1
|
Colombo PC. Making sense of chromosome polymorphisms in two leptysmine grasshoppers. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:717-727. [PMID: 39439188 DOI: 10.1017/s0007485324000579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The touchstone of the 'New Synthesis' was population cytogenetics -rather than genetics - due to the abundant polymorphic inversions in the genus Drosophila. Grasshoppers were not a material of choice because of their conservative karyotypes. However, nowadays seven species of Acrididae were described for polymorphic centric fusions, five of them in South-America. Leptysma argentina and the likely biocontrol of water-hyacinth Cornops aquaticum are semiaquatic Leptysminae (Acrididae: Orthoptera), polymorphic for centric fusions, supernumerary segments and a B-chromosome. We sought to demonstrate the operation of natural selection on them, by detecting: (I) latitudinal clines; (II) regression on environmental variables; (III) deviation from null models, such as linkage equilibrium; (IV) seasonal variation; (V) comparison between age classes and (VI) selection component analyses. All of them were confirmed in L. argentina, just (I) and (II) in C. aquaticum. Furthermore, the relationship between karyotype, phenotype and recombination was confirmed in both species. Karyotype-phenotype relationship may be due to the body enlargement the fusions are associated with, along with a latitudinal transition in voltinism. Karyotype-related recombination reduction in both species may help explain all fusion clines, although there is probably more than one factor at work. No effects were noticed for a supernumerary segment in L. argentina, but it is ubiquitous and certainly non-neutral. C. aquaticum is poised for introduction in South-Africa as a biocontrol of water-hyacinths; the recent discovery of four more segment polymorphisms may imply more chromosomal markers to make sense of its genetic system.
Collapse
Affiliation(s)
- Pablo C Colombo
- Grupo de Genética de la Estructura Poblacional, Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Souza FHS, Perez MF, Ferreira PHN, Bertollo LAC, Ezaz T, Charlesworth D, Cioffi MB. Multiple karyotype differences between populations of the Hoplias malabaricus (Teleostei; Characiformes), a species complex in the gray area of the speciation process. Heredity (Edinb) 2024; 133:216-226. [PMID: 39039117 PMCID: PMC11437160 DOI: 10.1038/s41437-024-00707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Neotropical fishes exhibit remarkable karyotype diversity, whose evolution is poorly understood. Here, we studied genetic differences in 60 individuals, from 11 localities of one species, the wolf fish Hoplias malabaricus, from populations that include six different "karyomorphs". These differ in Y-X chromosome differentiation, and, in several cases, by fusions with autosomes that have resulted in multiple sex chromosomes. Other differences are also observed in diploid chromosome numbers and morphologies. In an attempt to start understanding how this diversity was generated, we analyzed within- and between-population differences in a genome-wide sequence data set. We detect clear genotype differences between karyomorphs. Even in sympatry, samples with different karyomorphs differ more in sequence than samples from allopatric populations of the same karyomorph, suggesting that they represent populations that are to some degree reproductively isolated. However, sequence divergence between populations with different karyomorphs is remarkably low, suggesting that chromosome rearrangements may have evolved during a brief evolutionary time. We suggest that the karyotypic differences probably evolved in allopatry, in small populations that would have allowed rapid fixation of rearrangements, and that they became sympatric after their differentiation. Further studies are needed to test whether the karyotype differences contribute to reproductive isolation detected between some H. malabaricus karyomorphs.
Collapse
Affiliation(s)
- Fernando H S Souza
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Manolo F Perez
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Pedro H N Ferreira
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Luiz A C Bertollo
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, NSW, Australia
| | - Deborah Charlesworth
- Institute for Evolutionary Biology, Ashworth Laboratories, King's Buildings, University of Edinburgh, Edinburgh, UK
| | - Marcelo B Cioffi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Perdomo-González DI, Id-Lahoucine S, Molina A, Cánovas A, Laseca N, Azor PJ, Valera M. Transmission ratio distortion detection by neutral genetic markers in the Pura Raza Española horse breed. Animal 2023; 17:101012. [PMID: 37950978 DOI: 10.1016/j.animal.2023.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023] Open
Abstract
Transmission Ratio Distortion (TRD) is a genetic phenomenon widely demonstrated in several livestock species, but barely in equine species. The TRD occurs when certain genotypes are over- or under-represented in the offspring of a particular mating and can be caused by a variety of factors during gamete formation or during embryonic development. For this study, 126 394 trios consisting of a stallion, mare, and offspring were genotyped using a panel of 17 neutral microsatellite markers recommended by the International Society for Animal Genetics for paternity tests and individual identification. The number of alleles available for each marker ranges from 13 to 18, been 268 the total number of alleles investigated. The TRDscan v.2.0 software was used with the biallelic procedure to identify regions with distorted segregation ratios. After completing the analysis, a total of 12 alleles (out of 11 microsatellites) were identified with decisive evidence for genotypic TRD; 3 and 9 with additive and heterosis patterns, respectively. In addition, 19 alleles (out of 10 microsatellites) were identified displaying allelic TRD. Among them, 14 and 5 were parent-unspecific and stallion-mare-specific TRD. Out of the TRD regions, 24 genes were identified and annotated, predominantly associated with cholesterol metabolism and homeostasis. These genes are often linked to non-specific symptoms like impaired fertility, stunted growth, and compromised overall health. The results suggest a significant impact on the inheritance of certain genetic traits in horses. Further analysis and validation are needed to better understand the TRD impact before the potential implementation in the horse breeding programme strategies.
Collapse
Affiliation(s)
| | - S Id-Lahoucine
- Department of Animal and Veterinary Science, Scotland's Rural College, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - A Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba 14014, Spain
| | - A Cánovas
- Center of Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - N Laseca
- Departamento de Genética, Universidad de Córdoba, Córdoba 14014, Spain
| | - P J Azor
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Sevilla 41014, Spain
| | - M Valera
- Departamento de Agronomía, ETSIA, Universidad de Sevilla, Sevilla 41005, Spain
| |
Collapse
|
4
|
Ferreira PHN, Souza FHS, de Moraes RL, Perez MF, Sassi FDMC, Viana PF, Feldberg E, Ezaz T, Liehr T, Bertollo LAC, Cioffi MDB. The Genetic Differentiation of Pyrrhulina (Teleostei, Characiformes) Species is Likely Influenced by Both Geographical Distribution and Chromosomal Rearrangements. Front Genet 2022; 13:869073. [PMID: 35601496 PMCID: PMC9114635 DOI: 10.3389/fgene.2022.869073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Allopatry is generally considered to be one of the main contributors to the remarkable Neotropical biodiversity. However, the role of chromosomal rearrangements including neo-sex chromosomes for genetic diversity is still poorly investigated and understood. Here, we assess the genetic divergence in five Pyrrhulina species using population genomics and combined the results with previously obtained cytogenetic data, highlighting that molecular genetic diversity is consistent with their chromosomal features. The results of a principal coordinate analysis (PCoA) indicated a clear difference among all species while showing a closer relationship of the ones located in the same geographical region. This was also observed in genetic structure analyses that only grouped P. australis and P. marilynae, which were also recovered as sister species in a species tree analysis. We observed a contradictory result for the relationships among the three species from the Amazon basin, as the phylogenetic tree suggested P. obermulleri and P. semifasciata as sister species, while the PCoA showed a high genetic difference between P. semifasciata and all other species. These results suggest a potential role of sex-related chromosomal rearrangements as reproductive barriers between these species.
Collapse
Affiliation(s)
- Pedro H. N. Ferreira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fernando H. S. Souza
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Renata L. de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Manolo F. Perez
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Francisco de M. C. Sassi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, NSW, Australia
| | - Thomas Liehr
- Institute of Human Genetics, Friedrich Schiller University, University Hospital Jena, Jena, Germany
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo de B. Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
5
|
Yu X, Joshi R, Gjøen HM, Lv Z, Kent M. Construction of Genetic Linkage Maps From a Hybrid Family of Large Yellow Croaker ( Larimichthys crocea). Front Genet 2022; 12:792666. [PMID: 35047014 PMCID: PMC8762270 DOI: 10.3389/fgene.2021.792666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Consensus and sex-specific genetic linkage maps for large yellow croaker (Larimichthys crocea) were constructed using samples from an F1 family produced by crossing a Daiqu female and a Mindong male. A total of 20,147 single nucleotide polymorphisms (SNPs) by restriction site associated DNA sequencing were assigned to 24 linkage groups (LGs). The total length of the consensus map was 1757.4 centimorgan (cM) with an average marker interval of 0.09 cM. The total length of female and male linkage map was 1533.1 cM and 1279.2 cM, respectively. The average female-to-male map length ratio was 1.2 ± 0.23. Collapsed markers in the genetic maps were re-ordered according to their relative positions in the ASM435267v1 genome assembly to produce integrated genetic linkage maps with 9885 SNPs distributed across the 24 LGs. The recombination pattern of most LGs showed sigmoidal patterns of recombination, with higher recombination in the middle and suppressed recombination at both ends, which corresponds with the presence of sub-telocentric and acrocentric chromosomes in the species. The average recombination rate in the integrated female and male maps was respectively 3.55 cM/Mb and 3.05 cM/Mb. In most LGs, higher recombination rates were found in the integrated female map, compared to the male map, except in LG12, LG16, LG21, LG22, and LG24. Recombination rate profiles within each LG differed between the male and the female, with distinct regions indicating potential recombination hotspots. Separate quantitative trait loci (QTL) and association analyses for growth related traits in 6 months fish were performed, however, no significant QTL was detected. The study indicates that there may be genetic differences between the two strains, which may have implications for the application of DNA-information in the further breeding schemes.
Collapse
Affiliation(s)
- Xinxiu Yu
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway.,National Engineering Research Centre of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | | | - Hans Magnus Gjøen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Zhenming Lv
- National Engineering Research Centre of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
6
|
Martin G, Baurens F, Hervouet C, Salmon F, Delos J, Labadie K, Perdereau A, Mournet P, Blois L, Dupouy M, Carreel F, Ricci S, Lemainque A, Yahiaoui N, D’Hont A. Chromosome reciprocal translocations have accompanied subspecies evolution in bananas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1698-1711. [PMID: 33067829 PMCID: PMC7839431 DOI: 10.1111/tpj.15031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/02/2020] [Indexed: 05/09/2023]
Abstract
Chromosome rearrangements and the way that they impact genetic differentiation and speciation have long raised questions from evolutionary biologists. They are also a major concern for breeders because of their bearing on chromosome recombination. Banana is a major crop that derives from inter(sub)specific hybridizations between various once geographically isolated Musa species and subspecies. We sequenced 155 accessions, including banana cultivars and representatives of Musa diversity, and genotyped-by-sequencing 1059 individuals from 11 progenies. We precisely characterized six large reciprocal translocations and showed that they emerged in different (sub)species of Musa acuminata, the main contributor to currently cultivated bananas. Most diploid and triploid cultivars analyzed were structurally heterozygous for 1 to 4 M. acuminata translocations, highlighting their complex origin. We showed that all translocations induced a recombination reduction of variable intensity and extent depending on the translocations, involving only the breakpoint regions, a chromosome arm, or an entire chromosome. The translocated chromosomes were found preferentially transmitted in many cases. We explore and discuss the possible mechanisms involved in this preferential transmission and its impact on translocation colonization.
Collapse
Affiliation(s)
- Guillaume Martin
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Franc‐Christophe Baurens
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Catherine Hervouet
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Frédéric Salmon
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
- CIRADUMR AGAPCapesterre‐Belle‐EauGuadeloupeF‐97130France
| | - Jean‐Marie Delos
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
- CIRADUMR AGAPCapesterre‐Belle‐EauGuadeloupeF‐97130France
| | - Karine Labadie
- GenoscopeInstitut de biologie François JacobCommissariat à l'Energie Atomique (CEA)Université Paris‐SaclayEvryFrance
| | - Aude Perdereau
- GenoscopeInstitut de biologie François JacobCommissariat à l'Energie Atomique (CEA)Université Paris‐SaclayEvryFrance
| | - Pierre Mournet
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Louis Blois
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Marion Dupouy
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Françoise Carreel
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Sébastien Ricci
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
- CIRADUMR AGAPCapesterre‐Belle‐EauGuadeloupeF‐97130France
| | - Arnaud Lemainque
- GenoscopeInstitut de biologie François JacobCommissariat à l'Energie Atomique (CEA)Université Paris‐SaclayEvryFrance
| | - Nabila Yahiaoui
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Angélique D’Hont
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| |
Collapse
|
7
|
Blackwell T, Ford AGP, Ciezarek AG, Bradbeer SJ, Gracida Juarez CA, Smith AM, Ngatunga BP, Shechonge A, Tamatamah R, Etherington G, Haerty W, Di Palma F, Turner GF, Genner MJ. Newly discovered cichlid fish biodiversity threatened by hybridization with non-native species. Mol Ecol 2020; 30:895-911. [PMID: 33063411 DOI: 10.1111/mec.15638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Invasive freshwater fishes are known to readily hybridize with indigenous congeneric species, driving loss of unique and irreplaceable genetic resources. Here we reveal that newly discovered (2013-2016) evolutionarily significant populations of Korogwe tilapia (Oreochromis korogwe) from southern Tanzania are threatened by hybridization with the larger invasive Nile tilapia (Oreochromis niloticus). We use a combination of morphology, microsatellite allele frequencies and whole genome sequences to show that O. korogwe from southern lakes (Nambawala, Rutamba and Mitupa) are distinct from geographically disjunct populations in northern Tanzania (Zigi River and Mlingano Dam). We also provide genetic evidence of O. korogwe × niloticus hybrids in three southern lakes and demonstrate heterogeneity in the extent of admixture across the genome. Finally, using the least admixed genomic regions we estimate that the northern and southern O. korogwe populations most plausibly diverged ~140,000 years ago, suggesting that the geographical separation of the northern and southern groups is not a result of a recent translocation, and instead these populations represent independent evolutionarily significant units. We conclude that these newly discovered and phenotypically unique cichlid populations are already threatened by hybridization with an invasive species, and propose that these irreplaceable genetic resources would benefit from conservation interventions.
Collapse
Affiliation(s)
| | - Antonia G P Ford
- Department of Life Sciences, Whitelands College, University of Roehampton, London, UK
| | - Adam G Ciezarek
- Earlham Institute, Norwich Research Park Innovation Centre, Norwich, UK
| | | | | | - Alan M Smith
- Department of Biological Sciences, University of Hull, Hull, UK
| | | | - Asilatu Shechonge
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Rashid Tamatamah
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | | | - Wilfried Haerty
- Earlham Institute, Norwich Research Park Innovation Centre, Norwich, UK
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park Innovation Centre, Norwich, UK.,Department of Biological and Medical Sciences, University of East Anglia, Norwich, UK
| | - George F Turner
- School of Biological Sciences, Bangor University, Bangor, UK
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Dwyer DS. Genomic Chaos Begets Psychiatric Disorder. Complex Psychiatry 2020; 6:20-29. [PMID: 34883501 PMCID: PMC7673594 DOI: 10.1159/000507988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
The processes that created the primordial genome are inextricably linked to current day vulnerability to developing a psychiatric disorder as summarized in this review article. Chaos and dynamic forces including duplication, transposition, and recombination generated the protogenome. To survive early stages of genome evolution, self-organization emerged to curb chaos. Eventually, the human genome evolved through a delicate balance of chaos/instability and organization/stability. However, recombination coldspots, silencing of transposable elements, and other measures to limit chaos also led to retention of variants that increase risk for disease. Moreover, ongoing dynamics in the genome creates various new mutations that determine liability for psychiatric disorders. Homologous recombination, long-range gene regulation, and gene interactions were all guided by spooky action-at-a-distance, which increased variability in the system. A probabilistic system of life was required to deal with a changing environment. This ensured the generation of outliers in the population, which enhanced the probability that some members would survive unfavorable environmental impacts. Some of the outliers produced through this process in man are ill suited to cope with the complex demands of modern life. Genomic chaos and mental distress from the psychological challenges of modern living will inevitably converge to produce psychiatric disorders in man.
Collapse
Affiliation(s)
- Donard S. Dwyer
- Departments of Psychiatry and Behavioral Medicine and Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
9
|
Yarahmadov T, Robinson S, Hanemian M, Pulver V, Kuhlemeier C. Identification of transcription factors controlling floral morphology in wild Petunia species with contrasting pollination syndromes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:289-301. [PMID: 32780443 PMCID: PMC7693086 DOI: 10.1111/tpj.14962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/15/2020] [Indexed: 05/29/2023]
Abstract
Adaptation to different pollinators is an important driver of speciation in the angiosperms. Genetic approaches such as QTL mapping have been successfully used to identify the underlying speciation genes. However, these methods are often limited by widespread suppression of recombination due to divergence between species. While the mutations that caused the interspecific differences in floral color and scent have been elucidated in a variety of plant genera, the genes that are responsible for morphological differences remain mostly unknown. Differences in floral organ length determine the pollination efficiency of hawkmoths and hummingbirds, and therefore the genes that control these differences are potential speciation genes. Identifying such genes is challenging, especially in non-model species and when studying complex traits for which little prior genetic and biochemical knowledge is available. Here we combine transcriptomics with detailed growth analysis to identify candidate transcription factors underlying interspecific variation in the styles of Petunia flowers. Starting from a set of 2284 genes, stepwise filtering for expression in styles, differential expression between species, correlation with growth-related traits, allele-specific expression in interspecific hybrids, and/or high-impact polymorphisms resulted in a set of 43 candidate speciation genes. Validation by virus-induced gene silencing identified two MYB transcription factors, EOBI and EOBII, that were previously shown to regulate floral scent emission, a trait associated with pollination by hawkmoths.
Collapse
Affiliation(s)
- Tural Yarahmadov
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
- Department of BioMedical ResearchUniversity of BernBernCH‐3008Switzerland
| | - Sarah Robinson
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
- Sainsbury LaboratoryUniversity of CambridgeCambridgeCB2 1LRUK
| | - Mathieu Hanemian
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
- LIPMUniversité de ToulouseINRAECNRSCastanet‐TolosanFrance
| | - Valentin Pulver
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
| | - Cris Kuhlemeier
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
| |
Collapse
|
10
|
Casellas J, Id-Lahoucine S, Cánovas A. Discriminating between allele- and genotype-specific transmission ratio distortion. Anim Genet 2020; 51:847-854. [PMID: 32996622 DOI: 10.1111/age.13007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
Transmission ratio distortion (TRD) is defined as the observed deviation from the expected Mendelian inheritance of alleles from heterozygous parents. This phenomenon is attributed to various biological mechanisms acting on germ cells, embryos or fetuses, or even in early postnatal life. Current statistical approaches typically use two independent parametrizations assuming that TRD relies on allele- or genotype-related mechanisms, although they have never been tested and compared. This study compared allele- and genotype-related TRD models on simulated datasets with 1000 genotyped offspring and real data from 168 sire-dam-offspring beef cattle trios. The analysis of simulated datasets favored the true model of analysis in most cases (>93%), and a low percentage of missidentification occurred under (almost) null dominance (genotype-related model) or similar and moderate-to-low sire- and dam-specific TRD parameters (allele-related model). Moreover, the correlation between simulated and predicted distortion parameters was high (>0.97) under the true model. The comparison of allele- and genotype-related TRD models is an appealing tool to infer the biological source of TRD (i.e. haploid vs. diploid cells) when screening the whole genome. The analysis of beef cattle data corroborated a TRD region previously reported in chromosome 4, although discarding allele-related mechanisms and favoring the genotype-related model as the more reliable one. The results of this study highlight the relevance of implementing and comparing different parametrizations to capture all kinds of TRD, and to compare them using appropriate statistical methods.
Collapse
Affiliation(s)
- J Casellas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - S Id-Lahoucine
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
11
|
Abstract
Interspecific hybridization is the process where closely related species mate and produce offspring with admixed genomes. The genomic revolution has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number. The establishment of hybrid species requires the development of reproductive isolation against parental species. Allopolyploid species often have strong intrinsic reproductive barriers due to differences in chromosome number, and homoploid hybrids can become reproductively isolated from the parent species through assortment of genetic incompatibilities. However, both types of hybrids can become further reproductively isolated, gaining extrinsic isolation barriers, by exploiting novel ecological niches, relative to their parents. Hybrids represent the merging of divergent genomes and thus face problems arising from incompatible combinations of genes. Thus hybrid genomes are highly dynamic and undergo rapid evolutionary change, including genome stabilization in which selection against incompatible combinations results in fixation of compatible ancestry block combinations within the hybrid species. The potential for rapid adaptation or speciation makes hybrid genomes a particularly exciting subject of in evolutionary biology. Here we summarize how introgressed alleles or hybrid species can establish and how the resulting hybrid genomes evolve.
Collapse
Affiliation(s)
- Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Joana I. Meier
- St John's College, Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Mandeville EG, Walters AW, Nordberg BJ, Higgins KH, Burckhardt JC, Wagner CE. Variable hybridization outcomes in trout are predicted by historical fish stocking and environmental context. Mol Ecol 2019; 28:3738-3755. [PMID: 31294488 DOI: 10.1111/mec.15175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co-occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first-generation hybrids. Later-generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual-based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.
Collapse
Affiliation(s)
- Elizabeth G Mandeville
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Annika W Walters
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Brittany J Nordberg
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Karly H Higgins
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Department of Quantitative and Systems Biology, University of California Merced, Merced, CA, USA
| | | | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Biodiversity Institute, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
13
|
Kovach RP, Hand BK, Hohenlohe PA, Cosart TF, Boyer MC, Neville HH, Muhlfeld CC, Amish SJ, Carim K, Narum SR, Lowe WH, Allendorf FW, Luikart G. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc Biol Sci 2017; 283:rspb.2016.1380. [PMID: 27881749 DOI: 10.1098/rspb.2016.1380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
Evolutionary and ecological consequences of hybridization between native and invasive species are notoriously complicated because patterns of selection acting on non-native alleles can vary throughout the genome and across environments. Rapid advances in genomics now make it feasible to assess locus-specific and genome-wide patterns of natural selection acting on invasive introgression within and among natural populations occupying diverse environments. We quantified genome-wide patterns of admixture across multiple independent hybrid zones of native westslope cutthroat trout and invasive rainbow trout, the world's most widely introduced fish, by genotyping 339 individuals from 21 populations using 9380 species-diagnostic loci. A significantly greater proportion of the genome appeared to be under selection favouring native cutthroat trout (rather than rainbow trout), and this pattern was pervasive across the genome (detected on most chromosomes). Furthermore, selection against invasive alleles was consistent across populations and environments, even in those where rainbow trout were predicted to have a selective advantage (warm environments). These data corroborate field studies showing that hybrids between these species have lower fitness than the native taxa, and show that these fitness differences are due to selection favouring many native genes distributed widely throughout the genome.
Collapse
Affiliation(s)
- Ryan P Kovach
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, MT 59802, USA
| | - Brian K Hand
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Ted F Cosart
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA.,Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | | | | | - Clint C Muhlfeld
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, MT 59802, USA.,Flathead Biological Station, University of Montana, Polson, MT 59860, USA
| | - Stephen J Amish
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA.,Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Kellie Carim
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Shawn R Narum
- Hagerman Genetics Laboratory, Columbia River Inter-Tribal Fish Commission, Hagerman, ID 83332, USA
| | - Winsor H Lowe
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Fred W Allendorf
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Gordon Luikart
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA.,Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
14
|
Martin G, Carreel F, Coriton O, Hervouet C, Cardi C, Derouault P, Roques D, Salmon F, Rouard M, Sardos J, Labadie K, Baurens FC, D'Hont A. Evolution of the Banana Genome (Musa acuminata) Is Impacted by Large Chromosomal Translocations. Mol Biol Evol 2017; 34:2140-2152. [PMID: 28575404 PMCID: PMC5850475 DOI: 10.1093/molbev/msx164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut Genomique (IG), Genoscope, Evry, France
| | | | | |
Collapse
|
15
|
Linkage Map of Lissotriton Newts Provides Insight into the Genetic Basis of Reproductive Isolation. G3-GENES GENOMES GENETICS 2017; 7:2115-2124. [PMID: 28500054 PMCID: PMC5499121 DOI: 10.1534/g3.117.041178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Linkage maps are widely used to investigate structure, function, and evolution of genomes. In speciation research, maps facilitate the study of the genetic architecture of reproductive isolation by allowing identification of genomic regions underlying reduced fitness of hybrids. Here we present a linkage map for European newts of the Lissotriton vulgaris species complex, constructed using two families of F2 L. montandoni × L. vulgaris hybrids. The map consists of 1146 protein-coding genes on 12 linkage groups, equal to the haploid chromosome number, with a total length of 1484 cM (1.29 cM per marker). It is notably shorter than two other maps available for salamanders, but the differences in map length are consistent with cytogenetic estimates of the number of chiasmata per chromosomal arm. Thus, large salamander genomes do not necessarily translate into long linkage maps, as previously suggested. Consequently, salamanders are an excellent model to study evolutionary consequences of recombination rate variation in taxa with large genomes and a similar number of chromosomes. A complex pattern of transmission ratio distortion (TRD) was detected: TRD occurred mostly in one family, in one breeding season, and was clustered in two genomic segments. This is consistent with environment-dependent mortality of individuals carrying L. montandoni alleles in these two segments and suggests a role of TRD blocks in reproductive isolation. The reported linkage map will empower studies on the genomic architecture of divergence and interactions between the genomes of hybridizing newts.
Collapse
|
16
|
Hirai H, Hirai Y, Morimoto M, Kaneko A, Kamanaka Y, Koga A. Night Monkey Hybrids Exhibit De Novo Genomic and Karyotypic Alterations: The First Such Case in Primates. Genome Biol Evol 2017; 9:945-955. [PMID: 28369492 PMCID: PMC5388293 DOI: 10.1093/gbe/evx058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Using molecular chromosomal analyses, we discovered night monkey hybrids produced in captivity from matings between a female Aotus azarae boliviensis (2n = 50) and a male Aotus lemurinus griseimembra (2n = 53). The parents produced seven offspring in total, including one male and six females-a pattern consistent with Haldane's rule. Chromosomal studies were conducted on four of the hybrid offspring. Two of them showed relatively "simple" mixture karyotypes, including different chromosome numbers (2n = 51, 52), which were formed because of a heteromorphic autosome pair in the father (n = 26, 27). The other two hybrid monkeys exhibited de novo genomic and karyotypic alterations. Detailed analysis of the alterations revealed that one individual carried a mixture karyotype of the two parental species and an X chromosome trisomy (53,XXX). The second individual displayed trisomy of chromosome 18 (52,XX,+18) and a reciprocal translocation between autosomes 21 and 23 (52,XX,+18,t(21;23)). Interestingly, the second monkey exhibited mosaicism among blood cells (mos52,XX,+18[87]/52,XX,+18,t(21;23)[85]), but only a single karyotype (52,XX,+18) in skin fibroblast cells. The X- and 18-trisomies were derived from a doubling of the mother's chromosomes in early embryonic cell division, and the reciprocal translocation likely developed in the bone marrow of the offspring, considering that it was observed only in blood cells. Such occurrence of trisomies in hybrid individuals is a unique finding in placental mammals.
Collapse
Affiliation(s)
- Hirohisa Hirai
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yuriko Hirai
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Mayumi Morimoto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Akihisa Kaneko
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yoshiro Kamanaka
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| |
Collapse
|
17
|
A SNP Based Linkage Map of the Arctic Charr ( Salvelinus alpinus) Genome Provides Insights into the Diploidization Process After Whole Genome Duplication. G3-GENES GENOMES GENETICS 2017; 7:543-556. [PMID: 27986793 PMCID: PMC5295600 DOI: 10.1534/g3.116.038026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Diploidization, which follows whole genome duplication events, does not occur evenly across the genome. In salmonid fishes, certain pairs of homeologous chromosomes preserve tetraploid loci in higher frequencies toward the telomeres due to residual tetrasomic inheritance. Research suggests this occurs only in homeologous pairs where one chromosome arm has undergone a fusion event. We present a linkage map for Arctic charr (Salvelinus alpinus), a salmonid species with relatively fewer chromosome fusions. Genotype by sequencing identified 19,418 SNPs, and a linkage map consisting of 4508 markers was constructed from a subset of high quality SNPs and microsatellite markers that were used to anchor the new map to previous versions. Both male- and female-specific linkage maps contained the expected number of 39 linkage groups. The chromosome type associated with each linkage group was determined, and 10 stable metacentric chromosomes were identified, along with a chromosome polymorphism involving the sex chromosome AC04. Two instances of a weak form of pseudolinkage were detected in the telomeric regions of homeologous chromosome arms in both female and male linkage maps. Chromosome arm homologies within the Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) genomes were determined. Paralogous sequence variants (PSVs) were identified, and their comparative BLASTn hit locations showed that duplicate markers exist in higher numbers on seven pairs of homeologous arms, previously identified as preserving tetrasomy in salmonid species. Homeologous arm pairs where neither arm has been part of a fusion event in Arctic charr had fewer PSVs, suggesting faster diploidization rates in these regions.
Collapse
|
18
|
Sutherland BJG, Gosselin T, Normandeau E, Lamothe M, Isabel N, Audet C, Bernatchez L. Salmonid Chromosome Evolution as Revealed by a Novel Method for Comparing RADseq Linkage Maps. Genome Biol Evol 2016; 8:3600-3617. [PMID: 28173098 PMCID: PMC5381510 DOI: 10.1093/gbe/evw262] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 12/13/2022] Open
Abstract
Whole genome duplication (WGD) can provide material for evolutionary innovation. Family Salmonidae is ideal for studying the effects of WGD as the ancestral salmonid underwent WGD relatively recently, ∼65 Ma, then rediploidized and diversified. Extensive synteny between homologous chromosome arms occurs in extant salmonids, but each species has both conserved and unique chromosome arm fusions and fissions. Assembly of large, outbred eukaryotic genomes can be difficult, but structural rearrangements within such taxa can be investigated using linkage maps. RAD sequencing provides unprecedented ability to generate high-density linkage maps for nonmodel species, but can result in low numbers of homologous markers between species due to phylogenetic distance or differences in library preparation. Here, we generate a high-density linkage map (3,826 markers) for the Salvelinus genera (Brook Charr S. fontinalis), and then identify corresponding chromosome arms among the other available salmonid high-density linkage maps, including six species of Oncorhynchus, and one species for each of Salmo, Coregonus, and the nonduplicated sister group for the salmonids, Northern Pike Esox lucius for identifying post-duplicated homeologs. To facilitate this process, we developed MapComp to identify identical and proximate (i.e. nearby) markers between linkage maps using a reference genome of a related species as an intermediate, increasing the number of comparable markers between linkage maps by 5-fold. This enabled a characterization of the most likely history of retained chromosomal rearrangements post-WGD, and several conserved chromosomal inversions. Analyses of RADseq-based linkage maps from other taxa will also benefit from MapComp, available at: https://github.com/enormandeau/mapcomp/
Collapse
Affiliation(s)
- Ben J. G. Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Thierry Gosselin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Manuel Lamothe
- Centre de Foresterie des Laurentides, Ressources Naturelles Canada, Québec, QC, Canada
| | - Nathalie Isabel
- Centre de Foresterie des Laurentides, Ressources Naturelles Canada, Québec, QC, Canada
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
19
|
Casellas J, Cañas-Álvarez JJ, González-Rodríguez A, Puig-Oliveras A, Fina M, Piedrafita J, Molina A, Díaz C, Baró JA, Varona L. Bayesian analysis of parent-specific transmission ratio distortion in seven Spanish beef cattle breeds. Anim Genet 2016; 48:93-96. [PMID: 27650416 DOI: 10.1111/age.12509] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 01/09/2023]
Abstract
Transmission ratio distortion (TRD) is the departure from the expected Mendelian ratio in offspring, a poorly investigated biological phenomenon in livestock species. Given the current availability of specific parametric methods for the analysis of segregation data, this study focused on the screening of TRD in 602 402 single nucleotide polymorphisms covering all autosomal chromosomes in seven Spanish beef cattle breeds. On average, 0.13% (n = 786) and 0.01% (n = 29) of genetic markers evidenced sire- or dam-specific TRD respectively. There were no single nucleotide polymorphisms accounting for both sire- and dam-specific TRD at the same time, and only one marker (rs43147474) accounted for (sire-specific) TRD in all seven breeds. It must be noted that rs43147474 is located in the fourth intronic region of the GTP-binding protein 10 gene, and this locus has been previously linked to the maintenance of mitochondria and nucleolar architectures. Alternatively, other candidate genes surround this hot-spot for sire-specific TRD in the cattle genome, and they are related to embryonic and postnatal lethality as well as prostate cancer, among others. This research characterized the distribution of TRD in the bovine genome, highlighting heterogeneous results when comparing across breeds.
Collapse
Affiliation(s)
- J Casellas
- Grup de Recerca en Millora Genètica Molecular Veterinària, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - J J Cañas-Álvarez
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - A González-Rodríguez
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - A Puig-Oliveras
- Grup de Recerca en Millora Genètica Molecular Veterinària, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - M Fina
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - J Piedrafita
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - A Molina
- MERAGEM, Universidad de Córdoba, 14071, Córdoba, Spain
| | - C Díaz
- Departamento de Mejora Genética Animal, INIA, 28040, Madrid, Spain
| | - J A Baró
- Departamento de Ciencias Agroforestales, Universidad de Valladolid, 34004, Palencia, Spain
| | - L Varona
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013, Zaragoza, Spain
| |
Collapse
|
20
|
Benavente JN, Seeb LW, Seeb JE, Arismendi I, Hernández CE, Gajardo G, Galleguillos R, Cádiz MI, Musleh SS, Gomez-Uchida D. Temporal Genetic Variance and Propagule-Driven Genetic Structure Characterize Naturalized Rainbow Trout (Oncorhynchus mykiss) from a Patagonian Lake Impacted by Trout Farming. PLoS One 2015; 10:e0142040. [PMID: 26544983 PMCID: PMC4636326 DOI: 10.1371/journal.pone.0142040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/17/2015] [Indexed: 12/30/2022] Open
Abstract
Knowledge about the genetic underpinnings of invasions—a theme addressed by invasion genetics as a discipline—is still scarce amid well documented ecological impacts of non-native species on ecosystems of Patagonia in South America. One of the most invasive species in Patagonia’s freshwater systems and elsewhere is rainbow trout (Oncorhynchus mykiss). This species was introduced to Chile during the early twentieth century for stocking and promoting recreational fishing; during the late twentieth century was reintroduced for farming purposes and is now naturalized. We used population- and individual-based inference from single nucleotide polymorphisms (SNPs) to illuminate three objectives related to the establishment and naturalization of Rainbow Trout in Lake Llanquihue. This lake has been intensively used for trout farming during the last three decades. Our results emanate from samples collected from five inlet streams over two seasons, winter and spring. First, we found that significant intra- population (temporal) genetic variance was greater than inter-population (spatial) genetic variance, downplaying the importance of spatial divergence during the process of naturalization. Allele frequency differences between cohorts, consistent with variation in fish length between spring and winter collections, might explain temporal genetic differences. Second, individual-based Bayesian clustering suggested that genetic structure within Lake Llanquihue was largely driven by putative farm propagules found at one single stream during spring, but not in winter. This suggests that farm broodstock might migrate upstream to breed during spring at that particular stream. It is unclear whether interbreeding has occurred between “pure” naturalized and farm trout in this and other streams. Third, estimates of the annual number of breeders (Nb) were below 73 in half of the collections, suggestive of genetically small and recently founded populations that might experience substantial genetic drift. Our results reinforce the notion that naturalized trout originated recently from a small yet genetically diverse source and that farm propagules might have played a significant role in the invasion of Rainbow Trout within a single lake with intensive trout farming. Our results also argue for proficient mitigation measures that include management of escapes and strategies to minimize unintentional releases from farm facilities.
Collapse
Affiliation(s)
- Javiera N Benavente
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195-5020, United States of America
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195-5020, United States of America
| | - Ivan Arismendi
- Department of Fisheries & Wildlife, Oregon State University, 104 Nash Hall, 2820 SW Campus Way, Corvallis, OR, 97331, United States of America
| | - Cristián E Hernández
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Gonzalo Gajardo
- Laboratorio de Genética, Acuicultura & Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | - Ricardo Galleguillos
- Department of Oceanography, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Maria I Cádiz
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Barrio Universitario s/n, Universidad de Concepcion, Concepcion, Chile
| | - Selim S Musleh
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile.,Department of Oceanography, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Daniel Gomez-Uchida
- Department of Zoology, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Barrio Universitario s/n, Universidad de Concepcion, Concepcion, Chile
| |
Collapse
|
21
|
Liu S, Li Y, Qin Z, Geng X, Bao L, Kaltenboeck L, Kucuktas H, Dunham R, Liu Z. High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish. Anim Genet 2015; 47:81-90. [PMID: 26537786 DOI: 10.1111/age.12372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2015] [Indexed: 02/01/2023]
Abstract
Catfish is the leading aquaculture species in the United States. The interspecific hybrid catfish produced by mating female channel catfish with male blue catfish outperform both of their parent species in a number of traits. However, mass production of the hybrids has been difficult because of reproductive isolation. Investigations of genome structure and organization of the hybrids provide insights into the genetic basis for maintenance of species divergence in the face of gene flow, thereby helping develop strategies for introgression and efficient production of the hybrids for aquaculture. In this study, we constructed a high-density genetic linkage map using the hybrid catfish system with the catfish 250K SNP array. A total of 26,238 SNPs were mapped to 29 linkage groups, with 12,776 unique marker positions. The linkage map spans approximately 3240 cM with an average intermarker distance of 0.25 cM. A fraction of markers (986 of 12,776) exhibited significant deviation from the expected Mendelian ratio of segregation, and they were clustered in major genomic blocks across 15 LGs, most notably LG9 and LG15. The distorted markers exhibited significant bias for maternal alleles among the backcross progenies, suggesting strong selection against the blue catfish alleles. The clustering of distorted markers within genomic blocks should lend insights into speciation as marked by incompatibilities between the two species. Such findings should also have profound implications for understanding the genomic evolution of closely related species as well as the introgression of hybrid production programs in aquaculture.
Collapse
Affiliation(s)
- S Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Y Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Z Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - X Geng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - L Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - L Kaltenboeck
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - H Kucuktas
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - R Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Z Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
22
|
Kocmarek AL, Ferguson MM, Danzmann RG. Co-localization of growth QTL with differentially expressed candidate genes in rainbow trout. Genome 2015; 58:393-403. [PMID: 26360524 DOI: 10.1139/gen-2015-0047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We tested whether genes differentially expressed between large and small rainbow trout co-localized with familial QTL regions for body size. Eleven chromosomes, known from previous work to house QTL for weight and length in rainbow trout, were examined for QTL in half-sibling families produced in September (1 XY male and 1 XX neomale) and December (1 XY male). In previous studies, we identified 108 candidate genes for growth expressed in the liver and white muscle in a subset of the fish used in this study. These gene sequences were BLASTN aligned against the rainbow trout and stickleback genomes to determine their location (rainbow trout) and inferred location based on synteny with the stickleback genome. Across the progeny of all three males used in the study, 63.9% of the genes with differential expression appear to co-localize with the QTL regions on 6 of the 11 chromosomes tested in these males. Genes that co-localized with QTL in the mixed-sex offspring of the two XY males primarily showed up-regulation in the muscle of large fish and were related to muscle growth, metabolism, and the stress response.
Collapse
Affiliation(s)
- Andrea L Kocmarek
- Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roy G Danzmann
- Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
23
|
Allendorf FW, Bassham S, Cresko WA, Limborg MT, Seeb LW, Seeb JE. Effects of crossovers between homeologs on inheritance and population genomics in polyploid-derived salmonid fishes. J Hered 2015; 106:217-27. [PMID: 25838153 DOI: 10.1093/jhered/esv015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 02/19/2015] [Indexed: 01/24/2023] Open
Abstract
A whole genome duplication occurred in the ancestor of all salmonid fishes some 50-100 million years ago. Early inheritance studies with allozymes indicated that loci in the salmonid genome are inherited disomically in females. However, some pairs of duplicated loci showed patterns of inheritance in males indicating pairing and recombination between homeologous chromosomes. Nearly 20% of loci in the salmonid genome are duplicated and share the same alleles (isoloci), apparently due to homeologous recombination. Half-tetrad analysis revealed that isoloci tend to be telomeric. These results suggested that residual tetrasomic inheritance of isoloci results from homeologous recombination near chromosome ends and that continued disomic inheritance resulted from homologous pairing of centromeric regions. Many current genetic maps of salmonids are based on single nucleotide polymorphisms and microsatellites that are no longer duplicated. Therefore, long sections of chromosomes on these maps are poorly represented, especially telomeric regions. In addition, preferential multivalent pairing of homeologs from the same species in F1 hybrids results in an excess of nonparental gametes (so-called pseudolinkage). We consider how not including duplicated loci has affected our understanding of population and evolutionary genetics of salmonids, and we discuss how incorporating these loci will benefit our understanding of population genomics.
Collapse
Affiliation(s)
- Fred W Allendorf
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb).
| | - Susan Bassham
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - William A Cresko
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - Morten T Limborg
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - Lisa W Seeb
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - James E Seeb
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| |
Collapse
|
24
|
Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, Rexroad CE, Moen T. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Mol Ecol Resour 2014; 15:662-72. [PMID: 25294387 DOI: 10.1111/1755-0998.12337] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
Abstract
In this study, we describe the development and characterization of the first high-density single nucleotide polymorphism (SNP) genotyping array for rainbow trout. The SNP array is publically available from a commercial vendor (Affymetrix). The SNP genotyping quality was high, and validation rate was close to 90%. This is comparable to other farm animals and is much higher than previous smaller scale SNP validation studies in rainbow trout. High quality and integrity of the genotypes are evident from sample reproducibility and from nearly 100% agreement in genotyping results from other methods. The array is very useful for rainbow trout aquaculture populations with more than 40 900 polymorphic markers per population. For wild populations that were confounded by a smaller sample size, the number of polymorphic markers was between 10 577 and 24 330. Comparison between genotypes from individual populations suggests good potential for identifying candidate markers for populations' traceability. Linkage analysis and mapping of the SNPs to the reference genome assembly provide strong evidence for a wide distribution throughout the genome with good representation in all 29 chromosomes. A total of 68% of the genome scaffolds and contigs were anchored through linkage analysis using the SNP array genotypes, including ~20% of the genome assembly that has not been previously anchored to chromosomes.
Collapse
Affiliation(s)
- Y Palti
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, 11861 Leetown Road, Kearneysville, WV, 25430, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Sex chromosomes are the most dynamic entity in any genome having unique morphology, gene content, and evolution. They have evolved multiple times and independently throughout vertebrate evolution. One of the major genomic changes that pertain to sex chromosomes involves the amplification of common repeats. It is hypothesized that such amplification of repeats facilitates the suppression of recombination, leading to the evolution of heteromorphic sex chromosomes through genetic degradation of Y or W chromosomes. Although contrasting evidence is available, it is clear that amplification of simple repetitive sequences played a major role in the evolution of Y and W chromosomes in vertebrates. In this review, we present a brief overview of the repetitive DNA classes that accumulated during sex chromosome evolution, mainly focusing on vertebrates, and discuss their possible role and potential function in this process.
Collapse
|
26
|
Reduced recombination patterns in Robertsonian hybrids between chromosomal races of the house mouse: chiasma analyses. Heredity (Edinb) 2014; 114:56-64. [PMID: 25074574 DOI: 10.1038/hdy.2014.69] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 11/09/2022] Open
Abstract
The recombination suppression models of chromosomal speciation posit that chromosomal rearrangements act as partial barriers to gene flow allowing these regions to accumulate genetic incompatibilities, thus contributing to the divergence of populations. Empirical and theoretical studies exploring the requirements of these models have mostly focused on the role of inversions. Here, the recombination landscape of heterozygosity for Robertsonian (Rb) fusions is investigated in the house mouse. Laboratory-bred F1 males and females between highly differentiated races from Tunisia (Rb: 2n=22, Standard, St: 2n=40) were produced in which all Rb fusions are present as trivalents in meiosis. Recombination patterns were determined by the analysis of chiasmata and compared with previous data on the Tunisian parental mice. A comparative analysis was performed on wild-caught male mice spanning the hybrid zone between two Italian races (2n=40, 2n=22). The results showed that the chiasma characteristics of both male and female Tunisian F1 and Italian hybrids clearly differed from those of Rb and St mice. Not only was the mean chiasma number (CN) intermediate between those of the parental mice in both geographic samples, but the distribution of chiasmata along the chromosomal arms of the F1 showed a distinct mosaic pattern. In short, the proximal region in the F1 exhibited a reduced CN similar to that observed in homozygous Rb, whereas distal regions more closely matched those in St mice. These results suggest that Rb rearrangements (homozygous or heterozygous) reduce recombination in the proximal regions of the chromosomes supporting their potential role in recombination-mediated speciation models.
Collapse
|
27
|
Comparative mapping between Coho Salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event. G3-GENES GENOMES GENETICS 2014; 4:1717-30. [PMID: 25053705 PMCID: PMC4169165 DOI: 10.1534/g3.114.012294] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole genome duplication has been implicated in evolutionary innovation and rapid diversification. In salmonid fishes, however, whole genome duplication significantly pre-dates major transitions across the family, and re-diploidization has been a gradual process between genomes that have remained essentially collinear. Nevertheless, pairs of duplicated chromosome arms have diverged at different rates from each other, suggesting that the retention of duplicated regions through occasional pairing between homeologous chromosomes may have played an evolutionary role across species pairs. Extensive chromosomal arm rearrangements have been a key mechanism involved in re-dipliodization of the salmonid genome; therefore, we investigated their influence on degree of differentiation between homeologs across salmon species. We derived a linkage map for coho salmon and performed comparative mapping across syntenic arms within the genus Oncorhynchus, and with the genus Salmo, to determine the phylogenetic relationship between chromosome arrangements and the retention of undifferentiated duplicated regions. A 6596.7 cM female coho salmon map, comprising 30 linkage groups with 7415 and 1266 nonduplicated and duplicated loci, respectively, revealed uneven distribution of duplicated loci along and between chromosome arms. These duplicated regions were conserved across syntenic arms across Oncorhynchus species and were identified in metacentric chromosomes likely formed ancestrally to the divergence of Oncorhynchus from Salmo. These findings support previous studies in which observed pairings involved at least one metacentric chromosome. Re-diploidization in salmon may have been prevented or retarded by the formation of metacentric chromosomes after the whole genome duplication event and may explain lineage-specific innovations in salmon species if functional genes are found in these regions.
Collapse
|
28
|
Chromosome synapsis and recombination in simple and complex chromosomal heterozygotes of tuco-tuco (Ctenomys talarum: Rodentia: Ctenomyidae). Chromosome Res 2014; 22:351-63. [DOI: 10.1007/s10577-014-9429-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/21/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
|
29
|
Palti Y, Gao G, Miller MR, Vallejo RL, Wheeler PA, Quillet E, Yao J, Thorgaard GH, Salem M, Rexroad CE. A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids. Mol Ecol Resour 2013; 14:588-96. [DOI: 10.1111/1755-0998.12204] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yniv Palti
- National Center for Cool and Cold Water Aquaculture; ARS-USDA; 11861 Leetown Road Kearneysville WV 25430 USA
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture; ARS-USDA; 11861 Leetown Road Kearneysville WV 25430 USA
| | - Michael R. Miller
- Institute of Molecular Biology; University of Oregon; Eugene OR 97403-1229 USA
- Department of Animal Science; University of California; Davis CA 95616 USA
| | - Roger L. Vallejo
- National Center for Cool and Cold Water Aquaculture; ARS-USDA; 11861 Leetown Road Kearneysville WV 25430 USA
| | - Paul A. Wheeler
- School of Biological Sciences and Center for Reproductive Biology; Washington State University; Pullman WA 99164-4236 USA
| | - Edwige Quillet
- INRA; UMR 1313 GABI; Génétique Animale et Biologie Intégrative; Jouy-en-Josas 78350 France
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences; West Virginia University; Morgantown WV 26506 USA
| | - Gary H. Thorgaard
- School of Biological Sciences and Center for Reproductive Biology; Washington State University; Pullman WA 99164-4236 USA
| | - Mohamed Salem
- Division of Animal and Nutritional Sciences; West Virginia University; Morgantown WV 26506 USA
- Department of Biology; Middle Tennessee State University; Murfreesboro TN 37132 USA
| | - Caird E. Rexroad
- National Center for Cool and Cold Water Aquaculture; ARS-USDA; 11861 Leetown Road Kearneysville WV 25430 USA
| |
Collapse
|
30
|
Comparative genome mapping between Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (O. mykiss) based on homologous microsatellite loci. G3-GENES GENOMES GENETICS 2013; 3:2281-8. [PMID: 24170738 PMCID: PMC3852389 DOI: 10.1534/g3.113.008003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Comparative genome mapping can rapidly facilitate the transfer of DNA sequence information from a well-characterized species to one that is less described. Chromosome arm numbers are conserved between members of the teleost family Salmonidae, order Salmoniformes, permitting rapid alignment of large syntenic blocks of DNA between members of the group. However, extensive Robertsonian rearrangements after an ancestral whole-genome duplication event has resulted in different chromosome numbers across Salmonid taxa. In anticipation of the rapid application of genomic data across members of the Pacific salmon genus Oncorhynchus, we mapped the genome of Chinook salmon (O. tshawytscha) by using 361 microsatellite loci and compared linkage groups to those already derived for a well-characterized species rainbow trout (O. mykiss). The Chinook salmon female map length was 1526 cM, the male map 733 cM, and the consensus map between the two sexes was 2206 cM. The average female to male recombination ratio was 5.43 (range 1-42.8 across all pairwise marker comparisons). We detected 34 linkage groups that corresponded with all chromosome arms mapped with homologous loci in rainbow trout and inferred that 16 represented metacentric chromosomes and 18 represented acrocentric chromosomes. Up to 13 chromosomes were conserved between the two species, suggesting that their structure precedes the divergence between Chinook salmon and rainbow trout. However, marker order differed in one of these linkage groups. The remaining linkage group structures reflected independent Robertsonian chromosomal arrangements, possibly after divergence. The putative linkage group homologies presented here are expected to facilitate future DNA sequencing efforts in Chinook salmon.
Collapse
|