1
|
Fabiszewska A, Wierzchowska K, Dębkowska I, Śliczniak W, Ziółkowska M, Jasińska K, Kobus J, Nowak D, Zieniuk B. Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues. Foods 2024; 13:2305. [PMID: 39063389 PMCID: PMC11275504 DOI: 10.3390/foods13142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
There is a growing demand for vegan products and plant-based food when dealing with the impact of livestock on the climate crisis. The aim of this study was to develop a formulation for a plant-based analogue of mold-ripened cheese. Were investigated the following plant materials: cashews, pistachios, soy flour, chickpea flour, pea protein, pumpkin protein, hemp protein, and spirulina powder. Plant matrices were fermented with lactic acid bacteria (LAB) starter cultures and cheese starter cultures of mold species Geotrichum candidum and Penicillium camemberti. All microorganisms' growth were tested in a vegan-type culture medium. Calcium supplementation was applied and followed by an in-depth analysis of the elemental composition of selected analogues with inductively coupled plasma optical emission spectroscopy. The physicochemical and organoleptic analyses of plant-based alternatives of Camembert were conducted. This is the first paper describing novel formulations for plant-based alternatives for Camembert cheese prepared with techniques mimicking the original milk product.
Collapse
Affiliation(s)
- Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Katarzyna Wierzchowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Ilona Dębkowska
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Weronika Śliczniak
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Magdalena Ziółkowska
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Karina Jasińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Joanna Kobus
- Faculty of Food Technology, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Dorota Nowak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
3
|
Ye R, Tomo C, Chan N, Wolfe BE. Penicillium molds impact the transcriptome and evolution of the cheese bacterium Staphylococcus equorum. mSphere 2023; 8:e0004723. [PMID: 37219436 PMCID: PMC10449494 DOI: 10.1128/msphere.00047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The observation that Penicillium molds can inhibit the growth of Staphylococcus was a catalyst for the antibiotic revolution. Considerable attention has been paid to purified Penicillium metabolites that inhibit bacteria, but little is known about how Penicillium species impact the ecology and evolution of bacteria in multispecies microbial communities. Here, we investigated how four different species of Penicillium can impact global transcription and evolution of a widespread Staphylococcus species (S. equorum) using the cheese rind model microbiome. Through RNA sequencing, we identified a core transcriptional response of S. equorum against all five tested Penicillium strains, including upregulation of thiamine biosynthesis, fatty acid degradation, and amino acid metabolism as well as downregulation of genes involved in the transport of siderophores. In a 12-week evolution experiment where we co-cultured S. equorum with the same Penicillium strains, we observed surprisingly few non-synonymous mutations across S. equorum populations evolved with the Penicillium species. A mutation in a putative DHH family phosphoesterase gene only occurred in populations evolved without Penicillium and decreased the fitness of S. equorum when co-cultured with an antagonistic Penicillium strain. Our results highlight the potential for conserved mechanisms of Staphylococcus-Penicillium interactions and demonstrate how fungal biotic environments may constrain the evolution of bacterial species.IMPORTANCEFungi and bacteria are commonly found co-occurring both in natural and synthetic microbiomes, but our understanding of fungal-bacterial interactions is limited to a handful of species. Conserved mechanisms of interactions and evolutionary consequences of fungal-bacterial interactions are largely unknown. Our RNA sequencing and experimental evolution data with Penicillium species and the bacterium S. equorum demonstrate that divergent fungal species can elicit conserved transcriptional and genomic responses in co-occurring bacteria. Penicillium molds are integral to the discovery of novel antibiotics and production of certain foods. By understanding how Penicillium species affect bacteria, our work can further efforts to design and manage Penicillium-dominated microbial communities in industry and food production.
Collapse
Affiliation(s)
- Ruby Ye
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Christopher Tomo
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Neal Chan
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Benjamin E. Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
4
|
Wu C, Jiang N, Wang R, Jiang S, Yuan Z, Luo X, Wu J, Shi H, Wu R. Linoleic acid enrichment of cheese by okara flour and Geotrichum candidum overexpressing Δ12 fatty acid desaturase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2960-2969. [PMID: 36534037 DOI: 10.1002/jsfa.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mold-ripened cheeses have low levels of unsaturated fatty acids (UFAs). Geotrichum candidum is an adjunct culture for the development of Geotrichum-ripened cheese but has a low ability to produce high levels of UFAs. Δ12 fatty acid desaturase (FADS12) is a pivotal enzyme that converts oleic acid (OA) to linoleic acid (LA) and plays a vital role in UFA biosynthesis. By investigating FADS12 catalytic activity from various species with OA substrates, we found that FADS12 from Mucor circinelloides (McFADS12) had the highest catalytic activity for OA. RESULTS In the current study, a plasmid harboring McFADS12 was constructed and overexpressed in G. candidum. Our results showed that LA production increased to 31.1 ± 1.4% in engineered G. candidum - three times higher than that in wild-type G. candidum. To enhance LA production, an exogenous substrate (OA) was supplemented, and the yield of LA was increased to 154 ± 6 mg L-1 in engineered G. candidum. Engineered G. candidum was used as an adjunct culture for Geotrichum-ripened cheese production. The LA level reached 74.3 ± 5.4 g kg-1 cheese, whereas the level of saturated fatty acids (SFAs) decreased by 9.9 ± 0.5%. In addition, the soybean byproduct (okara) was introduced into the engineered G. candidum growth and the level of LA increased to 126 ± 4 g kg-1 cheese and the percentage of UFAs:SFAs increased from 0.8:1 to 1.3:1. CONCLUSION This study offers a suitable technology for converting SFAs to UFAs in Geotrichum-ripened cheeses and provides a novel trend for converting soybean waste into a value-added product. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Ruhong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Shanshan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Zhijia Yuan
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, People's Republic of China
| |
Collapse
|
5
|
Kamilari E, Stanton C, Reen FJ, Ross RP. Uncovering the Biotechnological Importance of Geotrichum candidum. Foods 2023; 12:foods12061124. [PMID: 36981051 PMCID: PMC10048088 DOI: 10.3390/foods12061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Fungi make a fundamental contribution to several biotechnological processes, including brewing, winemaking, and the production of enzymes, organic acids, alcohols, antibiotics, and pharmaceuticals. The present review explores the biotechnological importance of the filamentous yeast-like fungus Geotrichum candidum, a ubiquitous species known for its use as a starter in the dairy industry. To uncover G. candidum's biotechnological role, we performed a search for related work through the scientific indexing internet services, Web of Science and Google Scholar. The following query was used: Geotrichum candidum, producing about 6500 scientific papers from 2017 to 2022. From these, approximately 150 that were associated with industrial applications of G. candidum were selected. Our analysis revealed that apart from its role as a starter in the dairy and brewing industries, this species has been administered as a probiotic nutritional supplement in fish, indicating improvements in developmental and immunological parameters. Strains of this species produce a plethora of biotechnologically important enzymes, including cellulases, β-glucanases, xylanases, lipases, proteases, and α-amylases. Moreover, strains that produce antimicrobial compounds and that are capable of bioremediation were identified. The findings of the present review demonstrate the importance of G. candidum for agrifood- and bio-industries and provide further insights into its potential future biotechnological roles.
Collapse
Affiliation(s)
- Eleni Kamilari
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, T12 YT20 Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
6
|
Morin MA, Morrison AJ, Harms MJ, Dutton RJ. Higher-order interactions shape microbial interactions as microbial community complexity increases. Sci Rep 2022; 12:22640. [PMID: 36587027 PMCID: PMC9805437 DOI: 10.1038/s41598-022-25303-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/28/2022] [Indexed: 01/01/2023] Open
Abstract
Non-pairwise interactions, or higher-order interactions (HOIs), in microbial communities have been described as significant drivers of emergent features in microbiomes. Yet, the re-organization of microbial interactions between pairwise cultures and larger communities remains largely unexplored from a molecular perspective but is central to our understanding and further manipulation of microbial communities. Here, we used a bottom-up approach to investigate microbial interaction mechanisms from pairwise cultures up to 4-species communities from a simple microbiome (Hafnia alvei, Geotrichum candidum, Pencillium camemberti and Escherichia coli). Specifically, we characterized the interaction landscape for each species combination involving E. coli by identifying E. coli's interaction-associated mutants using an RB-TnSeq-based interaction assay. We observed a deep reorganization of the interaction-associated mutants, with very few 2-species interactions conserved all the way up to a 4-species community and the emergence of multiple HOIs. We further used a quantitative genetics strategy to decipher how 2-species interactions were quantitatively conserved in higher community compositions. Epistasis-based analysis revealed that, of the interactions that are conserved at all levels of complexity, 82% follow an additive pattern. Altogether, we demonstrate the complex architecture of microbial interactions even within a simple microbiome, and provide a mechanistic and molecular explanation of HOIs.
Collapse
Affiliation(s)
- Manon A. Morin
- grid.266100.30000 0001 2107 4242School of Biological Science, University of California San Diego, San Diego, 92093 USA
| | - Anneliese J. Morrison
- grid.170202.60000 0004 1936 8008Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR USA ,grid.170202.60000 0004 1936 8008Institute of Molecular Biology, University of Oregon, Eugene, OR USA
| | - Michael J. Harms
- grid.170202.60000 0004 1936 8008Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR USA ,grid.170202.60000 0004 1936 8008Institute of Molecular Biology, University of Oregon, Eugene, OR USA
| | - Rachel J. Dutton
- grid.266100.30000 0001 2107 4242School of Biological Science, University of California San Diego, San Diego, 92093 USA
| |
Collapse
|
7
|
Abré MG, Kouakou-Kouamé CA, N'guessan FK, Teyssier C, Montet D. Occurrence of biogenic amines and their correlation with bacterial communities in the Ivorian traditional fermented fish adjuevan during the storage. Folia Microbiol (Praha) 2022; 68:257-275. [PMID: 36264452 DOI: 10.1007/s12223-022-01010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Adjuevan is an Ivorian traditional fermented fish used as a condiment. However, the fermentation process and storage conditions may lead to the production of biogenic amines (BA) which can induce severe human toxicological effects. Thus, this study aimed to reveal the bacterial community diversity and the BA contents during the storage. Samples of adjuevan from the fish species Chloroscombrus chrysurus, Galeoides decadactylus, and Thunnus thynnus were collected from local producers, stored at ambient temperature (28-30 °C) and in a refrigerator (4 °C) over a period of 8 weeks. At 2-week intervals, BA were determined by HPLC and the bacterial communities analyzed using high-throughput sequencing (NGS) of the V3-V4 region of the 16S rRNA gene. Results showed that histamine, cadaverine, putrescine, and tyramine were the major compounds. In adjuevan from T. thynnus, the level of histamine was over the maximum level of 200 mg/kg determined by Codex Alimentarius. For the other amines, no safety concerns are related. In total, 21 bacterial genera with a relative abundance ≥ 1% and belonging to 14 families and 5 phyla were detected. The Bacillaceae family was the most found at ambient temperature while Staphylococcaceae and Enterococcaceae were the most abundant in a refrigerator. The analysis of correlation showed that the increase of Lentibacillus leads to a decrease of the major BA at ambient temperature. On the contrary, the increase of Staphylococcus, Lactobacillus, Psychrobacter, Peptostreptococcus, and Fusobacterium leads to an increase of these biogenic compounds. Thus, Lentibacillus acted as BA-oxidizing bacteria while the others were found as BA-producing bacteria during adjuevan storage.
Collapse
Affiliation(s)
- Marina Ghislaine Abré
- Laboratoire de Biotechnologie Et Microbiologie Des Aliments, Unité de Formation Et de Recherche en Sciences Et Technologie Des Aliments (UFR-STA), Université Nangui Abrogoua, Abidjan 02, 02 BP 801, Ivory Coast.
- UMR 95 QualiSud, Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement (CIRAD), Université de Montpellier, Avignon Université, Institut Agro, IRD, Université de La Réunion, Montpellier Cedex 5, 34398, France.
| | - Clémentine Amenan Kouakou-Kouamé
- Laboratoire de Biotechnologie Et Microbiologie Des Aliments, Unité de Formation Et de Recherche en Sciences Et Technologie Des Aliments (UFR-STA), Université Nangui Abrogoua, Abidjan 02, 02 BP 801, Ivory Coast
| | - Florent Kouadio N'guessan
- Laboratoire de Biotechnologie Et Microbiologie Des Aliments, Unité de Formation Et de Recherche en Sciences Et Technologie Des Aliments (UFR-STA), Université Nangui Abrogoua, Abidjan 02, 02 BP 801, Ivory Coast
| | - Corinne Teyssier
- UMR 95 QualiSud, Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement (CIRAD), Université de Montpellier, Avignon Université, Institut Agro, IRD, Université de La Réunion, Montpellier Cedex 5, 34398, France
| | - Didier Montet
- UMR 95 QualiSud, Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement (CIRAD), Université de Montpellier, Avignon Université, Institut Agro, IRD, Université de La Réunion, Montpellier Cedex 5, 34398, France
| |
Collapse
|
8
|
Lee HW, Yoon SR, Dang YM, Yun JH, Jeong H, Kim KN, Bae JW, Ha JH. Metatranscriptomic and metataxonomic insights into the ultra-small microbiome of the Korean fermented vegetable, kimchi. Front Microbiol 2022; 13:1026513. [PMID: 36274711 PMCID: PMC9581167 DOI: 10.3389/fmicb.2022.1026513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Presently, pertinent information on the ultra-small microbiome (USM) in fermented vegetables is still lacking. This study analyzed the metatranscriptome and metataxonome for the USM of kimchi. Tangential flow filtration was used to obtain a USM with a size of 0.2 μm or less from kimchi. The microbial diversity in the USM was compared with that of the normal microbiome (NM). Alpha diversity was higher in the USM than in NM, and the diversity of bacterial members of the NM was higher than that of the USM. At the phylum level, both USM and NM were dominated by Firmicutes. At the genus level, the USM and NM were dominated by Lactobacillus, Leuconostoc, and Weissella, belonging to lactic acid bacteria. However, as alpha diversity is higher in the USM than in the NM, the genus Akkermansia, belonging to the phylum Verrucomicrobia, was detected only in the USM. Compared to the NM, the USM showed a relatively higher ratio of transcripts related to “protein metabolism,” and the USM was suspected to be involved with the viable-but-nonculturable (VBNC) state. When comparing the sub-transcripts related to the “cell wall and capsule” of USM and NM, USM showed a proportion of transcripts suspected of being VBNC. In addition, the RNA virome was also identified, and both the USM and NM were confirmed to be dominated by pepper mild mottle virus (PMMoV). Additionally, the correlation between metataxonome and metatranscriptome identified USM and NM was estimated, however, only limited correlations between metataxonome and metatranscriptome were estimated. This study provided insights into the relationship between the potential metabolic activities of the USM of kimchi and the NM.
Collapse
Affiliation(s)
- Hae-Won Lee
- Hygienic Safety Packaging Research Group, World Institute of Kimchi, Gwangju, South Korea
- Department of Biology, Kyung Hee University, Seoul, South Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | - So-Ra Yoon
- Hygienic Safety Packaging Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Yun-Mi Dang
- Hygienic Safety Packaging Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Ji-Hyun Yun
- Department of Biology, Kyung Hee University, Seoul, South Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | - Hoibin Jeong
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, South Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kil-Nam Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul, South Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
- *Correspondence: Jin-Woo Bae,
| | - Ji-Hyoung Ha
- Hygienic Safety Packaging Research Group, World Institute of Kimchi, Gwangju, South Korea
- Ji-Hyoung Ha,
| |
Collapse
|
9
|
Lamarche A, Lessard MH, Viel C, Turgeon SL, St-Gelais D, Labrie S. Quantitative PCR reveals the frequency and distribution of 3 indigenous yeast species across a range of specialty cheeses. J Dairy Sci 2022; 105:8677-8687. [PMID: 36114057 DOI: 10.3168/jds.2022-21949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
Indigenous microorganisms are important components of the complex ecosystem of many dairy foods including cheeses, and they are potential contributors to the development of a specific cheese's sensory properties. Among these indigenous microorganisms are the yeasts Cyberlindnera jadinii, Pichia kudriavzevii, and Kazachstania servazzii, which were previously detected using traditional microbiological methods in both raw milk and some artisanal specialty cheeses produced in the province of Québec, Canada. However, their levels across different cheese varieties are unknown. A highly specific and sensitive real-time quantitative PCR assay was developed to quantitate these yeast species in a variety of specialty cheeses (bloomy-rind, washed-rind, and natural-rind cheeses from raw, thermized, and pasteurized milks). The specificity of the quantitative PCR assay was validated, and it showed no cross-amplification with 11 other fungal microorganisms usually found in bloomy-rind and washed-rind cheeses. Cyberlindnera jadinii and P. kudriavzevii were found in the majority of the cheeses analyzed (25 of 29 and 24 of 29 cheeses, respectively) in concentrations up to 104 to 108 gene copies/g in the cheese cores, which are considered oxygen-poor environments, and 101 to 104 gene copies/cm2 in the rind. However, their high abundance was not observed in the same samples. Whereas C. jadinii was present and dominant in all core and rind samples, P. kudriavzevii was mostly present in cheese cores. In contrast, K. servazzii was present in the rinds of only 2 cheeses, in concentrations ranging from 101 to 103 gene copies/cm2, and in 1 cheese core at 105 gene copies/g. Thus, in the ecosystems of specialty cheeses, indigenous yeasts are highly frequent but variable, with certain species selectively present in specific varieties. These results shed light on some indigenous yeasts that establish during the ripening of specialty cheeses.
Collapse
Affiliation(s)
- A Lamarche
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada
| | - M-H Lessard
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada
| | - C Viel
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada
| | - S L Turgeon
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada
| | - D St-Gelais
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, J2S 8E3, Canada
| | - S Labrie
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada.
| |
Collapse
|
10
|
Carbonne C, Labadie K, Cruaud C, Brun E, Barbe V, Monnet C. Metatranscriptomics of cheese microbial communities: Efficiency of RNA extraction from various cheese types and of mRNA enrichment. Int J Food Microbiol 2022; 373:109701. [DOI: 10.1016/j.ijfoodmicro.2022.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 11/27/2022]
|
11
|
Hagi T, Kurahashi A, Oguro Y, Kodaira K, Kobayashi M, Hayashida S, Yamashita H, Arakawa Y, Miura T, Sato K, Tomita S, Suzuki S, Kusumoto KI, Moriya N, Nomura M. Effect of sake lees on cheese components in cheese ripened by Aspergillus oryzae and lactic acid bacteria. J Dairy Sci 2022; 105:4868-4881. [DOI: 10.3168/jds.2021-21721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/26/2022] [Indexed: 11/19/2022]
|
12
|
Identification of characteristic flavor and microorganisms related to flavor formation in fermented common carp (Cyprinus carpio L.). Food Res Int 2022; 155:111128. [DOI: 10.1016/j.foodres.2022.111128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/20/2023]
|
13
|
Anastasiou R, Kazou M, Georgalaki M, Aktypis A, Zoumpopoulou G, Tsakalidou E. Omics Approaches to Assess Flavor Development in Cheese. Foods 2022; 11:188. [PMID: 35053920 PMCID: PMC8775153 DOI: 10.3390/foods11020188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cheese is characterized by a rich and complex microbiota that plays a vital role during both production and ripening, contributing significantly to the safety, quality, and sensory characteristics of the final product. In this context, it is vital to explore the microbiota composition and understand its dynamics and evolution during cheese manufacturing and ripening. Application of high-throughput DNA sequencing technologies have facilitated the more accurate identification of the cheese microbiome, detailed study of its potential functionality, and its contribution to the development of specific organoleptic properties. These technologies include amplicon sequencing, whole-metagenome shotgun sequencing, metatranscriptomics, and, most recently, metabolomics. In recent years, however, the application of multiple meta-omics approaches along with data integration analysis, which was enabled by advanced computational and bioinformatics tools, paved the way to better comprehension of the cheese ripening process, revealing significant associations between the cheese microbiota and metabolites, as well as their impact on cheese flavor and quality.
Collapse
Affiliation(s)
- Rania Anastasiou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (M.K.); (M.G.); (A.A.); (G.Z.); (E.T.)
| | | | | | | | | | | |
Collapse
|
14
|
Abreu ACDS, Carazzolle MF, Crippa BL, Barboza GR, Mores Rall VL, de Oliveira Rocha L, Silva NCC. Bacterial diversity in organic and conventional Minas Frescal cheese production using targeted 16S rRNA sequencing. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Zhang L, Huang C, Johansen PG, Petersen MA, Poojary MM, Lund MN, Jespersen L, Arneborg N. The utilisation of amino acids by Debaryomyces hansenii and Yamadazyma triangularis associated with cheese. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Ferrocino I, Rantsiou K, Cocolin L. Investigating dairy microbiome: an opportunity to ensure quality, safety and typicity. Curr Opin Biotechnol 2021; 73:164-170. [PMID: 34474311 DOI: 10.1016/j.copbio.2021.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
A detailed understanding of the microbiome of cheese and dairy products is key to the optimization of flavour, appearance, overall quality and safety. Microorganisms (including bacteria, yeasts, moulds and viruses, especially bacteriophages) from the environment can enter the dairy supply chain at multiple stages with several implications. The ability to track these microorganisms and to understand their function and interaction can be greatly enhanced by the use of high-throughput sequencing. Depending on the specific production technology, dairy products can harbor several strains and antibiotic-resistance genes that can potentially interact with the gut microbiome, once the product is ingested. Milk-associated or cheese-associated microbial communities with their interaction, function and diversity are a key factor for the dairy industry. Multi-omics approaches have been seldom utilized in literature and they need to be further considered. Studying the role, origin, diversity and function of the microbial species involved in the complex system of dairy production can help improve processes in several fields of application. Integrating an extensive sampling procedure with an extensive culture based methodology is necessary. To this end, local producers, and in general stakeholders, should be guided to discover and maintain their microbial diversity. A better management of microbial resources through precision fermentation processes will in turn reduce overall food losses and increase the possibility to use the microbiome in order to increase the local producers' income.
Collapse
Affiliation(s)
- Ilario Ferrocino
- DISAFA-Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Kalliopi Rantsiou
- DISAFA-Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Luca Cocolin
- DISAFA-Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
17
|
Zheng X, Shi X, Wang B. A Review on the General Cheese Processing Technology, Flavor Biochemical Pathways and the Influence of Yeasts in Cheese. Front Microbiol 2021; 12:703284. [PMID: 34394049 PMCID: PMC8358398 DOI: 10.3389/fmicb.2021.703284] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 12/05/2022] Open
Abstract
Cheese has a long history and this naturally fermented dairy product contains a range of distinctive flavors. Microorganisms in variety cheeses are an essential component and play important roles during both cheese production and ripening. However, cheeses from different countries are still handmade, the processing technology is diverse, the microbial community structure is complex and the cheese flavor fluctuates greatly. Therefore, studying the general processing technology and relationship between microbial structure and flavor formation in cheese is the key to solving the unstable quality and standardized production of cheese flavor on basis of maintaining the flavor of cheese. This paper reviews the research progress on the general processing technology and key control points of natural cheese, the biochemical pathways for production of flavor compounds in cheeses, the diversity and the role of yeasts in cheese. Combined with the development of modern detection technology, the evolution of microbial structure, population evolution and flavor correlation in cheese from different countries was analyzed, which is of great significance for the search for core functional yeast microorganisms and the industrialization prospect of traditional fermented cheese.
Collapse
Affiliation(s)
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Comparative Peptidomic and Metatranscriptomic Analyses Reveal Improved Gamma-Amino Butyric Acid Production Machinery in Levilactobacillus brevis Strain NPS-QW 145 Cocultured with Streptococcus thermophilus Strain ASCC1275 during Milk Fermentation. Appl Environ Microbiol 2020; 87:AEM.01985-20. [PMID: 33067198 DOI: 10.1128/aem.01985-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
The high-gamma-amino butyric acid (GABA)-producing bacterium Levilactobacillus brevis strain NPS-QW 145, along with Streptococcus thermophilus (one of the two starter bacteria used to make yogurt for its proteolytic activity), enhances GABA production in milk. However, a mechanistic understanding of how Levilactobacillus brevis cooperates with S. thermophilus to stimulate GABA production has been lacking. Comparative peptidomic and metatranscriptomic analyses were carried out to unravel the casein and lactose utilization patterns during milk fermentation with the coculture. We found that particular peptides hydrolyzed by S. thermophilus ASCC1275 were transported and biodegraded with peptidase in Lb. brevis 145 to meet the growth needs of the latter. In addition, amino acid synthesis and metabolism in Lb. brevis 145 were activated to further support its growth. Glucose, as a result of lactose hydrolysis by S. thermophilus 1275, but not available lactose in milk, was metabolized as the main carbon source by Lb. brevis 145 for ATP production. In the stationary phase, under acidic conditions due to the accumulation of lactic acid produced by S. thermophilus 1275, the expression of genes involved in pyridoxal phosphate (coenzyme of glutamic acid decarboxylase) metabolism and glutamic acid decarboxylase (Gad) in Lb. brevis 145 was induced for GABA production.SIGNIFICANCE A huge market for GABA-rich milk as a dietary therapy for the management of hypertension is anticipated. The novelty of this work lies in applying peptide profiles supported by metatranscriptomics to elucidate (i) the pattern of casein hydrolysis by S. thermophilus 1275, (ii) the supply of peptides and glucose by S. thermophilus 1275 to Lb. brevis 145, (iii) the transportation of peptides in Lb. brevis and the degradation of peptides by this organism, which was reported to be nonproteolytic, and (iv) GABA production by Lb. brevis 145 under acidic conditions. Based on the widely reported contribution of lactic acid bacteria (LAB) and GABA to human health, the elucidation of interactions between the two groups of bacterial communities in the production of GABA-rich milk is important for promoting the development of functional dairy food and may provide new insight into the development of industrial GABA production.
Collapse
|
19
|
Los PR, Simões DRS, Benvenutti L, Zielinski AAF, Alberti A, Nogueira A. Combining chemical analysis, sensory profile, CATA, preference mapping and chemometrics to establish the consumer quality standard of Camembert‐type cheeses. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paulo Ricardo Los
- Graduate Program in Food Science and Technology State University of Ponta Grossa (UEPG) Av. Carlos Cavalcanti 4748 Ponta GrossaCEP 84.030‐900Brazil
| | - Deise Rosana Silva Simões
- Department of Food Engineering State University of Ponta Grossa (UEPG) Av. Carlos Cavalcanti 4748 Ponta GrossaCEP 84.030‐900Brazil
| | - Laís Benvenutti
- Graduate Program in Food Science and Technology State University of Ponta Grossa (UEPG) Av. Carlos Cavalcanti 4748 Ponta GrossaCEP 84.030‐900Brazil
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina (UFSC) Campus Reitor João David Ferreira Lima FlorianópolisCEP 88040‐970Brazil
| | - Aline Alberti
- Graduate Program in Food Science and Technology State University of Ponta Grossa (UEPG) Av. Carlos Cavalcanti 4748 Ponta GrossaCEP 84.030‐900Brazil
- Department of Food Engineering State University of Ponta Grossa (UEPG) Av. Carlos Cavalcanti 4748 Ponta GrossaCEP 84.030‐900Brazil
| | - Alessandro Nogueira
- Graduate Program in Food Science and Technology State University of Ponta Grossa (UEPG) Av. Carlos Cavalcanti 4748 Ponta GrossaCEP 84.030‐900Brazil
- Department of Food Engineering State University of Ponta Grossa (UEPG) Av. Carlos Cavalcanti 4748 Ponta GrossaCEP 84.030‐900Brazil
| |
Collapse
|
20
|
Perkins V, Vignola S, Lessard MH, Plante PL, Corbeil J, Dugat-Bony E, Frenette M, Labrie S. Phenotypic and Genetic Characterization of the Cheese Ripening Yeast Geotrichum candidum. Front Microbiol 2020; 11:737. [PMID: 32457706 PMCID: PMC7220993 DOI: 10.3389/fmicb.2020.00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/30/2020] [Indexed: 01/04/2023] Open
Abstract
The yeast Geotrichum candidum (teleomorph Galactomyces candidus) is inoculated onto mold- and smear-ripened cheeses and plays several roles during cheese ripening. Its ability to metabolize proteins, lipids, and organic acids enables its growth on the cheese surface and promotes the development of organoleptic properties. Recent multilocus sequence typing (MLST) and phylogenetic analyses of G. candidum isolates revealed substantial genetic diversity, which may explain its strain-dependant technological capabilities. Here, we aimed to shed light on the phenotypic and genetic diversity among eight G. candidum and three Galactomyces spp. strains of environmental and dairy origin. Phenotypic tests such as carbon assimilation profiles, the ability to grow at 35°C and morphological traits on agar plates allowed us to discriminate G. candidum from Galactomyces spp. The genomes of these isolates were sequenced and assembled; whole genome comparison clustered the G. candidum strains into three subgroups and provided a reliable reference for MLST scheme optimization. Using the whole genome sequence as a reference, we optimized an MLST scheme using six loci that were proposed in two previous MLST schemes. This new MLST scheme allowed us to identify 15 sequence types (STs) out of 41 strains and revealed three major complexes named GeoA, GeoB, and GeoC. The population structure of these 41 strains was evaluated with STRUCTURE and a NeighborNet analysis of the combined six loci, which revealed recombination events between and within the complexes. These results hint that the allele variation conferring the different STs arose from recombination events. Recombination occurred for the six housekeeping genes studied, but most likely occurred throughout the genome. These recombination events may have induced an adaptive divergence between the wild strains and the cheesemaking strains, as observed for other cheese ripening fungi. Further comparative genomic studies are needed to confirm this phenomenon in G. candidum. In conclusion, the draft assembly of 11 G. candidum/Galactomyces spp. genomes allowed us to optimize a genotyping MLST scheme and, combined with the assessment of their ability to grow under different conditions, provides a reliable tool to cluster and eventually improves the selection of G. candidum strains.
Collapse
Affiliation(s)
- Vincent Perkins
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Stéphanie Vignola
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Marie-Hélène Lessard
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Pier-Luc Plante
- Big Data Research Center, Université Laval, Quebec City, QC, Canada
| | - Jacques Corbeil
- Big Data Research Center, Université Laval, Quebec City, QC, Canada
| | - Eric Dugat-Bony
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Thiverval-Grignon, France
| | - Michel Frenette
- Oral Ecology Research Group, Faculty of Dental Medicine, Université Laval, Quebec City, QC, Canada
- Faculty of Science and Engineering, Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, Canada
| | - Steve Labrie
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
21
|
Pan M, Barrangou R. Combining omics technologies with CRISPR-based genome editing to study food microbes. Curr Opin Biotechnol 2020; 61:198-208. [DOI: 10.1016/j.copbio.2019.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022]
|
22
|
Rathnayake AU, Saravanakumar K, Abuine R, Abeywickrema S, Kathiresan K, MubarakAli D, Gupta VK, Wang MH. Fungal Genes Encoding Enzymes Used in Cheese Production and Fermentation Industries. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Kamilari E, Tomazou M, Antoniades A, Tsaltas D. High Throughput Sequencing Technologies as a New Toolbox for Deep Analysis, Characterization and Potentially Authentication of Protection Designation of Origin Cheeses? INTERNATIONAL JOURNAL OF FOOD SCIENCE 2019; 2019:5837301. [PMID: 31886165 PMCID: PMC6925717 DOI: 10.1155/2019/5837301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/08/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
Abstract
Protected Designation of Origin (PDO) labeling of cheeses has been established by the European Union (EU) as a quality policy that assures the authenticity of a cheese produced in a specific region by applying traditional production methods. However, currently used scientific methods for differentiating and establishing PDO are limited in terms of time, cost, accuracy and their ability to identify through quantifiable methods PDO fraud. Cheese microbiome is a dynamic community that progressively changes throughout ripening, contributing via its metabolism to unique qualitative and sensorial characteristics that differentiate each cheese. High Throughput Sequencing (HTS) methodologies have enabled the more precise identification of the microbial communities developed in fermented cheeses, characterization of their population dynamics during the cheese ripening process, as well as their contribution to the development of specific organoleptic and physio-chemical characteristics. Therefore, their application may provide an additional tool to identify the key microbial species that contribute to PDO cheeses unique sensorial characteristics and to assist to define their typicityin order to distinguish them from various fraudulent products. Additionally, they may assist the cheese-makers to better evaluate the quality, as well as the safety of their products. In this structured literature review indications are provided on the potential for defining PDO enabling differentiating factors based on distinguishable microbial communities shaped throughout the ripening procedures associated to cheese sensorial characteristics, as revealed through metagenomic and metatranscriptomic studies. Conclusively, HTS applications, even though still underexploited, have the potential to demonstrate how the cheese microbiome can affect the ripening process and sensorial characteristics formation via the catabolism of the available nutrients and interplay with other compounds of the matrix and/or production of microbial origin metabolites and thus their further quality enhancement.
Collapse
Affiliation(s)
- Elena Kamilari
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus
| | | | | | - Dimitrios Tsaltas
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus
| |
Collapse
|
24
|
Dugat-Bony E, Bonnarme P, Fraud S, Catellote J, Sarthou AS, Loux V, Rué O, Bel N, Chuzeville S, Helinck S. Effect of sodium chloride reduction or partial substitution with potassium chloride on the microbiological, biochemical and sensory characteristics of semi-hard and soft cheeses. Food Res Int 2019; 125:108643. [DOI: 10.1016/j.foodres.2019.108643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
|
25
|
Tilocca B, Costanzo N, Morittu VM, Spina AA, Soggiu A, Britti D, Roncada P, Piras C. Milk microbiota: Characterization methods and role in cheese production. J Proteomics 2019; 210:103534. [PMID: 31629058 DOI: 10.1016/j.jprot.2019.103534] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/04/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Milk is a complex body fluid aimed at addressing the nutritional and defensive needs of the mammal's newborns. Harbored microbiota plays a pivotal role throughout the cheesemaking process and contributes to the development of flavor and texture typical of different type of cheeses. Understanding the dairy microbiota dynamics is of paramount importance for controlling the qualitative, sensorial and biosafety features of the dairy products. Although many studies investigated the contribution of single or few microorganisms, still there is some information lacking about microbial communities. The widespread of the omics platforms and bioinformatic tools enable the investigation of the cheese-associated microbial community in both phylogenetical and functional terms, highlighting the effects of the diverse cheesemaking variables. In this review, the most relevant literature is revised to provide an introduction of the milk- and cheese-associated microbiota, along with their structural and functional dynamics in relation to the diverse cheesemaking technologies and influencing variables. Also, we focus our attention on the latest omics technologies adopted in dairy microbiota investigation. Discussion on the key-steps and major drawbacks of each omics discipline is provided along with a collection of results from the latest research studies performed to unravel the fascinating world of the dairy-associated microbiota. SIGNIFICANCE: Understanding the milk- and cheese- associated microbial community is nowadays considered a key factor in the dairy industry, since it allows a comprehensive knowledge on how all phases of the cheesemaking process impact the harbored microflora; thus, predict the consequences in the finished products in terms of texture, organoleptic characteristics, palatability and biosafety. This review, collect the pioneering and milestones works so far performed in the field of dairy microbiota, and provide the basic guidance to whom approaching the cheese microbiota investigation by means of the latest omics technologies. Also, the review emphasizes the benefits and drawbacks of the omics disciplines, and underline how the integration of diverse omics sciences enhance a comprehensive depiction of the cheese microbiota. In turn, a better consciousness of the dairy microbiota might results in the application of improved starter cultures, cheesemaking practices and technologies; supporting a bio-safe and standardized production of cheese, with a strong economic benefit for both large-scale industries and local traditional dairy farms.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Nicola Costanzo
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Anna Antonella Spina
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Alessio Soggiu
- Department of Veterinary Sciences, University of Milano, Milano, Italy
| | - Domenico Britti
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy.
| | - Cristian Piras
- Department of Chemistry, University of Reading, Reading, United Kingdom
| |
Collapse
|
26
|
Bodinaku I, Shaffer J, Connors AB, Steenwyk JL, Biango-Daniels MN, Kastman EK, Rokas A, Robbat A, Wolfe BE. Rapid Phenotypic and Metabolomic Domestication of Wild Penicillium Molds on Cheese. mBio 2019; 10:e02445-19. [PMID: 31615965 PMCID: PMC6794487 DOI: 10.1128/mbio.02445-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 02/05/2023] Open
Abstract
Fermented foods provide novel ecological opportunities for natural populations of microbes to evolve through successive recolonization of resource-rich substrates. Comparative genomic data have reconstructed the evolutionary histories of microbes adapted to food environments, but experimental studies directly demonstrating the process of domestication are lacking for most fermented food microbes. Here, we show that during adaptation to cheese, phenotypic and metabolomic traits of wild Penicillium molds rapidly change to produce domesticated phenotypes with properties similar to those of the industrial cultures used to make Camembert and other bloomy rind cheeses. Over a period of just a few weeks, populations of wild Penicillium strains serially passaged on cheese had reduced pigment, spore, and mycotoxin production. Domesticated strains also had a striking change in volatile metabolite production, shifting from production of earthy or musty volatile compounds (e.g., geosmin) to fatty and cheesy volatiles (e.g., 2-nonanone, 2-undecanone). RNA sequencing demonstrated a significant decrease in expression of 356 genes in domesticated strains, with an enrichment of many secondary metabolite production pathways in these downregulated genes. By manipulating the presence of neighboring microbial species and overall resource availability, we demonstrate that the limited competition and high nutrient availability of the cheese environment promote rapid trait evolution of Penicillium molds.IMPORTANCE Industrial cultures of filamentous fungi are used to add unique aesthetics and flavors to cheeses and other microbial foods. How these microbes adapted to live in food environments is generally unknown as most microbial domestication is unintentional. Our work demonstrates that wild molds closely related to the starter culture Penicillium camemberti can readily lose traits and quickly shift toward producing desirable aroma compounds. In addition to experimentally demonstrating a putative domestication pathway for P. camemberti, our work suggests that wild Penicillium isolates could be rapidly domesticated to produce new flavors and aesthetics in fermented foods.
Collapse
Affiliation(s)
- Ina Bodinaku
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Jason Shaffer
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Allison B Connors
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Jacob L Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, USA
| | | | - Erik K Kastman
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, USA
| | - Albert Robbat
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
- Tufts University Sensory and Science Center, Medford, Massachusetts, USA
| | - Benjamin E Wolfe
- Tufts University, Department of Biology, Medford, Massachusetts, USA
- Tufts University Sensory and Science Center, Medford, Massachusetts, USA
| |
Collapse
|
27
|
Perea-Sanz L, Peris D, Belloch C, Flores M. Debaryomyces hansenii Metabolism of Sulfur Amino Acids As Precursors of Volatile Sulfur Compounds of Interest in Meat Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9335-9343. [PMID: 31343169 DOI: 10.1021/acs.jafc.9b03361] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability of Debaryomyces hansenii to produce volatile sulfur compounds from sulfur amino acids and the metabolic pathway involved have been studied in seven strains from different food origins. Our results proved that l-methionine is the main precursor for sulfur compound generation. Crucial differences in the sulfur compound profile and amino acid consumption among D. hansenii strains isolated from different food sources were observed. Strains isolated from dry pork sausages displayed the most complex sulfur compound profiles. Sulfur compound production, such as that of methional, could result from chemical reactions or yeast metabolism, while according to this study, thioester methyl thioacetate appeared to be generated by yeast metabolism. No relationship between sulfur compounds production by D. hansenii strains and the expression of genes involved in sulfur amino acid metabolism was found, except for the ATF2 gene in the L1 strain for production of methyl thioacetate. Our results suggest a complex scenario during sulfur compound production by D. hansenii.
Collapse
Affiliation(s)
- Laura Perea-Sanz
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avda. Agustín Escardino 7 , 46980 Paterna , Valencia , Spain
| | - David Peris
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avda. Agustín Escardino 7 , 46980 Paterna , Valencia , Spain
| | - Carmela Belloch
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avda. Agustín Escardino 7 , 46980 Paterna , Valencia , Spain
| | - Mónica Flores
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avda. Agustín Escardino 7 , 46980 Paterna , Valencia , Spain
| |
Collapse
|
28
|
Pham NP, Landaud S, Lieben P, Bonnarme P, Monnet C. Transcription Profiling Reveals Cooperative Metabolic Interactions in a Microbial Cheese-Ripening Community Composed of Debaryomyces hansenii, Brevibacterium aurantiacum, and Hafnia alvei. Front Microbiol 2019; 10:1901. [PMID: 31474970 PMCID: PMC6706770 DOI: 10.3389/fmicb.2019.01901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Ripening cultures containing fungi and bacteria are widely used in smear-ripened cheese production processes, but little is known about the biotic interactions of typical ripening microorganisms at the surface of cheese. We developed a lab-scale mini-cheese model to investigate the biotic interactions of a synthetic community that was composed of Debaryomyces hansenii, Brevibacterium aurantiacum, and Hafnia alvei, three species that are commonly used for smear-ripened cheese production. Transcriptomic analyses of cheese samples produced with different combinations of these three species revealed potential mechanisms of biotic interactions concerning iron acquisition, proteolysis, lipolysis, sulfur metabolism, and D-galactonate catabolism. A strong mutualistic interaction was observed between H. alvei and B. aurantiacum. We propose an explanation of this positive interaction in which B. aurantiacum would benefit from siderophore production by H. alvei, and the latter would be stimulated by the energy compounds liberated from caseins and triglycerides through the action of the proteases and lipases secreted by B. aurantiacum. In the future, it would be interesting to take the iron acquisition systems of cheese-associated strains into account for the purpose of improving the selection of the ripening culture components and their association in mixed cultures.
Collapse
Affiliation(s)
- Nguyen-Phuong Pham
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Sophie Landaud
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Pascale Lieben
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Pascal Bonnarme
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christophe Monnet
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
29
|
Milk and Dairy Products. Food Microbiol 2019. [DOI: 10.1128/9781555819972.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes. Int J Food Microbiol 2019; 303:9-18. [PMID: 31102963 DOI: 10.1016/j.ijfoodmicro.2019.05.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 01/21/2023]
Abstract
Complex microbial metabolism is responsible for the unique flavor of Shaoxing mechanized huangjiu. However, the relationship between the microorganisms present during fermentation and the formation of specific flavor components is difficult to understand. In this study, gas chromatography-mass spectrometry and high-performance liquid chromatography were used to identify flavor components, and a metagenomic sequencing approach was used to characterize the taxonomic and functional attributes of the Shaoxing mechanized huangjiu fermentation microbiota. The metagenomic sequencing data were used to predict the relationship between microorganisms and flavor formation. The chromatographic analysis identified amino acids, alcohols, acids, phenols and esters as major flavor components, and six microbial genera (Saccharomyces, Aspergillus, Saccharopolyspora, Staphylococcus, Lactobacillus, and Lactococcus) were most closely related to the production of these flavor components. This study helps clarify the different metabolic roles of microorganisms in flavor formation during Shaoxing huangjiu fermentation.
Collapse
|
31
|
Kumura H, Satoh M, Machiya T, Hosono M, Hayakawa T, Wakamatsu J. ‘Lipase and protease production of dairy
Penicillium
sp. on milk‐protein‐based solid substrates’. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haruto Kumura
- Laboratory of Applied Food Science Graduate School of Agriculture Hokkaido University N9, W9 Sapporo‐shi 060‐8589 Japan
| | - Megumi Satoh
- Laboratory of Applied Food Science Graduate School of Agriculture Hokkaido University N9, W9 Sapporo‐shi 060‐8589 Japan
| | - Taiki Machiya
- Laboratory of Applied Food Science Graduate School of Agriculture Hokkaido University N9, W9 Sapporo‐shi 060‐8589 Japan
| | - Makoto Hosono
- Laboratory of Applied Food Science Graduate School of Agriculture Hokkaido University N9, W9 Sapporo‐shi 060‐8589 Japan
| | - Toru Hayakawa
- Laboratory of Applied Food Science Graduate School of Agriculture Hokkaido University N9, W9 Sapporo‐shi 060‐8589 Japan
| | - Jun‐ichi Wakamatsu
- Laboratory of Applied Food Science Graduate School of Agriculture Hokkaido University N9, W9 Sapporo‐shi 060‐8589 Japan
| |
Collapse
|
32
|
Fröhlich-Wyder MT, Arias-Roth E, Jakob E. Cheese yeasts. Yeast 2019; 36:129-141. [PMID: 30512214 DOI: 10.1002/yea.3368] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023] Open
Abstract
Numerous traditionally aged cheeses are surface ripened and develop a biofilm, known as the cheese rind, on their surfaces. The rind of such cheeses comprises a complex community of bacterial and fungal species that are jointly responsible for the typical characteristics of the various cheese varieties. Surface ripening starts directly after brining with the rapid colonization of the cheese surface by yeasts. The initially dominant yeasts are acid and salt-tolerant and are capable of metabolizing the lactate produced by the starter lactic acid bacteria and of producing NH3 from amino acids. Both processes cause the pH of the cheese surface to rise dramatically. This so-called deacidification process enables the establishment of a salt-tolerant, Gram-positive bacterial community that is less acid-tolerant. Over the past decade, knowledge of yeast diversity in cheeses has increased considerably. The yeast species with the highest prevalence on surface-ripened cheeses are Debaryomyces hansenii and Geotrichum candidum, but up to 30 species can be found. In the cheese core, only lactose-fermenting yeasts, such as Kluyveromyces marxianus, are expected to grow. Yeasts are recognized as having an indispensable impact on the development of cheese flavour and texture because of their deacidifying, proteolytic, and/or lipolytic activity. Yeasts are used not only in the production of surface-ripened cheeses but also as adjunct cultures in the vat milk in order to modify ripening behaviour and flavour of the cheese. However, yeasts may also be responsible for spoilage of cheese, causing early blowing, off-flavour, brown discolouration, and other visible alterations of cheese.
Collapse
|
33
|
McAuliffe O, Kilcawley K, Stefanovic E. Symposium review: Genomic investigations of flavor formation by dairy microbiota. J Dairy Sci 2018; 102:909-922. [PMID: 30343908 DOI: 10.3168/jds.2018-15385] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/24/2018] [Indexed: 01/15/2023]
Abstract
Flavor is one of the most important attributes of any fermented dairy product. Dairy consumers are known to be willing to experiment with different flavors; thus, many companies producing fermented dairy products have looked at culture manipulation as a tool for flavor diversification. The development of flavor is a complex process, originating from a combination of microbiological, biochemical, and technological aspects. A key driver of flavor is the enzymatic activities of the deliberately inoculated starter cultures, in addition to the environmental or "nonstarter" microbiota. The contribution of microbial metabolism to flavor development in fermented dairy products has been exploited for thousands of years, but the availability of the whole genome sequences of the bacteria and yeasts involved in the fermentation process and the possibilities now offered by next-generation sequencing and downstream "omics" technologies is stimulating a more knowledge-based approach to the selection of desirable cultures for flavor development. By linking genomic traits to phenotypic outputs, it is now possible to mine the metabolic diversity of starter cultures, analyze the metabolic routes to flavor compound formation, identify those strains with flavor-forming potential, and select them for possible commercial application. This approach also allows for the identification of species and strains not previously considered as potential flavor-formers, the blending of strains with complementary metabolic pathways, and the potential improvement of key technological characteristics in existing strains, strains that are at the core of the dairy industry. An in-depth knowledge of the metabolic pathways of individual strains and their interactions in mixed culture fermentations can allow starter blends to be custom-made to suit industry needs. Applying this knowledge to starter culture research programs is enabling research and development scientists to develop superior starters, expand flavor profiles, and potentially develop new products for future market expansion.
Collapse
Affiliation(s)
- Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| | - Kieran Kilcawley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - Ewelina Stefanovic
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| |
Collapse
|
34
|
Afshari R, Pillidge CJ, Dias DA, Osborn AM, Gill H. Cheesomics: the future pathway to understanding cheese flavour and quality. Crit Rev Food Sci Nutr 2018; 60:33-47. [DOI: 10.1080/10408398.2018.1512471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roya Afshari
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Daniel A. Dias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - A. Mark Osborn
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
35
|
Ergot Alkaloid Synthesis Capacity of Penicillium camemberti. Appl Environ Microbiol 2018; 84:AEM.01583-18. [PMID: 30076193 DOI: 10.1128/aem.01583-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022] Open
Abstract
Ergot alkaloids are specialized fungal metabolites with potent biological activities. They are encoded by well-characterized gene clusters in the genomes of producing fungi. Penicillium camemberti plays a major role in the ripening of Brie and Camembert cheeses. The P. camemberti genome contains a cluster of five genes shown in other fungi to be required for synthesis of the important ergot alkaloid intermediate chanoclavine-I aldehyde and two additional genes (easH and easQ) that may control modification of chanoclavine-I aldehyde into other ergot alkaloids. We analyzed samples of Brie and Camembert cheeses, as well as cultures of P. camemberti, and did not detect chanoclavine-I aldehyde or its derivatives. To create a functioning facsimile of the P. camembertieas cluster, we expressed P. camemberti easH and easQ in a chanoclavine-I aldehyde-accumulating easA knockout mutant of Neosartorya fumigata The easH-easQ-engineered N. fumigata strain accumulated a pair of compounds of m/z 269.1288 in positive-mode liquid chromatography-mass spectrometry (LC-MS). The analytes fragmented in a manner typical of the stereoisomeric ergot alkaloids rugulovasine A and B, and the related rugulovasine producer Penicillium biforme accumulated the same isomeric pair of analytes. The P. camemberti eas genes were transcribed in culture, but comparison of the P. camemberti eas cluster with the functional cluster from P. biforme indicated 11 polymorphisms. Whereas other P. camembertieas genes functioned when expressed in N. fumigata, P. camembertieasC did not restore ergot alkaloids when expressed in an easC mutant. The data indicate that P. camemberti formerly had the capacity to produce the ergot alkaloids rugulovasine A and B.IMPORTANCE The presence of ergot alkaloid synthesis genes in the genome of Penicillium camemberti is significant, because the fungus is widely consumed in Brie and Camembert cheeses. Our results show that, although the fungus has several functional genes from the ergot alkaloid pathway, it produces only an early pathway intermediate in culture and does not produce ergot alkaloids in cheese. Penicillium biforme, a close relative of P. camemberti, contains a similar but fully functional set of ergot alkaloid synthesis genes and produces ergot alkaloids chanoclavine-I, chanoclavine-I aldehyde, and rugulovasine A and B. Our reconstruction of the P. camemberti pathway in the model fungus Neosartorya fumigata indicated that P. camemberti formerly had the capacity to produce these same ergot alkaloids. Neither P. camemberti nor P. biforme produced ergot alkaloids in cheese, indicating that nutritionally driven gene regulation prevents these fungi from producing ergot alkaloids in a dairy environment.
Collapse
|
36
|
Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. Appl Microbiol Biotechnol 2018; 102:6357-6372. [PMID: 29860590 PMCID: PMC6061484 DOI: 10.1007/s00253-018-9115-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
In industry, filamentous fungi have a prominent position as producers of economically relevant primary or secondary metabolites. Particularly, the advent of genetic engineering of filamentous fungi has led to a growing number of molecular tools to adopt filamentous fungi for biotechnical applications. Here, we summarize recent developments in fungal biology, where fungal host systems were genetically manipulated for optimal industrial applications. Firstly, available inducible promoter systems depending on carbon sources are mentioned together with various adaptations of the Tet-Off and Tet-On systems for use in different industrial fungal host systems. Subsequently, we summarize representative examples, where diverse expression systems were used for the production of heterologous products, including proteins from mammalian systems. In addition, the progressing usage of genomics and functional genomics data for strain improvement strategies are addressed, for the identification of biosynthesis genes and their related metabolic pathways. Functional genomic data are further used to decipher genomic differences between wild-type and high-production strains, in order to optimize endogenous metabolic pathways that lead to the synthesis of pharmaceutically relevant end products. Lastly, we discuss how molecular data sets can be used to modify products for optimized applications.
Collapse
|
37
|
Yeluri Jonnala BR, McSweeney PLH, Sheehan JJ, Cotter PD. Sequencing of the Cheese Microbiome and Its Relevance to Industry. Front Microbiol 2018; 9:1020. [PMID: 29875744 PMCID: PMC5974213 DOI: 10.3389/fmicb.2018.01020] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
The microbiota of cheese plays a key role in determining its organoleptic and other physico-chemical properties. It is essential to understand the various contributions, positive or negative, of these microbial components in order to promote the growth of desirable taxa and, thus, characteristics. The recent application of high throughput DNA sequencing (HTS) facilitates an even more accurate identification of these microbes, and their functional properties, and has the potential to reveal those microbes, and associated pathways, responsible for favorable or unfavorable characteristics. This technology also facilitates a detailed analysis of the composition and functional potential of the microbiota of milk, curd, whey, mixed starters, processing environments, and how these contribute to the final cheese microbiota, and associated characteristics. Ultimately, this information can be harnessed by producers to optimize the quality, safety, and commercial value of their products. In this review we highlight a number of key studies in which HTS was employed to study the cheese microbiota, and pay particular attention to those of greatest relevance to industry.
Collapse
Affiliation(s)
- Bhagya R Yeluri Jonnala
- Food and Nutrition Deptartment, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Fermoy, Ireland
| | | | | | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
38
|
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The Evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 2018; 41:S220-S243. [PMID: 28830093 DOI: 10.1093/femsre/fux028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden.
Collapse
Affiliation(s)
- Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Lieke A van Gijtenbeek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sjoerd B van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
39
|
De Filippis F, Parente E, Ercolini D. Recent Past, Present, and Future of the Food Microbiome. Annu Rev Food Sci Technol 2018; 9:589-608. [DOI: 10.1146/annurev-food-030117-012312] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio Parente
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
40
|
Shotgun Metagenomics and Volatilome Profile of the Microbiota of Fermented Sausages. Appl Environ Microbiol 2018; 84:AEM.02120-17. [PMID: 29196291 DOI: 10.1128/aem.02120-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/14/2017] [Indexed: 11/20/2022] Open
Abstract
Changes in the microbial gene content and abundance can be analyzed to detect shifts in the microbiota composition due to the use of a starter culture in the food fermentation process, with the consequent shift of key metabolic pathways directly connected with product acceptance. Meat fermentation is a complex process involving microbes that metabolize the main components in meat. The breakdown of carbohydrates, proteins, and lipids can lead to the formation of volatile organic compounds (VOCs) that can drastically affect the organoleptic characteristics of the final products. The present meta-analysis, performed with the shotgun DNA metagenomic approach, focuses on studying the microbiota and its gene content in an Italian fermented sausage produced by using a commercial starter culture (a mix of Lactobacillus sakei and Staphylococcus xylosus), with the aim to discover the connections between the microbiota, microbiome, and the release of volatile metabolites during ripening. The inoculated fermentation with the starter culture limited the development of Enterobacteriaceae and reduced the microbial diversity compared to that from spontaneous fermentation. KEGG database genes associated with the reduction of acetaldehyde to ethanol (EC 1.1.1.1), acetyl phosphate to acetate (EC 2.7.2.1), and 2,3-butanediol to acetoin (EC 1.1.1.4) were most abundant in inoculated samples (I) compared to those in spontaneous fermentation samples (S). The volatilome profiles were highly consistent with the abundance of the genes; elevated acetic acid (1,173.85 μg/kg), ethyl acetate (251.58 μg/kg), and acetoin (1,100.19 μg/kg) were observed in the presence of the starters at the end of fermentation. Significant differences were found in the liking of samples based on flavor and odor, suggesting a higher preference by consumers for the spontaneous fermentation samples. Inoculated samples exhibited the lowest scores for the liking data, which were clearly associated with the highest concentration of acetic acid.IMPORTANCE We present an advance in the understanding of meat fermentation by coupling DNA sequencing metagenomics and metabolomics approaches to describe the microbial function during this process. Very few studies using this global approach have been dedicated to food, and none have examined sausage fermentation, underlying the originality of the study. The starter culture drastically affected the organoleptic properties of the products. This finding underlines the importance of starter culture selection that takes into consideration the functional characteristics of the microorganism to optimize production efficiency and product quality.
Collapse
|
41
|
Precision food safety: A systems approach to food safety facilitated by genomics tools. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies. Front Microbiol 2017; 8:1829. [PMID: 29033905 PMCID: PMC5627019 DOI: 10.3389/fmicb.2017.01829] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.
Collapse
Affiliation(s)
- Yu Cao
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| | - Sinéad Proos
- Food for Health Ireland, Science Centre South, University College DublinDublin, Ireland
| | | | - Shabarinath Srikumar
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| |
Collapse
|
43
|
Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation. Sci Rep 2017; 7:11504. [PMID: 28912444 PMCID: PMC5599536 DOI: 10.1038/s41598-017-12016-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
Abstract
The genomic and metabolic features of Leuconostoc (Leu) mesenteroides were investigated through pan-genomic and transcriptomic analyses. Relatedness analysis of 17 Leu. mesenteroides strains available in GenBank based on 16S rRNA gene sequence, average nucleotide identity, in silico DNA-DNA hybridization, molecular phenotype, and core-genome indicated that Leu. mesenteroides has been separated into different phylogenetic lineages. Pan-genome of Leu. mesenteroides strains, consisting of 999 genes in core-genome, 1,432 genes in accessory-genome, and 754 genes in unique genome, and their COG and KEGG analyses showed that Leu. mesenteroides harbors strain-specifically diverse metabolisms, probably representing high evolutionary genome changes. The reconstruction of fermentative metabolic pathways for Leu. mesenteroides strains showed that Leu. mesenteroides produces various metabolites such as lactate, ethanol, acetate, CO2, mannitol, diacetyl, acetoin, and 2,3-butanediol through an obligate heterolactic fermentation from various carbohydrates. Fermentative metabolic features of Leu. mesenteroides during kimchi fermentation were investigated through transcriptional analyses for the KEGG pathways and reconstructed metabolic pathways of Leu. mesenteroides using kimchi metatranscriptomic data. This was the first study to investigate the genomic and metabolic features of Leu. mesenteroides through pan-genomic and metatranscriptomic analyses, and may provide insights into its genomic and metabolic features and a better understanding of kimchi fermentations by Leu. mesenteroides.
Collapse
|
44
|
García-Rico RO, Gil-Durán C, Rojas-Aedo JF, Vaca I, Figueroa L, Levicán G, Chávez R. Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti. Fungal Biol 2017; 121:754-762. [DOI: 10.1016/j.funbio.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
45
|
Lu Y, Zhu J, Shi J, Liu Y, Shao D, Jiang C. Immobilized enzymes from Geotrichum spp. improve wine quality. Appl Microbiol Biotechnol 2017; 101:6637-6649. [DOI: 10.1007/s00253-017-8424-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 07/02/2017] [Indexed: 12/11/2022]
|
46
|
Dupont J, Dequin S, Giraud T, Le Tacon F, Marsit S, Ropars J, Richard F, Selosse MA. Fungi as a Source of Food. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0030-2016. [PMID: 28597810 PMCID: PMC11687497 DOI: 10.1128/microbiolspec.funk-0030-2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
In this article, we review some of the best-studied fungi used as food sources, in particular, the cheese fungi, the truffles, and the fungi used for drink fermentation such as beer, wine, and sake. We discuss their history of consumption by humans and the genomic mechanisms of adaptation during artificial selection.
Collapse
Affiliation(s)
- Joëlle Dupont
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, CP39, 75231 Paris Cedex 5, France
| | - Sylvie Dequin
- SPO, INRA, SupAgro, Université Montpellier, 34060 Montpellier, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91400 Orsay, France
| | - François Le Tacon
- INRA, Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE, F-54280 Champenoux, France
| | - Souhir Marsit
- SPO, INRA, SupAgro, Université Montpellier, 34060 Montpellier, France
| | - Jeanne Ropars
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 75015 Paris, France
| | - Franck Richard
- CEFE-CNRS, UMR 5175, Equipe Interactions Biotiques, 34 293 Montpellier Cedex 5, France
| | - Marc-André Selosse
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, CP39, 75231 Paris Cedex 5, France
| |
Collapse
|
47
|
Walsh AM, Crispie F, Claesson MJ, Cotter PD. Translating Omics to Food Microbiology. Annu Rev Food Sci Technol 2017; 8:113-134. [DOI: 10.1146/annurev-food-030216-025729] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aaron M. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Marcus J. Claesson
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Ferrocino I, Cocolin L. Current perspectives in food-based studies exploiting multi-omics approaches. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
De Filippis F, Parente E, Ercolini D. Metagenomics insights into food fermentations. Microb Biotechnol 2016; 10:91-102. [PMID: 27709807 PMCID: PMC5270737 DOI: 10.1111/1751-7915.12421] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 11/26/2022] Open
Abstract
This review describes the recent advances in the study of food microbial ecology, with a focus on food fermentations. High‐throughput sequencing (HTS) technologies have been widely applied to the study of food microbial consortia and the different applications of HTS technologies were exploited in order to monitor microbial dynamics in food fermentative processes. Phylobiomics was the most explored application in the past decade. Metagenomics and metatranscriptomics, although still underexploited, promise to uncover the functionality of complex microbial consortia. The new knowledge acquired will help to understand how to make a profitable use of microbial genetic resources and modulate key activities of beneficial microbes in order to ensure process efficiency, product quality and safety.
Collapse
Affiliation(s)
- Francesca De Filippis
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Eugenio Parente
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Danilo Ercolini
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
50
|
Microbiota of an Italian Grana-Like Cheese during Manufacture and Ripening, Unraveled by 16S rRNA-Based Approaches. Appl Environ Microbiol 2016; 82:3988-3995. [PMID: 27107125 DOI: 10.1128/aem.00999-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The microbial ecology of cheese involves a rich and complex interaction between starter lactic acid bacteria and nonstarter lactic acid bacteria (NSLAB), mainly originating from raw milk and/or from the environment, that can contribute to the final characteristics of cheese. The aim of the present research was the exploration of the active microbiota by RNA-based approaches during the manufacturing and ripening of a Grana-like cheese. Reverse transcriptase PCR (RT-PCR)-denaturing gradient gel electrophoresis (DGGE) and RNA-based high-throughput sequencing were applied to profile microbial populations, while the enumeration of active bacteria was carried out by using quantitative PCR (qPCR). Three different cheese productions (named D, E, and F) collected in the same month from the same dairy plant were analyzed. The application of the qPCR protocol revealed the presence of 7 log CFU/ml of bacterial load in raw milk, while, during ripening, active bacterial populations ranged from <4 to 8 log CFU/ml. The natural whey starters used in the three productions showed the same microbiota composition, characterized by the presence of Lactobacillus helveticus and Lactobacillus delbrueckii Nevertheless, beta-diversity analysis of the 16S rRNA sequencing data and RT-PCR-DGGE showed a clear clustering of the samples according to the three productions, probably driven by the different milks used. Milk samples were found to be characterized by the presence of several contaminants, such as Propionibacterium acnes, Acidovorax, Acinetobacter, Pseudomonas, and NSLAB. The core genera of the starter tended to limit the development of the spoilage bacteria only in two of the three batches. This study underlines the influence of different factors that can affect the final microbiota composition of the artisanal cheese. IMPORTANCE This study highlights the importance of the quality of the raw milk in the production of a hard cheese. Independent from the use of a starter culture, raw milk with low microbiological quality can negatively affect the populations of lactic acid bacteria and, as a consequence, impact the quality of the final product due to metabolic processes associated with spoilage bacteria.
Collapse
|