1
|
Feng S, Luo Y, Chen Y, Zhu H, Zhao T, Ma F, Lin Y, Ning Y, Wu J. Individualized responses to acupuncture in premature ovarian insufficiency: A study protocol for a nested case-control trial with transcriptome analysis. Heliyon 2024; 10:e37859. [PMID: 39328559 PMCID: PMC11425121 DOI: 10.1016/j.heliyon.2024.e37859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Background Premature ovarian insufficiency (POI), a modifiable cause of infertility with substantial implications for women's well-being, prompts the exploration of efficacious adjunctive treatments. Acupuncture emerges as a promising therapeutic avenue; however, the nuanced effects of acupuncture in POI warrant more comprehensive investigation. The intricate mechanisms dictating individualized responses remain elusive. This trial seeks to assess the effectiveness of acupuncture as an adjunctive treatment for POI, concurrently delving into the impact of transcriptome analysis on peripheral blood to unravel the underpinnings of these individual variations. The overarching objective is to enrich our comprehension of acupuncture's therapeutic potential in the context of POI, with a view to advancing holistic patient care. Methods/design Constituting an open-label, nested case-control study, this research endeavors to enroll 108 women diagnosed with POI. Participants will be randomly assigned in a 1:1 ratio to either the study group or the control group, each comprising 54 subjects. Ten patients from each group meeting specific criteria will partake in transcriptome analysis. An additional 10 subjects meeting the study criteria will form a healthy control group. The study group will exclusively undergo acupuncture treatment, while the control group will solely receive Fenmutong. Acupuncture sessions, administered thrice weekly across three menstrual cycles from the fifth day of menstruation, constitute the intervention. Primary outcome measurement rests on Follicle-Stimulating Hormone (FSH) levels, supplemented by secondary assessments encompassing biometric features, hormone biomarkers, anxiety and depression scores, and transcriptome analysis. Baseline measurements precede intervention, with post-intervention evaluations following. The study endeavors to discern specific genes linked to individualized responses to acupuncture. Data analysis, employing SPSS 25.0 software, incorporates a meticulous examination of peripheral blood samples for transcriptome analysis. The investigation aspires to shed light on genetic determinants influencing the effects of acupuncture on women with POI, thereby fostering elevated standards in patient care and management. Discussion This study pivots on the principal objective of scrutinizing the efficacy of acupuncture as an adjunctive treatment for POI. Beyond effectiveness, it undertakes an exploration of the intricate mechanisms underlying the diverse responses exhibited by individuals in the context of acupuncture, augmenting the depth of understanding in this therapeutic domain.
Collapse
Affiliation(s)
- Shiyu Feng
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Luo
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yan Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haimin Zhu
- Southern Medical University, Guangzhou 510515, China
| | - Tianqi Zhao
- Southern Medical University, Guangzhou 510515, China
| | - Fei Ma
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Southern Medical University, Guangzhou 510515, China
| | - Yanting Lin
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Yan Ning
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Southern Medical University, Guangzhou 510515, China
| | - Jiaman Wu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Geng X, He Z, Bao Z, Di W, Gu Z. Aberrant HPO Axis Alterations and Autoimmune Abnormalities in PCOS Patients with DOR: A Retrospective Analysis. J Clin Med 2023; 12:5212. [PMID: 37629254 PMCID: PMC10455465 DOI: 10.3390/jcm12165212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND There is a group of polycystic ovary syndrome (PCOS) patients in clinic who have diminished ovarian reserve (DOR) in combination. This study was designed to evaluate the differences in glucolipid metabolism, hypothalamic-pituitary-ovarian (HPO) axis-related parameters, and autoimmune antibodies in PCOS patients with and without DOR. METHODS A total of 2307 PCOS patients, including 1757 patients with PCOS alone and 550 patients who have both PCOS and DOR, were enrolled in this retrospective study. Parameters of glucolipid metabolism, HPO axis-related parameters, and autoimmune antibodies were measured and analyzed. RESULTS The prevalence of DOR among all patients with PCOS was 23.84%. Many HPO axis-related parameters, such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and prolactin (PRL) were significantly different in PCOS with DOR compared with PCOS without DOR. The FSH levels were positively correlated with LH, testosterone (T), and androstenedione (AD) levels, but had no association with glucolipid metabolism after adjusting for body mass index (BMI). Moreover, anti-ovarian antibody (AOAb) and anti-21-OH antibody (21-OHAb) levels were significantly elevated in PCOS patients with DOR. CONCLUSIONS PCOS patients with DOR showed more chaotic HPO axis hormone levels and elevated autoimmune antibodies, suggesting that autoimmune factors may be the cause of DOR in women with PCOS.
Collapse
Affiliation(s)
- Xueying Geng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zhihong He
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhuowei Gu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
3
|
Philibert P, Déjardin S, Girard M, Durix Q, Gonzalez AA, Mialhe X, Tardat M, Poulat F, Boizet-Bonhoure B. Cocktails of NSAIDs and 17α Ethinylestradiol at Environmentally Relevant Doses in Drinking Water Alter Puberty Onset in Mice Intergenerationally. Int J Mol Sci 2023; 24:ijms24065890. [PMID: 36982971 PMCID: PMC10099742 DOI: 10.3390/ijms24065890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinyl-estradiol (EE2) are among the most relevant endocrine-disrupting pharmaceuticals found in the environment, particularly in surface and drinking water due to their incomplete removal via wastewater treatment plants. Exposure of pregnant mice to NSAID therapeutic doses during the sex determination period has a negative impact on gonadal development and fertility in adults; however, the effects of their chronic exposure at lower doses are unknown. In this study, we investigated the impact of chronic exposure to a mixture containing ibuprofen, 2hydroxy-ibuprofen, diclofenac, and EE2 at two environmentally relevant doses (added to the drinking water from fetal life until puberty) on the reproductive tract in F1 exposed mice and their F2 offspring. In F1 animals, exposure delayed male puberty and accelerated female puberty. In post-pubertal F1 testes and ovaries, differentiation/maturation of the different gonad cell types was altered, and some of these modifications were observed also in the non-exposed F2 generation. Transcriptomic analysis of post-pubertal testes and ovaries of F1 (exposed) and F2 animals revealed significant changes in gene expression profiles and enriched pathways, particularly the inflammasome, metabolism and extracellular matrix pathways, compared with controls (non-exposed). This suggested that exposure to these drug cocktails has an intergenerational impact. The identified Adverse Outcome Pathway (AOP) networks for NSAIDs and EE2, at doses that are relevant to everyday human exposure, will improve the AOP network of the human reproductive system development concerning endocrine disruptor chemicals. It may serve to identify other putative endocrine disruptors for mammalian species based on the expression of biomarkers.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, 30900 Nîmes, France
| | - Stéphanie Déjardin
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Mélissa Girard
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Université de Montpellier and Institut National de la Santé Et de la Recherche Médicale (INSERM), 34090 Montpellier, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Mathieu Tardat
- Biologie des Séquences Répétées, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, 34090 Montpellier, France
| | - Francis Poulat
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
4
|
Ji J, Zhou Y, Li Z, Zhuang J, Ze Y, Hong F. Impairment of ovarian follicular development caused by titanium dioxide nanoparticles exposure involved in the TGF-β/BMP/Smad pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:185-192. [PMID: 36219784 DOI: 10.1002/tox.23676] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been shown to induce reproductive system damages in animals. To better underline how TiO2 NPs act in reproductive system, female mice were exposed to 2.5, 5, or 10 mg/kg TiO2 NPs by gavage administration for 60 days, the ovary injuries, follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels as well as ovarian follicular development-related molecule expression were investigated. The results showed that TiO2 NPs exposure resulted in reduction of ovary weight and inhibition of ovarian follicular development. Furthermore, the suppression of follicular development was demonstrated to be closely related to higher FSH and LH levels, and higher expression of activin, follistatin, BMP2, BMP4, TGF-β1, Smad2, Smad3, and Smad4 as well as decreased inhibin-α expression in mouse ovary in a dose-dependent manner. It implies that the impairment of ovarian follicular development caused by TiO2 NPs exposure may be mediated by TGF-β signal pathway.
Collapse
Affiliation(s)
- Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yingjun Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Zhengpeng Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Juan Zhuang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
5
|
Du C, Chen X. Transcriptome Profiling of Oocytes at the Germinal Vesicle Stage from Women from Mongolia with Polycystic Ovary Syndrome. Int J Gen Med 2021; 14:4469-4478. [PMID: 34413674 PMCID: PMC8369228 DOI: 10.2147/ijgm.s321853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders. Evidence indicates that genetic and environmental factors contribute to the pathogenesis of PCOS. The molecular basis of PCOS is not well understood. Methods Whole-genome RNA sequencing was performed on single oocyte at the germinal vesicle (GV) stage from females with normal ovulation and females with PCOS. All subjects were women from Mongolia undergoing intracytoplasmic sperm injection in vitro fertilization (ICSI-IVF) who met the Rotterdam criteria for PCOS. Women with normal ovulation who were undergoing ICSI-IVF owing to male factor infertility were recruited as control subjects. Results A total of 1313 differentially expressed genes were found by bio-informatics software in the GV oocytes of PCOS patients and compared with the control group. There were 367 upregulated and 946 downregulated genes (fold change > 2, false discovery rate < 0.01). When compared with the healthy controls, it was shown that the DEGs like VEGF, IGF, FADS1 et al were investigated as potential causes of PCOS oocytes. The DEGs were related to kinase activity, cell proliferation, gene regulation, and the signaling pathways of phosphatidylinositol 3-kinase, Hippo, and ECM-receptor pathway in patients with PCOS. In addition, the interconnected gene co-expression network was constructed by gene bionetwork analysis, indicating that ITGB5, ITGB3, and CAV2 were the core genes in regulating the module expression of DEGs in PCOS. Conclusion RNA sequencing analysis demonstrated DEGs were linked to inflammation, cardiovascular disease, and lipid metabolism in the GV oocytes of women with PCOS. We hypothesize that ITGB5, ITGB3, and CAV2 may be involved in metabolic disorders associated with the different phenotypes of PCOS.
Collapse
Affiliation(s)
- Chen Du
- Reproductive Medicine Center, Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Xiujuan Chen
- Reproductive Medicine Center, Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| |
Collapse
|
6
|
Effect of genomic X-chromosome regions on Nelore bull fertility. J Appl Genet 2021; 62:655-659. [PMID: 34145524 DOI: 10.1007/s13353-021-00645-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Scrotal circumference (SC) is a commonly used trait related to sexual precocity in bulls. Genome-wide association studies have uncovered a lot of genes related to this trait, however, only those present on autosomes. The inclusion of the second biggest chromosome (BTAX) can improve the knowledge of the genetic architecture of this trait. In this study, we performed a weighted, single-step, genome-wide association study using a 777 k BovineHD BeadChip (IllumHD) to analyze the association between SNPs and SC in Brazilian Nelore cattle. Phenotypes from 79,300 males and 3263 genotypes (2017 from females and 1246 from males)-(39,367 SNPs markers located at ChrX) were used. We identified eight regions on chromosome X that displayed important associations with SC. The results showed that together the genomic windows explained 28.52% of the genetic variance for the examined trait. Genes with potential functions in reproduction and fertility regulation were highlighted as candidates for sexual precocity rates in Nelore cattle (AFF2 and PJA1). Moreover, we found 10 genes that had not previously been identified as being associated with sexual precocity traits in cattle. These findings will further advance our understanding of the genetic architecture, considering mainly the presence of the chromosome X, for indicine cattle reproductive traits, being useful in the context of genomic prediction in beef cattle.
Collapse
|
7
|
Molecular Targets and Associated Signaling Pathways of Jingshu Granules in Ovarian Cysts Based on Systemic Pharmacological Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6660087. [PMID: 33623786 PMCID: PMC7875638 DOI: 10.1155/2021/6660087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
Background More than a third of women could develop ovarian cysts during their lifetime. Jingshu granules are used for the treatment of gynecological disease of primary dysmenorrhea. However, the molecular mechanisms of Jingshu granules in ovarian cysts are still unreported. We aimed to find the active ingredients, molecular targets, and potential signaling pathways of Jingshu granules in ovarian cysts by using the systemic pharmacological analysis. Methods Firstly, the effect of Jingshu granules on female hormones and reproductive organs of young female rats was evaluated. Secondly, candidate pharmaceutical ingredients of Jingshu granules were retrieved from the traditional Chinese medicine systems pharmacology (TCMSP) database and analysis platform. Potential protein targets for the active ingredients in Jingshu granules were then identified according to the oral bioavailability and drug-likeness indices. Thirdly, ovarian cyst-related gene targets were screened based on different databases. Finally, enrichment analysis was used to analyze the potential biological function of intersection targets between Jingshu granules and ovarian cysts. Results In young female rats, Jingshu granules reduced the secretion of estradiol, progesterone, and prolactin and could affect the development of the uterus. This suggested that Jingshu granules played roles in hormone secretion and reproduction. From the TCMSP, a total of 1021 pharmaceutical ingredients of Jingshu granules were retrieved. After further screening, a total of 166 active ingredients and 159 protein targets of Jingshu granules were identified. In addition, 4488 gene targets of ovarian cysts were screened out. After taking the intersection, a total of 110 intersection targets were identified between potential protein targets of Jingshu granules and gene targets of ovarian cysts. In the functional analysis of 110 intersection targets, 8 signaling pathways including progesterone-mediated oocyte maturation (MAPK8 and CDK1 involved), GnRH signaling pathway (JUN involved), T cell receptor signaling pathway and Toll-like receptor signaling pathway (MAPK1 involved), NOD-like receptor signaling pathway (TNF, IL6, and IL1B involved), p53 signaling pathway (CDK2 and CDK4 involved), VEGF signaling pathway (MAPK14 involved), and PPAR signaling pathway (PPARG involved) were obtained. Conclusion Our study revealed that Jingshu granules could function in patients with ovarian cysts through a number of molecular targets and signaling pathways. Our study may provide a new field into the mechanisms of Jingshu granules in ovarian cysts, from the molecular to the signaling pathway level.
Collapse
|
8
|
Chow R, Wessels JM, Foster WG. Brain-derived neurotrophic factor (BDNF) expression and function in the mammalian reproductive Tract. Hum Reprod Update 2020; 26:545-564. [PMID: 32378708 DOI: 10.1093/humupd/dmaa008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neurotrophins of the nerve growth factor family are soluble polypeptides that are best known for their role in nerve growth, survival and differentiation in the central nervous system. A growing body of literature shows that neurotrophins and their receptors are also expressed throughout the reproductive tract. OBJECTIVE AND RATIONALE Neurotrophins are key regulatory proteins in reproductive physiology during development and throughout adult life. Of the neurotrophins, the literature describing the expression and function of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, neurotrophin receptor kinase-2 (NTRK2), has been expanding rapidly. We therefore conducted a systematic inductive qualitative review of the literature to better define the role of the BDNF in the reproductive tract. We postulate that BDNF and NTRK2 are central regulatory proteins throughout the reproductive system. SEARCH METHODS An electronic search of Medline (PubMed) and Web of Science for articles relating to BDNF and the reproductive system was carried out between January 2018 and February 2019. OUTCOMES In the ovary, BDNF expression and levels have been linked with follicle organisation during ovarian development, follicle recruitment and growth and oocyte maturation. In the endometrium, BDNF is involved in cell proliferation and neurogenesis. In contrast, literature describing the role of BDNF in other reproductive tissues is sparse and BDNF-NTRK2 signalling in the male reproductive tract has been largely overlooked. Whilst estradiol appears to be the primary regulator of BDNF expression, we also identified reports describing binding sites for glucocorticoid and myocyte enhancer factor-2, a calcium-response element through activation of an N-methyl-D-aspartate (NMDA) receptor, and aryl hydrocarbon receptor nuclear transporter protein-4 (ARNT) response elements in promoter regions of the BDNF gene. Expression is also regulated by multiple microRNAs and post-translational processing of precursor proteins and intracellular shuttling. BDNF-NTRK2 signalling is modulated through tissue specific receptor expression of either the full-length or truncated NTRK2 receptor; however, the functional importance remains to be elucidated. Dysregulation of BDNF expression and circulating concentrations have been implicated in several reproductive disorders including premature ovarian failure, endometriosis, pre-eclampsia, intra-uterine growth restriction (IUGR) and several reproductive cancers. WIDER IMPLICATIONS We conclude that BDNF and its receptors are key regulatory proteins central to gonadal development, ovarian regulation and uterine physiology, as well as embryo and placenta development. Furthermore, dysregulation of BDNF-NTRK2 in reproductive diseases suggests their potential role as candidate clinical markers of disease and potential therapeutic targets.
Collapse
Affiliation(s)
- R Chow
- Department of Obstetrics & Gynaecology, McMaster University, Hamilton, Ontario, Canada
| | - J M Wessels
- Department of Obstetrics & Gynaecology, McMaster University, Hamilton, Ontario, Canada
| | - W G Foster
- Department of Obstetrics & Gynaecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Wang JJ, Ge W, Zhai QY, Liu JC, Sun XW, Liu WX, Li L, Lei CZ, Dyce PW, De Felici M, Shen W. Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biol 2020; 18:e3001025. [PMID: 33351795 PMCID: PMC7787681 DOI: 10.1371/journal.pbio.3001025] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2021] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Primordial follicle assembly in the mouse occurs during perinatal ages and largely determines the ovarian reserve that will be available to support the reproductive life span. The development of primordial follicles is controlled by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time series on murine ovaries, coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to postnatal day (PD) 3 were reported. Along with confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified 5 distinct cell clusters associated with germ cells and 6 with granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. By building single-cell pseudotemporal trajectories, 3 states and 1 branch point of fate transition for the germ cells were revealed, as well as for the granulosa cells. Moreover, Gene Ontology (GO) term enrichment enabled identification of the biological process most represented in germ cells and granulosa cells or common to both cell types at each specific stage, and the interactions of germ cells and granulosa cells basing on known and novel pathway were presented. Finally, by using single-cell regulatory network inference and clustering (SCENIC) algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell-specific transcription programs throughout the period of investigation. Above all, this study provides the whole transcriptome landscape of ovarian cells and unearths new insights during primordial follicle assembly in mice.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qiu-Yue Zhai
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jing-Cai Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Wen Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wen-Xiang Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chu-Zhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Paul W. Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Zhou S, Zhao D, Liu S, Zeng W, Zhang C. TGF-β1 sustains germ cell cyst reservoir via restraining follicle formation in the chicken. Cell Biol Int 2019; 44:861-872. [PMID: 31825139 DOI: 10.1002/cbin.11283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023]
Abstract
The transforming growth factor β (TGF-β) superfamily members are important molecules that regulate many ovarian functions under normal physiological and pathological conditions. TGF-β1 and its receptors are highly expressed in the ovarian cells of many species. However, the effect of TGF-β1 on the capacity of the avian germ cell reservoir remains unknown. In this study, 5-day-old chicks were injected with TGF-β1 (2.5, 12.5, and 62.5 μg/kg body weight) for 3 days to assess the effect of TGF-β1 on early follicle development. Morphological analysis showed that treatment with TGF-β1 (12.5 μg/kg) increased the number of germ cell cysts and reduced the number of primordial and growing follicles. The diameter and area of oocytes and follicles were decreased after TGF-β1 treatment. Immunohistochemical staining of the proliferating cell nuclear antigen revealed that the ratios of the positive somatic and granulosa cells were decreased by 16.2% and 2.48%, respectively. Furthermore, more apoptotic cells were observed in the TGF-β1 group than those of the control by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, we cultured the 5d chicken ovaries for 3 days in vitro and found that treatment with TGF-β1 (10 ng/mL) manifested similar results as the in vivo experiment. However, the negative effect of TGF-β1 on early ovary development was rescued by treatment with a TGF-βR1 inhibitor SD208, resulting in increased expression of steroidogenic enzymes and cell cycle-regulating proteins. In conclusion, TGF-β1 could maintain the germ cell reservoir by restraining follicle activation involving reduced cell proliferation and steroidogenic enzymes gene expression at the early stage of ovarian development.
Collapse
Affiliation(s)
- Shuo Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dan Zhao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Sichuan Institute of Veterinary Drug Control, Chengdu, 610041, China
| | - Shuqi Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weidong Zeng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Peñalver Bernabé B, Thiele I, Galdones E, Siletz A, Chandrasekaran S, Woodruff TK, Broadbelt LJ, Shea LD. Dynamic genome-scale cell-specific metabolic models reveal novel inter-cellular and intra-cellular metabolic communications during ovarian follicle development. BMC Bioinformatics 2019; 20:307. [PMID: 31182013 PMCID: PMC6558917 DOI: 10.1186/s12859-019-2825-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The maturation of the female germ cell, the oocyte, requires the synthesis and storing of all the necessary metabolites to support multiple divisions after fertilization. Oocyte maturation is only possible in the presence of surrounding, diverse, and changing layers of somatic cells. Our understanding of metabolic interactions between the oocyte and somatic cells has been limited due to dynamic nature of ovarian follicle development, thus warranting a systems approach. RESULTS Here, we developed a genome-scale metabolic model of the mouse ovarian follicle. This model was constructed using an updated mouse general metabolic model (Mouse Recon 2) and contains several key ovarian follicle development metabolic pathways. We used this model to characterize the changes in the metabolism of each follicular cell type (i.e., oocyte, granulosa cells, including cumulus and mural cells), during ovarian follicle development in vivo. Using this model, we predicted major metabolic pathways that are differentially active across multiple follicle stages. We identified a set of possible secreted and consumed metabolites that could potentially serve as biomarkers for monitoring follicle development, as well as metabolites for addition to in vitro culture media that support the growth and maturation of primordial follicles. CONCLUSIONS Our systems approach to model follicle metabolism can guide future experimental studies to validate the model results and improve oocyte maturation approaches and support growth of primordial follicles in vitro.
Collapse
Affiliation(s)
| | - Ines Thiele
- Luxembourg Center for Systems Biology, University of Luxembourg, Esch-sur-Alzette, Luxembourg, L-4365, Luxembourg
| | - Eugene Galdones
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Anaar Siletz
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Women's Health Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University Feinberg School of Medicine, Evanston, IL, 60208, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Fuller EA, Sominsky L, Sutherland JM, Redgrove KA, Harms L, McLaughlin EA, Hodgson DM. Neonatal immune activation depletes the ovarian follicle reserve and alters ovarian acute inflammatory mediators in neonatal rats. Biol Reprod 2018; 97:719-730. [PMID: 29040417 DOI: 10.1093/biolre/iox123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/07/2017] [Indexed: 12/30/2022] Open
Abstract
Normal ovarian development is crucial for female reproductive success and longevity. Interruptions to the delicate process of initial folliculogenesis may lead to ovarian dysfunction. We have previously demonstrated that an early life immune challenge in the rat, induced by administration of lipopolysaccharide (LPS) on postnatal day (PND) 3 and 5, depletes ovarian follicle reserve long term. Here, we hypothesized that this neonatal immune challenge leads to an increase in peripheral and ovarian inflammatory signaling, contributing to an acute depletion of ovarian follicles. Morphological analysis of neonatal ovaries indicated that LPS administration significantly depleted PND 5 primordial follicle populations and accelerated follicle maturation. LPS exposure upregulated circulating interleukin 6, tumor necrosis factor alpha (TNFa), and C-reactive protein on PND 5, and upregulated ovarian mRNA expression of Tnfa, mitogen-activated protein kinase 8 (Mapk8/Jnk1), and growth differentiation factor 9 (Gdf9) (P < 0.05). Mass spectrometry and cell signaling pathway analysis indicated upregulation of cellular pathways associated with acute phase signaling, and cellular survival and assembly. Apoptosis assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling indicated significantly increased positive staining in the ovaries of LPS-treated neonates. These findings suggest that increased proinflammatory signaling within the neonatal ovary may be responsible for the LPS-induced depletion of the primordial follicle pool. These findings also have implications for female reproductive health, as the ovarian reserve is a major determinate of female reproductive longevity.
Collapse
Affiliation(s)
- Erin A Fuller
- Laboratory of Neuroimmunology, Priority Research Centre for Brain and Mental Health Research, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Jessie M Sutherland
- School of Environmental and Life Sciences, Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lauren Harms
- Laboratory of Neuroimmunology, Priority Research Centre for Brain and Mental Health Research, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, New South Wales, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Deborah M Hodgson
- Laboratory of Neuroimmunology, Priority Research Centre for Brain and Mental Health Research, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
13
|
Talebi R, Ahmadi A, Afraz F. Analysis of protein-protein interaction network based on transcriptome profiling of ovine granulosa cells identifies candidate genes in cyclic recruitment of ovarian follicles. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018; 60:11. [PMID: 29992036 PMCID: PMC5994657 DOI: 10.1186/s40781-018-0171-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/29/2018] [Indexed: 11/22/2022]
Abstract
After pubertal, cohort of small antral follicles enters to gonadotrophin-sensitive development, called recruited follicles. This study was aimed to identify candidate genes in follicular cyclic recruitment via analysis of protein-protein interaction (PPI) network. Differentially expressed genes (DEGs) in ovine granulosa cells of small antral follicles between follicular and luteal phases were accumulated among gene/protein symbols of the Ensembl annotation. Following directed graphs, PTPN6 and FYN have the highest indegree and outdegree, respectively. Since, these hubs being up-regulated in ovine granulosa cells of small antral follicles during the follicular phase, it represents an accumulation of blood immune cells in follicular phase in comparison with luteal phase. By contrast, the up-regulated hubs in the luteal phase including CDK1, INSRR and TOP2A which stimulated DNA replication and proliferation of granulosa cells, they known as candidate genes of the cyclic recruitment.
Collapse
Affiliation(s)
- Reza Talebi
- 1Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Ahmad Ahmadi
- 1Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Fazlollah Afraz
- Department of Livestock and Aquaculture Biotechnology, Agricultural Biotechnology Research Institute of North Region, Rasht, Iran
| |
Collapse
|
14
|
Yang F, Wang M, Zhang B, Xiang W, Zhang K, Chu M, Wang P. Identification of new progestogen-associated networks in mammalian ovulation using bioinformatics. BMC SYSTEMS BIOLOGY 2018; 12:36. [PMID: 29615037 PMCID: PMC5883354 DOI: 10.1186/s12918-018-0577-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Background Progesterone plays an essential role in mammalian ovulation. Although much is known about this process, the gene networks involved in ovulation have yet to be established. When analyze the mechanisms of ovulation, we often need to determine key genes or pathways to investigate the reproduction features. However, traditional experimental methods have a number of limitations. Results Data, in this study, were acquired from GSE41836 and GSE54584 which provided different samples. They were analyzed with the GEO2R and 546 differentially expressed genes were obtained from two data sets using bioinformatics (absolute log2 FC > 1, P < 0.05). This study identified four genes (PGR, RELN, PDE10A and PLA2G4A) by protein-protein interaction networks and pathway analysis, and their functional enrichments were associated with ovulation. Then, the top 25 statistical pathway enrichments related to hCG treatment were analyzed. Furthermore, gene network analysis identified certain interconnected genes and pathways involved in progestogenic mechanisms, including progesterone-mediated oocyte maturation, the MAPK signaling pathway, the GnRH signaling pathway and focal adhesion, etc. Moreover, we explored the four target gene pathways. q-PCR analysis following hCG and RU486 treatments confirmed the certain novel progestogenic-associated genes (GNAI1, PRKCA, CAV1, EGFR, RHOA, ZYX, VCL, GRB2 and RAP1A). Conclusions The results suggested four key genes, nine predicted genes and eight pathways to be involved in progestogenic networks. These networks provide important regulatory genes and signaling pathways which are involved in ovulation. This study provides a fundamental basis for subsequent functional studies to investigate the regulation of mammalian ovulation. Electronic supplementary material The online version of this article (10.1186/s12918-018-0577-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Yang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Medical Molecular Biology Research Center, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Meng Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Baoyun Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wei Xiang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Ke Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Mingxin Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
15
|
Li D, You Y, Bi FF, Zhang TN, Jiao J, Wang TR, Zhou YM, Shen ZQ, Wang XX, Yang Q. Autophagy is activated in the ovarian tissue of polycystic ovary syndrome. Reproduction 2017; 155:85-92. [PMID: 29030491 DOI: 10.1530/rep-17-0499] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/04/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022]
Abstract
The importance of autophagy in polycystic ovary syndrome (PCOS)-related metabolic disorders is increasingly being recognized, but few studies have investigated the role of autophagy in PCOS. Here, transmission electron microscopy demonstrated that autophagy was enhanced in the ovarian tissue from both humans and rats with PCOS. Consistent with this, ovarian granulosa cells from PCOS rats showed increases in the autophagy marker protein light chain 3B (LC3B), whereas levels of the autophagy substrate SQSTM1/p62 were decreased. In addition, the ratio of LC3-II/LC3-I was markedly elevated in human PCOS ovarian tissue compared with normal ovarian tissue. Real-time PCR arrays indicated that 7 and 34 autophagy-related genes were down- and up-regulated in human PCOS , Signal-Net, and regression analysis suggested that there are a wide range of interactions among these 41 genes, and a potential network based on EGFR, ERBB2, FOXO1, MAPK1, NFKB1, IGF1,TP53 and MAPK9 may be responsible for autophagy activation in PCOS. Systematic functional analysis of 41 differential autophagy-related genes indicated that these genes are highly involved in specific cellular processes such as response to stress and stimulus, and are linked to four significant pathways, including the insulin, ERBB, mTOR signaling pathways and protein processing in the endoplasmic reticulum. This study provides evidence for a potential role of autophagy disorders in PCOS in which autophagy may be an important molecular event in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Da Li
- Center of Reproductive MedicineShengjing Hospital of China Medical University, Shenyang, China
| | - Yue You
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Fang Bi
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of PediatricsShengjing Hospital of China Medical University, Shenyang, China
| | - Jiao Jiao
- Center of Reproductive MedicineShengjing Hospital of China Medical University, Shenyang, China
| | - Tian-Ren Wang
- Center of Reproductive MedicineShengjing Hospital of China Medical University, Shenyang, China.,Department of ObstetricsGynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yi-Ming Zhou
- Department of MedicineBrigham and Women's Hospital, Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zi-Qi Shen
- Center of Reproductive MedicineShengjing Hospital of China Medical University, Shenyang, China
| | - Xiu-Xia Wang
- Center of Reproductive MedicineShengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Ernst EH, Grøndahl ML, Grund S, Hardy K, Heuck A, Sunde L, Franks S, Andersen CY, Villesen P, Lykke-Hartmann K. Dormancy and activation of human oocytes from primordial and primary follicles: molecular clues to oocyte regulation. Hum Reprod 2017; 32:1684-1700. [PMID: 28854595 DOI: 10.1093/humrep/dex238] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 06/14/2017] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION Do specific transcriptome dynamics in human oocytes from primordial and primary follicles identify novel pathways in oocyte activation? SUMMARY ANSWER The transcriptomic profiles in oocytes from primordial and primary follicles, respectively, revealed several new canonical pathways as putative mediators of oocyte dormancy and activation. WHAT IS KNOWN ALREADY Cellular signaling pathways including PI3K/AKT and AKT/mTOR as well as TGF-β and IGF signaling are known to regulate the primordial-to-primary transition in mammalian follicle development. STUDY DESIGN, SIZE, DURATION We performed a class comparison study on human oocytes from primordial (n = 436) and primary (n = 182) follicles donated by three women having ovarian tissue cryopreserved before chemotherapy. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA was extracted from oocytes from primordial and primary follicles isolated by Laser Capture Microdissection, and submitted to the HiSeq Illumina platform. Data mapping, quality control, filtering and expression analysis were performed using Tophat (2.0.4), Cufflinks (2.0.2), BWA (0.6.2) and software R. Modeling of complex biological systems was performed using the IPA® software. Finally, qPCR and immunohistochemistry were employed to explore expression and localization of selected genes and products in human ovarian tissue. MAIN RESULTS AND THE ROLE OF CHANCE We found 223 and 268 genes down-regulated and up-regulated, respectively, in the oocytes during the human primordial-to-primary follicle transition (P < 0.05 and/or FPKM fold-change >2). IPA® enrichment analysis revealed known pathways ('mTOR Signaling', 'PI3K/AKT Signaling' and 'PTEN Signaling') as well as enriched canonical pathways not previously associated with human ovarian follicle development such as 'ErB Signaling' and 'NGF Signaling' in the down-regulated category and 'Regulation of eIF4 and P70S6K Signaling' and 'HER-2 Signaling in Breast Cancer' in the up-regulated group. Additionally, immunohistochemistry on human ovarian tissue explored the intraovarian localization of VASA, FOXO1 and eIF4E. LARGE SCALE DATA http://users-birc.au.dk/biopv/published_data/ernst_2017/. LIMITATIONS, REASONS FOR CAUTION This is a descriptive analysis and no functional studies were performed. The study was based on a limited number of patients and the experimental design could not take into account the natural biological variance in human samples. Therefore, qPCR was used to confirm selected genes alongside immunohistochemical stainings. WIDER IMPLICATIONS OF THE FINDINGS This study shows, for the first time, a detailed molecular description of global gene transcription activities in oocytes from primordial and primary follicles, respectively. Knowing the global transcription profiles of human oocyte dormancy and activation are important in developing new clinical applications. STUDY FUNDING/COMPETING INTEREST(S) E.H.E. was supported by Health Faculty, Aarhus University and Kong Christian Den Tiendes Fond. K.H. and S.F. were supported by an MRC (UK) project grant MR/M012638/1. K.L.H. was supported by grants from Fonden til Lægevidenskabens Fremme, Kong Christian Den Tiendes Fond. K.L.H. and L.S. were supported by the IDEAS grant from Aarhus University Research Foundation (AUFF). There are no conflicts of interest.
Collapse
Affiliation(s)
- E H Ernst
- Department of Biomedicine, Aarhus University, Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - M L Grøndahl
- Fertility Clinic, Herlev Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - S Grund
- Bioinformatics Research Centre (BiRC), Aarhus University, C.F.Møllers Allé 8, DK-8000 Aarhus C, Denmark
| | - K Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - A Heuck
- Department of Biomedicine, Aarhus University, Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - L Sunde
- Department of Biomedicine, Aarhus University, Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, DK-8200 Aarhus N, Denmark
| | - S Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - C Y Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen N, Denmark
| | - P Villesen
- Bioinformatics Research Centre (BiRC), Aarhus University, C.F.Møllers Allé 8, DK-8000 Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - K Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, DK-8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Passos JRS, Costa JJN, da Cunha EV, Silva AWB, Ribeiro RP, de Souza GB, Barroso PAA, Dau AMP, Saraiva MVA, Gonçalves PBD, van den Hurk R, Silva JRV. Protein and messenger RNA expression of interleukin 1 system members in bovine ovarian follicles and effects of interleukin 1β on primordial follicle activation and survival in vitro. Domest Anim Endocrinol 2016; 54:48-59. [PMID: 26513156 DOI: 10.1016/j.domaniend.2015.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the expression of interleukin 1 (IL-1) system members (proteins and messenger RNA of ligands and receptors) and its distribution in ovarian follicles of cyclic cows and to evaluate the effects of IL-1β on the survival and activation of primordial follicles in vitro. The ovaries were processed for localization of IL-1 system in preantral and antral follicles by immunohistochemical, real-time polymerase chain reaction, and Western blot analysis. For in vitro studies, ovarian fragments were cultured in α-MEM(+) supplemented with IL-1β (0, 1, 10, 50, or 100 ng/mL), and after 6 d, the cultured tissues were processed for histologic analysis. Immunohistochemical results showed that the IL-1 system proteins IL-1β, IL-1RA, IL-1RI, and IL-1RII were detected in the cytoplasm of oocytes and granulosa cells from all follicular categories and theca cells of antral follicles. Variable levels of messenger RNA for the IL-1 system members were observed at different stages of development. After 6 d of culture, the presence of IL-1β (10 or 50 ng/mL) was effective in maintaining the percentage of normal follicles and in promoting primordial follicle activation. In conclusion, IL-1 system members are differentially expressed in ovarian follicles according to their stage of development. Moreover, IL-1β promotes the development of primordial follicles. These results indicate an important role of the IL-1 system in the regulation of bovine folliculogenesis.
Collapse
Affiliation(s)
- J R S Passos
- Faculty of Medicine, Biotechnology Nucleus of Sobral-NUBIS, Federal University of Ceara, Sobral, CE CEP 62042-280, Brazil
| | - J J N Costa
- Faculty of Medicine, Biotechnology Nucleus of Sobral-NUBIS, Federal University of Ceara, Sobral, CE CEP 62042-280, Brazil
| | - E V da Cunha
- Faculty of Medicine, Biotechnology Nucleus of Sobral-NUBIS, Federal University of Ceara, Sobral, CE CEP 62042-280, Brazil
| | - A W B Silva
- Faculty of Medicine, Biotechnology Nucleus of Sobral-NUBIS, Federal University of Ceara, Sobral, CE CEP 62042-280, Brazil
| | - R P Ribeiro
- Faculty of Medicine, Biotechnology Nucleus of Sobral-NUBIS, Federal University of Ceara, Sobral, CE CEP 62042-280, Brazil
| | - G B de Souza
- Faculty of Medicine, Biotechnology Nucleus of Sobral-NUBIS, Federal University of Ceara, Sobral, CE CEP 62042-280, Brazil
| | - P A A Barroso
- Faculty of Medicine, Biotechnology Nucleus of Sobral-NUBIS, Federal University of Ceara, Sobral, CE CEP 62042-280, Brazil
| | - A M P Dau
- Faculty of Veterinary Medicine, University Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - M V A Saraiva
- Faculty of Medicine, Biotechnology Nucleus of Sobral-NUBIS, Federal University of Ceara, Sobral, CE CEP 62042-280, Brazil
| | - P B D Gonçalves
- Faculty of Veterinary Medicine, University Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - R van den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J R V Silva
- Faculty of Medicine, Biotechnology Nucleus of Sobral-NUBIS, Federal University of Ceara, Sobral, CE CEP 62042-280, Brazil.
| |
Collapse
|
18
|
Marchitelli C, Nardone A. Mutations and sequence variants in GDF9, BMP15, and BMPR1B genes in Maremmana cattle breed with single and twin births. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2015. [DOI: 10.1007/s12210-015-0418-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Garcia-Reyero N, Tingaud-Sequeira A, Cao M, Zhu Z, Perkins EJ, Hu W. Endocrinology: advances through omics and related technologies. Gen Comp Endocrinol 2014; 203:262-73. [PMID: 24726988 DOI: 10.1016/j.ygcen.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/27/2022]
Abstract
The rapid development of new omics technologies to measure changes at genetic, transcriptomic, proteomic, and metabolomics levels together with the evolution of methods to analyze and integrate the data at a systems level are revolutionizing the study of biological processes. Here we discuss how new approaches using omics technologies have expanded our knowledge especially in nontraditional models. Our increasing knowledge of these interactions and evolutionary pathway conservation facilitates the use of nontraditional species, both invertebrate and vertebrate, as new model species for biological and endocrinology research. The increasing availability of technology to create organisms overexpressing key genes in endocrine function allows manipulation of complex regulatory networks such as growth hormone (GH) in transgenic fish where disregulation of GH production to produce larger fish has also permitted exploration of the role that GH plays in testis development, suggesting that it does so through interactions with insulin-like growth factors. The availability of omics tools to monitor changes at nearly any level in any organism, manipulate gene expression and behavior, and integrate data across biological levels, provides novel opportunities to explore endocrine function across many species and understand the complex roles that key genes play in different aspects of the endocrine function.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39759, USA.
| | - Angèle Tingaud-Sequeira
- Laboratoire MRMG, Maladies Rares: Génétique et Métabolisme, Université de Bordeaux, 33405 Talence Cedex, France
| | - Mengxi Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Edward J Perkins
- US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
20
|
Feeney A, Nilsson E, Skinner MK. Cytokine (IL16) and tyrphostin actions on ovarian primordial follicle development. Reproduction 2014; 148:321-31. [PMID: 24970835 DOI: 10.1530/rep-14-0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An ovarian follicle is composed of an oocyte and surrounding theca and granulosa cells. Oocytes are stored in an arrested state within primordial follicles until they are signaled to re-initiate development by undergoing primordial-to-primary follicle transition. Previous gene bionetwork analyses of primordial follicle development identified a number of critical cytokine signaling pathways and genes potentially involved in the process. In the current study, candidate regulatory genes and pathways from the gene network analyses were tested for their effects on the formation of primordial follicles (follicle assembly) and on primordial follicle transition using whole ovary organ culture experiments. Observations indicate that the tyrphostin inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased follicle assembly significantly, supporting a role for the MAPK signaling pathway in follicle assembly. The cytokine interleukin 16 (IL16) promotes primordial-to-primary follicle transition as compared with the controls, where as Delta-like ligand 4 (DLL4) and WNT-3A treatments have no effect. Immunohistochemical experiments demonstrated the localization of both the cytokine IL16 and its receptor CD4 in the granulosa cells surrounding each oocyte within the ovarian follicle. The tyrphostin LDN193189 (LDN) is an inhibitor of the bone morphogenic protein receptor 1 within the TGFB signaling pathway and was found to promote the primordial-to-primary follicle transition. Observations support the importance of cytokines (i.e., IL16) and cytokine signaling pathways in the regulation of early follicle development. Insights into regulatory factors affecting early primordial follicle development are provided that may associate with ovarian disease and translate to improved therapy in the future.
Collapse
Affiliation(s)
- Amanda Feeney
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Eric Nilsson
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Michael K Skinner
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| |
Collapse
|
21
|
Sehgal M, Singh TR. Systems biology approach for mutational and site-specific structural investigation of DNA repair genes for xeroderma pigmentosum. Gene 2014; 543:108-17. [DOI: 10.1016/j.gene.2014.03.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/28/2014] [Indexed: 02/02/2023]
|
22
|
Skinner MK, Savenkova MI, Zhang B, Gore AC, Crews D. Gene bionetworks involved in the epigenetic transgenerational inheritance of altered mate preference: environmental epigenetics and evolutionary biology. BMC Genomics 2014; 15:377. [PMID: 24885959 PMCID: PMC4073506 DOI: 10.1186/1471-2164-15-377] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/28/2014] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mate preference behavior is an essential first step in sexual selection and is a critical determinant in evolutionary biology. Previously an environmental compound (the fungicide vinclozolin) was found to promote the epigenetic transgenerational inheritance of an altered sperm epigenome and modified mate preference characteristics for three generations after exposure of a gestating female. RESULTS The current study investigated gene networks involved in various regions of the brain that correlated with the altered mate preference behavior in the male and female. Statistically significant correlations of gene clusters and modules were identified to associate with specific mate preference behaviors. This novel systems biology approach identified gene networks (bionetworks) involved in sex-specific mate preference behavior. Observations demonstrate the ability of environmental factors to promote the epigenetic transgenerational inheritance of this altered evolutionary biology determinant. CONCLUSIONS Combined observations elucidate the potential molecular control of mate preference behavior and suggests environmental epigenetics can have a role in evolutionary biology.
Collapse
Affiliation(s)
- Michael K Skinner
- />Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Marina I Savenkova
- />Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Bin Zhang
- />Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, NY 10029 USA
| | | | - David Crews
- />Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|