1
|
Vanagas L, Alonso AM, Angel SO. Identification of subtelomeric cluster-genes associated to sexual stage in Toxoplasma gondii. Gene 2025; 933:148924. [PMID: 39245231 DOI: 10.1016/j.gene.2024.148924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Toxoplasma gondii is an obligate intracellular parasite with sexual reproduction in the intestinal epithelium of felines. The depletion of two gene repressors, AP2XI-2 and AP2XII-1, induces merozoite formation and gene expression towards sexual commitment. Based on RNA-seq datasets of AP2XI-2 and AP2XII-1 knock downs we identified subtelomeric (ST) TgB12 and hypothetical (HP) genes upregulated. Some of the differentially expressed genes (DEGs) are arranged in ST clusters. These DEG products are characterized by high isoelectric points (pI) and may encode small proteins. The potential roles of these clusters of DEG ST genes in environmental resistance or parasite sexual development of T. gondii is discussed.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Provincia de Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina.
| | - Andres M Alonso
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Provincia de Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina.
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Provincia de Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina.
| |
Collapse
|
2
|
Zhang N, Li X, Liu J, Chen L, Zhang S, Liu X, Tang X, Suo X, Zhang Y. Transcriptomic Insights into the Developmental Dynamics of Eimeria acervulina: A Comparative Study of a Precocious Line and the Wild Type. Genes (Basel) 2024; 15:831. [PMID: 39062610 PMCID: PMC11276583 DOI: 10.3390/genes15070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Coccidiosis, a parasitic disease caused by single or multiple Eimeria species, leads to significant economic losses in the poultry industry. The Eimeria life cycle includes schizogony, gametogony, and sporogony. To investigate the dynamics of gene expression and regulatory networks during the development of Eimeria acervulina, we employed time-course transcriptomics to rigorously compare the gene expression patterns between a precocious line (PL) and the wild type (WT) of E. acervulina. The results revealed that the PL enters into gametogony 12 h earlier than the WT, and both the PL and WT exhibited distinct clustering patterns during the development phase. A weighted gene co-expression network analysis (WGCNA) identified genes specifically expressed at four distinct developmental stages, schizogony, gametogony, sporulated oocysts, and unsporulated oocysts, clarifying the key biological processes at each stage. This study used global transcriptome profiling to elucidate molecular variations throughout the E. acervulina life cycle, providing critical insights into molecular characterization and valuable resources for investigating other apicomplexan parasites of public health importance.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (N.Z.)
| | - Xiaojin Li
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (N.Z.)
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (N.Z.)
| | - Linlin Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (N.Z.)
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (N.Z.)
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (N.Z.)
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (N.Z.)
| | - Yuanyuan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. The Toxoplasma gondii F-Box Protein L2 Functions as a Repressor of Stage Specific Gene Expression. PLoS Pathog 2024; 20:e1012269. [PMID: 38814984 PMCID: PMC11166348 DOI: 10.1371/journal.ppat.1012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
4
|
Wang JL, Li TT, Zhang NZ, Wang M, Sun LX, Zhang ZW, Fu BQ, Elsheikha HM, Zhu XQ. The transcription factor AP2XI-2 is a key negative regulator of Toxoplasma gondii merogony. Nat Commun 2024; 15:793. [PMID: 38278808 PMCID: PMC10817966 DOI: 10.1038/s41467-024-44967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Sexual development in Toxoplasma gondii is a multistep process that culminates in the production of oocysts, constituting approximately 50% of human infections. However, the molecular mechanisms governing sexual commitment in this parasite remain poorly understood. Here, we demonstrate that the transcription factors AP2XI-2 and AP2XII-1 act as negative regulators, suppressing merozoite-primed pre-sexual commitment during asexual development. Depletion of AP2XI-2 in type II Pru strain induces merogony and production of mature merozoites in an alkaline medium but not in a neutral medium. In contrast, AP2XII-1-depleted Pru strain undergoes several rounds of merogony and produces merozoites in a neutral medium, with more pronounced effects observed under alkaline conditions. Additionally, we identified two additional AP2XI-2-interacting proteins involved in repressing merozoite programming. These findings underscore the intricate regulation of pre-sexual commitment by a network of factors and suggest that AP2XI-2 or AP2XII-1-depleted Pru parasites can serve as a model for studying merogony in vitro.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Nian-Zhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Zhi-Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China.
| |
Collapse
|
5
|
Antunes AV, Shahinas M, Swale C, Farhat DC, Ramakrishnan C, Bruley C, Cannella D, Robert MG, Corrao C, Couté Y, Hehl AB, Bougdour A, Coppens I, Hakimi MA. In vitro production of cat-restricted Toxoplasma pre-sexual stages. Nature 2024; 625:366-376. [PMID: 38093015 PMCID: PMC10781626 DOI: 10.1038/s41586-023-06821-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Sexual reproduction of Toxoplasma gondii, confined to the felid gut, remains largely uncharted owing to ethical concerns regarding the use of cats as model organisms. Chromatin modifiers dictate the developmental fate of the parasite during its multistage life cycle, but their targeting to stage-specific cistromes is poorly described1,2. Here we found that the transcription factors AP2XII-1 and AP2XI-2 operate during the tachyzoite stage, a hallmark of acute toxoplasmosis, to silence genes necessary for merozoites, a developmental stage critical for subsequent sexual commitment and transmission to the next host, including humans. Their conditional and simultaneous depletion leads to a marked change in the transcriptional program, promoting a full transition from tachyzoites to merozoites. These in vitro-cultured pre-gametes have unique protein markers and undergo typical asexual endopolygenic division cycles. In tachyzoites, AP2XII-1 and AP2XI-2 bind DNA as heterodimers at merozoite promoters and recruit MORC and HDAC3 (ref. 1), thereby limiting chromatin accessibility and transcription. Consequently, the commitment to merogony stems from a profound epigenetic rewiring orchestrated by AP2XII-1 and AP2XI-2. Successful production of merozoites in vitro paves the way for future studies on Toxoplasma sexual development without the need for cat infections and holds promise for the development of therapies to prevent parasite transmission.
Collapse
Affiliation(s)
- Ana Vera Antunes
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Martina Shahinas
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Christopher Swale
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Dayana C Farhat
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | | | - Christophe Bruley
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, Grenoble, France
| | - Dominique Cannella
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Marie G Robert
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Charlotte Corrao
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, Grenoble, France
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health and Malaria Research Institute, Baltimore, MD, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France.
| |
Collapse
|
6
|
Zhao G, Dong H, Dai L, Xie H, Sun H, Zhang J, Wang Q, Xu C, Yin K. Proteomics analysis of Toxoplasma gondii merozoites reveals regulatory proteins involved in sexual reproduction. Microb Pathog 2024; 186:106484. [PMID: 38052278 DOI: 10.1016/j.micpath.2023.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Sexual reproduction plays a crucial role in the transmission and life cycle of toxoplasmosis. The merozoites are the only developmental stage capable of differentiation into male and female gametes, thereby initiating sexual reproduction to form oocysts that are excreted into the environment. Hence, our study aimed to perform proteomic analyses of T. gondii Pru strain merozoites, a pre-sexual developmental stage in cat IECs, and tachyzoites, an asexual developmental stage, using the tandem mass tag (TMT) method in order to identify the differentially expressed proteins (DEPs) of merozoites. Proteins functions were subjected to cluster analysis, and DEPs were validated through the qPCR method. The results showed that a total of 106 proteins were identified, out of which 85 proteins had quantitative data. Among these, 15 proteins were differentially expressed within merozoites, with four exhibiting up-regulation and being closely associated with the material and energy metabolism as well as the cell division of T. gondii. Two novel DEPs, namely S8GHL5 and A0A125YP41, were identified, and their homologous family members have been demonstrated to play regulatory roles in oocyte maturation and spermatogenesis in other species. Therefore, they may potentially exhibit regulatory functions during the differentiation of micro- and macro-gametophytes at the initiation stage of sexual reproduction in T. gondii. In conclusion, our results showed that the metabolic and divisional activities in the merozoites surpass those in the tachyzoites, thereby providing structural, material, and energetic support for gametophytes development. The discovery of two novel DEPs associated with sexual reproduction represents a significant advancement in understanding Toxoplasma sexual reproduction initiation and oocyst formation.
Collapse
Affiliation(s)
- Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Lisha Dai
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Huanhuan Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Hang Sun
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| |
Collapse
|
7
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. Toxoplasma gondii F-Box Protein L2 Silences Feline-Restricted Genes Necessary for Sexual Commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572150. [PMID: 38187549 PMCID: PMC10769283 DOI: 10.1101/2023.12.18.572150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages requires substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct nuclear sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNA seq data show that TgFBXL2 conditional depletion induces the expression of genes necessary for sexual commitment. We suggest that TgFBXL2 is a latent guardian of sexual stage development in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of sexual development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| |
Collapse
|
8
|
Scimeca RC, Reichard MV. Differential gene expression response to acute and chronic Cytauzxoon felis infection in domestic cats (Felis catus). Ticks Tick Borne Dis 2023; 14:102242. [PMID: 37651848 DOI: 10.1016/j.ttbdis.2023.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Cytauxzoonosis is a severe tick transmitted protozoan disease of domestic cats, caused by Cytauxzoon felis. The disease is characterized by acute onset of high fever, depression, lethargy, inappentence, anorexia, icterus, dehydration, hemolytic anemia, and alteration of immune response. The aim of our study was to further detail the immune response of domestic cats to C. felis infection by comparing the differential expression of feline immune transcriptional elements during acute and chronic cytauxzoonosis. True single molecule sequencing (tSMS) was used to analyze the whole genome of acutely and chronically infected C. felis cats, focusing on the analysis of genes involved on the immune response. Two C. felis donor cats were infested with Amblyomma americanum nymphs, which after repletion were collected and kept in humidity chambers until they molted. The resulting A. americanum were randomly selected to infest three C. felis naïve principal cats. Infection of these cats was confirmed by nested PCR of the 18S rRNA C. felis gene and clinical signs. RNA was extracted from whole blood at different time points and used for tSMS analyses, the results revealed overexpression in transcripts involved in type I interferon signaling, cellular and cytokine responses during the acute stage of infection, while cell cycle, and metabolic processes were downregulated. Genes involved in cell adhesion increased their expression in the chronic infected cats, whereas inflammatory and apoptotic related genes were downregulated. This study provided information on the host immune response to C. felis in domestic cats, demonstrating that inflammatory, apoptotic, and cell adhesion are some of the pathways altered during acute and chronic infection.
Collapse
Affiliation(s)
- Ruth C Scimeca
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078.
| | - Mason V Reichard
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
9
|
DeMichele E, Sosnowski O, Buret AG, Allain T. Regulatory Functions of Hypoxia in Host-Parasite Interactions: A Focus on Enteric, Tissue, and Blood Protozoa. Microorganisms 2023; 11:1598. [PMID: 37375100 PMCID: PMC10303274 DOI: 10.3390/microorganisms11061598] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.
Collapse
Affiliation(s)
- Emily DeMichele
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
10
|
Yoshinaga M, Niu G, Yoshinaga-Sakurai K, Nadar VS, Wang X, Rosen BP, Li J. Arsinothricin Inhibits Plasmodium falciparum Proliferation in Blood and Blocks Parasite Transmission to Mosquitoes. Microorganisms 2023; 11:1195. [PMID: 37317169 PMCID: PMC10222646 DOI: 10.3390/microorganisms11051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Malaria, caused by Plasmodium protozoal parasites, remains a leading cause of morbidity and mortality. The Plasmodium parasite has a complex life cycle, with asexual and sexual forms in humans and Anopheles mosquitoes. Most antimalarials target only the symptomatic asexual blood stage. However, to ensure malaria eradication, new drugs with efficacy at multiple stages of the life cycle are necessary. We previously demonstrated that arsinothricin (AST), a newly discovered organoarsenical natural product, is a potent broad-spectrum antibiotic that inhibits the growth of various prokaryotic pathogens. Here, we report that AST is an effective multi-stage antimalarial. AST is a nonproteinogenic amino acid analog of glutamate that inhibits prokaryotic glutamine synthetase (GS). Phylogenetic analysis shows that Plasmodium GS, which is expressed throughout all stages of the parasite life cycle, is more closely related to prokaryotic GS than eukaryotic GS. AST potently inhibits Plasmodium GS, while it is less effective on human GS. Notably, AST effectively inhibits both Plasmodium erythrocytic proliferation and parasite transmission to mosquitoes. In contrast, AST is relatively nontoxic to a number of human cell lines, suggesting that AST is selective against malaria pathogens, with little negative effect on the human host. We propose that AST is a promising lead compound for developing a new class of multi-stage antimalarials.
Collapse
Affiliation(s)
- Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Guodong Niu
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Venkadesh S. Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Xiaohong Wang
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jun Li
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
11
|
Warschkau D, Seeber F. Advances towards the complete in vitro life cycle of Toxoplasma gondii. Fac Rev 2023; 12:1. [PMID: 36846606 PMCID: PMC9944905 DOI: 10.12703/r/12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The full life cycle of Toxoplasma gondii cannot be recapitulated in vitro, and access to certain stages, such as mature tissue cysts (bradyzoites) and oocysts (sporozoites), traditionally requires animal experiments. This has greatly hindered the study of the biology of these morphologically and metabolically distinct stages, which are essential for the infection of humans and animals. However, several breakthrough advances have been made in recent years towards obtaining these life stages in vitro, such as the discovery of several molecular factors that induce differentiation and commitment to the sexual cycle, and different culture methods that use, for example, myotubes and intestinal organoids to obtain mature bradyzoites and different sexual stages of the parasite. We review these novel tools and approaches, highlight their limitations and challenges, and discuss what research questions can already be answered with these models. We finally identify future routes for recapitulating the entire sexual cycle in vitro.
Collapse
Affiliation(s)
- David Warschkau
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| | - Frank Seeber
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
12
|
Antunes AV, Shahinas M, Swale C, Farhat DC, Ramakrishnan C, Bruley C, Cannella D, Corrao C, Cout Y, Hehl AB, Bougdour A, Coppens I, Hakimi MA. In vitro production of cat-restricted Toxoplasma pre-sexual stages by epigenetic reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524187. [PMID: 36711883 PMCID: PMC9882236 DOI: 10.1101/2023.01.16.524187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sexual reproduction of Toxoplasma gondii , which is restricted to the small intestine of felids, is sparsely documented, due to ethical concerns surrounding the use of cats as model organisms. Chromatin modifiers dictate the developmental fate of the parasite during its multistage life cycle, but their targeting to stage-specific cistromes is poorly described 1 . In this study, we found that transcription factors AP2XII-1 and AP2XI-2, expressed in tachyzoite stage that causes acute toxoplasmosis, can silence genes necessary for merozoites, a developmental stage critical for sexual commitment and transmission to the next host, including humans. Their conditional and simultaneous depletion leads to a drastic change in the transcriptional program, promoting a complete transition from tachyzoites to merozoites. Pre-gametes produced in vitro under these conditions are characterized by specific protein markers and undergo typical asexual endopolygenic division cycles. In tachyzoites, AP2XII-1 and AP2XI-2 bind DNA as heterodimers at merozoite promoters and recruit the epigenitors MORC and HDAC3 1 , which in turn restrict the accessibility of chromatin to the transcriptional machinery. Thus, the commitment to merogony stems from a profound epigenetic rewiring orchestrated by AP2XII-1 and AP2XI-2. This effective in vitro culture of merozoites paves the way to explore Toxoplasma sexual reproduction without the need to infect kittens and has potential for the development of therapeutics to block parasite transmission.
Collapse
|
13
|
Nofal SD, Dominicus C, Broncel M, Katris NJ, Flynn HR, Arrizabalaga G, Botté CY, Invergo BM, Treeck M. A positive feedback loop mediates crosstalk between calcium, cyclic nucleotide and lipid signalling in calcium-induced Toxoplasma gondii egress. PLoS Pathog 2022; 18:e1010901. [PMID: 36265000 PMCID: PMC9624417 DOI: 10.1371/journal.ppat.1010901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/01/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Fundamental processes that govern the lytic cycle of the intracellular parasite Toxoplasma gondii are regulated by several signalling pathways. However, how these pathways are connected remains largely unknown. Here, we compare the phospho-signalling networks during Toxoplasma egress from its host cell by artificially raising cGMP or calcium levels. We show that both egress inducers trigger indistinguishable signalling responses and provide evidence for a positive feedback loop linking calcium and cyclic nucleotide signalling. Using WT and conditional knockout parasites of the non-essential calcium-dependent protein kinase 3 (CDPK3), which display a delay in calcium inonophore-mediated egress, we explore changes in phosphorylation and lipid signalling in sub-minute timecourses after inducing Ca2+ release. These studies indicate that cAMP and lipid metabolism are central to the feedback loop, which is partly dependent on CDPK3 and allows the parasite to respond faster to inducers of egress. Biochemical analysis of 4 phosphodiesterases (PDEs) identified in our phosphoproteomes establishes PDE2 as a cAMP-specific PDE which regulates Ca2+ induced egress in a CDPK3-independent manner. The other PDEs display dual hydrolytic activity and play no role in Ca2+ induced egress. In summary, we uncover a positive feedback loop that enhances signalling during egress, thereby linking several signalling pathways.
Collapse
Affiliation(s)
- Stephanie D. Nofal
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caia Dominicus
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advance Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Helen R. Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Gustavo Arrizabalaga
- University of Indianapolis, School of Medicine, Indianapolis, Indiana, United States of America
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advance Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Brandon M. Invergo
- Translational Research Exchange at Exeter, University of Exeter, Exeter, United Kingdom
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
14
|
Hasan T, Nishikawa Y. Advances in vaccine development and the immune response against toxoplasmosis in sheep and goats. Front Vet Sci 2022; 9:951584. [PMID: 36090161 PMCID: PMC9453163 DOI: 10.3389/fvets.2022.951584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is a zoonotic, parasitic infection caused by the intracellular, apicomplexan parasite Toxoplasma gondii, which infects all homeothermic animals including humans. The parasite has a major economic impact on the livestock industry. This is especially true for small ruminants (sheep, goats) as it is one of the most likely reasons for reproductive disorders in these animals. Primary infection in sheep and goats can result in a fetus that is mummified or macerated, fetal embryonic death, abortion, stillbirth, or the postnatal death of neonates, all of which threaten sheep and goat rearing globally. Humans can also become infected by ingesting bradyzoite-containing chevon or mutton, or the contaminated milk of sheep or goats, highlighting the zoonotic significance of this parasite. This article reviews the advances in vaccine development over recent decades and our current understanding of the immune response to toxoplasmosis in small ruminants (sheep, and goats).
Collapse
Affiliation(s)
- Tanjila Hasan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Yoshifumi Nishikawa
| |
Collapse
|
15
|
Chen J, Xue L, Hu H, Yin X, Cao H, Shen B. MIC17A is a novel diagnostic marker for feline toxoplasmosis. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractToxoplasma gondii is a widespread parasitic pathogen that infect humans and all warm-blooded animals, causing abortion and stillbirth in pregnant women and animals, as well as life threatening toxoplasmosis in immune compromised individuals. Felines are the only definitive hosts of Toxoplasma and oocysts shed by infected felines are the major source of infection for humans and other animals. Given the critical role of felines for T. gondii transmission, control of feline toxoplasmosis has significant impacts on reducing the overall prevalence of animal and human toxoplasmosis. However, reliable diagnosis of feline toxoplasmosis is still challenging. In this study, we found that the putative micronemal protein 17A (MIC17A) that was abundantly expressed in Toxoplasma merozoites is a good diagnostic marker for serological diagnosis of Toxoplasma infection in felines. T. gondii encodes four paralogs of MIC17A in total and the expression of three of them is drastically upregulated in merozoites than in tachyzoites. In contrast, when proteins like GRA1 and MIC3 that are more abundantly expressed in tachyzoites than in merozoites were used as diagnostic antigens to test feline toxoplasmosis, they reacted with Toxoplasma specific IgG antibodies poorly. Taken together, these results suggest that merozoite antigens are better suited for the diagnosis of feline toxoplasmosis than antigens that are highly expressed at tachyzoite or bradyzoite stages.
Collapse
|
16
|
Naumov AV, Wang C, Chaput D, Ting LM, Alvarez CA, Keller T, Ramadan A, White MW, Kim K, Suvorova ES. Restriction Checkpoint Controls Bradyzoite Development in Toxoplasma gondii. Microbiol Spectr 2022; 10:e0070222. [PMID: 35652638 PMCID: PMC9241953 DOI: 10.1128/spectrum.00702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Human toxoplasmosis is a life-threatening disease caused by the apicomplexan parasite Toxoplasma gondii. Rapid replication of the tachyzoite is associated with symptomatic disease, while suppressed division of the bradyzoite is responsible for chronic disease. Here, we identified the T. gondii cell cycle mechanism, the G1 restriction checkpoint (R-point), that operates the switch between parasite growth and differentiation. Apicomplexans lack conventional R-point regulators, suggesting adaptation of alternative factors. We showed that Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2, and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. Examination of cyclins verified the correlation of cyclin expression with growth dependence and development capacity of RH and ME49 strains. We demonstrated that rapidly dividing RH tachyzoites were dependent on TgCycP1 expression, which interfered with bradyzoite differentiation. Using the conditional knockdown model, we established that TgCycP2 regulated G1 duration in the developmentally competent ME49 tachyzoites but not in the developmentally incompetent RH tachyzoites. We tested the functions of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models. Based on functional and global gene expression analyses, we determined that TgCycP2 also regulated bradyzoite replication, while signal-induced TgCyc5 was critical for efficient tissue cyst maturation. In conclusion, we identified the central machinery of the T. gondii restriction checkpoint comprised of TgCrk2 kinase and three atypical T. gondii cyclins and demonstrated the independent roles of TgCycP1, TgCycP2, and TgCyc5 in parasite growth and development. IMPORTANCE Toxoplasma gondii is a virulent and abundant human pathogen that puts millions of silently infected people at risk of reactivation of the chronic disease. Encysted bradyzoites formed during the chronic stage are resistant to current therapies. Therefore, insights into the mechanism of tissue cyst formation and reactivation are major areas of investigation. The fact that rapidly dividing parasites differentiate poorly strongly suggests that there is a threshold of replication rate that must be crossed to be considered for differentiation. We discovered a cell cycle mechanism that controls the T. gondii growth-rest switch involved in the conversion of dividing tachyzoites into largely quiescent bradyzoites. This switch operates the T. gondii restriction checkpoint using a set of atypical and parasite-specific regulators. Importantly, the novel T. gondii R-point network was not present in the parasite's human and animal hosts, offering a wealth of new and parasite-specific drug targets to explore in the future.
Collapse
Affiliation(s)
- Anatoli V. Naumov
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Li-Min Ting
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Carmelo A. Alvarez
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Thomas Keller
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Ahmed Ramadan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael W. White
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elena S. Suvorova
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
17
|
Arranz-Solís D, Saeij JPJ. New Avenues to Design Toxoplasma Vaccines Based on Oocysts and Cysts. Front Immunol 2022; 13:910961. [PMID: 35734184 PMCID: PMC9207213 DOI: 10.3389/fimmu.2022.910961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Toxoplasmosis is a worldwide disease affecting all warm-blooded animals, including humans. Vaccination strategies aimed at inducing an efficient immune response while preventing transmission have been attempted in the past. While many different approaches can partially protect immunized animals against subsequent infections, full and lasting protection is rarely attained and only with live-attenuated vaccines. In addition, vaccines based on mutant strains that are deficient in forming the chronic phase of the parasite (such as Toxovax™) cannot be extensively used due to their zoonotic potential and the possibility of reversion to virulent phenotypes. An increasing number of studies using emerging genetic-engineering tools have been conducted to design novel vaccines based on recombinant proteins, DNA or delivery systems such as nanoparticles. However, these are usually less efficient due to their antigenic simplicity. In this perspective article we discuss potential target genes and novel strategies to generate live-attenuated long-lasting vaccines based on tissue cysts and oocysts, which are the environmentally resistant chronic forms of Toxoplasma. By selectively disrupting genes important for parasite dissemination, cyst formation and/or sporozoite invasion, alone or in combination, a vaccine based on a live-attenuated strain that elicits a protective immune response while preventing the transmission of Toxoplasma could be created. Finally, further improvements of protocols to generate Toxoplasma sexual stages in vitro might lead to the production of oocysts from such a strain without the need for using mice or cats.
Collapse
Affiliation(s)
| | - Jeroen P. J. Saeij
- Pathology, Microbiology and Immunology department, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| |
Collapse
|
18
|
Kidaka T, Sugi T, Hayashida K, Suzuki Y, Xuan X, Dubey JP, Yamagishi J. TSS-seq of Toxoplasma gondii sporozoites revealed a novel motif in stage-specific promoters. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105213. [PMID: 35041968 DOI: 10.1016/j.meegid.2022.105213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Toxoplasma gondii is one of the most common zoonotic protozoan parasites. It has three major infectious stages: rapidly multiplying tachyzoites (Tz), slowly replicating bradyzoites (Bz) and a resting/free-living stage, sporozoites (Sz). The regulatory mechanisms governing stage-specific gene expression are not fully understood. Few transcriptional start sites (TSS) are known for Sz. In this study, we obtained TSS of Sz using an oligo-capping method and RNA-seq analysis. We identified 1,043,503 TSS in the Sz transcriptome. These defined 38,973 TSS clusters, of which, 11,925 were expressed in Sz and 1535 TSS differentially expressed in Sz. Based on these data, we defined promoter regions and novel sporozoite stage-specific motifs using MEME. TGTANNTACA was distributed around -55 to -75 regions from each TSS. Interestingly, the same motif was reported in another apicomplexan, Plasmodium berghei, as a cis-element of female-specific gametocyte genes, implying the presence of common regulatory machinery. Further comparative analysis should better define the distribution and function of these elements in other members of this important parasitic phylum.
Collapse
Affiliation(s)
- Taishi Kidaka
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Kyoko Hayashida
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705-2350, USA
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
19
|
Transcriptional signatures of clonally derived Toxoplasma tachyzoites reveal novel insights into the expression of a family of surface proteins. PLoS One 2022; 17:e0262374. [PMID: 35213559 PMCID: PMC8880437 DOI: 10.1371/journal.pone.0262374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/03/2022] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii has numerous, large, paralogous gene families that are likely critical for supporting its unparalleled host range: nearly any nucleated cell in almost any warm-blooded animal. The SRS (SAG1-related sequence) gene family encodes over 100 proteins, the most abundant of which are thought to be involved in parasite attachment and, based on their stage-specific expression, evading the host immune response. For most SRS proteins, however, little is understood about their function and expression profile. Single-parasite RNA-sequencing previously demonstrated that across an entire population of lab-grown tachyzoites, transcripts for over 70 SRS genes were detected in at least one parasite. In any one parasite, however, transcripts for an average of only 7 SRS genes were detected, two of which, SAG1 and SAG2A, were extremely abundant and detected in virtually all. These data do not address whether this pattern of sporadic SRS gene expression is consistently inherited among the progeny of a given parasite or arises independently of lineage. We hypothesized that if SRS expression signatures are stably inherited by progeny, subclones isolated from a cloned parent would be more alike in their expression signatures than they are to the offspring of another clone. In this report, we compare transcriptomes of clonally derived parasites to determine the degree to which expression of the SRS family is stably inherited in individual parasites. Our data indicate that in RH tachyzoites, SRS genes are variably expressed even between parasite samples subcloned from the same parent within approximately 10 parasite divisions (72 hours). This suggests that the pattern of sporadically expressed SRS genes is highly variable and not driven by inheritance mechanisms, at least under our conditions.
Collapse
|
20
|
Le Clec’h W, Chevalier FD, McDew-White M, Menon V, Arya GA, Anderson TJ. Genetic architecture of transmission stage production and virulence in schistosome parasites. Virulence 2021; 12:1508-1526. [PMID: 34167443 PMCID: PMC8237990 DOI: 10.1080/21505594.2021.1932183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Both theory and experimental data from pathogens suggest that the production of transmission stages should be strongly associated with virulence, but the genetic bases of parasite transmission/virulence traits are poorly understood. The blood fluke Schistosoma mansoni shows extensive variation in numbers of cercariae larvae shed and in their virulence to infected snail hosts, consistent with expected trade-offs between parasite transmission and virulence. We crossed schistosomes from two populations that differ 8-fold in cercarial shedding and in their virulence to Biomphalaria glabrata snail hosts, and determined four-week cercarial shedding profiles in F0 parents, F1 parents and 376 F2 progeny from two independent crosses in inbred snails. Sequencing and linkage analysis revealed that cercarial production is polygenic and controlled by five QTLs (i.e. Quantitative Trait Loci). These QTLs act additively, explaining 28.56% of the phenotypic variation. These results demonstrate that the genetic architecture of key traits relevant to schistosome ecology can be dissected using classical linkage mapping approaches.
Collapse
Affiliation(s)
- Winka Le Clec’h
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | | | - Vinay Menon
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Grace-Ann Arya
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | |
Collapse
|
21
|
Global phosphoproteome analysis reveals significant differences between sporulated oocysts of virulent and avirulent strains of Toxoplasma gondii. Microb Pathog 2021; 161:105240. [PMID: 34655729 DOI: 10.1016/j.micpath.2021.105240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022]
Abstract
In this study, the differences in the phosphoproteomic landscape of sporulated oocysts between virulent and avirulent strains of Toxoplasma gondii were examined using a global phosphoproteomics approach. Phosphopeptides from sporulated oocysts of the virulent PYS strain (Chinese ToxoDB#9) and the avirulent PRU strain (type II) were enriched by titanium dioxide (TiO2) affinity chromatography and quantified using IBT approach. A total of 10,645 unique phosphopeptides, 8181 nonredundant phosphorylation sites and 2792 phosphoproteins were identified. We also detected 4129 differentially expressed phosphopeptides (DEPs) between sporulated oocysts of PYS strain and PRU strain (|log1.5 fold change| > 1 and p < 0.05), including 2485 upregulated and 1644 downregulated phosphopeptides. Motif analysis identified 24 motifs from the upregulated phosphorylated peptides including 22 serine motifs and two threonine motifs (TPE and TP), and 15 motifs from the downregulated phosphorylated peptides including 12 serine motifs and three threonine motifs (TP, RxxT and KxxT) in PYS strain when comparing PYS strain to PRU strain. Several kinases were consistent with motifs of overrepresented phosphopeptides, such as PKA, PKG, CKII, IKK, MAPK, EGFR, INSR, Jak, Syk, Src, Ab1. GO enrichment, KEGG pathway analysis and STRING analysis revealed DEPs significantly enriched in many biological processes and pathways. Kinase related network analysis showed that AGC kinase was the most connected kinase peptide. Our findings reveal significant difference in phosphopeptide profiles of sporulated oocysts between virulent and avirulent T. gondii strains, providing new resources for further elucidation of the mechanisms underpinning the virulence of T. gondii.
Collapse
|
22
|
Marugan-Hernandez V, Sanchez-Arsuaga G, Vaughan S, Burrell A, Tomley FM. Do All Coccidia Follow the Same Trafficking Rules? Life (Basel) 2021; 11:life11090909. [PMID: 34575057 PMCID: PMC8465013 DOI: 10.3390/life11090909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/06/2023] Open
Abstract
The Coccidia are a subclass of the Apicomplexa and include several genera of protozoan parasites that cause important diseases in humans and animals, with Toxoplasma gondii becoming the ‘model organism’ for research into the coccidian molecular and cellular processes. The amenability to the cultivation of T. gondii tachyzoites and the wide availability of molecular tools for this parasite have revealed many mechanisms related to their cellular trafficking and roles of parasite secretory organelles, which are critical in parasite-host interaction. Nevertheless, the extrapolation of the T. gondii mechanisms described in tachyzoites to other coccidian parasites should be done carefully. In this review, we considered published data from Eimeria parasites, a coccidian genus comprising thousands of species whose infections have important consequences in livestock and poultry. These studies suggest that the Coccidia possess both shared and diversified mechanisms of protein trafficking and secretion potentially linked to their lifecycles. Whereas trafficking and secretion appear to be well conversed prior to and during host-cell invasion, important differences emerge once endogenous development commences. Therefore, further studies to validate the mechanisms described in T. gondii tachyzoites should be performed across a broader range of coccidians (including T. gondii sporozoites). In addition, further genus-specific research regarding important disease-causing Coccidia is needed to unveil the individual molecular mechanisms of pathogenesis related to their specific lifecycles and hosts.
Collapse
Affiliation(s)
- Virginia Marugan-Hernandez
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
- Correspondence: ; Tel.: +44-(0)-17-0766-9445
| | - Gonzalo Sanchez-Arsuaga
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK;
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK;
| | - Fiona M. Tomley
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
| |
Collapse
|
23
|
Alves E, Benns HJ, Magnus L, Dominicus C, Dobai T, Blight J, Wincott CJ, Child MA. An Extracellular Redox Signal Triggers Calcium Release and Impacts the Asexual Development of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:728425. [PMID: 34447699 PMCID: PMC8382974 DOI: 10.3389/fcimb.2021.728425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
The ability of an organism to sense and respond to environmental redox fluctuations relies on a signaling network that is incompletely understood in apicomplexan parasites such as Toxoplasma gondii. The impact of changes in redox upon the development of this intracellular parasite is not known. Here, we provide a revised collection of 58 genes containing domains related to canonical antioxidant function, with their encoded proteins widely dispersed throughout different cellular compartments. We demonstrate that addition of exogenous H2O2 to human fibroblasts infected with T. gondii triggers a Ca2+ flux in the cytosol of intracellular parasites that can induce egress. In line with existing models, egress triggered by exogenous H2O2 is reliant upon both Calcium-Dependent Protein Kinase 3 and diacylglycerol kinases. Finally, we show that the overexpression a glutaredoxin-roGFP2 redox sensor fusion protein in the parasitophorous vacuole severely impacts parasite replication. These data highlight the rich redox network that exists in T. gondii, evidencing a link between extracellular redox and intracellular Ca2+ signaling that can culminate in parasite egress. Our findings also indicate that the redox potential of the intracellular environment contributes to normal parasite growth. Combined, our findings highlight the important role of redox as an unexplored regulator of parasite biology.
Collapse
Affiliation(s)
- Eduardo Alves
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Henry J Benns
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Department of Chemistry, Imperial College London, London, United Kingdom
| | - Lilian Magnus
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Caia Dominicus
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tamás Dobai
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joshua Blight
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ceire J Wincott
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Ribeiro E Silva A, Sausset A, Bussière FI, Laurent F, Lacroix-Lamandé S, Silvestre A. Genome-Wide Expression Patterns of Rhoptry Kinases during the Eimeria tenella Life-Cycle. Microorganisms 2021; 9:microorganisms9081621. [PMID: 34442701 PMCID: PMC8399136 DOI: 10.3390/microorganisms9081621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.
Collapse
|
25
|
Ramakrishnan C, Smith NC. Recent achievements and doors opened for coccidian parasite research and development through transcriptomics of enteric sexual stages. Mol Biochem Parasitol 2021; 243:111373. [PMID: 33961917 DOI: 10.1016/j.molbiopara.2021.111373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
The Coccidia is the largest group of parasites within the Apicomplexa, a phylum of unicellular, obligate parasites characterized by the possession of an apical complex of organelles and structures in the asexual stages of their life cycles, as well as by a sexual reproductive phase that occurs enterically in host animals. Coccidian sexual reproduction involves morphologically distinct microgametes and macrogametes that combine to form a diploid zygote and, ultimately, following meiosis and mitosis, haploid, infectious sporozoites, inside sporocysts within an oocyst. Recent transcriptomic analyses have identified genes involved in coccidian sexual stage development and reproduction, including genes encoding for microgamete- and macrogamete-specific proteins with roles in gamete motility, fusion and fertilization, and in the formation of the resilient oocyst wall that allows coccidians to persist for long periods in the environment. Transcriptomics has also provided important clues about the regulation of gene expression in the transformation of parasites from one developmental stage to the next, a complex sequence of events that may involve transcription factors such as the apicomplexan Apetala2 (ApiAP2) family, alternative splicing, regulatory RNAs and MORC (a microrchida homologue and regulator of sexual stage development in Toxoplasma gondii). The molecular dissection of coccidian sexual development and reproduction by transcriptomic analyses may lead to the development of novel transmission-blocking strategies.
Collapse
Affiliation(s)
- Chandra Ramakrishnan
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
26
|
Markus BM, Waldman BS, Lorenzi HA, Lourido S. High-Resolution Mapping of Transcription Initiation in the Asexual Stages of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 10:617998. [PMID: 33553008 PMCID: PMC7854901 DOI: 10.3389/fcimb.2020.617998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is a common parasite of humans and animals, causing life-threatening disease in the immunocompromized, fetal abnormalities when contracted during gestation, and recurrent ocular lesions in some patients. Central to the prevalence and pathogenicity of this protozoan is its ability to adapt to a broad range of environments, and to differentiate between acute and chronic stages. These processes are underpinned by a major rewiring of gene expression, yet the mechanisms that regulate transcription in this parasite are only partially characterized. Deciphering these mechanisms requires a precise and comprehensive map of transcription start sites (TSSs); however, Toxoplasma TSSs have remained incompletely defined. To address this challenge, we used 5'-end RNA sequencing to genomically assess transcription initiation in both acute and chronic stages of Toxoplasma. Here, we report an in-depth analysis of transcription initiation at promoters, and provide empirically-defined TSSs for 7603 (91%) protein-coding genes, of which only 1840 concur with existing gene models. Comparing data from acute and chronic stages, we identified instances of stage-specific alternative TSSs that putatively generate mRNA isoforms with distinct 5' termini. Analysis of the nucleotide content and nucleosome occupancy around TSSs allowed us to examine the determinants of TSS choice, and outline features of Toxoplasma promoter architecture. We also found pervasive divergent transcription at Toxoplasma promoters, clustered within the nucleosomes of highly-symmetrical phased arrays, underscoring chromatin contributions to transcription initiation. Corroborating previous observations, we asserted that Toxoplasma 5' leaders are among the longest of any eukaryote studied thus far, displaying a median length of approximately 800 nucleotides. Further highlighting the utility of a precise TSS map, we pinpointed motifs associated with transcription initiation, including the binding sites of the master regulator of chronic-stage differentiation, BFD1, and a novel motif with a similar positional arrangement present at 44% of Toxoplasma promoters. This work provides a critical resource for functional genomics in Toxoplasma, and lays down a foundation to study the interactions between genomic sequences and the regulatory factors that control transcription in this parasite.
Collapse
Affiliation(s)
- Benedikt M. Markus
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Benjamin S. Waldman
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
27
|
Bandini G, Agop-Nersesian C, van der Wel H, Mandalasi M, Kim HW, West CM, Samuelson J. The nucleocytosolic O-fucosyltransferase SPINDLY affects protein expression and virulence in Toxoplasma gondii. J Biol Chem 2021; 296:100039. [PMID: 33158988 PMCID: PMC7949088 DOI: 10.1074/jbc.ra120.015883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Once considered unusual, nucleocytoplasmic glycosylation is now recognized as a conserved feature of eukaryotes. While in animals, O-GlcNAc transferase (OGT) modifies thousands of intracellular proteins, the human pathogen Toxoplasma gondii transfers a different sugar, fucose, to proteins involved in transcription, mRNA processing, and signaling. Knockout experiments showed that TgSPY, an ortholog of plant SPINDLY and paralog of host OGT, is required for nuclear O-fucosylation. Here we verify that TgSPY is the nucleocytoplasmic O-fucosyltransferase (OFT) by 1) complementation with TgSPY-MYC3, 2) its functional dependence on amino acids critical for OGT activity, and 3) its ability to O-fucosylate itself and a model substrate and to specifically hydrolyze GDP-Fuc. While many of the endogenous proteins modified by O-Fuc are important for tachyzoite fitness, O-fucosylation by TgSPY is not essential. Growth of Δspy tachyzoites in fibroblasts is modestly affected, despite marked reductions in the levels of ectopically expressed proteins normally modified with O-fucose. Intact TgSPY-MYC3 localizes to the nucleus and cytoplasm, whereas catalytic mutants often displayed reduced abundance. Δspy tachyzoites of a luciferase-expressing type II strain exhibited infection kinetics in mice similar to wild-type but increased persistence in the chronic brain phase, potentially due to an imbalance of regulatory protein levels. The modest changes in parasite fitness in vitro and in mice, despite profound effects on reporter protein accumulation, and the characteristic punctate localization of O-fucosylated proteins suggest that TgSPY controls the levels of proteins to be held in reserve for response to novel stresses.
Collapse
Affiliation(s)
- Giulia Bandini
- Department of Molecular and Cell Biology, Boston University Henry Goldman School of Dental Medicine, Boston, Massachusetts, USA.
| | - Carolina Agop-Nersesian
- Department of Molecular and Cell Biology, Boston University Henry Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Msano Mandalasi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Hyun W Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Henry Goldman School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
29
|
Martorelli Di Genova B, Knoll LJ. Comparisons of the Sexual Cycles for the Coccidian Parasites Eimeria and Toxoplasma. Front Cell Infect Microbiol 2020; 10:604897. [PMID: 33381466 PMCID: PMC7768002 DOI: 10.3389/fcimb.2020.604897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii and Eimeria spp. are widely prevalent Coccidian parasites that undergo sexual reproduction during their life cycle. T. gondii can infect any warm-blooded animal in its asexual cycle; however, its sexual cycle is restricted to felines. Eimeria spp. are usually restricted to one host species, and their whole life cycle is completed within this same host. The literature reviewed in this article comprises the recent findings regarding the unique biology of the sexual development of T. gondii and Eimeria spp. The molecular basis of sex in these pathogens has been significantly unraveled by new findings in parasite differentiation along with transcriptional analysis of T. gondii and Eimeria spp. pre-sexual and sexual stages. Focusing on the metabolic networks, analysis of these transcriptome datasets shows enrichment for several different metabolic pathways. Transcripts for glycolysis enzymes are consistently more abundant in T. gondii cat infection stages than the asexual tachyzoite stage and Eimeria spp. merozoite and gamete stages compared to sporozoites. Recent breakthroughs in host-pathogen interaction and host restriction have significantly expanded the understating of the unique biology of these pathogens. This review aims to critically explore advances in the sexual cycle of Coccidia parasites with the ultimate goal of comparing and analyzing the sexual cycle of Eimeria spp. and T. gondii.
Collapse
Affiliation(s)
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
Sharma J, Rodriguez P, Roy P, Guiton PS. Transcriptional ups and downs: patterns of gene expression in the life cycle of Toxoplasma gondii. Microbes Infect 2020; 22:525-533. [PMID: 32931908 DOI: 10.1016/j.micinf.2020.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii reproduces sexually in felines and asexually in virtually all warm-blooded animals, including humans. This obligate intracellular parasite alternates between biologically distinct developmental stages throughout its complex life cycle. Stage conversion is crucial for T. gondii transmission, persistence, and the maintenance of genetic diversity within the species. Genome-wide comparative transcriptomic studies have contributed invaluable insights into the regulatory gene networks underlying T. gondii development.
Collapse
Affiliation(s)
- Janak Sharma
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Paula Rodriguez
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Proyasha Roy
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Pascale S Guiton
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA.
| |
Collapse
|
31
|
Abo-Al-Ela HG. Toxoplasmosis and Psychiatric and Neurological Disorders: A Step toward Understanding Parasite Pathogenesis. ACS Chem Neurosci 2020; 11:2393-2406. [PMID: 31268676 DOI: 10.1021/acschemneuro.9b00245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toxoplasmosis, a disease that disrupts fetal brain development and severely affects the host's brain, has been linked to many behavioral and neurological disorders. There is growing interest in how a single-celled neurotropic parasite, Toxoplasma gondii, can control or change the behavior of the host as well as how it dominates the host's neurons. Secrets beyond these could be answered by decoding the Toxoplasma gondii genome, unravelling the function of genomic sequences, and exploring epigenetics and mRNAs alterations, as well as the postulated mechanisms contributing to various neurological and psychiatric symptoms caused by this parasite. Substantial efforts have been made to elucidate the action of T. gondii on host immunity and the biology of its infection. However, the available studies on the molecular aspects of toxoplasmosis that affect central nervous system (CNS) circuits remain limited, and much research is still needed on this interesting topic. In my opinion, this parasite is a gift for studying the biology of the nervous system and related diseases. We should utilize the unique features of Toxoplasma, such as its abilities to modulate brain physiology, for neurological studies or as a possible tool or approach to cure neurological disease.
Collapse
Affiliation(s)
- Haitham G. Abo-Al-Ela
- Animal Health Research Institute, Agriculture Research Center, Shibin Al-Kom, El-Minufiya 7001, Egypt
| |
Collapse
|
32
|
Bowden GD, Reis PM, Rogers MB, Bone Relat RM, Brayton KA, Wilson SK, Di Genova BM, Knoll LJ, Nepveux V FJ, Tai AK, Ramadhar TR, Clardy J, O'Connor RM. A conserved coccidian gene is involved in Toxoplasma sensitivity to the anti-apicomplexan compound, tartrolon E. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:1-7. [PMID: 32738587 PMCID: PMC7394737 DOI: 10.1016/j.ijpddr.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
New treatments for the diseases caused by apicomplexans are needed. Recently, we determined that tartrolon E (trtE), a secondary metabolite derived from a shipworm symbiotic bacterium, has broad-spectrum anti-apicomplexan parasite activity. TrtE inhibits apicomplexans at nM concentrations in vitro, including Cryptosporidium parvum, Toxoplasma gondii, Sarcocystis neurona, Plasmodium falciparum, Babesia spp. and Theileria equi. To investigate the mechanism of action of trtE against apicomplexan parasites, we examined changes in the transcriptome of trtE-treated T. gondii parasites. RNA-Seq data revealed that the gene, TGGT1_272370, which is broadly conserved in the coccidia, is significantly upregulated within 4 h of treatment. Using bioinformatics and proteome data available on ToxoDB, we determined that the protein product of this tartrolon E responsive gene (trg) has multiple transmembrane domains, a phosphorylation site, and localizes to the plasma membrane. Deletion of trg in a luciferase-expressing T. gondii strain by CRISPR/Cas9 resulted in a 68% increase in parasite resistance to trtE treatment, supporting a role for the trg protein product in the response of T. gondii to trtE treatment. Trg is conserved in the coccidia, but not in more distantly related apicomplexans, indicating that this response to trtE may be unique to the coccidians, and other mechanisms may be operating in other trtE-sensitive apicomplexans. Uncovering the mechanisms by which trtE inhibits apicomplexans may identify shared pathways critical to apicomplexan parasite survival and advance the search for new treatments.
Collapse
Affiliation(s)
- Gregory D Bowden
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, P.O. Box 647040, Pullman, WA, 99164-7040, USA
| | - Patricia M Reis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, P.O. Box 647040, Pullman, WA, 99164-7040, USA
| | - Maxwell B Rogers
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, P.O. Box 647040, Pullman, WA, 99164-7040, USA
| | - Rachel M Bone Relat
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, P.O. Box 647040, Pullman, WA, 99164-7040, USA
| | - Kelly A Brayton
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, P.O. Box 647040, Pullman, WA, 99164-7040, USA
| | - Sarah K Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, 1550 Linden Dr Madison, WI, 53706, USA
| | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, 1550 Linden Dr Madison, WI, 53706, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, 1550 Linden Dr Madison, WI, 53706, USA
| | - Felix J Nepveux V
- Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, 60 Tremont St 3rd Fl, Boston, MA, 02116, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Timothy R Ramadhar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue C-213, Boston, MA, 02115, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue C-213, Boston, MA, 02115, USA
| | - Roberta M O'Connor
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, P.O. Box 647040, Pullman, WA, 99164-7040, USA.
| |
Collapse
|
33
|
A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment. Nat Microbiol 2020; 5:570-583. [PMID: 32094587 PMCID: PMC7104380 DOI: 10.1038/s41564-020-0674-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii has a complex life cycle that is typified by asexual development that takes place in vertebrates, and sexual reproduction, which occurs exclusively in felids and is therefore less studied. The developmental transitions rely on changes in the patterns of gene expression, and recent studies have assigned roles for chromatin shapers, including histone modifications, in establishing specific epigenetic programs for each given stage. Here, we identified the T. gondii microrchidia (MORC) protein as an upstream transcriptional repressor of sexual commitment. MORC, in a complex with Apetala 2 (AP2) transcription factors, was shown to recruit the histone deacetylase HDAC3, thereby impeding the accessibility of chromatin at the genes that are exclusively expressed during sexual stages. We found that MORC-depleted cells underwent marked transcriptional changes, resulting in the expression of a specific repertoire of genes, and revealing a shift from asexual proliferation to sexual differentiation. MORC acts as a master regulator that directs the hierarchical expression of secondary AP2 transcription factors, and these transcription factors potentially contribute to the unidirectionality of the life cycle. Thus, MORC plays a cardinal role in the T. gondii life cycle, and its conditional depletion offers a method to study the sexual development of the parasite in vitro, and is proposed as an alternative to the requirement of T. gondii infections in cats.
Collapse
|
34
|
Boothroyd JC. What a Difference 30 Years Makes! A Perspective on Changes in Research Methodologies Used to Study Toxoplasma gondii. Methods Mol Biol 2020; 2071:1-25. [PMID: 31758444 DOI: 10.1007/978-1-4939-9857-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is a remarkable species with a rich cell, developmental, and population biology. It is also sometimes responsible for serious disease in animals and humans and the stages responsible for such disease are relatively easy to study in vitro or in laboratory animal models. As a result of all this, Toxoplasma has become the subject of intense investigation over the last several decades, becoming a model organism for the study of the phylum of which it is a member, Apicomplexa. This has led to an ever-growing number of investigators applying an ever-expanding set of techniques to dissecting how Toxoplasma "ticks" and how it interacts with its many hosts. In this perspective piece I first wind back the clock 30 years and then trace the extraordinary pace of methodologies that have propelled the field forward to where we are today. In keeping with the theme of this collection, I focus almost exclusively on the parasite, rather than host side of the equation. I finish with a few thoughts about where the field might be headed-though if we have learned anything, the only sure prediction is that the pace of technological advance will surely continue to accelerate and the future will give us still undreamed of methods for taking apart (and then putting back together) this amazing organism with all its intricate biology. We have so far surely just scratched the surface.
Collapse
Affiliation(s)
- John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
Abstract
ToxoDB is a free online resource that provides access to genomic and functional genomic data. All data is made available through an intuitive queryable interface that enables scientists to build in silico experiments and develop testable hypothesis. The resource contains 32 fully sequenced and annotated genomes, with genomic sequence from multiple strains available for variant detection and copy number variation analysis. In addition to genomic sequence data, ToxoDB contains numerous functional genomic datasets including microarray, RNAseq, proteomics, ChIP-seq, and phenotypic data. In addition, results from a number of whole-genome analyses are incorporated including mapping to orthology clusters which allows users to leverage phylogenetic relationships in their analyses. Integration of primary data is made possible through a private galaxy interface and custom export tools that allow users to interrogate their own results in the context of all other data in the database.
Collapse
|
36
|
Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol 2019; 17:607-620. [PMID: 31444481 PMCID: PMC7024564 DOI: 10.1038/s41579-019-0238-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
Antimicrobial treatment failure threatens our ability to control infections. In addition to antimicrobial resistance, treatment failures are increasingly understood to derive from cells that survive drug treatment without selection of genetically heritable mutations. Parasitic protozoa, such as Plasmodium species that cause malaria, Toxoplasma gondii and kinetoplastid protozoa, including Trypanosoma cruzi and Leishmania spp., cause millions of deaths globally. These organisms can evolve drug resistance and they also exhibit phenotypic diversity, including the formation of quiescent or dormant forms that contribute to the establishment of long-term infections that are refractory to drug treatment, which we refer to as 'persister-like cells'. In this Review, we discuss protozoan persister-like cells that have been linked to persistent infections and discuss their impact on therapeutic outcomes following drug treatment.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Radke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
37
|
Evaluation of RE and B1 Genes as Targets for Detection of Toxoplasma gondii by Nested PCR in Blood Samples of Patients with Ocular Toxoplasmosis. Acta Parasitol 2019; 64:384-389. [PMID: 31020496 DOI: 10.2478/s11686-019-00056-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION To evaluate B1 and RE genes as targets to detect Toxoplasma gondii, nested PCR is used in blood samples of patients with ocular toxoplasmosis. MATERIALS AND METHODS Following the measurement of IgG and IgM antibodies using indirect ELISA, IgG avidity and assessment of blood samples by nested PCR, the agreement between various test results was studied. RESULTS From 117 patients, 77 (65.81%) were found to be positive for IgG anti-Toxoplasma antibody, 12 cases were positive for both IgG and IgM, and 1 patient was positive for IgM only. The detection limit for the RE-nested PCR assay was one T. gondii tachyzoite, whereas the limit for B1-nested PCR was five tachyzoites. Nested PCR results showed higher agreement with IgM test results than IgG test results. CONCLUSION The results of this study showed that nested PCR of peripheral blood is a useful and non-invasive method for detection of T. gondii in patients with OT, especially in case of recently acquired infections, and RE targeted assay is more sensitive than B1 targeted assay for this purpose.
Collapse
|
38
|
ApiAP2 Transcription Factors in Apicomplexan Parasites. Pathogens 2019; 8:pathogens8020047. [PMID: 30959972 PMCID: PMC6631176 DOI: 10.3390/pathogens8020047] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Apicomplexan parasites are protozoan organisms that are characterised by complex life cycles and they include medically important species, such as the malaria parasite Plasmodium and the causative agents of toxoplasmosis (Toxoplasma gondii) and cryptosporidiosis (Cryptosporidium spp.). Apicomplexan parasites can infect one or more hosts, in which they differentiate into several morphologically and metabolically distinct life cycle stages. These developmental transitions rely on changes in gene expression. In the last few years, the important roles of different members of the ApiAP2 transcription factor family in regulating life cycle transitions and other aspects of parasite biology have become apparent. Here, we review recent progress in our understanding of the different members of the ApiAP2 transcription factor family in apicomplexan parasites.
Collapse
|
39
|
Abstract
The positioning of chromosomes in the nucleus of a eukaryotic cell is highly organized and has a complex and dynamic relationship with gene expression. In the human malaria parasite Plasmodium falciparum, the clustering of a family of virulence genes correlates with their coordinated silencing and has a strong influence on the overall organization of the genome. To identify conserved and species-specific principles of genome organization, we performed Hi-C experiments and generated 3D genome models for five Plasmodium species and two related apicomplexan parasites. Plasmodium species mainly showed clustering of centromeres, telomeres, and virulence genes. In P. falciparum, the heterochromatic virulence gene cluster had a strong repressive effect on the surrounding nuclear space, while this was less pronounced in Plasmodium vivax and Plasmodium berghei, and absent in Plasmodium yoelii In Plasmodium knowlesi, telomeres and virulence genes were more dispersed throughout the nucleus, but its 3D genome showed a strong correlation with gene expression. The Babesia microti genome showed a classical Rabl organization with colocalization of subtelomeric virulence genes, while the Toxoplasma gondii genome was dominated by clustering of the centromeres and lacked virulence gene clustering. Collectively, our results demonstrate that spatial genome organization in most Plasmodium species is constrained by the colocalization of virulence genes. P. falciparum and P. knowlesi, the only two Plasmodium species with gene families involved in antigenic variation, are unique in the effect of these genes on chromosome folding, indicating a potential link between genome organization and gene expression in more virulent pathogens.
Collapse
|
40
|
Alonso AM, Corvi MM, Diambra L. Gene target discovery with network analysis in Toxoplasma gondii. Sci Rep 2019; 9:646. [PMID: 30679502 PMCID: PMC6345969 DOI: 10.1038/s41598-018-36671-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases are of great relevance for global health, but needed drugs and vaccines have not been developed yet or are not effective in many cases. In fact, traditional scientific approaches with intense focus on individual genes or proteins have not been successful in providing new treatments. Hence, innovations in technology and computational methods provide new tools to further understand complex biological systems such as pathogen biology. In this paper, we apply a gene regulatory network approach to analyze transcriptomic data of the parasite Toxoplasma gondii. By means of an optimization procedure, the phenotypic transitions between the stages associated with the life cycle of T. gondii were embedded into the dynamics of a gene regulatory network. Thus, through this methodology we were able to reconstruct a gene regulatory network able to emulate the life cycle of the pathogen. The community network analysis has revealed that nodes of the network can be organized in seven communities which allow us to assign putative functions to 338 previously uncharacterized genes, 25 of which are predicted as new pathogenic factors. Furthermore, we identified a small gene circuit that drives a series of phenotypic transitions that characterize the life cycle of this pathogen. These new findings can contribute to the understanding of parasite pathogenesis.
Collapse
Affiliation(s)
- Andres M Alonso
- Instituto de Investigaciones Biotecnológicas "Dr. Raul Alfonsin", CONICET-Universidad Nacional de General San Martín, Chascomús, B7130IWA, Argentina
- CREG, CONICET-Universidad Nacional de La Plata, La Plata, CP 1900, Argentina
| | - Maria M Corvi
- Instituto de Investigaciones Biotecnológicas "Dr. Raul Alfonsin", CONICET-Universidad Nacional de General San Martín, Chascomús, B7130IWA, Argentina
| | - Luis Diambra
- CREG, CONICET-Universidad Nacional de La Plata, La Plata, CP 1900, Argentina.
| |
Collapse
|
41
|
Wang M, Zhang FK, Elsheikha HM, Zhang NZ, He JJ, Luo JX, Zhu XQ. Transcriptomic insights into the early host-pathogen interaction of cat intestine with Toxoplasma gondii. Parasit Vectors 2018; 11:592. [PMID: 30428922 PMCID: PMC6236892 DOI: 10.1186/s13071-018-3179-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Background Although sexual reproduction of the parasite Toxoplasma gondii exclusively occurs in the cat intestine, knowledge about the alteration of gene expression in the intestine of cats infected with T. gondii is still limited. Here, we investigated the temporal transcriptional changes that occur in the cat intestine during T. gondii infection. Methods Cats were infected with 100 T. gondii cysts and their intestines were collected at 6, 12, 18, 24, 72 and 96 hours post-infection (hpi). RNA sequencing (RNA-Seq) Illumina technology was used to gain insight into the spectrum of genes that are differentially expressed due to infection. Quantitative RT-PCR (qRT-PCR) was also used to validate the level of expression of a set of differentially expressed genes (DEGs) obtained by sequencing. Results Our transcriptome analysis revealed 2363 DEGs that were clustered into six unique patterns of gene expression across all the time points after infection. Our analysis revealed 56, 184, 404, 508, 400 and 811 DEGs in infected intestines compared to uninfected controls at 6, 12, 18, 24, 72 and 96 hpi, respectively. RNA-Seq results were confirmed by qRT-PCR. DEGs were mainly enriched in catalytic activity and metabolic process based on gene ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that transcriptional changes in the intestine of infected cats evolve over the course of infection, and the largest difference in the enriched pathways was observed at 96 hpi. The anti-T. gondii defense response of the feline host was mediated by Major Histocompatibility Complex class I, proteasomes, heat-shock proteins and fatty acid binding proteins. Conclusions This study revealed novel host factors, which may be critical for the successful establishment of an intracellular niche during T. gondii infection in the definitive feline host. Electronic supplementary material The online version of this article (10.1186/s13071-018-3179-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
42
|
A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microb Pathog 2018; 126:172-184. [PMID: 30399440 DOI: 10.1016/j.micpath.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022]
Abstract
At present, there is not any available accepted vaccine for prevention of Toxoplasma gondii (T. gondii) in human and animals. We conducted literature search through English (Google Scholar, PubMed, Science Direct, Scopus, EBSCO, ISI Web of Science) scientific paper databases to find the best vaccine candidates against toxoplasmosis among T. gondii antigens. Articles with information on infective stage, pathogenicity, immunogenicity and characterization of antigens were selected. We considered that the ideal and significant vaccines should include different antigens and been expressed in all infective stages of the parasite with a high pathogenicity and immunogenicity. Evaluation within this systematic review indicates that MIC 3, 4, 13, ROP 2, RON 5, GRA 1, 6, 8, 14 are expressed in all three infective stages and have pathogenicity and immunogenicity. MIC 5, ROM 4, GRA 2, 4, 15, ROP 5, 16, 17, 38, RON 4, MIC 1, GRA 10, 12, 16, SAG 3 are expressed in only tachyzoites and bradyzoites stages of T. gondii with pathogenicity/immunogenicity. Some antigens appeared to be expressed in a single stage (tachyzoites) but have high pathogenicity and induce immune response. They include enolase2 (ENO2), SAG 1, SAG5D, HSP 70, ROM 1, ROM 5, AMA 1, ROP 18, RON2 and GRA 24. In conclusion, current vaccination against T. gondii infection is not satisfactory, and with the increasing number of high-risk individuals, the development of an effective and safe specific vaccine is greatly valuable for toxoplasmosis prevention. This systematic review reveals prepare candidates for immunization studies.
Collapse
|
43
|
Abstract
Toxoplasma gondii is a common veterinary and human pathogen that persists as latent bradyzoite forms within infected hosts. The ability of the parasite to interconvert between tachyzoite and bradyzoite is key for pathogenesis of toxoplasmosis, particularly in immunocompromised individuals. The transition between tachyzoites and bradyzoites is epigenetically regulated and coupled to the cell cycle. Recent epigenomic studies have begun to elucidate the chromatin states associated with developmental switches in T. gondii. Evidence is also emerging that AP2 transcription factors both activate and repress the bradyzoite developmental program. Further studies are needed to understand the mechanisms by which T. gondii transduces environmental signals to coordinate the epigenetic and transcriptional machinery that are responsible for tachyzoite-bradyzoite interconversion.
Collapse
Affiliation(s)
- Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.,Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA;
| |
Collapse
|
44
|
Sokol SL, Primack AS, Nair SC, Wong ZS, Tembo M, Verma SK, Cerqueira-Cezar CK, Dubey JP, Boyle JP. Dissection of the in vitro developmental program of Hammondia hammondi reveals a link between stress sensitivity and life cycle flexibility in Toxoplasma gondii. eLife 2018; 7:36491. [PMID: 29785929 PMCID: PMC5963921 DOI: 10.7554/elife.36491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Most eukaryotic parasites are obligately heteroxenous, requiring sequential infection of different host species in order to survive. Toxoplasma gondii is a rare exception to this rule, having a uniquely facultative heteroxenous life cycle. To understand the origins of this phenomenon, we compared development and stress responses in T. gondii to those of its its obligately heteroxenous relative, Hammondia hammondi and have identified multiple H. hammondi growth states that are distinct from those in T. gondii. Of these, the most dramatic difference was that H. hammondi was refractory to stressors that robustly induce cyst formation in T. gondii, and this was reflected most dramatically in its unchanging transcriptome after stress exposure. We also found that H. hammondi could be propagated in vitro for up to 8 days post-excystation, and we exploited this to generate the first ever transgenic H. hammondi line. Overall our data show that H. hammondi zoites grow as stringently regulated, unique life stages that are distinct from T. gondii tachyzoites, and implicate stress sensitivity as a potential developmental innovation that increased the flexibility of the T. gondii life cycle.
Collapse
Affiliation(s)
- Sarah L Sokol
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Abby S Primack
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Sethu C Nair
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Zhee S Wong
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Maiwase Tembo
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Shiv K Verma
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - Camila K Cerqueira-Cezar
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - J P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, United States
| | - Jon P Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
45
|
Acar İE, Saçar Demirci MD, Groß U, Allmer J. The Expressed MicroRNA—mRNA Interactions of Toxoplasma gondii. Front Microbiol 2018; 8:2630. [PMID: 29354114 PMCID: PMC5759179 DOI: 10.3389/fmicb.2017.02630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/15/2017] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in post-transcriptional modulation of gene expression and thereby have a large influence on the resulting phenotype. We have previously shown that miRNAs may be involved in the communication between Toxoplasma gondii and its hosts and further confirmed a number of proposed specific miRNAs. Yet, little is known about the internal regulation via miRNAs in T. gondii. Therefore, we predicted pre-miRNAs directly from the type II ME49 genome and filtered them. For the confident hairpins, we predicted the location of the mature miRNAs and established their target genes. To add further confidence, we evaluated whether the hairpins and their targets were co-expressed. Such co-expressed miRNA and target pairs define a functional interaction. We extracted all such functional interactions and analyzed their differential expression among strains of all three clonal lineages (RH, PLK, and CTG) and between the two stages present in the intermediate host (tachyzoites and bradyzoites). Overall, we found ~65,000 expressed interactions of which ~5,500 are differentially expressed among strains but none are significantly differentially expressed between developmental stages. Since miRNAs and target decoys can be used as therapeutics we believe that the list of interactions we provide will lead to novel approaches in the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- İlhan E. Acar
- Biotechnology, Izmir Institute of Technology, Izmir, Turkey
| | | | - Uwe Groß
- Medical Microbiology, Universitätsmedizin Göttingen, Göttingen, Germany
- *Correspondence: Uwe Groß
| | - Jens Allmer
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
- Jens Allmer
| |
Collapse
|
46
|
Guérin A, El Hajj H, Penarete-Vargas D, Besteiro S, Lebrun M. RON4 L1 is a new member of the moving junction complex in Toxoplasma gondii. Sci Rep 2017; 7:17907. [PMID: 29263399 PMCID: PMC5738351 DOI: 10.1038/s41598-017-18010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/05/2017] [Indexed: 12/02/2022] Open
Abstract
Apicomplexa parasites, including Toxoplasma and Plasmodium species, possess a unique invasion mechanism that involves a tight apposition between the parasite and the host plasma membranes, called “moving junction” (MJ). The MJ is formed by the assembly of the microneme protein AMA1, exposed at the surface of the parasite, and the parasite rhoptry neck (RON) protein RON2, exposed at the surface of the host cell. In the host cell, RON2 is associated with three additional parasite RON proteins, RON4, RON5 and RON8. Here we describe RON4L1, an additional member of the MJ complex in Toxoplasma. RON4L1 displays some sequence similarity with RON4 and is cleaved at the C-terminal end before reaching the rhoptry neck. Upon secretion during invasion, RON4L1 is associated with MJ and targeted to the cytosolic face of the host membrane. We generated a RON4L1 knock-out cell line and showed that it is not essential for the lytic cycle in vitro, although mutant parasites kill mice less efficiently. Similarly to RON8, RON4L1 is a coccidian-specific protein and its traffic to the MJ is not affected in absence of RON2, RON4 and RON5, suggesting the co-existence of independent MJ complexes in tachyzoite of Toxoplasma.
Collapse
Affiliation(s)
- Amandine Guérin
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Hiba El Hajj
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, 1107 2020, Lebanon
| | | | | | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France.
| |
Collapse
|
47
|
The merozoite-specific protein, TgGRA11B, identified as a component of the Toxoplasma gondii parasitophorous vacuole in a tachyzoite expression model. Int J Parasitol 2017; 47:597-600. [DOI: 10.1016/j.ijpara.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 11/24/2022]
|
48
|
Su S, Hou Z, Liu D, Jia C, Wang L, Xu J, Tao J. Comparative transcriptome analysis of second- and third-generation merozoites of Eimeria necatrix. Parasit Vectors 2017; 10:388. [PMID: 28814335 PMCID: PMC5559809 DOI: 10.1186/s13071-017-2325-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
Background Eimeria is a common genus of apicomplexan parasites that infect diverse vertebrates, most notably poultry, causing serious disease and economic losses. Eimeria species have complex life-cycles consisting of three developmental stages. However, the molecular basis of the Eimeria reproductive mode switch remains an enigma. Methods Total RNA extracted from second- (MZ-2) and third-generation merozoites (MZ-3) of Eimeria necatrix was subjected to transcriptome analysis using RNA sequencing (RNA-seq) followed by qRT-PCR validation. Results A total of 6977 and 6901 unigenes were obtained from MZ-2 and MZ-3, respectively. Approximately 2053 genes were differentially expressed genes (DEGs) between MZ-2 and MZ-3. Compared with MZ-2, 837 genes were upregulated and 1216 genes were downregulated in MZ-3. Approximately 95 genes in MZ-2 and 48 genes in MZ-3 were further identified to have stage-specific expression. Gene ontology category and KEGG analysis suggested that 216 upregulated genes in MZ-2 were annotated by 70 GO assignments, 242 upregulated genes were associated with 188 signal pathways, while 321 upregulated genes in MZ-3 were annotated by 56 GO assignments, 322 upregulated genes were associated with 168 signal pathways. The molecular functions of upregulated genes in MZ-2 were mainly enriched for protein degradation and amino acid metabolism. The molecular functions of upregulated genes in MZ-3 were mainly enriched for transcriptional activity, cell proliferation and cell differentiation. Conclusions To the best of our knowledge, this is the first RNA-seq data study of the MZ-2 and MZ-3 stages of E. necatrix; it demonstrates a high number of differentially expressed genes between the MZ-2 and MZ-3 of E. necatrix. This study forms a basis for deciphering the molecular mechanisms underlying the shift from the second to third generation schizogony in Eimeria. It also provides valuable resources for future studies on Eimeria, and provides insight into the understanding of reproductive mode plasticity in different Eimeria species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2325-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Chuanli Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
49
|
Marugan-Hernandez V, Long E, Blake D, Crouch C, Tomley F. Eimeria tenella protein trafficking: differential regulation of secretion versus surface tethering during the life cycle. Sci Rep 2017; 7:4557. [PMID: 28676667 PMCID: PMC5496917 DOI: 10.1038/s41598-017-04049-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/08/2017] [Indexed: 01/15/2023] Open
Abstract
Eimeria spp. are intracellular parasites that have a major impact on poultry. Effective live vaccines are available and the development of reverse genetic technologies has raised the prospect of using Eimeria spp. as recombinant vectors to express additional immunoprotective antigens. To study the ability of Eimeria to secrete foreign antigens or display them on the surface of the sporozoite, transiently transfected populations of E. tenella expressing the fluorescent protein mCherry, linked to endogenous signal peptide (SP) and glycophosphatidylinositol-anchor (GPI) sequences, were examined. The SP from microneme protein EtMIC2 (SP2) allowed efficient trafficking of mCherry to cytoplasmic vesicles and following the C-terminal addition of a GPI-anchor (from surface antigen EtSAG1) mCherry was expressed on the sporozoite surface. In stable transgenic populations, mCherry fused to SP2 was secreted into the sporocyst cavity of the oocysts and after excystation, secretion was detected in culture supernatants but not into the parasitophorous vacuole after invasion. When the GPI was incorporated, mCherry was observed on the sporozites surface and in the supernatant of invading sporozoites. The proven secretion and surface exposure of mCherry suggests that antigen fusions with SP2 and GPI of EtSAG1 may be promising candidates to examine induction of protective immunity against heterologous pathogens.
Collapse
Affiliation(s)
- V Marugan-Hernandez
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK.
| | - E Long
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - D Blake
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - C Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - F Tomley
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| |
Collapse
|
50
|
Wang ZX, Zhou CX, Elsheikha HM, He S, Zhou DH, Zhu XQ. Proteomic Differences between Developmental Stages of Toxoplasma gondii Revealed by iTRAQ-Based Quantitative Proteomics. Front Microbiol 2017. [PMID: 28626452 PMCID: PMC5454076 DOI: 10.3389/fmicb.2017.00985] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii has a complex two-host life-cycle between intermediate host and definitive host. Understanding proteomic variations across the life-cycle stages of T. gondii may improve the understanding of molecular adaption mechanism of T. gondii across life-cycle stages, and should have implications for the development of new treatment and prevention interventions against T. gondii infection. Here, we utilized LC–MS/MS coupled with iTRAQ labeling technology to identify differentially expressed proteins (DEPs) specific to tachyzoite (T), bradyzoites-containing cyst (C) and sporulated oocyst (O) stages of the cyst-forming T. gondii Prugniuad (Pru) strain. A total of 6285 proteins were identified in the three developmental stages of T. gondii. Our analysis also revealed 875, 656, and 538 DEPs in O vs. T, T vs. C, and C vs. O, respectively. The up- and down-regulated proteins were analyzed by Gene Ontology enrichment, KEGG pathway and STRING analyses. Some virulence-related factors and ribosomal proteins exhibited distinct expression patterns across the life-cycle stages. The virulence factors expressed in sporulated oocysts and the number of up-regulated virulence factors in the cyst stage were about twice as many as in tachyzoites. Of the 79 ribosomal proteins identified in T. gondii, the number of up-regulated ribosomal proteins was 33 and 46 in sporulated oocysts and cysts, respectively, compared with tachyzoites. These results support the hypothesis that oocyst and cystic stages are able to adapt to adverse environmental conditions and selection pressures induced by the host's immune response, respectively. These findings have important implications for understanding of the developmental biology of T. gondii, which may facilitate the discovery of novel therapeutic targets to better control toxoplasmosis.
Collapse
Affiliation(s)
- Ze-Xiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China
| | - Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China.,National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of NottinghamLoughborough, United Kingdom
| | - Shuai He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China.,College of Animal Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|