect between CNV at the HvCBFs and FR-H1/VRN-H1 was found. Altogether our data suggest a major involvement of the CBF genes located in the proximal cluster, with no apparent involvement of the central cluster contrary to what was reported for wheat.
Collapse
Affiliation(s)
- Enrico Francia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad.Besta, 42122, Reggio Emilia, Italy.
- Center for Genome Research (CGR), University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Caterina Morcia
- Genomics Research Centre (GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | - Marianna Pasquariello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad.Besta, 42122, Reggio Emilia, Italy
- Department of Crop Genetics, John Innes Centre (JIC), Norwich Research Park, Norwich, NR4 7UH, UK
| | - Valentina Mazzamurro
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad.Besta, 42122, Reggio Emilia, Italy
| | - Justyna Anna Milc
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad.Besta, 42122, Reggio Emilia, Italy
- Center for Genome Research (CGR), University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Fulvia Rizza
- Genomics Research Centre (GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | - Valeria Terzi
- Genomics Research Centre (GPG), Council for Agricultural Research and Economics, Via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | - Nicola Pecchioni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad.Besta, 42122, Reggio Emilia, Italy
- Center for Genome Research (CGR), University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
- Cereal Research Centre, Council for Agricultural Research and Economics, 71122, Foggia, Italy
| |
Collapse
|
39
|
Fan Y, Zhou G, Shabala S, Chen ZH, Cai S, Li C, Zhou M. Genome-Wide Association Study Reveals a New QTL for Salinity Tolerance in Barley (Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2016; 7:946. [PMID: 27446173 PMCID: PMC4923249 DOI: 10.3389/fpls.2016.00946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/14/2016] [Indexed: 05/02/2023]
Abstract
Salinity stress is one of the most severe abiotic stresses that affect agricultural production. Genome wide association study (GWAS) has been widely used to detect genetic variations in extensive natural accessions with more recombination and higher resolution. In this study, 206 barley accessions collected worldwide were genotyped with 408 Diversity Arrays Technology (DArT) markers and evaluated for salinity stress tolerance using salinity tolerance score - a reliable trait developed in our previous work. GWAS for salinity tolerance had been conducted through a general linkage model and a mixed linkage model based on population structure and kinship. A total of 24 significant marker-trait associations were identified. A QTL on 4H with the nearest marker of bPb-9668 was consistently detected in all different methods. This QTL has not been reported before and is worth to be further confirmed with bi-parental populations.
Collapse
Affiliation(s)
- Yun Fan
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
| | - Gaofeng Zhou
- Western Australian State Agricultural Biotechnology Centre, Murdoch University,Murdoch, WA Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University,Penrith, NSW Australia
| | - Shengguan Cai
- School of Science and Health, Western Sydney University,Penrith, NSW Australia
| | - Chengdao Li
- Western Australian State Agricultural Biotechnology Centre, Murdoch University,Murdoch, WA Australia
- *Correspondence: Meixue Zhou, ; Chengdao Li,
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
- *Correspondence: Meixue Zhou, ; Chengdao Li,
| |
Collapse
|
40
|
Liu N, Xue Y, Guo Z, Li W, Tang J. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels. FRONTIERS IN PLANT SCIENCE 2016; 7:1046. [PMID: 27512395 PMCID: PMC4961707 DOI: 10.3389/fpls.2016.01046] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/04/2016] [Indexed: 05/18/2023]
Abstract
Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65-75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.
Collapse
Affiliation(s)
- Na Liu
- College of Biological Engineering, Henan University of TechnologyZhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
| | - Yadong Xue
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
| | - Zhanyong Guo
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
| | - Weihua Li
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural UniversityZhengzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJinzhou, China
- *Correspondence: Jihua Tang,
| |
Collapse
|
41
|
Yu X, Pijut PM, Byrne S, Asp T, Bai G, Jiang Y. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:37-45. [PMID: 25900564 DOI: 10.1016/j.plantsci.2015.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/12/2015] [Accepted: 03/04/2015] [Indexed: 05/05/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global collection of 192 perennial ryegrass accessions. Significant differences in winter survival (WS), percentage of canopy green cover (CGC), chlorophyll index (Chl), and normalized difference vegetation index (NDVI) were found among accessions. After controlling population structure, LpLEA3 encoding a late embryogenesis abundant group 3 protein and LpCAT encoding a catalase were associated with CGC and Chl, while LpMnSOD encoding a magnesium superoxide dismutase and LpChl Cu-ZnSOD encoding a chlorophyll copper-zinc superoxide dismutase were associated with NDVI or Chl. Significant association was also discovered between C-repeat binding factor LpCBF1b and WS. Three sequence variations identified in LpCAT, LpMnSOD, and LpChl Cu-ZnSOD were synonymous substitutions, whereas one pair of adjacent single nucleotide polymorphisms (SNPs) in LpLEA3 and one SNP in LpCBF1b resulted in amino acid change. The results demonstrated that allelic variation in LpLEA3 and LpCBF1b was closely related to winter survival and spring regrowth in perennial ryegrass.
Collapse
Affiliation(s)
- Xiaoqing Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Paula M Pijut
- USDA-Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, West Lafayette, IN 47907, USA
| | - Stephen Byrne
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Torben Asp
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907-2054, USA.
| |
Collapse
|
42
|
Sbei H, Sato K, Shehzad T, Harrabi M, Okuno K. Detection of QTLs for salt tolerance in Asian barley (Hordeum vulgare L.) by association analysis with SNP markers. BREEDING SCIENCE 2014; 64:378-88. [PMID: 25914593 PMCID: PMC4267313 DOI: 10.1270/jsbbs.64.378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/08/2014] [Indexed: 05/30/2023]
Abstract
Two hundred ninety-six Asian barley (Hordeum vulgare L.) accessions were assessed to detect QTLs underlying salt tolerance by association analysis using a 384 single nucleotide polymorphism (SNP) marker system. The experiment was laid out at the seedling stage in a hydroponic solution under control and 250 mM NaCl solution with three replications of four plants each. Salt tolerance was assessed by leaf injury score (LIS) and salt tolerance indices (STIs) of the number of leaves (NL), shoot length (SL), root length (RL), shoot dry weight (SDW) and root dry weight (RDW). LIS was scored from 1 to 5 according to the severity of necrosis and chlorosis observed on leaves. There was a wide variation in salt tolerance among Asian barley accessions. LIS and STI (SDW) were the most suitable traits for screening salt tolerance. Association was estimated between markers and traits to detect QTLs for LIS and STI (SDW). Seven significant QTLs were located on chromosomes 1H (2 QTLs), 2H (2 QTLs), 3H (1 QTL), 4H (1 QTL) and 5H (1 QTL). Five QTLs were associated with LIS and 2 QTLs with STI (SDW). Two QTLs associated with LIS were newly identified on chromosomes 3H and 4H.
Collapse
Affiliation(s)
- Hanen Sbei
- Graduate School of Life and Environmental Sciences, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572,
Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University,
Chuo 2-20-1, Kurashiki, Okayama 710-0046,
Japan
| | - Tariq Shehzad
- Graduate School of Life and Environmental Sciences, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572,
Japan
- The Alliance for Research on North Africa, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572,
Japan
| | - Moncef Harrabi
- National Institute of Agriculture at Tunis,
43 Avenue Charles Nicolle, Mahrajene City, 1082Tunisia
| | - Kazutoshi Okuno
- The Alliance for Research on North Africa, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572,
Japan
| |
Collapse
|
43
|
Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, Vajja VG, Malkaram S, Reddy R, Wehner TC, Mitchell SE, Reddy UK. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics 2014; 15:767. [PMID: 25196513 PMCID: PMC4246513 DOI: 10.1186/1471-2164-15-767] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/29/2014] [Indexed: 02/08/2023] Open
Abstract
Background A large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication. Results We examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model. Conclusions Information concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-767) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Umesh K Reddy
- Gus R, Douglass Institute, Department of Biology, West Virginia State University, Dunbar, WV 25112-1000, USA.
| |
Collapse
|
44
|
Genome-wide association studies of agronomic and quality traits in a set of German winter barley (Hordeum vulgare L.) cultivars using Diversity Arrays Technology (DArT). J Appl Genet 2014; 55:295-305. [PMID: 24789682 DOI: 10.1007/s13353-014-0214-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
A set of about 100 winter barley (Hordeum vulgare L.) cultivars, comprising diverse and economically important German barley elite germplasm released during the last six decades, was previously genotypically characterized by single nucleotide polymorphism (SNP) markers using the Illumina GoldenGate BeadArray Technology to detect associations with phenotypic data estimated in three-year field trials at 12 locations. In order to identify further associations and to obtain information on whether the marker type influences the outcome of association genetics studies, the set of winter barley cultivars was re-analyzed using Diversity Arrays Technology (DArT) markers. As with the analysis of the SNPs, only polymorphic markers present at an allele frequency >5% were included to detect associations in a mixed linear model (MLM) approach using the TASSEL software (P ≤ 0.001). The population structure and kinship matrix were estimated on 72 simple sequence repeats (SSRs) covering the whole barley genome. The respective average linkage disequilibrium (LD) analyzed with DArT markers was estimated at 5.73 cM. A total of 52 markers gave significant associations with at least one of the traits estimated which, therefore, may be suitable for marker-assisted breeding. In addition, by comparing the results to those generated using the Illumina GoldenGate BeadArray Technology, it turned out that a different number of associations for respective traits is detected, depending on the marker system. However, as only a few of the respective DArT and Illumina markers are present in a common map, no comprehensive comparison of the detected associations was feasible, but some were probably detected in the same chromosomal regions. Because of the identification of additional marker-trait associations, it may be recommended to use both marker techniques in genome-wide association studies.
Collapse
|
45
|
Huang Y, Cai S, Ye L, Han Y, Wu D, Dai F, Li C, Zhang G. Genetic architecture of limit dextrinase inhibitor (LDI) activity in Tibetan wild barley. BMC PLANT BIOLOGY 2014; 14:117. [PMID: 24885294 PMCID: PMC4041910 DOI: 10.1186/1471-2229-14-117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/28/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Limit dextrinase inhibitor (LDI) inhibits starch degradation in barley grains during malting because it binds with limit dextrinase (LD). There is a wide genetic variation in LDI synthesis and inactivation during barley grain development and germination. However, the genetic control of LDI activity remains little understood. RESULTS In this study, association analysis was performed on 162 Tibetan wild accessions by using LDI activity, 835 Diversity Arrays Technology (DArT) markers and single nucleotide polymorphisms (SNPs) of the gene HvLDI encoding LDI. Two DArT markers, bpb-8347, bpb-0068, and 31 SNPs of HvLDI were significantly associated with LDI activity, explaining 10.0%, 6.6% and 13.4% of phenotypic variation, respectively. Bpb-8347 is located on chromosome 6H, near the locus of HvLDI, and bpb-0068 is located on 3H. CONCLUSIONS The current results confirmed the locus of the gene controlling LDI activity and identified a new DArT markers associated with LDI activity. The SNPs associated with LDI activity may provide a new insight into the genetic variation of LDI activity in barley grains.
Collapse
Affiliation(s)
- Yuqing Huang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Shengguan Cai
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lingzhen Ye
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yong Han
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dezhi Wu
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Chengdao Li
- Department of Agriculture and Food, Western Australia, WA 6983, Australia
| | - Guoping Zhang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
Ziems LA, Hickey LT, Hunt CH, Mace ES, Platz GJ, Franckowiak JD, Jordan DR. Association mapping of resistance to Puccinia hordei in Australian barley breeding germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1199-212. [PMID: 24626954 DOI: 10.1007/s00122-014-2291-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/17/2014] [Indexed: 05/08/2023]
Abstract
"To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants." Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.
Collapse
Affiliation(s)
- L A Ziems
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia,
| | | | | | | | | | | | | |
Collapse
|
47
|
Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis 2014. [DOI: 10.1007/s13199-014-0268-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 2014; 15:1. [PMID: 24382143 PMCID: PMC3890527 DOI: 10.1186/1471-2164-15-1] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/21/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. RESULTS A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. CONCLUSIONS This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s).
Collapse
Affiliation(s)
- Eun-Young Hwang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Qijian Song
- USDA, Agricultural Research Service, Soybean Genomics and Improvement Lab, Beltsville, MD 20705, USA
| | - Gaofeng Jia
- USDA, Agricultural Research Service, Soybean Genomics and Improvement Lab, Beltsville, MD 20705, USA
| | - James E Specht
- Agronomy & Horticulture Department, University of Nebraska, Lincoln, NE 68583, USA
| | - David L Hyten
- USDA, Agricultural Research Service, Soybean Genomics and Improvement Lab, Beltsville, MD 20705, USA
- Present address: DuPont Pioneer, 8305 NW 62nd Ave., PO Box 7060, Johnston, IA 50131, USA
| | - Jose Costa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Present address: USDA-ARS, Crop Production and Protection, GWCC-BLTSVL, Beltsville, MD 20705, USA
| | - Perry B Cregan
- USDA, Agricultural Research Service, Soybean Genomics and Improvement Lab, Beltsville, MD 20705, USA
| |
Collapse
|