1
|
Saha D, Gregor JB, Hoda S, Eastman KE, Gutierrez-Schultz VA, Navarrete M, Wisecaver JH, Briggs SD. Candida glabrata maintains two HAP1 ohnologs, HAP1A and HAP1B, for distinct roles in ergosterol gene regulation to mediate sterol homeostasis under azole and hypoxic conditions. mSphere 2024; 9:e0052424. [PMID: 39440948 PMCID: PMC11580460 DOI: 10.1128/msphere.00524-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. Phylogenetic and syntenic analyses revealed that C. glabrata, following a whole genome duplication event, maintained HAP1A and HAP1B, whereas Saccharomyces cerevisiae only retained the HAP1A ortholog, HAP1. In this study, we determined the function of two zinc cluster transcription factors, Hap1A and Hap1B, as direct regulators of ERG genes. In S. cerevisiae, Hap1, an ortholog of Hap1A, is a known transcription factor controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, deleting HAP1 or HAP1B in either S. cerevisiae or C. glabrata, respectively, showed altered susceptibility to azoles. In contrast, the strain deleted for HAP1A did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a hap1BΔ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Hap1A protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions, where Hap1A is required for the repression of ERG genes. However, in the absence of Hap1A, Hap1B can compensate as a transcriptional repressor. Our study shows that Hap1A and Hap1B is utilized by C. glabrata to adapt to specific host and environmental conditions. IMPORTANCE Invasive and drug-resistant fungal infections pose a significant public health concern. Candida glabrata, a human fungal pathogen, is often difficult to treat due to its intrinsic resistance to azole antifungal drugs and its capacity to develop clinical drug resistance. Therefore, understanding the pathways that facilitate fungal growth and environmental adaptation may lead to novel drug targets and/or more efficacious antifungal therapies. While the mechanisms of azole resistance in Candida species have been extensively studied, the roles of zinc cluster transcription factors, such as Hap1A and Hap1B, in C. glabrata have remained largely unexplored until now. Our research shows that these factors play distinct yet crucial roles in regulating ergosterol homeostasis under azole drug treatment and oxygen-limiting growth conditions. These findings offer new insights into how this pathogen adapts to different environmental conditions and enhances our understanding of factors that alter drug susceptibility and/or resistance.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Justin B. Gregor
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Mindy Navarrete
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Scott D. Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Marcet-Houben M, Księżopolska E, Gabaldón T. Chromosome level assemblies of Nakaseomyces (Candida) bracarensis uncover two distinct clades and define its adhesin repertoire. BMC Genomics 2024; 25:1053. [PMID: 39511470 PMCID: PMC11542307 DOI: 10.1186/s12864-024-10979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The Nakaseomyces clade is formed by at least nine described species among which three can be pathogenic to humans, namely Nakaseomyces glabratus (Candida glabrata), the second most-common cause of candidiasis worldwide, and two rarer emerging pathogens: Nakaseomyces (Candida) nivarensis and Nakaseomyces (Candida) bracarensis. Early comparative genomics analyses identified parallel expansions of subtelomeric adhesin genes in N. glabratus and N. nivarensis/bracarensis, and suggested possible links with the emergence of the virulence potential in these species. However, as shown for N. glabratus, the proper assessment of subtelomeric genes is hindered by the use of incomplete assemblies and reliance on a single isolate. RESULTS Here we sequenced seven N. bracarensis isolates and reconstructed chromosome level assemblies of two divergent strains. We show that N. bracarensis isolates belong to two diverging clades that have slightly different genomic structures. We identified the set of encoded adhesins in the two complete assemblies, and uncovered the presence of a novel adhesin motif, found mainly in N. bracarensis. Our analysis revealed a larger adhesin content in N. bracarensis than previously reported, and similar in size to that of N. glabratus. We confirm the independent adhesin expansion in these two species, which could relate to their different levels of virulence. CONCLUSION N. bracarensis clinical isolates belong to at least two differentiated clades. We describe a novel repeat motif found in N. bracarensis adhesins, which helps in their identification. Adhesins underwent independent expansions in N. glabratus and N. bracarensis, leading to repertoires that are qualitatively different but quantitatively similar. Given that adhesins are considered virulence factors, some of the observed differences could contribute to variations in virulence capabilities between N. glabratus and N. bracarensis.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, Barcelona, 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona, 08028, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Ewa Księżopolska
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, Barcelona, 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona, 08028, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, Barcelona, 08034, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona, 08028, Spain.
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
3
|
Mutalová S, Hodorová V, Brázdovič F, Cillingová A, Tomáška Ľ, Brejová B, Nosek J. Chromosome-level genome assembly of an auxotrophic strain of the pathogenic yeast Candida parapsilosis. Microbiol Resour Announc 2024; 13:e0034724. [PMID: 39083682 PMCID: PMC11385725 DOI: 10.1128/mra.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
We report the genome sequence of the pathogenic yeast Candida parapsilosis strain SR23 (CBS 7157) used in a number of experimental studies. The nuclear genome assembly consists of eight chromosome-sized contigs with a total size of 13.04 Mbp (N50 2.09 Mbp) and a G+C content of 38.7%.
Collapse
Affiliation(s)
- Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Filip Brázdovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
4
|
Métivier K, Zhou-Li Y, Fairhead C. In vivo CRISPR-Cas9 expression in Candida glabrata, Candida bracarensis, and Candida nivariensis: A versatile tool to study chromosomal break repair. Yeast 2024; 41:560-567. [PMID: 39126214 DOI: 10.1002/yea.3976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The CRISPR-Cas9 system is extremely useful for genome editing in many species, including the model yeast Saccharomyces cerevisiae, and other yeast species. We have previously reported the use of an inducible CRISPR-Cas9 system in Candida glabrata, which allows genome editing but also the study of double-strand break (DSB) repair. We report, in this study, a comparable system for C. glabrata, relying on a new plasmid, which is more stable than the previous one. We also report the use of this plasmid to induce DSBs in two additional human pathogens, Candida bracarensis and Candida nivariensis. We examine lethality induced by an in vivo DSB in the three species and describe the different types of nonhomologous end-joining (NHEJ) events detected in these three pathogens.
Collapse
Affiliation(s)
- Killian Métivier
- GQE-Le Moulon, IDEEV, Université Paris-Saclay, CNRS, INRAE, AgroPariTech, Gif-sur-Yvette, France
| | - Youfang Zhou-Li
- GQE-Le Moulon, IDEEV, Université Paris-Saclay, CNRS, INRAE, AgroPariTech, Gif-sur-Yvette, France
| | - Cécile Fairhead
- GQE-Le Moulon, IDEEV, Université Paris-Saclay, CNRS, INRAE, AgroPariTech, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Pezak CM, Iosue CL, Wykoff DD. Simplified J774A.1 macrophage assay for fungal pathogenicity demonstrates non-clinical Nakaseomyces glabratus strains survive better than lab strains. MICROPUBLICATION BIOLOGY 2024; 2024. [PMID: 39247786 PMCID: PMC11377991 DOI: 10.17912/micropub.biology.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Nakaseomyces glabratus (formerly known as Candida glabrata ) is the second most common cause of candidiasis, whereas the closely related yeast, Saccharomyces cerevisiae, causes few infections. Macrophages can control N. glabratus infections through phagocytosis, but in cell culture, N. glabratus is able to persist in macrophages better than non-pathogenic yeast. Using J774A.1 macrophages, we simplified a standard persistence/survival assay by counting yeast cells with flow cytometry and incorporating an antifungal treatment. These improvements minimized wash steps and variation so fewer replicates were needed. Here, we demonstrate that loss of NgTUP11 does not lower pathogenicity, and that three non-clinical N. glabratus strains survive in macrophages better than a laboratory strain.
Collapse
Affiliation(s)
- Corey M Pezak
- Biology, Villanova University, Radnor, Pennsylvania, United States
| | | | - Dennis D Wykoff
- Biology, Villanova University, Radnor, Pennsylvania, United States
| |
Collapse
|
6
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
7
|
Saha D, Gregor JB, Hoda S, Eastman KE, Navarrete M, Wisecaver JH, Briggs SD. Candida glabrata maintains two Hap1 homologs, Zcf27 and Zcf4, for distinct roles in ergosterol gene regulation to mediate sterol homeostasis under azole and hypoxic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599910. [PMID: 38979343 PMCID: PMC11230168 DOI: 10.1101/2024.06.20.599910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the three major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. In this study, we determined the function of two zinc cluster transcription factors, Zcf27 and Zcf4, as direct but distinct regulators of ERG genes. Our phylogenetic analysis revealed C. glabrata Zcf27 and Zcf4 as the closest homologs to Saccharomyces cerevisiae Hap1. Hap1 is a known zinc cluster transcription factor in S. cerevisiae in controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, when we deleted HAP1 or ZCF27 in either S. cerevisiae or C. glabrata, respectively, both deletion strains showed altered susceptibility to azole drugs, whereas the strain deleted for ZCF4 did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a zcf27Δ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Zcf4 protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions. However, under hypoxic conditions, Zcf4 but not Zcf27 was directly required for the repression of ERG genes. This study provides the first demonstration that Zcf27 and Zcf4 have evolved to serve distinct roles allowing C. glabrata to adapt to specific host and environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Scott D Briggs
- Department of Biochemistry
- Purdue University Institute for Cancer Research
| |
Collapse
|
8
|
Maicas S, Sánchez-Fresneda R, Solano F, Argüelles JC. The Enigma of NTH2 Gene in Yeasts. Microorganisms 2024; 12:1232. [PMID: 38930613 PMCID: PMC11206128 DOI: 10.3390/microorganisms12061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The enzymatic hydrolysis of the non-reducing disaccharide trehalose in yeasts is carried out by trehalase, a highly specific α-glucosidase. Two types of such trehalase activity are present in yeasts, and are referred to as neutral and acid enzymes. They are encoded by distinct genes (NTH1 and ATH1, respectively) and exhibit strong differences in their biochemical and physiological properties as well as different subcellular location and regulatory mechanisms. Whereas a single gene ATH1 codes for acid trehalase, the genome of some yeasts appears to predict the existence of a second redundant neutral trehalase, encoded by the NTH2 gene, a paralog of NTH1. In S. cerevisiae the corresponding two proteins share 77% amino acid identity, leading to the suggestion that NTH2 codes for a functional trehalase activity. However, Nth2p lacks any measurable neutral trehalase activity and disruption of NTH2 gene has no effect on this activity compared to a parental strain. Likewise, single nth1Δ and double nth1Δ/nth2Δ null mutants display no detectable neutral activity. Furthermore, disruption of NTH2 does not cause any apparent phenotype apart from a slight involvement in thermotolerance. To date, no evidence of a duplicated NTH gene has been recorded in other archetypical yeasts, like C. albicans or C. parapsilosis, and a possible regulatory mechanism of Nth2p remains unknown. Therefore, although genomic analysis points to the existence, in some yeasts, of two distinct genes encoding trehalase activities, the large body of biochemical and physiological evidence gathered from NTH2 gene does not support this proposal. Indeed, much more experimental evidence would be necessary to firmly validate this hypothesis.
Collapse
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Facultat de Ciències Biològiques, Universitat de València, 46100 Burjassot, Spain
| | - Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| | - Francisco Solano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina Campus de Ciencias de la Salud, Universidad de Murcia, 30120 Murcia, Spain;
| | - Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| |
Collapse
|
9
|
Brejová B, Hodorová V, Mutalová S, Cillingová A, Tomáška Ľ, Vinař T, Nosek J. Chromosome-level genome assembly of the yeast Lodderomyces beijingensis reveals the genetic nature of metabolic adaptations and identifies subtelomeres as hotspots for amplification of mating type loci. DNA Res 2024; 31:dsae014. [PMID: 38686638 PMCID: PMC11100356 DOI: 10.1093/dnares/dsae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Lodderomyces beijingensis is an ascosporic ascomycetous yeast. In contrast to related species Lodderomyces elongisporus, which is a recently emerging human pathogen, L. beijingensis is associated with insects. To provide an insight into its genetic makeup, we investigated the genome of its type strain, CBS 14171. We demonstrate that this yeast is diploid and describe the high contiguity nuclear genome assembly consisting of eight chromosome-sized contigs with a total size of about 15.1 Mbp. We find that the genome sequence contains multiple copies of the mating type loci and codes for essential components of the mating pheromone response pathway, however, the missing orthologs of several genes involved in the meiotic program raise questions about the mode of sexual reproduction. We also show that L. beijingensis genome codes for the 3-oxoadipate pathway enzymes, which allow the assimilation of protocatechuate. In contrast, the GAL gene cluster underwent a decay resulting in an inability of L. beijingensis to utilize galactose. Moreover, we find that the 56.5 kbp long mitochondrial DNA is structurally similar to known linear mitochondrial genomes terminating on both sides with covalently closed single-stranded hairpins. Finally, we discovered a new double-stranded RNA mycovirus from the Totiviridae family and characterized its genome sequence.
Collapse
Affiliation(s)
- Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, 842 48 Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, 842 48 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
10
|
Sahu MS, Purushotham R, Kaur R. The Hog1 MAPK substrate governs Candida glabrata-epithelial cell adhesion via the histone H2A variant. PLoS Genet 2024; 20:e1011281. [PMID: 38743788 PMCID: PMC11125552 DOI: 10.1371/journal.pgen.1011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/24/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
CgHog1, terminal kinase of the high-osmolarity glycerol signalling pathway, orchestrates cellular response to multiple external stimuli including surplus-environmental iron in the human fungal pathogen Candida glabrata (Cg). However, CgHog1 substrates remain unidentified. Here, we show that CgHog1 adversely affects Cg adherence to host stomach and kidney epithelial cells in vitro, but promotes Cg survival in the iron-rich gastrointestinal tract niche. Further, CgHog1 interactome and in vitro phosphorylation analysis revealed CgSub2 (putative RNA helicase) to be a CgHog1 substrate, with CgSub2 also governing iron homeostasis and host adhesion. CgSub2 positively regulated EPA1 (encodes a major adhesin) expression and host adherence via its interactor CgHtz1 (histone H2A variant). Notably, both CgHog1 and surplus environmental iron had a negative impact on CgSub2-CgHtz1 interaction, with CgHTZ1 or CgSUB2 deletion reversing the elevated adherence of Cghog1Δ to epithelial cells. Finally, the surplus-extracellular iron led to CgHog1 activation, increased CgSub2 phosphorylation, elevated CgSub2-CgHta (canonical histone H2A) interaction, and EPA1 transcriptional activation, thereby underscoring the iron-responsive, CgHog1-induced exchange of histone partners of CgSub2. Altogether, our work mechanistically defines how CgHog1 couples Epa1 adhesin expression with iron abundance, and point towards specific chromatin composition modification programs that probably aid fungal pathogens align their adherence to iron-rich (gut) and iron-poor (blood) host niches.
Collapse
Affiliation(s)
- Mahima Sagar Sahu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rajaram Purushotham
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
11
|
Opulente DA, LaBella AL, Harrison MC, Wolters JF, Liu C, Li Y, Kominek J, Steenwyk JL, Stoneman HR, VanDenAvond J, Miller CR, Langdon QK, Silva M, Gonçalves C, Ubbelohde EJ, Li Y, Buh KV, Jarzyna M, Haase MAB, Rosa CA, Čadež N, Libkind D, DeVirgilio JH, Hulfachor AB, Kurtzman CP, Sampaio JP, Gonçalves P, Zhou X, Shen XX, Groenewald M, Rokas A, Hittinger CT. Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts. Science 2024; 384:eadj4503. [PMID: 38662846 PMCID: PMC11298794 DOI: 10.1126/science.adj4503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.
Collapse
Affiliation(s)
- Dana A. Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Chao Liu
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Yonglin Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- LifeMine Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hayley R. Stoneman
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jenna VanDenAvond
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Caroline R. Miller
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Quinn K. Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Margarida Silva
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Emily J. Ubbelohde
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kelly V. Buh
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Martin Jarzyna
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Graduate Program in Neuroscience and Department of Biology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Max A. B. Haase
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Jeremy H. DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - José Paulo Sampaio
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
12
|
Kumar K, Pareek A, Kaur R. SWI/SNF complex-mediated chromatin remodeling in Candida glabrata promotes immune evasion. iScience 2024; 27:109607. [PMID: 38632999 PMCID: PMC11022050 DOI: 10.1016/j.isci.2024.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Immune evasion is critical for fungal virulence. However, how the human opportunistic pathogen Candida glabrata (Cg) accomplishes this is unknown. Here, we present the first genome-wide nucleosome map of the macrophage-internalized Cg consisting of ∼12,000 dynamic and 70,000 total nucleosomes. We demonstrate that CgSnf2 (SWI/SNF chromatin remodeling complex-ATPase subunit)-mediated chromatin reorganization in macrophage-internalized Cg upregulates and downregulates the immunosuppressive seven-gene mannosyltransferase-cluster (CgMT-C) and immunostimulatory cell surface adhesin-encoding EPA1 gene, respectively. Consistently, EPA1 overexpression and CgMT-C deletion elevated IL-1β (pro-inflammatory cytokine) production and diminished Cg proliferation in macrophages. Further, Cgsnf2Δ had higher Epa1 surface expression, and evoked increased IL-1β secretion, and was killed in macrophages. Akt-, p38-, NF-κB- or NLRP3 inflammasome-inhibition partially reversed increased IL-1β secretion in Cgsnf2Δ-infected macrophages. Importantly, macrophages responded to multiple Candida pathogens via NF-κB-dependent IL-1β production, underscoring NF-κB signaling's role in fungal diseases. Altogether, our findings directly link the nucleosome positioning-based chromatin remodeling to fungal immunomodulatory molecule expression.
Collapse
Affiliation(s)
- Kundan Kumar
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Aditi Pareek
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
13
|
Chow EWL, Song Y, Wang H, Xu X, Gao J, Wang Y. Genome-wide profiling of piggyBac transposon insertion mutants reveals loss of the F 1F 0 ATPase complex causes fluconazole resistance in Candida glabrata. Mol Microbiol 2024; 121:781-797. [PMID: 38242855 DOI: 10.1111/mmi.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F1F0 ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.
Collapse
Affiliation(s)
- Eve W L Chow
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
| | - Yabing Song
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haitao Wang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
| | - Xiaoli Xu
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
| | - Jiaxin Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science and Technology Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Denning DW. Renaming Candida glabrata-A case of taxonomic purity over clinical and public health pragmatism. PLoS Pathog 2024; 20:e1012055. [PMID: 38489254 PMCID: PMC10942050 DOI: 10.1371/journal.ppat.1012055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Affiliation(s)
- David W. Denning
- Manchester Fungal Infection Group, The University of Manchester and Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
15
|
Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol 2024; 22:89-104. [PMID: 37700024 PMCID: PMC11084736 DOI: 10.1038/s41579-023-00963-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/14/2023]
Abstract
The human oral microbiota is highly diverse and has a complex ecology, comprising bacteria, microeukaryotes, archaea and viruses. These communities have elaborate and highly structured biogeography that shapes metabolic exchange on a local scale and results from the diverse microenvironments present in the oral cavity. The oral microbiota also interfaces with the immune system of the human host and has an important role in not only the health of the oral cavity but also systemic health. In this Review, we highlight recent advances including novel insights into the biogeography of several oral niches at the species level, as well as the ecological role of candidate phyla radiation bacteria and non-bacterial members of the oral microbiome. In addition, we summarize the relationship between the oral microbiota and the pathology of oral diseases and systemic diseases. Together, these advances move the field towards a more holistic understanding of the oral microbiota and its role in health, which in turn opens the door to the study of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jonathon L Baker
- Oregon Health & Science University, Portland, OR, USA
- J. Craig Venter Institute, La Jolla, CA, USA
- UC San Diego School of Medicine, La Jolla, CA, USA
| | - Jessica L Mark Welch
- The Forsyth Institute, Cambridge, MA, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Xuesong He
- The Forsyth Institute, Cambridge, MA, USA.
- Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Schikora-Tamarit MÀ, Gabaldón T. Recent gene selection and drug resistance underscore clinical adaptation across Candida species. Nat Microbiol 2024; 9:284-307. [PMID: 38177305 PMCID: PMC10769879 DOI: 10.1038/s41564-023-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Understanding how microbial pathogens adapt to treatments, humans and clinical environments is key to infer mechanisms of virulence, transmission and drug resistance. This may help improve therapies and diagnostics for infections with a poor prognosis, such as those caused by fungal pathogens, including Candida. Here we analysed genomic variants across approximately 2,000 isolates from six Candida species (C. glabrata, C. auris, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis) and identified genes under recent selection, suggesting a highly complex clinical adaptation. These involve species-specific and convergently affected adaptive mechanisms, such as adhesion. Using convergence-based genome-wide association studies we identified known drivers of drug resistance alongside potentially novel players. Finally, our analyses reveal an important role of structural variants and suggest an unexpected involvement of (para)sexual recombination in the spread of resistance. Our results provide insights on how opportunistic pathogens adapt to human-related environments and unearth candidate genes that deserve future attention.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
17
|
Vijayraghavan S, Kozmin SG, Strope PK, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. RNA viruses, M satellites, chromosomal killer genes, and killer/nonkiller phenotypes in the 100-genomes S. cerevisiae strains. G3 (BETHESDA, MD.) 2023; 13:jkad167. [PMID: 37497616 PMCID: PMC10542562 DOI: 10.1093/g3journal/jkad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid. Novel L-A-dependent phenotypes were identified. Ten M+ strains exhibited M satellite-dependent killing (K+) of at least 1 of the naturally M0 and cured M0 derivatives of the 100-genomes strains; in these M0 strains, sensitivities to K1+, K2+, and K28+ strains varied. Finally, to complement our M satellite-encoded killer toxin analysis, we assembled the chromosomal KHS1 and KHR1 killer genes and used naturally M0 and cured M0 derivatives of the 100-genomes strains to assess and characterize the chromosomal killer phenotypes.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
18
|
Donzella L, Sousa MJ, Morrissey JP. Evolution and functional diversification of yeast sugar transporters. Essays Biochem 2023; 67:811-827. [PMID: 36928992 PMCID: PMC10500205 DOI: 10.1042/ebc20220233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
While simple sugars such as monosaccharides and disaccharide are the typical carbon source for most yeasts, whether a species can grow on a particular sugar is generally a consequence of presence or absence of a suitable transporter to enable its uptake. The most common transporters that mediate sugar import in yeasts belong to the major facilitator superfamily (MFS). Some of these, for example the Saccharomyces cerevisiae Hxt proteins have been extensively studied, but detailed information on many others is sparce. In part, this is because there are many lineages of MFS transporters that are either absent from, or poorly represented in, the model S. cerevisiae, which actually has quite a restricted substrate range. It is important to address this knowledge gap to gain better understanding of the evolution of yeasts and to take advantage of sugar transporters to exploit or engineer yeasts for biotechnological applications. This article examines the full repertoire of MFS proteins in representative budding yeasts (Saccharomycotina). A comprehensive analysis of 139 putative sugar transporters retrieved from 10 complete genomes sheds new light on the diversity and evolution of this family. Using the phylogenetic lens, it is apparent that proteins have often been misassigned putative functions and this can now be corrected. It is also often seen that patterns of expansion of particular genes reflects the differential importance of transport of specific sugars (and related molecules) in different yeasts, and this knowledge also provides an improved resource for the selection or design of tailored transporters.
Collapse
Affiliation(s)
- Lorena Donzella
- School of Microbiology, Environmental Research Institute, APC Microbiome Ireland, SUSFERM Research Centre, University College Cork, T12 K8AF, Cork, Ireland
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - Maria João Sousa
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Ireland, SUSFERM Research Centre, University College Cork, T12 K8AF, Cork, Ireland
| |
Collapse
|
19
|
Naicker SD, Shuping L, Zulu TG, Mpembe RS, Mhlanga M, Tsotetsi EM, Maphanga TG, Govender NP. Epidemiology and susceptibility of Nakaseomyces (formerly Candida) glabrata bloodstream isolates from hospitalised adults in South Africa. Med Mycol 2023; 61:myad057. [PMID: 37336590 DOI: 10.1093/mmy/myad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
During 2016-2017, Nakaseomyces glabrata (formerly Candida glabrata) caused 14% of cases of candidaemia in South Africa. We aimed to describe the clinical characteristics of adults with N. glabrata candidaemia at 20 sentinel hospitals (accounting for 20% (172/917) of cases) and the antifungal susceptibility of the corresponding isolates. A higher proportion of patients with N. glabrata candidaemia were older (median age: 55 years [interquartile range (IQR): 41-65 years] vs. 49 years [IQR: 35-63 years]; p = 0.04), female (87/164, 53% vs. 283/671, 42%; p = 0.01), admitted to a public-sector hospital (152/172, 88% vs. 470/745, 63%; p < 0.001), treated with fluconazole only (most with suboptimal doses) (51/95, 54% vs. 139/361, 39%; p < 0.001), and had surgery (47/172, 27% vs. 123/745, 17%; p = 0.001) and a shorter hospital stay (median 7 days [IQR: 2-20 days] vs. 13 days [IQR: 4-27 days]; p < 0.001) compared to patients with other causes of candidaemia. Eight N. glabrata isolates (6%, 8/131) had minimum inhibitory concentrations in the intermediate or resistant range for ≥ 1 echinocandin and a R1377K amino acid substitution encoded by the hotspot 2 region of the FKS2 gene. Only 11 isolates (8%, 11/131) were resistant to fluconazole. Patients with confirmed N. glabrata candidaemia are recommended to be treated with an echinocandin (or polyene), thus further guideline training is required.
Collapse
Affiliation(s)
- Serisha D Naicker
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Liliwe Shuping
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Thokozile G Zulu
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ruth S Mpembe
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mabatho Mhlanga
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ernest M Tsotetsi
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Tsidiso G Maphanga
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P Govender
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infection and Immunity, St George's University of London, London and Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Bedekovic T, Usher J. Is There a Relationship Between Mating and Pathogenesis in Two Human Fungal Pathogens, Candida albicans and Candida glabrata?. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:47-54. [PMID: 37151577 PMCID: PMC10154270 DOI: 10.1007/s40588-023-00192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/09/2023]
Abstract
Purpose of Review Human fungal pathogens are rapidly increasing in incidence and readily able to evade the host immune responses. Our ability to study the genetic behind this has been limited due to the apparent lack of a sexual cycle and forward genetic tools. In this review, we discuss the evolution of mating, meiosis, and pathogenesis and if these processes are advantageous to pathogens. Recent Findings This review summarises what is currently known about the sexual cycles of two important human fungal pathogens, Candida albicans and Candida glabrata. This includes the identification of parasexual cycle in C. albicans and the observed low levels of recombination in C. glabrata populations. Summary In this review, we present what is currently known about the mating types and mating/sexual cycles of two clinically important human fungal pathogens, Candida albicans and Candida glabrata. We discuss the evolution of meiosis using the knowledge that has been amassed from the decades of studying Saccharomyces cerevisiae and how this can be applied to fungal pathogens. We further discuss how the evolution of pathogenesis has played a role in influencing mating processes in human fungal pathogens and compare sexual cycles between C. albicans and C. glabrata, highlighting knowledge gaps and suggesting how these two fungi have evolved distinct mating niches to allow the development of disease in a human host.
Collapse
Affiliation(s)
- Tina Bedekovic
- MRC Centre for Medical Mycology, Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Jane Usher
- MRC Centre for Medical Mycology, Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
21
|
Smoak RA, Snyder LF, Fassler JS, He BZ. Parallel expansion and divergence of an adhesin family in pathogenic yeasts. Genetics 2023; 223:iyad024. [PMID: 36794645 PMCID: PMC10319987 DOI: 10.1093/genetics/iyad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Opportunistic yeast pathogens arose multiple times in the Saccharomycetes class, including the recently emerged, multidrug-resistant (MDR) Candida auris. We show that homologs of a known yeast adhesin family in Candida albicans, the Hyr/Iff-like (Hil) family, are enriched in distinct clades of Candida species as a result of multiple, independent expansions. Following gene duplication, the tandem repeat-rich region in these proteins diverged extremely rapidly and generated large variations in length and β-aggregation potential, both of which are known to directly affect adhesion. The conserved N-terminal effector domain was predicted to adopt a β-helical fold followed by an α-crystallin domain, making it structurally similar to a group of unrelated bacterial adhesins. Evolutionary analyses of the effector domain in C. auris revealed relaxed selective constraint combined with signatures of positive selection, suggesting functional diversification after gene duplication. Lastly, we found the Hil family genes to be enriched at chromosomal ends, which likely contributed to their expansion via ectopic recombination and break-induced replication. Combined, these results suggest that the expansion and diversification of adhesin families generate variation in adhesion and virulence within and between species and are a key step toward the emergence of fungal pathogens.
Collapse
Affiliation(s)
- Rachel A Smoak
- Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Lindsey F Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Bin Z He
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Arastehfar A, Daneshnia F, Cabrera N, Penalva-Lopez S, Sarathy J, Zimmerman M, Shor E, Perlin DS. Macrophage internalization creates a multidrug-tolerant fungal persister reservoir and facilitates the emergence of drug resistance. Nat Commun 2023; 14:1183. [PMID: 36864040 PMCID: PMC9981703 DOI: 10.1038/s41467-023-36882-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Candida glabrata is a major fungal pathogen notable for causing recalcitrant infections, rapid emergence of drug-resistant strains, and its ability to survive and proliferate within macrophages. Resembling bacterial persisters, a subset of genetically drug-susceptible C. glabrata cells can survive lethal exposure to the fungicidal echinocandin drugs. Herein, we show that macrophage internalization induces cidal drug tolerance in C. glabrata, expanding the persister reservoir from which echinocandin-resistant mutants emerge. We show that this drug tolerance is associated with non-proliferation and is triggered by macrophage-induced oxidative stress, and that deletion of genes involved in reactive oxygen species detoxification significantly increases the emergence of echinocandin-resistant mutants. Finally, we show that the fungicidal drug amphotericin B can kill intracellular C. glabrata echinocandin persisters, reducing emergence of resistance. Our study supports the hypothesis that intra-macrophage C. glabrata is a reservoir of recalcitrant/drug-resistant infections, and that drug alternating strategies can be developed to eliminate this reservoir.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Nathaly Cabrera
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Suyapa Penalva-Lopez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Jansy Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA.
| |
Collapse
|
23
|
Salzberg LI, Martos AAR, Lombardi L, Jermiin LS, Blanco A, Byrne KP, Wolfe KH. A widespread inversion polymorphism conserved among Saccharomyces species is caused by recurrent homogenization of a sporulation gene family. PLoS Genet 2022; 18:e1010525. [PMID: 36441813 PMCID: PMC9731477 DOI: 10.1371/journal.pgen.1010525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces genomes are highly collinear and show relatively little structural variation, both within and between species of this yeast genus. We investigated the only common inversion polymorphism known in S. cerevisiae, which affects a 24-kb 'flip/flop' region containing 15 genes near the centromere of chromosome XIV. The region exists in two orientations, called reference (REF) and inverted (INV). Meiotic recombination in this region is suppressed in crosses between REF and INV orientation strains such as the BY x RM cross. We find that the inversion polymorphism is at least 17 million years old because it is conserved across the genus Saccharomyces. However, the REF and INV isomers are not ancient alleles but are continually being re-created by re-inversion of the region within each species. Inversion occurs due to continual homogenization of two almost identical 4-kb sequences that form an inverted repeat (IR) at the ends of the flip/flop region. The IR consists of two pairs of genes that are specifically and strongly expressed during the late stages of sporulation. We show that one of these gene pairs, YNL018C/YNL034W, codes for a protein that is essential for spore formation. YNL018C and YNL034W are the founder members of a gene family, Centroid, whose members in other Saccharomycetaceae species evolve fast, duplicate frequently, and are preferentially located close to centromeres. We tested the hypothesis that Centroid genes are a meiotic drive system, but found no support for this idea.
Collapse
Affiliation(s)
- Letal I. Salzberg
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandre A. R. Martos
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Lisa Lombardi
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Kevin P. Byrne
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth H. Wolfe
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
24
|
Marcet-Houben M, Alvarado M, Ksiezopolska E, Saus E, de Groot PWJ, Gabaldón T. Chromosome-level assemblies from diverse clades reveal limited structural and gene content variation in the genome of Candida glabrata. BMC Biol 2022; 20:226. [PMID: 36209154 PMCID: PMC9548116 DOI: 10.1186/s12915-022-01412-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Candida glabrata is an opportunistic yeast pathogen thought to have a large genetic and phenotypic diversity and a highly plastic genome. However, the lack of chromosome-level genome assemblies representing this diversity limits our ability to accurately establish how chromosomal structure and gene content vary across strains. Results Here, we expanded publicly available assemblies by using long-read sequencing technologies in twelve diverse strains, obtaining a final set of twenty-one chromosome-level genomes spanning the known C. glabrata diversity. Using comparative approaches, we inferred variation in chromosome structure and determined the pan-genome, including an analysis of the adhesin gene repertoire. Our analysis uncovered four new adhesin orthogroups and inferred a rich ancestral adhesion repertoire, which was subsequently shaped through a still ongoing process of gene loss, gene duplication, and gene conversion. Conclusions C. glabrata has a largely stable pan-genome except for a highly variable subset of genes encoding cell wall-associated functions. Adhesin repertoire was established for each strain and showed variability among clades. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01412-1.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - María Alvarado
- Regional Center for Biomedical Research, University of Castilla-La Mancha, E-02008, Albacete, Spain
| | - Ewa Ksiezopolska
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Piet W J de Groot
- Regional Center for Biomedical Research, University of Castilla-La Mancha, E-02008, Albacete, Spain.,Castilla-La Mancha Science & Technology Park, E-02006, Albacete, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain. .,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. .,Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
25
|
Spruijtenburg B, Badali H, Abastabar M, Mirhendi H, Khodavaisy S, Sharifisooraki J, Armaki MT, de Groot T, Meis JF. Confirmation of fifth Candida auris clade by whole genome sequencing. Emerg Microbes Infect 2022; 11:2405-2411. [PMID: 36154919 PMCID: PMC9586689 DOI: 10.1080/22221751.2022.2125349] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Candida auris has emerged globally as a multidrug-resistant pathogen causing outbreaks in health care facilities. Whole genome sequencing (WGS) analysis has identified four major clades, while earlier WGS data from a single Iranian isolate suggested the existence of a potential fifth clade. Here, we confirm the existence of this fifth clade by providing WGS data of another four Iranian isolates. These clade V isolates differed less than 100 single-nucleotide polymorphisms (SNPs) between each other, while they were separated from the other clades by more than 200,000 SNPs. Two of these isolates were resistant to fluconazole and were found to harbour mutations in the TAC1b and ERG11 genes.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands .,Centre of Expertise in Mycology Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Joobin Sharifisooraki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Mazandaran, Iran
| | - Mojtaba Taghizadeh Armaki
- Department of Medical Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands .,Centre of Expertise in Mycology Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands .,Centre of Expertise in Mycology Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands .,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Schrevens S, Sanglard D. A novel Candida glabrata doxycycline-inducible system for in vitro/in vivo use. FEMS Yeast Res 2022; 22:6680246. [PMID: 36047937 PMCID: PMC9508828 DOI: 10.1093/femsyr/foac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Candida glabrata is an important pathogen causing superficial to invasive disease in human. Conditional expression systems are helpful in addressing the function of genes and especially when they can be applied to in vivo studies. Tetracycline-dependent regulation systems have been used in diverse fungi to turn-on (Tet-on) or turn-off (Tet-off) gene expression either in vitro but also in vivo in animal models. Up to now, only a Tet-off expression has been constructed for gene expression in C. glabrata. Here, we report a Tet-on gene expression system which can be used in vitro and in vivo in any C. glabrata genetic background. This system was used in a mice model of systemic infection to demonstrate that the general amino acid permease Gap1 is important for C. glabrata virulence.
Collapse
Affiliation(s)
- S Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - D Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
27
|
Schrevens S, Durandau E, Tran VDT, Sanglard D. Using in vivo transcriptomics and RNA enrichment to identify genes involved in virulence of Candida glabrata. Virulence 2022; 13:1285-1303. [PMID: 35795910 PMCID: PMC9348041 DOI: 10.1080/21505594.2022.2095716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Candida species are the most commonly isolated opportunistic fungal pathogens in humans. Candida albicans causes most of the diagnosed infections, closely followed by Candida glabrata. C. albicans is well studied, and many genes have been shown to be important for infection and colonization of the host. It is however less clear how C. glabrata infects the host. With the help of fungal RNA enrichment, we here investigated for the first time the transcriptomic profile of C. glabrata during urinary tract infection (UTI) in mice. In the UTI model, bladders and kidneys are major target organs and therefore fungal transcriptomes were addressed in these organs. Our results showed that, next to adhesins and proteases, nitrogen metabolism and regulation play a vital role during C. glabrata UTI. Genes involved in nitrogen metabolism were upregulated and among them we show that DUR1,2 (urea amidolyase) and GAP1 (amino acid permease) were important for virulence. Furthermore, we confirmed the importance of the glyoxylate cycle in the host and identified MLS1 (malate synthase) as an important gene necessary for C. glabrata virulence. In conclusion, our study shows with the support of in vivo transcriptomics how C. glabrata adapts to host conditions.
Collapse
Affiliation(s)
- Sanne Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Eric Durandau
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
28
|
Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms. Microbiol Mol Biol Rev 2022; 86:e0000721. [PMID: 35195440 PMCID: PMC8941940 DOI: 10.1128/mmbr.00007-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating-type switching is a natural but unusual genetic control process that regulates cell identity in ascomycete yeasts. It involves physically replacing one small piece of genomic DNA by another, resulting in replacement of the master regulatory genes in the mating pathway and hence a switch of cell type and mating behavior. In this review, we concentrate on recent progress that has been made on understanding the origins and evolution of mating-type switching systems in budding yeasts (subphylum Saccharomycotina). Because of the unusual nature and the complexity of the mechanism in Saccharomyces cerevisiae, mating-type switching was assumed until recently to have originated only once or twice during yeast evolution. However, comparative genomics analysis now shows that switching mechanisms arose many times independently-at least 11 times in budding yeasts and once in fission yeasts-a dramatic example of convergent evolution. Most of these lineages switch mating types by a flip/flop mechanism that inverts a section of a chromosome and is simpler than the well-characterized 3-locus cassette mechanism (MAT/HML/HMR) used by S. cerevisiae. Mating-type switching (secondary homothallism) is one of the two possible mechanisms by which a yeast species can become self-fertile. The other mechanism (primary homothallism) has also emerged independently in multiple evolutionary lineages of budding yeasts, indicating that homothallism has been favored strongly by natural selection. Recent work shows that HO endonuclease, which makes the double-strand DNA break that initiates switching at the S. cerevisiae MAT locus, evolved from an unusual mobile genetic element that originally targeted a glycolytic gene, FBA1.
Collapse
|
29
|
Helmstetter N, Chybowska AD, Delaney C, Da Silva Dantas A, Gifford H, Wacker T, Munro C, Warris A, Jones B, Cuomo CA, Wilson D, Ramage G, Farrer RA. Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes, and drug targets. Genetics 2022; 221:iyac031. [PMID: 35199143 PMCID: PMC9071574 DOI: 10.1093/genetics/iyac031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Candida glabrata is the second most common etiological cause of worldwide systemic candidiasis in adult patients. Genome analysis of 68 isolates from 8 hospitals across Scotland, together with 83 global isolates, revealed insights into the population genetics and evolution of C. glabrata. Clinical isolates of C. glabrata from across Scotland are highly genetically diverse, including at least 19 separate sequence types that have been recovered previously in globally diverse locations, and 1 newly discovered sequence type. Several sequence types had evidence for ancestral recombination, suggesting transmission between distinct geographical regions has coincided with genetic exchange arising in new clades. Three isolates were missing MATα1, potentially representing a second mating type. Signatures of positive selection were identified in every sequence type including enrichment for epithelial adhesins thought to facilitate fungal adhesin to human epithelial cells. In patent microevolution was identified from 7 sets of recurrent cases of candidiasis, revealing an enrichment for nonsynonymous and frameshift indels in cell surface proteins. Microevolution within patients also affected epithelial adhesins genes, and several genes involved in drug resistance including the ergosterol synthesis gene ERG4 and the echinocandin target FKS1/2, the latter coinciding with a marked drop in fluconazole minimum inhibitory concentration. In addition to nuclear genome diversity, the C. glabrata mitochondrial genome was particularly diverse, with reduced conserved sequence and conserved protein-encoding genes in all nonreference ST15 isolates. Together, this study highlights the genetic diversity within the C. glabrata population that may impact virulence and drug resistance, and 2 major mechanisms generating this diversity: microevolution and genetic exchange/recombination.
Collapse
Affiliation(s)
- Nicolas Helmstetter
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | | | - Christopher Delaney
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Hugh Gifford
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Theresa Wacker
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Carol Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Adilia Warris
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Brian Jones
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | | | - Duncan Wilson
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Gordon Ramage
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rhys A Farrer
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
30
|
Saguez C, Viterbo D, Descorps-Declère S, Cormack BP, Dujon B, Richard GF. Functional variability in adhesion and flocculation of yeast megasatellite genes. Genetics 2022; 221:iyac042. [PMID: 35274698 PMCID: PMC9071537 DOI: 10.1093/genetics/iyac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Megasatellites are large tandem repeats found in all fungal genomes but especially abundant in the opportunistic pathogen Candida glabrata. They are encoded in genes involved in cell-cell interactions, either between yeasts or between yeast and human cells. In the present work, we have been using an iterative genetic system to delete several Candida glabrata megasatellite-containing genes and found that 2 of them were positively involved in adhesion to epithelial cells, whereas 3 genes negatively controlled adhesion. Two of the latter, CAGL0B05061g or CAGL0A04851g, were also negative regulators of yeast-to-yeast adhesion, making them central players in controlling Candida glabrata adherence properties. Using a series of synthetic Saccharomyces cerevisiae strains in which the FLO1 megasatellite was replaced by other tandem repeats of similar length but different sequences, we showed that the capacity of a strain to flocculate in liquid culture was unrelated to its capacity to adhere to epithelial cells or to invade agar. Finally, to understand how megasatellites were initially created and subsequently expanded, an experimental evolution system was set up, in which modified yeast strains containing different megasatellite seeds were grown in bioreactors for more than 200 generations and selected for their ability to sediment at the bottom of the culture tube. Several flocculation-positive mutants were isolated. Functionally relevant mutations included general transcription factors as well as a 230-kbp segmental duplication.
Collapse
Affiliation(s)
- Cyril Saguez
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
- Present address: Abolis Biotechnologies, 5 Rue Henri Desbruères, Evry 91030, France
| | - David Viterbo
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| | - Stéphane Descorps-Declère
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris F-75015, France
| | - Brendan P Cormack
- Department of Molecular Biology & Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Bernard Dujon
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| | - Guy-Franck Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| |
Collapse
|
31
|
Taylor JT, Harting R, Shalaby S, Kenerley CM, Braus GH, Horwitz BA. Adhesion as a Focus in Trichoderma-Root Interactions. J Fungi (Basel) 2022; 8:372. [PMID: 35448603 PMCID: PMC9026816 DOI: 10.3390/jof8040372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Fungal spores, germlings, and mycelia adhere to substrates, including host tissues. The adhesive forces depend on the substrate and on the adhesins, the fungal cell surface proteins. Attachment is often a prerequisite for the invasion of the host, hence its importance. Adhesion visibly precedes colonization of root surfaces and outer cortex layers, but little is known about the molecular details. We propose that by starting from what is already known from other fungi, including yeast and other filamentous pathogens and symbionts, the mechanism and function of Trichoderma adhesion will become accessible. There is a sequence, and perhaps functional, homology to other rhizosphere-competent Sordariomycetes. Specifically, Verticillium dahliae is a soil-borne pathogen that establishes itself in the xylem and causes destructive wilt disease. Metarhizium species are best-known as insect pathogens with biocontrol potential, but they also colonize roots. Verticillium orthologs of the yeast Flo8 transcription factor, Som1, and several other relevant genes are already under study for their roles in adhesion. Metarhizium encodes relevant adhesins. Trichoderma virens encodes homologs of Som1, as well as adhesin candidates. These genes should provide exciting leads toward the first step in the establishment of beneficial interactions with roots in the rhizosphere.
Collapse
Affiliation(s)
- James T. Taylor
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; (J.T.T.); (C.M.K.)
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (R.H.); (G.H.B.)
| | - Samer Shalaby
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200000, Israel;
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; (J.T.T.); (C.M.K.)
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (R.H.); (G.H.B.)
| | - Benjamin A. Horwitz
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200000, Israel;
| |
Collapse
|
32
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
33
|
Tup1 Paralog CgTUP11 Is a Stronger Repressor of Transcription than CgTUP1 in Candida glabrata. mSphere 2022; 7:e0076521. [PMID: 35341317 PMCID: PMC9044973 DOI: 10.1128/msphere.00765-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TUP1 is a well-characterized repressor of transcription in Saccharomyces cerevisiae and Candida albicans and is observed as a single-copy gene. We observe that most species that experienced a whole-genome duplication outside of the Saccharomyces genus have two copies of TUP1 in the Saccharomycotina yeast clade. We focused on Candida glabrata and demonstrated that the uncharacterized TUP1 homolog, C. glabrata TUP11 (CgTUP11), is most like the S. cerevisiae TUP1 (ScTUP1) gene through phenotypic assays and transcriptome sequencing (RNA-seq). Whereas CgTUP1 plays a role in gene repression, it is much less repressive in standard growth media. Through RNA-seq and reverse transcription-quantitative PCR (RT-qPCR), we observed that genes associated with pathogenicity (YPS2, YPS4, and HBN1) are upregulated upon deletion of either paralog, and loss of both paralogs is synergistic. Loss of the corepressor CgCYC8 mimics the loss of both paralogs, but not to the same extent as the Cgtup1Δ Cgtup11Δ mutant for these pathogenesis-related genes. In contrast, genes involved in energy metabolism (CgHXT2, CgADY2, and CgFBP1) exhibit similar behavior (dependence on both paralogs), but deletion of CgCYC8 is very similar to the Cgtup1Δ Cgtup11Δ mutant. Finally, some genes (CgMFG1 and CgRIE1) appear to only be dependent on CgTUP11 and CgCYC8 and not CgTUP1. These data indicate separable and overlapping roles for the two TUP1 paralogs and that other genes may function as the CgCyc8 corepressor. Through a comparison by RNA-seq of Sctup1Δ, it was found that TUP1 homologs regulate similar genes in the two species. This work highlights that studies focused only on Saccharomyces may miss important biological processes because of paralog loss after genome duplication. IMPORTANCE Due to a whole-genome duplication, many yeast species related to C. glabrata have two copies of the well-characterized TUP1 gene, unlike most Saccharomyces species. This work identifies roles for the paralogs in C. glabrata, highlights the importance of the uncharacterized paralog, called TUP11, and suggests that the two paralogs have both overlapping and unique functions. The TUP1 paralogs likely influence pathogenicity based on tup mutants upregulating genes that are associated with pathogenicity.
Collapse
|
34
|
Hao W. From Genome Variation to Molecular Mechanisms: What we Have Learned From Yeast Mitochondrial Genomes? Front Microbiol 2022; 13:806575. [PMID: 35126340 PMCID: PMC8811140 DOI: 10.3389/fmicb.2022.806575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
Analysis of genome variation provides insights into mechanisms in genome evolution. This is increasingly appreciated with the rapid growth of genomic data. Mitochondrial genomes (mitogenomes) are well known to vary substantially in many genomic aspects, such as genome size, sequence context, nucleotide base composition and substitution rate. Such substantial variation makes mitogenomes an excellent model system to study the mechanisms dictating mitogenome variation. Recent sequencing efforts have not only covered a rich number of yeast species but also generated genomes from abundant strains within the same species. The rich yeast genomic data have enabled detailed investigation from genome variation into molecular mechanisms in genome evolution. This mini-review highlights some recent progresses in yeast mitogenome studies.
Collapse
|
35
|
Prochazkova P, Roubalova R, Dvorak J, Kreisinger J, Hill M, Tlaskalova-Hogenova H, Tomasova P, Pelantova H, Cermakova M, Kuzma M, Bulant J, Bilej M, Smitka K, Lambertova A, Holanova P, Papezova H. The intestinal microbiota and metabolites in patients with anorexia nervosa. Gut Microbes 2022; 13:1-25. [PMID: 33779487 PMCID: PMC8018350 DOI: 10.1080/19490976.2021.1902771] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Brain-gut microbiota interactions are intensively studied in connection with various neurological and psychiatric diseases. While anorexia nervosa (AN) pathophysiology is not entirely clear, it is presumably linked to microbiome dysbiosis. We aimed to elucidate the gut microbiota contribution in AN disease pathophysiology. We analyzed the composition and diversity of the gut microbiome of patients with AN (bacteriome and mycobiome) from stool samples before and after renourishment, and compared them to healthy controls. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFA) were analyzed in stool samples by MS and NMR, respectively. Biochemical, anthropometric, and psychometric profiles were assessed. The bacterial alpha-diversity parameter analyses revealed only increased Chao 1 index in patients with AN before the realimentation, reflecting their interindividual variation. Subsequently, core microbiota depletion signs were observed in patients with AN. Overrepresented OTUs (operation taxonomic units) in patients with AN taxonomically belonged to Alistipes, Clostridiales, Christensenellaceae, and Ruminococcaceae. Underrepresented OTUs in patients with AN were Faecalibacterium, Agathobacter, Bacteroides, Blautia, and Lachnospira. Patients exhibited greater interindividual variation in the gut bacteriome, as well as in metagenome content compared to controls, suggesting altered bacteriome functions. Patients had decreased levels of serotonin, GABA, dopamine, butyrate, and acetate in their stool samples compared to controls. Mycobiome analysis did not reveal significant differences in alpha diversity and fungal profile composition between patients with AN and healthy controls, nor any correlation of the fungal composition with the bacterial profile. Our results show the changed profile of the gut microbiome and its metabolites in patients with severe AN. Although therapeutic partial renourishment led to increased body mass index and improved psychometric parameters, SCFA, and neurotransmitter profiles, as well as microbial community compositions, did not change substantially during the hospitalization period, which can be potentially caused by only partial weight recovery.
Collapse
Affiliation(s)
- Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic,CONTACT Petra Prochazkova Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, Prague14220, Czech Republic
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University, Prague, Czech Republic
| | - Martin Hill
- Department of Steroids and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Tomasova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic,4th Medical Department, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Helena Pelantova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Cermakova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Bulant
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kvido Smitka
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czech Republic,First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czech Republic
| | - Alena Lambertova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Holanova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Papezova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
36
|
Analyzing the human gut mycobiome – a short guide for beginners. Comput Struct Biotechnol J 2022; 20:608-614. [PMID: 35116136 PMCID: PMC8790610 DOI: 10.1016/j.csbj.2022.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
The human body is a dynamic ecosystem consisting of millions of microbes which are often comprised under the term microbiome. Compared to bacteria, which count for the overwhelming majority of the microbiome, the number of human-associated fungi is small and often underestimated. Nonetheless, they can be found in different host niches such as the gut, the oral cavity and the skin. The fungal community has several potential roles in health and disease of the human host. In this review we will focus on intestinal fungi and their interaction with the host as well as bacteria. We also summarize technical challenges and possible biases researchers must be aware of when conducting mycobiome analysis.
Collapse
|
37
|
Emergence and evolution of virulence in human pathogenic fungi. Trends Microbiol 2022; 30:693-704. [DOI: 10.1016/j.tim.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022]
|
38
|
Vázquez-Franco N, Gutiérrez-Escobedo G, Juárez-Reyes A, Orta-Zavalza E, Castaño I, De Las Peñas A. Candida glabrata Hst1-Rfm1-Sum1 complex evolved to control virulence-related genes. Fungal Genet Biol 2021; 159:103656. [PMID: 34974188 DOI: 10.1016/j.fgb.2021.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022]
Abstract
C. glabrata is an opportunistic fungal pathogen and the second most common cause of opportunistic fungal infections in humans, that has evolved virulence factors to become a successful pathogen: strong resistance to oxidative stress, capable to adhere and form biofilms in human epithelial cells as well as to abiotic surfaces and high resistance to xenobiotics. Hst1 (a NAD+-dependent histone deacetylase), Sum1 (putative DNA binding protein) and Rfm1 (connector protein) form a complex (HRS-C) and control the resistance to oxidative stress, to xenobiotics (the antifungal fluconazole), and adherence to epithelial cells. Hst1 is functionally conserved within the Saccharomycetaceae family, Rfm1 shows a close phylogenetic relation within the Saccharomycetaceae family while Sum1 displays a distant phylogenetic relation with members of the family and is not conserved functionally. CDR1 encodes for an ABC transporter (resistance to fluconazole) negatively controlled by HRS-C, for which its binding site is located within 223 bp upstream from the ATG of CDR1. The absence of Hst1 and Sum1 renders the cells hyper-adherent, possibly due to the overexpression of AED1, EPA1, EPA22 and EPA6, all encoding for adhesins. Finally, in a neutrophil survival assay, HST1 and SUM1, are not required for survival. We propose that Sum1 in the HRS-C diverged functionally to control a set of genes implicated in virulence: adherence, resistance to xenobiotics and oxidative stress.
Collapse
Affiliation(s)
- Norma Vázquez-Franco
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro Juárez-Reyes
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Emmanuel Orta-Zavalza
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico.
| |
Collapse
|
39
|
Van Ende M, Timmermans B, Vanreppelen G, Siscar-Lewin S, Fischer D, Wijnants S, Romero CL, Yazdani S, Rogiers O, Demuyser L, Van Zeebroeck G, Cen Y, Kuchler K, Brunke S, Van Dijck P. The involvement of the Candida glabrata trehalase enzymes in stress resistance and gut colonization. Virulence 2021; 12:329-345. [PMID: 33356857 PMCID: PMC7808424 DOI: 10.1080/21505594.2020.1868825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Candida glabrata is an opportunistic human fungal pathogen and is frequently present in the human microbiome. It has a high relative resistance to environmental stresses and several antifungal drugs. An important component involved in microbial stress tolerance is trehalose. In this work, we characterized the three C. glabrata trehalase enzymes Ath1, Nth1 and Nth2. Single, double and triple deletion strains were constructed and characterized both in vitro and in vivo to determine the role of these enzymes in virulence. Ath1 was found to be located in the periplasm and was essential for growth on trehalose as sole carbon source, while Nth1 on the other hand was important for oxidative stress resistance, an observation which was consistent by the lower survival rate of the NTH1 deletion strain in human macrophages. No significant phenotype was observed for Nth2. The triple deletion strain was unable to establish a stable colonization of the gastrointestinal (GI) tract in mice indicating the importance of having trehalase activity for colonization in the gut.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Bea Timmermans
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Giel Vanreppelen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ona Rogiers
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, VIB, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Yuke Cen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
40
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
41
|
The Formation of Neochromosomes during Experimental Evolution in the Yeast Saccharomyces cerevisiae. Genes (Basel) 2021; 12:genes12111678. [PMID: 34828283 PMCID: PMC8619081 DOI: 10.3390/genes12111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Novel, large-scale structural mutations were previously discovered during the cultivation of engineered Saccharomyces cerevisiae strains in which essential tRNA synthetase genes were replaced by their orthologs from the distantly related yeast Yarrowia lipolytica. Among those were internal segmental amplifications forming giant chromosomes as well as complex segmental rearrangements associated with massive amplifications at an unselected short locus. The formation of such novel structures, whose stability is high enough to propagate over multiple generations, involved short repeated sequences dispersed in the genome (as expected), but also novel junctions between unrelated sequences likely triggered by accidental template switching within replication forks. Using the same evolutionary protocol, we now describe yet another type of major structural mutation in the yeast genome, the formation of neochromosomes, with functional centromeres and telomeres, made of extra copies of very long chromosomal segments ligated together in novel arrangements. The novel junctions occurred between short repeated sequences dispersed in the genome. They first resulted in the formation of an instable neochromosome present in a single copy in the diploid cells, followed by its replacement by a shorter, partially palindromic neochromosome present in two copies, whose stability eventually increased the chromosome number of the diploid strains harboring it.
Collapse
|
42
|
Andrade-Pavón D, Fernández-Muñoz V, González-Ibarra W, Hernández-Rodríguez C, Ibarra JA, Villa-Tanaca L. Point mutations in Candida glabrata 3-hydroxy-3-methylglutaryl-coenzyme A reductase (CgHMGR) decrease enzymatic activity and substrate/inhibitor affinity. Sci Rep 2021; 11:20842. [PMID: 34675283 PMCID: PMC8531335 DOI: 10.1038/s41598-021-00356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) is a crucial enzyme in the ergosterol biosynthesis pathway. The aim of this study was to obtain, purify, characterize, and overexpress five point mutations in highly conserved regions of the catalytic domain of Candida glabrata HMGR (CgHMGR) to explore the function of key amino acid residues in enzymatic activity. Glutamic acid (Glu) was substituted by glutamine in the E680Q mutant (at the dimerization site), Glu by glutamine in E711Q (at the substrate binding site), aspartic acid by alanine in D805A, and methionine by arginine in M807R (the latter two at the cofactor binding site). A double mutation, E680Q-M807R, was included. Regarding recombinant and wild-type CgHMGR, in vitro enzymatic activity was significantly lower for the former, as was the in silico binding energy of simvastatin, alpha-asarone and the HMG-CoA substrate. E711Q displayed the lowest enzymatic activity and binding energy, suggesting the importance of Glu711 (in the substrate binding site). The double mutant CgHMGR E680Q-M807R exhibited the second lowest enzymatic activity. Based on the values of the kinetic parameters KM and Vmax, the mutated amino acids appear to participate in binding. The current findings provide insights into the role of residues in the catalytic site of CgHMGR.
Collapse
Affiliation(s)
- Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, CP 11340, Mexico City, Mexico
| | - Vanessa Fernández-Muñoz
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, CP 11340, Mexico City, Mexico
| | - Wendy González-Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, Mexico City, Mexico
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, CP 11340, Mexico City, Mexico
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, Mexico City, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, CP 11340, Mexico City, Mexico.
| |
Collapse
|
43
|
Investigating Candida glabrata Urinary Tract Infections (UTIs) in Mice Using Bioluminescence Imaging. J Fungi (Basel) 2021; 7:jof7100844. [PMID: 34682265 PMCID: PMC8538756 DOI: 10.3390/jof7100844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Urinary tract infections (UTIs) are quite common and mainly caused by bacteria such as Escherichia coli. However, when patients have urinary catheters, fungal infections comprise up to 15% of these types of infections. Moreover, fungal UTIs have a high mortality, due to rapid spreading of the fungi to the kidneys. Most fungal UTIs are caused by Candida species, among which Candida albicans and Candida glabrata are the most common. C. glabrata is an opportunistic pathogenic yeast, phylogenetically quite close to Saccharomyces cerevisiae. Even though it is commonly isolated from the urinary tract and rapidly acquires resistance to antifungals, its pathogenesis has not been studied extensively in vivo. In vivo studies require high numbers of animals, which can be overcome by the use of non-invasive imaging tools. One such tool, bioluminescence imaging, has been used successfully to study different types of C. albicans infections. For C. glabrata, only biofilms on subcutaneously implanted catheters have been imaged using this tool. In this work, we investigated the progression of C. glabrata UTIs from the bladder to the kidneys and the spleen. Furthermore, we optimized expression of a red-shifted firefly luciferase in C. glabrata for in vivo use. We propose the first animal model using bioluminescence imaging to visualize C. glabrata in mouse tissues. Additionally, this UTI model can be used to monitor antifungal activity in vivo over time.
Collapse
|
44
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:pharmaceutics13101529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| |
Collapse
|
45
|
Radosa S, Sprague JL, Lau SH, Tóth R, Linde J, Krüger T, Sprenger M, Kasper L, Westermann M, Kniemeyer O, Hube B, Brakhage AA, Gácser A, Hillmann F. The fungivorous amoeba Protostelium aurantium targets redox homeostasis and cell wall integrity during intracellular killing of Candida parapsilosis. Cell Microbiol 2021; 23:e13389. [PMID: 34460149 DOI: 10.1111/cmi.13389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/08/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba Protostelium aurantium has a wide fungal food spectrum including foremost pathogenic members of the genus Candida. Here we show that upon phagocytic ingestion by the amoeba, Candida parapsilosis is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene CRP1 and the peroxiredoxin gene PRX1 contributing to survival when encountered with P. aurantium. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of C. parapsilosis in vitro. Proteomic analysis identified 56 vesicular proteins from P. aurantium. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments. TAKE AWAY: The amoeba Protostelium aurantium feeds on fungi, such as Candida parapsilosis. Ingested yeast cells are exposed to reactive oxygen species. A copper exporter and a peroxiredoxin contribute to fungal defence. Yeast cells undergo intracellular lysis. Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.
Collapse
Affiliation(s)
- Silvia Radosa
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Jakob L Sprague
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Siu-Hin Lau
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Marcel Sprenger
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | | | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Bernhard Hube
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| |
Collapse
|
46
|
Fan Y, Gale AN, Bailey A, Barnes K, Colotti K, Mass M, Morina LB, Robertson B, Schwab R, Tselepidakis N, Timp W. Genome and transcriptome of a pathogenic yeast, Candida nivariensis. G3 (BETHESDA, MD.) 2021; 11:jkab137. [PMID: 33890630 PMCID: PMC8496292 DOI: 10.1093/g3journal/jkab137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/11/2021] [Indexed: 11/14/2022]
Abstract
We present a highly contiguous genome and transcriptome of the pathogenic yeast, Candida nivariensis. We sequenced both the DNA and RNA of this species using both the Oxford Nanopore Technologies and Illumina platforms. We assembled the genome into an 11.8 Mb draft composed of 16 contigs with an N50 of 886 Kb, including a circular mitochondrial sequence of 28 Kb. Using direct RNA nanopore sequencing and Illumina cDNA sequencing, we constructed an annotation of our new assembly, supplemented by lifting over genes from Saccharomyces cerevisiae and Candida glabrata.
Collapse
Affiliation(s)
- Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew N Gale
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anna Bailey
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kali Barnes
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kiersten Colotti
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michal Mass
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Luke B Morina
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bailey Robertson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Remy Schwab
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Niki Tselepidakis
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Infectious Disease, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Essen LO, Vogt MS, Mösch HU. Diversity of GPI-anchored fungal adhesins. Biol Chem 2021; 401:1389-1405. [PMID: 33035180 DOI: 10.1515/hsz-2020-0199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Selective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.
Collapse
Affiliation(s)
- Lars-Oliver Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| | - Marian Samuel Vogt
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany
| | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| |
Collapse
|
48
|
Zhao T, Zwaenepoel A, Xue JY, Kao SM, Li Z, Schranz ME, Van de Peer Y. Whole-genome microsynteny-based phylogeny of angiosperms. Nat Commun 2021; 12:3498. [PMID: 34108452 PMCID: PMC8190143 DOI: 10.1038/s41467-021-23665-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Plant genomes vary greatly in size, organization, and architecture. Such structural differences may be highly relevant for inference of genome evolution dynamics and phylogeny. Indeed, microsynteny-the conservation of local gene content and order-is recognized as a valuable source of phylogenetic information, but its use for the inference of large phylogenies has been limited. Here, by combining synteny network analysis, matrix representation, and maximum likelihood phylogenetic inference, we provide a way to reconstruct phylogenies based on microsynteny information. Both simulations and use of empirical data sets show our method to be accurate, consistent, and widely applicable. As an example, we focus on the analysis of a large-scale whole-genome data set for angiosperms, including more than 120 available high-quality genomes, representing more than 50 different plant families and 30 orders. Our 'microsynteny-based' tree is largely congruent with phylogenies proposed based on more traditional sequence alignment-based methods and current phylogenetic classifications but differs for some long-contested and controversial relationships. For instance, our synteny-based tree finds Vitales as early diverging eudicots, Saxifragales within superasterids, and magnoliids as sister to monocots. We discuss how synteny-based phylogenetic inference can complement traditional methods and could provide additional insights into some long-standing controversial phylogenetic relationships.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shu-Min Kao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
49
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
50
|
Transient Mitochondria Dysfunction Confers Fungal Cross-Resistance against Phagocytic Killing and Fluconazole. mBio 2021; 12:e0112821. [PMID: 34061590 PMCID: PMC8262853 DOI: 10.1128/mbio.01128-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Loss or inactivation of antivirulence genes is an adaptive strategy in pathogen evolution. Candida glabrata is an important opportunistic pathogen related to baker’s yeast, with the ability to both quickly increase its intrinsic high level of azole resistance and persist within phagocytes. During C. glabrata’s evolution as a pathogen, the mitochondrial DNA polymerase CgMip1 has been under positive selection. We show that CgMIP1 deletion not only triggers loss of mitochondrial function and a petite phenotype, but increases C. glabrata’s azole and endoplasmic reticulum (ER) stress resistance and, importantly, its survival in phagocytes. The same phenotype is induced by fluconazole and by exposure to macrophages, conferring a cross-resistance between antifungals and immune cells, and can be found in clinical isolates despite a slow growth of petite strains. This suggests that petite constitutes a bet-hedging strategy of C. glabrata and, potentially, a relevant cause of azole resistance. Mitochondrial function may therefore be considered a potential antivirulence factor.
Collapse
|