1
|
Otjacques E, Paula JR, Ruby EG, Xavier JC, McFall-Ngai MJ, Rosa R, Schunter C. Developmental and transcriptomic responses of Hawaiian bobtail squid early stages to ocean warming and acidification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621237. [PMID: 39553969 PMCID: PMC11565970 DOI: 10.1101/2024.10.31.621237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cephalopods play a central ecological role across all oceans and realms. However, under the current climate crisis, their physiology and behaviour are impacted, and we are beginning to comprehend the effects of environmental stressors at a molecular level. Here, we study the Hawaiian bobtail squid (Euprymna scolopes), known for its specific binary symbiosis with the bioluminescent bacterium Vibrio fischeri acquired post-hatching. We aim to understand the response (i.e., developmental and molecular) of E. scolopes after the embryogenetic exposure to different conditions: i) standard conditions (control), ii) increased CO2 (ΔpH 0.4 units), iii) warming (+3°C), or iv) a combination of the two treatments. We observed a decrease in hatching success across all treatments relative to the control. Using transcriptomics, we identified a potential trade-off in favour of metabolism and energy production, at the expense of development under increased CO2. In contrast, elevated temperature shortened the developmental time and, at a molecular level, showed signs of alternative splicing and the potential for RNA editing. The data also suggest that the initiation of the symbiosis may be negatively affected by these environmental drivers of change in the biosphere, although coping mechanisms by the animal may occur.
Collapse
Affiliation(s)
- E Otjacques
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
- Carnegie Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 Pasadena, CA, United States
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - J R Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i, 46-007 Lilipuna Road, Kaneohe, HI 96744, USA
| | - E G Ruby
- Carnegie Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 Pasadena, CA, United States
| | - J C Xavier
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Cambridge, United Kingdom
| | - M J McFall-Ngai
- Carnegie Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 Pasadena, CA, United States
| | - R Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - C Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| |
Collapse
|
2
|
Thangal SH, Muralisankar T, Mohan K, Santhanam P, Venmathi Maran BA. Biological and physiological responses of marine crabs to ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 248:118238. [PMID: 38262516 DOI: 10.1016/j.envres.2024.118238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Marine crabs play an integral role in the food chain and scavenge the debris in the ecosystem. Gradual increases in global atmospheric carbon dioxide cause ocean acidification (OA) and global warming that leads to severe consequences for marine organisms including crabs. Also, OA combined with other stressors like temperature, hypoxia, and heavy metals causes more severe adverse effects in marine crabs. The present review was made holistic discussion of information from 111 articles, of which 37 peer-reviewed original research papers reported on the effect of OA experiments and its combination with other stressors like heavy metals, temperature, and hypoxia on growth, survival, molting, chitin quality, food indices, tissue biochemical constituents, hemocytes population, and biomarker enzymes of marine crabs. Nevertheless, the available reports are still in the infancy of marine crabs, hence, this review depicts the possible gaps and future research needs on the impact of OA on marine crabs.
Collapse
Affiliation(s)
- Said Hamid Thangal
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore-641046, Tamil Nadu, India
| | | | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Perumal Santhanam
- Marine Planktonology& Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | - Balu Alagar Venmathi Maran
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki, 852-8521, Japan
| |
Collapse
|
3
|
Semmouri I, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, Janssen CR, Asselman J. Contribution of combined stressors on density and gene expression dynamics of the copepod Temora longicornis in the North Sea. Mol Ecol 2024:e17312. [PMID: 38426368 DOI: 10.1111/mec.17312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The impact of multiple environmental and anthropogenic stressors on the marine environment remains poorly understood. Therefore, we studied the contribution of environmental variables to the densities and gene expression of the dominant zooplankton species in the Belgian part of the North Sea, the calanoid copepod Temora longicornis. We observed a reduced density of copepods, which were also smaller in size, in samples taken from nearshore locations when compared to those obtained from offshore stations. To assess the factors influencing the population dynamics of this species, we applied generalised additive models. These models allowed us to quantify the relative contribution of temperature, nutrient levels, salinity, turbidity, concentrations of photosynthetic pigments, as well as chemical pollutants such as polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs), on copepod density. Temperature and Secchi depth, a proxy for turbidity, were the most important environmental variables predicting the densities of T. longicornis, followed by summed PAH and chlorophyll concentrations. Analysing gene expression in field-collected adults, we observed significant variation in metabolic and stress-response genes. Temperature correlated significantly with genes involved in proteolytic activities, and encoding heat shock proteins. Yet, concentrations of anthropogenic chemicals did not induce significant differences in the gene expression of genes involved in the copepod's fatty acid metabolism or well-known stress-related genes, such as glutathione transferases or cytochrome P450. Our study highlights the potential of gene expression biomonitoring and underscores the significance of a changing environment in future studies.
Collapse
Affiliation(s)
- Ilias Semmouri
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Colin R Janssen
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| |
Collapse
|
4
|
Servetto N, Ruiz MB, Martínez M, Harms L, de Aranzamendi MC, Alurralde G, Giménez D, Abele D, Held C, Sahade R. Molecular responses to ocean acidification in an Antarctic bivalve and an ascidian. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166577. [PMID: 37633374 DOI: 10.1016/j.scitotenv.2023.166577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Southern Ocean organisms are considered particularly vulnerable to Ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. It is also generally assumed that OA would affect calcifying animals more than non-calcifying animals. In this context, we aimed to study the impact of reduced pH on both types of species: the ascidian Cnemidocarpa verrucosa sp. A, and the bivalve Aequiyoldia eightsii, from an Antarctic fjord. We used gene expression profiling and enzyme activity to study the responses of these two Antarctic benthic species to OA. We report the results of an experiment lasting 66 days, comparing the molecular mechanisms underlying responses under two pCO2 treatments (ambient and elevated pCO2). We observed 224 up-regulated and 111 down-regulated genes (FC ≥ 2; p-value ≤ 0.05) in the ascidian. In particular, the decrease in pH caused an upregulation of genes involved in the immune system and antioxidant response. While fewer differentially expressed (DE) genes were observed in the infaunal bivalve, 34 genes were up-regulated, and 69 genes were downregulated (FC ≥ 2; p-value ≤ 0.05) in response to OA. We found downregulated genes involved in the oxidoreductase pathway (such as glucose dehydrogenase and trimethyl lysine dioxygenase), while the heat shock protein 70 was up-regulated. This work addresses the effect of OA in two common, widely distributed Antarctic species, showing striking results. Our major finding highlights the impact of OA on the non-calcifying species, a result that differ from the general trend, which describes a higher impact on calcifying species. This calls for discussion of potential effects on non-calcifying species, such as ascidians, a diverse and abundant group that form extended three-dimensional clusters in shallow waters and shelf areas in the Southern Ocean.
Collapse
Affiliation(s)
- N Servetto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina.
| | - M B Ruiz
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany; Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - M Martínez
- Universidad de la Republica, Montevideo, Uruguay
| | - L Harms
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany
| | - M C de Aranzamendi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| | - G Alurralde
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden; Baltic Marine Environment Protection Commission HELCOM, Helsinki FI-00160, Finland
| | - D Giménez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| | - D Abele
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany
| | - C Held
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany
| | - R Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina.
| |
Collapse
|
5
|
Wang C, Han W, Cheng W, Liu D, Wang W, Yan B, Gao H, Hu G. Impact of Ocean Acidification on the Gut Histopathology and Intestinal Microflora of Exopalaemon carinicauda. Animals (Basel) 2023; 13:3299. [PMID: 37894023 PMCID: PMC10603730 DOI: 10.3390/ani13203299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Marine crustaceans are severely threatened by environmental factors such as ocean acidification, but, despite the latter's negative impact on growth, molting, and immunity, its effects on intestinal microflora remain poorly understood. This work studied the gut morphology and intestinal microflora of Exopalaemon carinicauda, grown in seawater of different pH levels: 8.1 (control group), 7.4 (AC74 group), and 7.0 (AC70 group). Ocean acidification was found to cause intestinal damage, while significantly altering the microflora's composition. However, the α-diversity did not differ significantly between the groups. At the phylum level, the relative abundance of Proteobacteria decreased in the acidification groups, while at the genus level, the relative abundance of Sphingomonas decreased. Babeliales was a prominent discriminative biomarker in the AC74 group, with Actinobacteriota, Micrococcales, Beijerinckiaceae, Methylobacterium, and Flavobacteriales being the main ones in the AC70 group. The function prediction results also indicated an enrichment of pathways related to metabolism for the acidification groups. At the same time, those related to xenobiotics' biodegradation and metabolism were inhibited in AC74 but enhanced in AC70. This is the first study examining the impact of ocean acidification on the intestinal microflora of crustaceans. The results are expected to provide a better understanding of the interactions between shrimp and their microflora in response to environmental stressors.
Collapse
Affiliation(s)
- Chao Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (C.W.); (W.H.); (W.C.); (D.L.); (W.W.); (B.Y.); (H.G.)
| | - Wanyu Han
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (C.W.); (W.H.); (W.C.); (D.L.); (W.W.); (B.Y.); (H.G.)
| | - Weitao Cheng
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (C.W.); (W.H.); (W.C.); (D.L.); (W.W.); (B.Y.); (H.G.)
| | - Dexue Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (C.W.); (W.H.); (W.C.); (D.L.); (W.W.); (B.Y.); (H.G.)
| | - Weili Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (C.W.); (W.H.); (W.C.); (D.L.); (W.W.); (B.Y.); (H.G.)
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (C.W.); (W.H.); (W.C.); (D.L.); (W.W.); (B.Y.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (C.W.); (W.H.); (W.C.); (D.L.); (W.W.); (B.Y.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guangwei Hu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (C.W.); (W.H.); (W.C.); (D.L.); (W.W.); (B.Y.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
6
|
Baag S, Mandal S. Do predator (Mystus gulio) and prey (Penaeus monodon) have differential response against heatwaves? Unveiling through oxidative stress biomarkers and thermal tolerance estimation. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105850. [PMID: 36566576 DOI: 10.1016/j.marenvres.2022.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Extreme climatic events such as heatwaves are anticipated to intensify in future and impose additional thermal stress to aquatic animals. Knowledge regarding an organism's thermal tolerance or sensitivity is therefore important in determining the effects of fluctuating water temperature on physiological responses. Thus, thermal tolerance tests can serve as a first step in understanding the present and future effects of climate warming. Climatic variability will alter prey-predator attributes differentially and impact their subsequent interactions. The key objective of this study was to compare and decode the stress responses, resistance and vulnerability of two economically important species from Sundarbans estuarine system- Penaeus monodon (prey) and Mystus gulio (predator) subjected to acute thermal challenges such as sudden heatwaves. Both the species were subjected to an increasing thermal ramp of 1°C h-1 from 22°C to 42°C. Organisms were observed continuously throughout the ramping period and changes in the locomotory behaviour were followed until their loss of equilibrium. The digestive tissue samples were dissected out from both M. gulio and P. monodon at every 2°C and also after a recovery period of 48 h. The SOD, CAT, GST, LPO were measured and integrated biomarker response (IBR) was analysed. The results from thermal tolerance maxima estimation, biomarker study, IBR responses indicated more intense stress response in fish M. gulio whereas recovery potential was greater in shrimp P. monodon. Our findings corroborate the 'trophic sensitivity hypothesis' which advocates predators to be less tolerant in aggravated environmental stress than their prey.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India.
| |
Collapse
|
7
|
Allen GJP, Sachs M, Nash MT, Quijada-Rodriguez AR, Klymasz-Swartz A, Weihrauch D. Identification of different physiological functions within the gills and epipodites of the American lobster: Differences in metabolism, transbranchial transport, and mRNA expression. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111344. [PMID: 36379379 DOI: 10.1016/j.cbpa.2022.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Transbranchial transport processes are responsible for the homeostatic regulation of most essential physiological functions in aquatic crustaceans. Due to their widespread use as laboratory models, brachyuran crabs are commonly used to predict how other decapod crustaceans respond to environmental stressors including ocean acidification and warming waters. Non-brachyuran species such as the economically-valuable American lobster, Homarus americanus, possess trichobranchiate gills and epipodites that are known to be anatomically distinct from the phyllobranchiate gills of brachyurans; however, studies have yet to define their potential physiological differences. Our results indicate that the pleuro-, arthro-, and podobranch gills of the lobster are functionally homogenous and similar to the respiratory gills of brachyurans as indicated by equivalent rates of H+Eq., CO2, HCO3-, and ammonia transport and mRNA expression of related transporters and enzymes. The epipodites were found to be functionally distinct, being capable of greater individual rates of H+Eq., CO2, and ammonia transport despite mRNA transcript levels of related transporters and enzymes being only a fraction found in the gills. Collectively, mathematical estimates infer that the gills are responsible for 91% of the lobster's branchial HCO3- accumulation whereas the epipodites are responsible for 66% of branchial ammonia excretion suggesting different mechanisms exist in these tissues. Furthermore, the greater metabolic rate and amino acid catabolism in the epipodites suggest that the tissue much of the CO2 and ammonia excreted by this tissue originates intracellularly rather than systemically. These results provide evidence that non-brachyuran species must be carefully compared to brachyuran models.
Collapse
Affiliation(s)
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mikyla Tara Nash
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - Aaron Klymasz-Swartz
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
8
|
Leung JYS, Zhang S, Connell SD. Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107407. [PMID: 35934837 DOI: 10.1002/smll.202107407] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification is considered detrimental to marine calcifiers, but mounting contradictory evidence suggests a need to revisit this concept. This systematic review and meta-analysis aim to critically re-evaluate the prevailing paradigm of negative effects of ocean acidification on calcifiers. Based on 5153 observations from 985 studies, many calcifiers (e.g., echinoderms, crustaceans, and cephalopods) are found to be tolerant to near-future ocean acidification (pH ≈ 7.8 by the year 2100), but coccolithophores, calcifying algae, and corals appear to be sensitive. Calcifiers are generally more sensitive at the larval stage than adult stage. Over 70% of the observations in growth and calcification are non-negative, implying the acclimation capacity of many calcifiers to ocean acidification. This capacity can be mediated by phenotypic plasticity (e.g., physiological, mineralogical, structural, and molecular adjustments), transgenerational plasticity, increased food availability, or species interactions. The results suggest that the impacts of ocean acidification on calcifiers are less deleterious than initially thought as their adaptability has been underestimated. Therefore, in the forthcoming era of ocean acidification research, it is advocated that studying how marine organisms persist is as important as studying how they perish, and that future hypotheses and experimental designs are not constrained within the paradigm of negative effects.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sam Zhang
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
9
|
Tripp A, Allen GJP, Quijada-Rodriguez AR, Yoon GR, Weihrauch D. Effects of single and dual-stressor elevation of environmental temperature and P CO2 on metabolism and acid-base regulation in the Louisiana red swamp crayfish, Procambarus clarkii. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111151. [PMID: 35026389 DOI: 10.1016/j.cbpa.2022.111151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Elevation of temperature and CO2 levels within the world's aquatic environments is expected to cause numerous physiological challenges to their inhabitants. While effects on marine ecosystems have been well studied, freshwater ecosystems have rarely been examined using a dual-stressor approach leaving our understanding of its inhabitants upon these challenges unclear. We aimed to identify the affects of elevated temperature and hypercapnia in isolation and in combination on the metabolic and acid-base regulatory processes of a freshwater crayfish, Procambarus clarkii. Crayfish were exposed to freshwater conditions that may be prevalent by the year 2100 and metabolic responses were determined after 14-days of exposure. In addition, changes in branchial mRNA expression of acid-base linked transporters were investigated. Interactions between exposure conditions influenced extracellular pH as well as the nitrogen physiology and routine metabolic rate of the crayfish. Crayfish exposed to individual and combined elevations in temperature and/or hypercapnia maintained an extracellular pH similar to that of control crayfish. Dual-stressor exposed crayfish seem to elevate the importance of ammonium as an excretable acid-equivalent based on an overall increase in the branchial mRNA expression of transporters related to ammonia excretion including the Na+/K+-ATPase, Rhesus-protein, and the V-type H+-ATPase. Overall, hypercapnia and dual-stressor conditions caused a metabolic depression that may have long-lasting consequences such as limited locomotion, growth, and reproduction. Future generations of crayfish given the chance to adapt over several generations may ameliorate these consequences.
Collapse
Affiliation(s)
- Ashley Tripp
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Garett J P Allen
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | | | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada.
| |
Collapse
|
10
|
He Y, Wang Q, Li J, Li Z. Comparative proteomic profiling in Chinese shrimp Fenneropenaeus chinensis under low pH stress. FISH & SHELLFISH IMMUNOLOGY 2022; 120:526-535. [PMID: 34953999 DOI: 10.1016/j.fsi.2021.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Lower pH gives rise to a harmful stress to crustacean. Here, we analyzed the proteomic response of Fenneropenaeus chinensis from control pH (pH value 8.2) and low pH (pH value 6.5) - treated groups by employing absolute quantitation-based quantitative proteomic (iTRAQ) analysis. Among the identified proteins, a total of 76 proteins differed in their abundance levels, including 45 upregulated and 31 downregulated proteins. The up-regulation of proteins like citrate synthase, cytochrome c oxidase, V-type proton ATPase, glyceraldehyde-3-phosphate dehydrogenase and fructose 1,6-bisphosphate-aldolase as well as the enrichment of the DEPs in multiple metabolic processes and pathways illustrated that increased energy and substrates metabolism was essential for F. chinensis to counteract low pH stress. Ion transporting related proteins, such as Na+/K+/2Cl- cotransporter and calmodulin, participated in the homeostatic maintenance of pH in F. chinensis. There were significant downregulation expressions of lectin, lipopolysaccharide- and beta-1,3-glucan binding protein, chitinase, cathepsin L and beta-glucuronidase, which indicating the immune dysfunction of F. chinensis when exposure to low pH condition. These findings can extend our understanding on the defensive mechanisms of the low pH stress and accelerate the breeding process of low pH tolerance in F. chinensis.
Collapse
Affiliation(s)
- Yuying He
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Qiong Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Zhaoxia Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China.
| |
Collapse
|
11
|
Baag S, Mandal S. Combined effects of ocean warming and acidification on marine fish and shellfish: A molecule to ecosystem perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149807. [PMID: 34450439 DOI: 10.1016/j.scitotenv.2021.149807] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
It is expected that by 2050 human population will exceed nine billion leading to increased pressure on marine ecosystems. Therefore, it is conjectured various levels of ecosystem functioning starting from individual to population-level, species distribution, food webs and trophic interaction dynamics will be severely jeopardized in coming decades. Ocean warming and acidification are two prime threats to marine biota, yet studies about their cumulative effect on marine fish and shellfishes are still in its infancy. This review assesses existing information regarding the interactive effects of global environmental factors like warming and acidification in the perspective of marine capture fisheries and aquaculture industry. As climate change continues, distribution pattern of species is likely to be altered which will impact fisheries and fishing patterns. Our work is an attempt to compile the existing literatures in the biological perspective of the above-mentioned stressors and accentuate a clear outline of knowledge in this subject. We reviewed studies deciphering the biological consequences of warming and acidification on fish and shellfishes in the light of a molecule to ecosystem perspective. Here, for the first time impacts of these two global environmental drivers are discussed in a holistic manner taking into account growth, survival, behavioural response, prey predator dynamics, calcification, biomineralization, reproduction, physiology, thermal tolerance, molecular level responses as well as immune system and disease susceptibility. We suggest urgent focus on more robust, long term, comprehensive and ecologically realistic studies that will significantly contribute to the understanding of organism's response to climate change for sustainable capture fisheries and aquaculture.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
12
|
Aluru N, Fields DM, Shema S, Skiftesvik AB, Browman HI. Gene expression and epigenetic responses of the marine Cladoceran, Evadne nordmanni, and the copepod, Acartia clausi, to elevated CO 2. Ecol Evol 2021; 11:16776-16785. [PMID: 34938472 PMCID: PMC8668794 DOI: 10.1002/ece3.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/10/2022] Open
Abstract
Characterizing the capacity of marine organisms to adapt to climate change related drivers (e.g., pCO2 and temperature), and the possible rate of this adaptation, is required to assess their resilience (or lack thereof) to these drivers. Several studies have hypothesized that epigenetic markers such as DNA methylation, histone modifications and noncoding RNAs, act as drivers of adaptation in marine organisms, especially corals. However, this hypothesis has not been tested in zooplankton, a keystone organism in marine food webs. The objective of this study is to test the hypothesis that acute ocean acidification (OA) exposure alters DNA methylation in two zooplanktonic species-copepods (Acartia clausii) and cladocerans (Evadne nordmanii). We exposed these two species to near-future OA conditions (400 and 900 ppm pCO2) for 24 h and assessed transcriptional and DNA methylation patterns using RNA sequencing and Reduced Representation Bisulfite Sequencing (RRBS). OA exposure caused differential expression of genes associated with energy metabolism, cytoskeletal and extracellular matrix functions, hypoxia and one-carbon metabolism. Similarly, OA exposure also caused altered DNA methylation patterns in both species but the effect of these changes on gene expression and physiological effects remains to be determined. The results from this study form the basis for studies investigating the potential role of epigenetic mechanisms in OA induced phenotypic plasticity and/or adaptive responses in zooplanktonic organisms.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | | - Steven Shema
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| | - Howard I. Browman
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| |
Collapse
|
13
|
Transcriptional changes revealed water acidification leads to the immune response and ovary maturation delay in the Chinese mitten crab Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100868. [PMID: 34171686 DOI: 10.1016/j.cbd.2021.100868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, due to increasing carbon dioxide released, water acidification poses a series of serious impacts on aquatic organisms. To evaluate the effects of water acidification on crustaceans, we focused on the Chinese mitten crab Eriocheir sinensis, which is a spawning migration and farmed species in China. Based on histological and oocyte transparent liquid observation, we found that the acidified environment significantly delayed the ovarian maturation of E. sinensis. Moreover, RNA-seq was applied to obtain gene expression profile from the crab's gills and ovaries in response to acidified environment. Compared with control groups, a total of 5471 differentially expressed genes (DEGs) were identified in acidified gills and 485 DEGs were identified in acidified ovaries. Enrichment analysis indicated that some pathways also responded to the acidified environment, such as PI3K-Akt signaling pathway, Chemokine signaling pathway, apoptosis, and toll-like receptor signaling pathway. Subsequently, some DEGs involved in immune response (ALF, Cathepsin A, HSP70, HSP90, and catalase) and ovarian maturation (Cyclin B, Fem-1a, Fem-1b, and Fem-1c) were selected to further validate the influence of water acidification on gene expression by qRT-PCR. The results showed that the expression level of immune-related genes was significantly increased to response to the water acidification, while the ovarian maturation-related genes were significantly decreased. Overall, our data suggested that E. sinensis was sensitive to the reduced pH. This comparative transcriptome also provides valuable molecular information on the mechanisms of the crustaceans responding to acidified environment.
Collapse
|
14
|
Niemisto M, Fields DM, Clark KF, Waller JD, Greenwood SJ, Wahle RA. American lobster postlarvae alter gene regulation in response to ocean warming and acidification. Ecol Evol 2021; 11:806-819. [PMID: 33520168 PMCID: PMC7820155 DOI: 10.1002/ece3.7083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 01/14/2023] Open
Abstract
Anthropogenic carbon emissions released into the atmosphere is driving rapid, concurrent increases in temperature and acidity across the world's oceans. Disentangling the interactive effects of warming and acidification on vulnerable life stages is important to our understanding of responses of marine species to climate change. This study evaluates the interactive effects of these stressors on the acute response of gene expression of postlarval American lobster (Homarus americanus), a species whose geographic range is warming and acidifying faster than most of the world's oceans. In the context of our experiment, we found two especially noteworthy results: First, although physiological end points have consistently been shown to be more responsive to warming in similar experimental designs, our study found gene regulation to be considerably more responsive to elevated pCO2. Furthermore, the combined effect of both stressors on gene regulation was significantly greater than either stressor alone. Using a full factorial experimental design, lobsters were raised in control and elevated pCO2 concentrations (400 ppm and 1,200 ppm) and temperatures (16°C and 19°C). A transcriptome was assembled from an identified 414,517 unique transcripts. Overall, 1,108 transcripts were differentially expressed across treatments, several of which were related to stress response and shell formation. When temperature alone was elevated (19°C), larvae downregulated genes related to cuticle development; when pCO2 alone was elevated (1,200 ppm), larvae upregulated chitinase as well as genes related to stress response and immune function. The joint effects of end-century stressors (19°C, 1,200 ppm) resulted in the upregulation of those same genes, as well as cellulase, the downregulation of calcified cuticle proteins, and a greater upregulation of genes related to immune response and function. These results indicate that changes in gene expression in larval lobster provide a mechanism to respond to stressors resulting from a rapidly changing environment.
Collapse
Affiliation(s)
- Maura Niemisto
- Darling Marine CenterUniversity of Maine School of Marine SciencesWalpoleMEUSA
- Bigelow Laboratory for Ocean SciencesEast BoothbayMEUSA
| | | | - K. Fraser Clark
- Department of Animal Science and AquacultureFaculty of AgricultureDalhousie UniversityBible HillNSCanada
| | | | - Spencer J. Greenwood
- Department of Biomedical SciencesAtlantic Veterinary CollegeUniversity of Prince Edward IslandCharlottetownPEICanada
| | - Richard A. Wahle
- Darling Marine CenterUniversity of Maine School of Marine SciencesWalpoleMEUSA
| |
Collapse
|
15
|
Mezzelani M, Nardi A, Bernardini I, Milan M, Peruzza L, d'Errico G, Fattorini D, Gorbi S, Patarnello T, Regoli F. Environmental pharmaceuticals and climate change: The case study of carbamazepine in M. galloprovincialis under ocean acidification scenario. ENVIRONMENT INTERNATIONAL 2021; 146:106269. [PMID: 33248345 DOI: 10.1016/j.envint.2020.106269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Contaminants of emerging concern and ocean changes are key environmental stressors for marine species with possibly synergistic, but still unexplored, deleterious effects. In the present study the influence of a simulated ocean acidification scenario (pH = 7.6) was investigated on metabolism and sub-lethal effects of carbamazepine, CBZ (1 µg/L), chosen as one of the most widely diffused pharmaceuticals in marine organisms. A multidisciplinary approach was applied on mussels, M. galloprovincialis, integrating measurement of drug bioaccumulation with changes in the whole transcriptome, responsiveness of various biochemical and cellular biomarkers including immunological parameters, lipid and oxidative metabolism, onset of genotoxic effects. Chemical analyses revealed a limited influence of hypercapnia on accumulation and excretion of CBZ, while a complex network of biological responses was observed in gene expression profile and functional changes at cellular level. The modulation of gamma-aminobutyric acid (GABA) pathway suggested similarities with the Mechanism of Action known for vertebrates: immune responses, cellular homeostasis and oxidative system represented the processes targeted by combined stressors. The overall elaboration of results through a quantitative Weight of Evidence model, revealed clearly increased cellular hazard due to interactions of CBZ with acidification compared to single stressors.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Ilaria Bernardini
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Luca Peruzza
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy.
| |
Collapse
|
16
|
Muralisankar T, Kalaivani P, Thangal SH, Santhanam P. Growth, biochemical, antioxidants, metabolic enzymes and hemocytes population of the shrimp Litopenaeus vannamei exposed to acidified seawater. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108843. [PMID: 32781296 DOI: 10.1016/j.cbpc.2020.108843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Acidification in the marine environment has become a global issue that creates serious threats to marine organisms. In the present study, we evaluated the effect of CO2 driven acidification on the shrimp Litopenaeus vannamei post-larvae (PL). L. vannamei PL were exposed to six different CO2 driven acidified seawater, such as 8.2 (control), pH 7.8 (IPCC-predicted ocean pH by 2100), 7.6, 7.4, 7.2 and 7.0 with corresponding pCO2 level of 380.66, 557.53, 878.55, 1355.48, 2129.46, and 3312.12 μatm for seven weeks. At the end of the acidification experiment, results revealed that the survival, growth, feed index, biochemical constituents, chitin, minerals (Na, K, and Ca), and hemocyte populations of shrimps were found to be significantly decreased in CO2 driven acidified seawater which indicates the negative impacts of acidified seawater on these parameters in L. vannamei. Further, the level of antioxidants, lipid peroxidation, and metabolic enzymes were significantly higher in the muscle of shrimps exposed to acidified seawater suggests that the L. vannamei under oxidative stress and metabolic stress. Among the various acidified seawater tested, pH 7.6 to 7.0 produced a significantly adverse effect on shrimps. Hence, the present study concluded that the elevated level of seawater acidification can produce harmful effects on the biology and physiology of the commercially important shrimp L. vannamei PL.
Collapse
Affiliation(s)
- T Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - P Kalaivani
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - S H Thangal
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - P Santhanam
- Marine Planktonology and Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
17
|
Cong Y, Yang H, Zhang P, Xie Y, Cao X, Zhang L. Transcriptome Analysis of the Nematode Caenorhabditis elegans in Acidic Stress Environments. Front Physiol 2020; 11:1107. [PMID: 33013473 PMCID: PMC7511720 DOI: 10.3389/fphys.2020.01107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Ocean acidification and acid rain, caused by modern industries' fossil fuel burning, lead to a decrease in the living environmental pH, which results in a series of negative effects on many organisms. However, the underlying mechanisms of animals' response to acidic pH stress are largely unknown. In this study, we used the nematode Caenorhabditis elegans as an animal model to explore the regulatory mechanisms of organisms' response to pH decline. Two major stress-responsive pathways were found through transcriptome analysis in acidic stress environments. First, when the pH dropped from 6.33 to 4.33, the worms responded to the pH stress by upregulation of the col, nas, and dpy genes, which are required for cuticle synthesis and structure integrity. Second, when the pH continued to decrease from 4.33, the metabolism of xenobiotics by cytochrome P450 pathway genes (cyp, gst, ugt, and ABC transporters) played a major role in protecting the nematodes from the toxic substances probably produced by the more acidic environment. At the same time, the slowing down of cuticle synthesis might be due to its insufficient protective ability. Moreover, the systematic regulation pattern we found in nematodes might also be applied to other invertebrate and vertebrate animals to survive in the changing pH environments. Thus, our data might lay the foundation to identify the master gene(s) responding and adapting to acidic pH stress in further studies, and might also provide new solutions to improve assessment and monitoring of ecological restoration outcomes, or generate novel genotypes via genome editing for restoring in challenging environments especially in the context of acidic stress through global climate change.
Collapse
Affiliation(s)
- Yanyi Cong
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanwen Yang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengchi Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yusu Xie
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xuwen Cao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liusuo Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
18
|
Semmouri I, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, Janssen CR, Asselman J. Spatio-temporal patterns in the gene expression of the calanoid copepod Temora longicornis in the Belgian part of the North Sea. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105037. [PMID: 32907738 DOI: 10.1016/j.marenvres.2020.105037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Marine zooplankton are increasingly being affected by recent environmental changes, such as climate change, and respond with profound spatial relocations and shifts in phenology and physiology. In order to predict whether populations are able to persist or adapt to such new conditions, it is essential to understand the molecular basis of such adaptations, which ultimately get translated into these physiological responses. To explore variation in population gene expression across time and space, we investigated transcriptome-level profiles of the calanoid copepod Temora longicornis, that were collected at four different locations in the Belgian Part of the North Sea (BPNS) on three different time points (April, June, October) in 2018. RNA-seq analysis of field collected adults identified large seasonal differences in gene expression, mainly between spring-summer and autumn samples. The largest log-fold changes occurred in a set of genes encoding for ribosomal and myosin (heavy chain) transcripts. Enrichment analysis revealed a strong seasonal pattern in vitellogenin, cuticle and glycolytic gene expression as well. We also found a positive correlation between vitellogenin expression and densities of T. longicornis. No clear spatial variation in expression patterns was found in the BPNS. This study underlines the potential of field gene expression studies for biomonitoring purposes and the significance of considering seasonal variation in future studies.
Collapse
Affiliation(s)
- Ilias Semmouri
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium.
| | - Karel A C De Schamphelaere
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, 9000, Ghent, Belgium
| | - Dieter Deforce
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, 9000, Ghent, Belgium
| | - Colin R Janssen
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Jana Asselman
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| |
Collapse
|
19
|
Strader ME, Wong JM, Hofmann GE. Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zool 2020; 17:7. [PMID: 32095155 PMCID: PMC7027112 DOI: 10.1186/s12983-020-0350-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/06/2020] [Indexed: 01/16/2023] Open
Abstract
For nearly a decade, the metazoan-focused research community has explored the impacts of ocean acidification (OA) on marine animals, noting that changes in ocean chemistry can impact calcification, metabolism, acid-base regulation, stress response and behavior in organisms that hold high ecological and economic value. Because OA interacts with several key physiological processes in marine organisms, transcriptomics has become a widely-used method to characterize whole organism responses on a molecular level as well as inform mechanisms that explain changes in phenotypes observed in response to OA. In the past decade, there has been a notable rise in studies that examine transcriptomic responses to OA in marine metazoans, and here we attempt to summarize key findings across these studies. We find that organisms vary dramatically in their transcriptomic responses to pH although common patterns are often observed, including shifts in acid-base ion regulation, metabolic processes, calcification and stress response mechanisms. We also see a rise in transcriptomic studies examining organismal response to OA in a multi-stressor context, often reporting synergistic effects of OA and temperature. In addition, there is an increase in studies that use transcriptomics to examine the evolutionary potential of organisms to adapt to OA conditions in the future through population and transgenerational experiments. Overall, the literature reveals complex organismal responses to OA, in which some organisms will face more dramatic consequences than others. This will have wide-reaching impacts on ocean communities and ecosystems as a whole.
Collapse
Affiliation(s)
- Marie E Strader
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,2Department of Biological Sciences, Auburn University, Auburn, AL 36849 USA
| | - Juliet M Wong
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,3Present address: Department of Biological Sciences, Florida International University, North Miami, FL 33181 USA
| | - Gretchen E Hofmann
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
20
|
Melzner F, Mark FC, Seibel BA, Tomanek L. Ocean Acidification and Coastal Marine Invertebrates: Tracking CO 2 Effects from Seawater to the Cell. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:499-523. [PMID: 31451083 DOI: 10.1146/annurev-marine-010419-010658] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the last few decades, numerous studies have investigated the impacts of simulated ocean acidification on marine species and communities, particularly those inhabiting dynamic coastal systems. Despite these research efforts, there are many gaps in our understanding, particularly with respect to physiological mechanisms that lead to pathologies. In this review, we trace how carbonate system disturbances propagate from the coastal environment into marine invertebrates and highlight mechanistic links between these disturbances and organism function. We also point toward several processes related to basic invertebrate biology that are severely understudied and prevent an accurate understanding of how carbonate system dynamics influence organismic homeostasis and fitness-related traits. We recommend that significant research effort be directed to studying cellular phenotypes of invertebrates acclimated or adapted to elevated seawater pCO2 using biochemical and physiological methods.
Collapse
Affiliation(s)
- Frank Melzner
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany;
| | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;
| | - Brad A Seibel
- College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA;
| | - Lars Tomanek
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California 93407, USA;
| |
Collapse
|
21
|
Carney Almroth B, Bresolin de Souza K, Jönsson E, Sturve J. Oxidative stress and biomarker responses in the Atlantic halibut after long term exposure to elevated CO2 and a range of temperatures. Comp Biochem Physiol B Biochem Mol Biol 2019; 238:110321. [DOI: 10.1016/j.cbpb.2019.110321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/08/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
|
22
|
Lima D, Mattos JJ, Piazza RS, Righetti BPH, Monteiro JS, Grott SC, Alves TC, Taniguchi S, Bícego MC, de Almeida EA, Bebianno MJ, Medeiros ID, Bainy ACD. Stress responses in Crassostrea gasar exposed to combined effects of acute pH changes and phenanthrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:585-593. [PMID: 31078849 DOI: 10.1016/j.scitotenv.2019.04.450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Ocean acidification is a result of the decrease in the pH of marine water, caused mainly by the increase in CO2 released in the atmosphere and its consequent dissolution in seawater. These changes can be dramatic for marine organisms especially for oysters Crassostrea gasar if other stressors such as xenobiotics are present. The effect of pH changes (6.5, 7.0 and 8.2) was assessed on the transcript levels of biotransformation [cytochromes P450 (CYP2AU1, CYP2-like2) and glutathione S-transferase (GSTΩ-like)] and antioxidant [superoxide dismutase (SOD-like), catalase (CAT-like) and glutathione peroxidase (GPx-like)] genes, as well as enzyme activities [superoxide dismutase, (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferases transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH)] and lipid peroxidation (MDA) in the gills of Crassostrea gasar exposed to 100 μg·L-1 of phenanthrene (PHE) for 24 and 96 h. Likewise, the PHE burdens was evaluated in whole soft tissues of exposed oysters. The accumulation of PHE in oysters was independent of pH. However, acidification promoted a significant decrease in the transcript levels of some protective genes (24 h exposure: CYP2AU1 and GSTΩ-like; 96 h exposure: CAT-like and GPx-like), which was not observed in the presence of PHE. Activities of GST, CAT and SOD enzymes increased in the oysters exposed to PHE at the control pH (8.2), but at a lower pH values, this activation was suppressed, and no changes were observed in the G6PDH activity and MDA levels. Biotransformation genes showed better responses after 24 h, and antioxidant-coding genes after 96 h, along with the activities of antioxidant enzymes (SOD, CAT), probably because biotransformation of PHE increases the generation of reactive oxygen species. The lack of change in MDA levels suggests that antioxidant modulation efficiently prevented oxidative stress. The effect of pH on the responses to PHE exposure should be taken into account before using these and any other genes as potential molecular biomarkers for PHE exposure.
Collapse
Affiliation(s)
- Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó J Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Rômi S Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Bárbara Pacheco Harrison Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jhonatas S Monteiro
- Marine Biotechnology Laboratory, Marine Sciences Institute, Federal University of São Paulo (IMar-UNIFESP), Santos 11070-100, Brazil
| | - Suelen Cristina Grott
- Center of Aquatic Toxicology Studies, Department of Natural Sciences, University of Blumenau, Blumenau, SC, Brazil
| | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Eduardo Alves de Almeida
- Center of Aquatic Toxicology Studies, Department of Natural Sciences, University of Blumenau, Blumenau, SC, Brazil
| | - Maria J Bebianno
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil; CIMA, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Igor D Medeiros
- Marine Biotechnology Laboratory, Marine Sciences Institute, Federal University of São Paulo (IMar-UNIFESP), Santos 11070-100, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
23
|
Liu Y, Buchberger AR, DeLaney K, Li Z, Li L. Multifaceted Mass Spectrometric Investigation of Neuropeptide Changes in Atlantic Blue Crab, Callinectes sapidus, in Response to Low pH Stress. J Proteome Res 2019; 18:2759-2770. [PMID: 31132273 DOI: 10.1021/acs.jproteome.9b00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decrease of pH level in the water affects animals living in aquatic habitat, such as crustaceans. The molecular mechanisms enabling these animals to survive this environmental stress remain unknown. To understand the modulatory function of neuropeptides in crustaceans when encountering drops in pH level, we developed and implemented a multifaceted mass spectrometric platform to investigate the global neuropeptide changes in response to water acidification in the Atlantic blue crab, Callinectes sapidus. Neural tissues were collected at different incubation periods to monitor dynamic changes of neuropeptides under different stress conditions occurring in the animal. Neuropeptide families were found to exhibit distinct expression patterns in different tissues and even each isoform had its specific response to the stress. Circulating fluid in the crabs (hemolymph) was also analyzed after 2-h exposure to acidification, and together with results from tissue analysis, enabled the discovery of neuropeptides participating in the stress accommodation process as putative hormones. Two novel peptide sequences were detected in the hemolymph that appeared to be involved in the stress-related regulation in the crabs.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Amanda R Buchberger
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Kellen DeLaney
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Zihui Li
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Lingjun Li
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States.,School of Pharmacy , University of Wisconsin , 777 Highland Avenue , Madison , Wisconsin 53705 , United States
| |
Collapse
|
24
|
Tripp-Valdez MA, Harms L, Pörtner HO, Sicard MT, Lucassen M. De novo transcriptome assembly and gene expression profile of thermally challenged green abalone (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia. Mar Genomics 2019; 45:48-56. [DOI: 10.1016/j.margen.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/19/2022]
|
25
|
No compromise between metabolism and behavior of decorator crabs in reduced pH conditions. Sci Rep 2019; 9:6262. [PMID: 31000765 PMCID: PMC6472338 DOI: 10.1038/s41598-019-42696-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/02/2019] [Indexed: 11/09/2022] Open
Abstract
Many marine calcifiers experience metabolic costs when exposed to experimental ocean acidification conditions, potentially limiting the energy available to support regulatory processes and behaviors. Decorator crabs expend energy on decoration camouflage and may face acute trade-offs under environmental stress. We hypothesized that under reduced pH conditions, decorator crabs will be energy limited and allocate energy towards growth and calcification at the expense of decoration behavior. Decorator crabs, Pelia tumida, were exposed to ambient (8.01) and reduced (7.74) pH conditions for five weeks. Half of the animals in each treatment were given sponge to decorate with. Animals were analyzed for changes in body mass, exoskeleton mineral content (Ca and Mg), organic content (a proxy for metabolism), and decoration behavior (sponge mass and percent cover). Overall, decorator crabs showed no signs of energy limitation under reduced pH conditions. Exoskeleton mineral content, body mass, and organic content of crabs remained the same across pH and decoration treatments, with no effect of reduced pH on decoration behavior. Despite being a relatively inactive, osmoconforming species, Pelia tumida is able to maintain multiple regulatory processes and behavior when exposed to environmental pH stress, which underscores the complexity of responses within Crustacea to ocean acidification conditions.
Collapse
|
26
|
Ertl NG, O'Connor WA, Elizur A. Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: Thermal and low salinity stress, and their synergistic effect. Mar Genomics 2019; 43:19-32. [DOI: 10.1016/j.margen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022]
|
27
|
Semmouri I, Asselman J, Van Nieuwerburgh F, Deforce D, Janssen CR, De Schamphelaere KAC. The transcriptome of the marine calanoid copepod Temora longicornis under heat stress and recovery. MARINE ENVIRONMENTAL RESEARCH 2019; 143:10-23. [PMID: 30415781 DOI: 10.1016/j.marenvres.2018.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Understanding the impacts of global change in zooplankton communities is crucial, as alterations in the zooplankton communities can affect entire marine ecosystems. Despite the economic and ecological importance of the calanoid copepod Temora longicornis in the Belgian part of the North Sea, molecular data is still very limited for this species. Using HiSeq Illumina sequencing, we sequenced the whole transcriptome of T. longicornis, after being exposed to realistic temperatures of 14 and 17 °C. After both an acute (1 day) and a more sustained (5 days) thermal exposure to 17 °C, we investigated gene expression differences with animals exposed to 14 °C, which may be critical for the thermal acclimation and resilience of this copepod species. We also studied the possibility of a short term stress recovery of a heat shock. A total of 179,569 transcripts were yielded, of which 44,985 putative ORF transcripts were identified. These transcripts were subsequently annotated into roughly 22,000 genes based on known sequences using Gene Ontology (GO) and KEGG databases. Temora only showed a mild response to both the temperature and the duration of the exposure. We found that the expression of 27 transcripts varied significantly with an increase in temperature of 3 °C, of which eight transcripts were differentially expressed after acute exposure only. Gene set enrichment analysis revealed that, overall, T. longicornis was more impacted by a sustained thermal exposure, rather than an immediate (acute) exposure, with two times as many enriched GO terms in the sustained treatment. We also identified several general stress responses independent of exposure time, such as modified protein synthesis, energy mobilisation, cuticle and chaperone proteins. Finally, we highlighted candidate genes of a possible recovery from heat exposure, identifying similar terms as those enriched in the heat treatments, i.e. related to for example energy metabolism, cuticle genes and extracellular matrix. The data presented in this study provides the first transcriptome available for T. longicornis which can be used for future genomic studies.
Collapse
Affiliation(s)
- Ilias Semmouri
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium.
| | - Jana Asselman
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, 9000, Ghent, Belgium
| | - Dieter Deforce
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, 9000, Ghent, Belgium
| | - Colin R Janssen
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| | - Karel A C De Schamphelaere
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, 9000, Ghent, Belgium
| |
Collapse
|
28
|
Tripp-Valdez MA, Bock C, Lannig G, Koschnick N, Pörtner HO, Lucassen M. Assessment of muscular energy metabolism and heat shock response of the green abalone Haliotis fulgens (Gastropoda: Philipi) at extreme temperatures combined with acute hypoxia and hypercapnia. Comp Biochem Physiol B Biochem Mol Biol 2018; 227:1-11. [PMID: 30195088 DOI: 10.1016/j.cbpb.2018.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
The interaction between ocean warming, hypoxia and hypercapnia, suggested by climate projections, may push an organism earlier to the limits of its thermal tolerance window. In a previous study on juveniles of green abalone (Haliotis fulgens), combined exposure to hypoxia and hypercapnia during heat stress induced a lowered critical thermal maximum (CTmax), indicated by constrained oxygen consumption, muscular spams and loss of attachment. Thus, the present study investigated the cell physiology in foot muscle of H. fulgens juveniles exposed to acute warming (18 °C to 32 °C at +3 °C day-1) under hypoxia (50% air saturation) and hypercapnia (~1000 μatm PCO2), alone and in combination, to decipher the mechanisms leading to functional loss in this tissue. Under exposure to either hypoxia or hypercapnia, citrate synthase (CS) activity decreased with initial warming, in line with thermal compensation, but returned to control levels at 32 °C. The anaerobic enzymes lactate and tauropine dehydrogenase increased only under hypoxia at 32 °C. Under the combined treatment, CS overcame thermal compensation and remained stable overall, indicating active mitochondrial regulation under these conditions. Limited accumulation of anaerobic metabolites indicates unchanged mode of energy production. In all treatments, upregulation of Hsp70 mRNA was observed already at 30 °C. However, lack of evidence for Hsp70 protein accumulation provides only limited support to thermal denaturation of proteins. We conclude that under combined hypoxia and hypercapnia, metabolic depression allowed the H. fulgens musculature to retain an aerobic mode of metabolism in response to warming but may have contributed to functional loss.
Collapse
Affiliation(s)
- Miguel A Tripp-Valdez
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - Christian Bock
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Gisela Lannig
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Nils Koschnick
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Hans O Pörtner
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany; University Bremen, Bibliothekstraße 1, 28359, Germany
| | - Magnus Lucassen
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| |
Collapse
|
29
|
Zhao L, Milano S, Walliser EO, Schöne BR. Bivalve shell formation in a naturally CO 2-enriched habitat: Unraveling the resilience mechanisms from elemental signatures. CHEMOSPHERE 2018; 203:132-138. [PMID: 29614406 DOI: 10.1016/j.chemosphere.2018.03.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Marine bivalves inhabiting naturally pCO2-enriched habitats can likely tolerate high levels of acidification. Consequently, elucidating the mechanisms behind such resilience can help to predict the fate of this economically and ecologically important group under near-future scenarios of CO2-driven ocean acidification. Here, we assess the effects of four environmentally realistic pCO2 levels (900, 1500, 2900 and 6600 μatm) on the shell production rate of Mya arenaria juveniles originating from a periodically pCO2-enriched habitat (Kiel Fjord, Western Baltic Sea). We find a significant decline in the rate of shell growth as pCO2 increases, but also observe unchanged shell formation rates at moderate pCO2 levels of 1500 and 2900 μatm, the latter illustrating the capacity of the juveniles to partially mitigate the impact of high pCO2. Using recently developed geochemical tracers we show that M. arenaria exposed to a natural pCO2 gradient from 900 to 2900 μatm can likely concentrate HCO3- in the calcifying fluid through the exchange of HCO3-/Cl- and simultaneously maintain the pH homeostasis through active removal of protons, thereby being able to sustain the rate of shell formation to a certain extent. However, with increasing pCO2 beyond natural maximum the bivalves may have limited capacity to compensate for changes in the calcifying fluid chemistry, showing significant shell growth reduction. Findings of the present study may pave the way for elucidating the underlying mechanisms by which marine bivalves acclimate and adapt to high seawater pCO2.
Collapse
Affiliation(s)
- Liqiang Zhao
- Institute of Geosciences, University of Mainz, Mainz 55128, Germany; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| | - Stefania Milano
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Eric O Walliser
- Institute of Geosciences, University of Mainz, Mainz 55128, Germany
| | - Bernd R Schöne
- Institute of Geosciences, University of Mainz, Mainz 55128, Germany
| |
Collapse
|
30
|
Xie Y, Chen H, Zheng S, Zhang X, Mu S. Molecular characterization of cu/Zn SOD gene in Asian clam Corbicula fluminea and mRNA expression and enzymatic activity modulation induced by metals. Gene 2018; 663:189-195. [DOI: 10.1016/j.gene.2018.04.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|
31
|
Moreira A, Figueira E, Pecora IL, Soares AMVM, Freitas R. Native and exotic oysters in Brazil: Comparative tolerance to hypercapnia. ENVIRONMENTAL RESEARCH 2018; 161:202-211. [PMID: 29156343 DOI: 10.1016/j.envres.2017.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Environmental hypercapnia in shallow coastal marine ecosystems can be exacerbated by increasing levels of atmospheric CO2. In these ecosystems organisms are expected to become increasingly subjected to pCO2 levels several times higher than those inhabiting ocean waters (e.g.: 10,000µatm), but still our current understanding on different species capacity to respond to such levels of hypercapnia is limited. Oysters are among the most important foundation species inhabiting these coastal ecosystems, although natural oyster banks are increasingly threatened worldwide. In the present study we studied the effects of hypercapnia on two important oyster species, the pacific oyster C. gigas and the mangrove oyster C. brasiliana, to bring new insights on different species response mechanisms towards three hypercapnic levels (ca. 1,000; 4,000; 10,000 µatm), by study of a set of biomarkers related to metabolic potential (electron transport system - ETS), antioxidant capacity (SOD, CAT, GSH), cellular damage (LPO) and energetic fitness (GLY), in two life stages (juvenile and adult) after 28 days of exposure. Results showed marked differences between each species tolerance capacity to hypercapnia, with contrasting metabolic readjustment strategies (ETS), different antioxidant response capacities (SOD, CAT, GSH), which generally allowed to prevent increased cellular damage (LPO) and energetic impairment (GLY) in both species. Juveniles were more responsive to hypercapnia stress in both congeners, and are likely to be most sensitive to extreme hypercapnia in the environment. Juvenile C. gigas presented more pronounced biochemical alterations at intermediate hypercapnia (4,000µatm) than C. brasiliana. Adult C. gigas showed biochemical alterations mostly in response to high hypercapnia (10,000µatm), while adult C. brasiliana were less responsive to this environmental stressor, despite presenting decreased metabolic potential. Our data bring new insights on the biochemical performance of two important oyster species, and suggest that the duration of extreme hypercapnia events in the ecosystem may pose increased challenges for these organisms as their tolerance capacity may be time limited.
Collapse
Affiliation(s)
- Anthony Moreira
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Iracy L Pecora
- Campus do Litoral Paulista - Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Praça Infante Dom Henrique s/n São Vicente, CEP 11330-900 São Paulo, Brazil
| | - Amadeu M V M Soares
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departmento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification. BMC Genomics 2017; 18:812. [PMID: 29061120 PMCID: PMC5653985 DOI: 10.1186/s12864-017-4161-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/05/2017] [Indexed: 01/30/2023] Open
Abstract
Background Ocean acidification (OA), a change in ocean chemistry due to the absorption of atmospheric CO2 into surface oceans, challenges biogenic calcification in many marine organisms. Ocean acidification is expected to rapidly progress in polar seas, with regions of the Southern Ocean expected to experience severe OA within decades. Biologically, the consequences of OA challenge calcification processes and impose an energetic cost. Results In order to better characterize the response of a polar calcifier to conditions of OA, we assessed differential gene expression in the Antarctic pteropod, Limacina helicina antarctica. Experimental levels of pCO2 were chosen to create both contemporary pH conditions, and to mimic future pH expected in OA scenarios. Significant changes in the transcriptome were observed when juvenile L. h. antarctica were acclimated for 21 days to low-pH (7.71), mid-pH (7.9) or high-pH (8.13) conditions. Differential gene expression analysis of individuals maintained in the low-pH treatment identified down-regulation of genes involved in cytoskeletal structure, lipid transport, and metabolism. High pH exposure led to increased expression and enrichment for genes involved in shell formation, calcium ion binding, and DNA binding. Significant differential gene expression was observed in four major cellular and physiological processes: shell formation, the cellular stress response, metabolism, and neural function. Across these functional groups, exposure to conditions that mimic ocean acidification led to rapid suppression of gene expression. Conclusions Results of this study demonstrated that the transcriptome of the juvenile pteropod, L. h. antarctica, was dynamic and changed in response to different levels of pCO2. In a global change context, exposure of L. h. antarctica to the low pH, high pCO2 OA conditions resulted in a suppression of transcripts for genes involved in key physiological processes: calcification, metabolism, and the cellular stress response. The transcriptomic response at both acute and longer-term acclimation time frames indicated that contemporary L. h. antarctica may not have the physiological plasticity necessary for adaptation to OA conditions expected in future decades. Lastly, the differential gene expression results further support the role of shelled pteropods such as L. h. antarctica as sentinel organisms for the impacts of ocean acidification. Electronic supplementary material The online version of this article (10.1186/s12864-017-4161-0) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Ruocco M, Musacchia F, Olivé I, Costa MM, Barrote I, Santos R, Sanges R, Procaccini G, Silva J. Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification. Mol Ecol 2017; 26:4241-4259. [PMID: 28614601 DOI: 10.1111/mec.14204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Abstract
Here, we report the first use of massive-scale RNA-sequencing to explore seagrass response to CO2 -driven ocean acidification (OA). Large-scale gene expression changes in the seagrass Cymodocea nodosa occurred at CO2 levels projected by the end of the century. C. nodosa transcriptome was obtained using Illumina RNA-Seq technology and de novo assembly, and differential gene expression was explored in plants exposed to short-term high CO2 /low pH conditions. At high pCO2 , there was a significant increased expression of transcripts associated with photosynthesis, including light reaction functions and CO2 fixation, and also to respiratory pathways, specifically for enzymes involved in glycolysis, in the tricarboxylic acid cycle and in the energy metabolism of the mitochondrial electron transport. The upregulation of respiratory metabolism is probably supported by the increased availability of photosynthates and increased energy demand for biosynthesis and stress-related processes under elevated CO2 and low pH. The upregulation of several chaperones resembling heat stress-induced changes in gene expression highlighted the positive role these proteins play in tolerance to intracellular acid stress in seagrasses. OA further modifies C. nodosa secondary metabolism inducing the transcription of enzymes related to biosynthesis of carbon-based secondary compounds, in particular the synthesis of polyphenols and isoprenoid compounds that have a variety of biological functions including plant defence. By demonstrating which physiological processes are most sensitive to OA, this research provides a major advance in the understanding of seagrass metabolism in the context of altered seawater chemistry from global climate change.
Collapse
Affiliation(s)
- Miriam Ruocco
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Irene Olivé
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Monya M Costa
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Isabel Barrote
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Rui Santos
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | | | - João Silva
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
34
|
Chiasson SC, Taylor CM. Effects of crude oil and oil/dispersant mixture on growth and expression of vitellogenin and heat shock protein 90 in blue crab, Callinectes sapidus, juveniles. MARINE POLLUTION BULLETIN 2017; 119:128-132. [PMID: 28473211 DOI: 10.1016/j.marpolbul.2017.04.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The 2010 Deepwater Horizon (DWH) oil spill in the northern Gulf of Mexico (NGOM) resulted in over 780million liters of crude oil spilling into Gulf waters. In an effort to disperse the oil, nearly 7.6million liters of dispersant was applied. Many commercially and recreationally important species reside in or near the area of the spill. The blue crab, Callinectes sapidus, is common in the NGOM and is both economically and ecologically important in this region. In this study, after exposing juvenile blue crabs to oil or a mixture of oil and dispersant we tested for relative expression of heat shock protein 90 (hsp90) and vitellogenin (vtg) by measuring their corresponding mRNA expression. We also monitored crabs over two molts to test for effects on growth. Expression of hsp90 was significantly downregulated, and we did not detect any effects of exposure to oil or oil/dispersant mixture on growth or vtg expression.
Collapse
Affiliation(s)
- Susan C Chiasson
- Department of Ecology & Evolutionary Biology, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118, United States; Department of Chemistry, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118, United States.
| | - Caz M Taylor
- Department of Ecology & Evolutionary Biology, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118, United States
| |
Collapse
|
35
|
Xie Y. Molecular characterization of the HSP70 and HSP90 genes in Asian clam ( Corbicula fluminea ) and their expression analysis during heavy metal exposure. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Roth O, Landis SH. Trans-generational plasticity in response to immune challenge is constrained by heat stress. Evol Appl 2017; 10:514-528. [PMID: 28515783 PMCID: PMC5427669 DOI: 10.1111/eva.12473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/23/2017] [Indexed: 12/24/2022] Open
Abstract
Trans‐generational plasticity (TGP) is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent–offspring environments. In a global change scenario, several performance‐related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of TGP. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans‐generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat‐killed bacterial epitope treatment. Differential gene expression (immune genes and DNA‐ and histone‐modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources that can be allocated to phenotypic trans‐generational effects are limited. Temperature is the master regulator of trans‐generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of TGP as a short‐term option to buffer environmental variation in the light of climate change.
Collapse
Affiliation(s)
- Olivia Roth
- GEOMAR Evolutionary Ecology of Marine Fishes Helmholtz Centre for Ocean Research Kiel Germany
| | - Susanne H Landis
- GEOMAR Evolutionary Ecology of Marine Fishes Helmholtz Centre for Ocean Research Kiel Germany
| |
Collapse
|
37
|
Wood HL, Sundell K, Almroth BC, Sköld HN, Eriksson SP. Population-dependent effects of ocean acidification. Proc Biol Sci 2016; 283:rspb.2016.0163. [PMID: 27053741 DOI: 10.1098/rspb.2016.0163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/11/2016] [Indexed: 01/03/2023] Open
Abstract
Elevated carbon dioxide levels and the resultant ocean acidification (OA) are changing the abiotic conditions of the oceans at a greater rate than ever before and placing pressure on marine species. Understanding the response of marine fauna to this change is critical for understanding the effects of OA. Population-level variation in OA tolerance is highly relevant and important in the determination of ecosystem resilience and persistence, but has received little focus to date. In this study, whether OA has the same biological consequences in high-salinity-acclimated population versus a low-salinity-acclimated population of the same species was investigated in the marine isopod Idotea balthica.The populations were found to have physiologically different responses to OA. While survival rate was similar between the two study populations at a future CO2 level of 1000 ppm, and both populations showed increased oxidative stress, the metabolic rate and osmoregulatory activity differed significantly between the two populations. The results of this study demonstrate that the physiological response to OA of populations from different salinities can vary. Population-level variation and the environment provenance of individuals used in OA experiments should be taken into account for the evaluation and prediction of climate change effects.
Collapse
Affiliation(s)
- Hannah L Wood
- Department of Biological and Environmental Sciences-Kristineberg, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences-Zoology, University of Gothenburg, Gothenburg, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences-Zoology, University of Gothenburg, Gothenburg, Sweden
| | - Helén Nilsson Sköld
- Sven Loven Centre for Marine Sciences-Kristineberg, University of Gothenburg, Gothenburg, Sweden
| | - Susanne P Eriksson
- Department of Biological and Environmental Sciences-Kristineberg, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
deVries MS, Webb SJ, Tu J, Cory E, Morgan V, Sah RL, Deheyn DD, Taylor JRA. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Sci Rep 2016; 6:38637. [PMID: 27974830 PMCID: PMC5156921 DOI: 10.1038/srep38637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/01/2016] [Indexed: 11/25/2022] Open
Abstract
Calcified marine organisms typically experience increased oxidative stress and changes in mineralization in response to ocean acidification and warming conditions. These effects could hinder the potency of animal weapons, such as the mantis shrimp’s raptorial appendage. The mechanical properties of this calcified weapon enable extremely powerful punches to be delivered to prey and aggressors. We examined oxidative stress and exoskeleton structure, mineral content, and mechanical properties of the raptorial appendage and the carapace under long-term ocean acidification and warming conditions. The predatory appendage had significantly higher % Mg under ocean acidification conditions, while oxidative stress levels as well as the % Ca and mechanical properties of the appendage remained unchanged. Thus, mantis shrimp tolerate expanded ranges of pH and temperature without experiencing oxidative stress or functional changes to their weapons. Our findings suggest that these powerful predators will not be hindered under future ocean conditions.
Collapse
Affiliation(s)
- Maya S deVries
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Summer J Webb
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Jenny Tu
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Esther Cory
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Victoria Morgan
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Robert L Sah
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Dimitri D Deheyn
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Jennifer R A Taylor
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
39
|
Northcutt AJ, Lett KM, Garcia VB, Diester CM, Lane BJ, Marder E, Schulz DJ. Deep sequencing of transcriptomes from the nervous systems of two decapod crustaceans to characterize genes important for neural circuit function and modulation. BMC Genomics 2016; 17:868. [PMID: 27809760 PMCID: PMC5096308 DOI: 10.1186/s12864-016-3215-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Crustaceans have been studied extensively as model systems for nervous system function from single neuron properties to behavior. However, lack of molecular sequence information and tools have slowed the adoption of these physiological systems as molecular model systems. In this study, we sequenced and performed de novo assembly for the nervous system transcriptomes of two decapod crustaceans: the Jonah crab (Cancer borealis) and the American lobster (Homarus americanus). RESULTS Forty-two thousand, seven hundred sixty-six and sixty thousand, two hundred seventy-three contigs were assembled from C. borealis and H. americanus respectively, representing 9,489 and 11,061 unique coding sequences. From these transcripts, genes associated with neural function were identified and manually curated to produce a characterization of multiple gene families important for nervous system function. This included genes for 34 distinct ion channel types, 17 biogenic amine and 5 GABA receptors, 28 major transmitter receptor subtypes including glutamate and acetylcholine receptors, and 6 gap junction proteins - the Innexins. CONCLUSION With this resource, crustacean model systems are better poised for incorporation of modern genomic and molecular biology technologies to further enhance the interrogation of fundamentals of nervous system function.
Collapse
Affiliation(s)
- Adam J. Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Kawasi M. Lett
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Virginia B. Garcia
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Clare M. Diester
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Brian J. Lane
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA USA
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| |
Collapse
|
40
|
Benedetti M, Lanzoni I, Nardi A, d'Errico G, Di Carlo M, Fattorini D, Nigro M, Regoli F. Oxidative responsiveness to multiple stressors in the key Antarctic species, Adamussium colbecki: Interactions between temperature, acidification and cadmium exposure. MARINE ENVIRONMENTAL RESEARCH 2016; 121:20-30. [PMID: 27085201 DOI: 10.1016/j.marenvres.2016.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
High-latitude marine ecosystems are ranked to be among the most sensitive regions to climate change since highly stenothermal and specially adapted organisms might be seriously affected by global warming and ocean acidification. The present investigation was aimed to provide new insights on the sensitivity to such environmental stressors in the key Antarctic species, Adamussium colbecki, focussing also on their synergistic effects with cadmium exposure, naturally abundant in this area for upwelling phenomena. Scallops were exposed for 2 weeks to various combinations of Cd (0 and 40 μgL-1), pH (8.05 and 7.60) and temperature (-1 and +1 °C). Beside Cd bioaccumulation, a wide panel of early warning biomarkers were analysed in digestive glands and gills including levels of metallothioneins, individual antioxidants and total oxyradical scavenging capacity, onset of oxidative cell damage like lipid peroxidation, lysosomal stability, DNA integrity and peroxisomal proliferation. Results indicated reciprocal interactions between multiple stressors and their elaboration by a quantitative hazard model based on the relevance and magnitude of effects, highlighted a different sensitivity of analysed tissues. Due to cellular adaptations to high basal Cd content, digestive gland appeared more tolerant toward other prooxidant stressors, but sensitive to variations of the metal. On the other hand, gills were more affected by various combinations of stressors occurring at higher temperature.
Collapse
Affiliation(s)
- Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Ilaria Lanzoni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marta Di Carlo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Nigro
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
41
|
Ertl NG, O’Connor WA, Wiegand AN, Elizur A. Molecular analysis of the Sydney rock oyster (Saccostrea glomerata) CO2 stress response. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40665-016-0019-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Tresguerres M. Novel and potential physiological roles of vacuolar-type H+-ATPase in marine organisms. J Exp Biol 2016; 219:2088-97. [DOI: 10.1242/jeb.128389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
The vacuolar-type H+-ATPase (VHA) is a multi-subunit enzyme that uses the energy from ATP hydrolysis to transport H+ across biological membranes. VHA plays a universal role in essential cellular functions, such as the acidification of lysosomes and endosomes. In addition, the VHA-generated H+-motive force can drive the transport of diverse molecules across cell membranes and epithelia for specialized physiological functions. Here, I discuss diverse physiological functions of VHA in marine animals, focusing on recent discoveries about base secretion in shark gills, potential bone dissolution by Osedax bone-eating worms and its participation in a carbon-concentrating mechanism that promotes coral photosynthesis. Because VHA is evolutionarily conserved among eukaryotes, it is likely to play many other essential physiological roles in diverse marine organisms. Elucidating and characterizing basic VHA-dependent mechanisms could help to determine species responses to environmental stress, including (but not limited to) that resulting from climate change.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, SIO mail code 0202, La Jolla, CA 92093, USA
| |
Collapse
|
43
|
Havird JC, Santos SR. Here We Are, But Where Do We Go? A Systematic Review of Crustacean Transcriptomic Studies from 2014-2015. Integr Comp Biol 2016; 56:1055-1066. [PMID: 27400974 DOI: 10.1093/icb/icw061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite their economic, ecological, and experimental importance, genomic resources remain scarce for crustaceans. In lieu of genomes, many researchers have taken advantage of technological advancements to instead sequence and assemble crustacean transcriptomes de novo However, there is little consensus on what standard operating procedures are, or should be, for the field. Here, we systematically reviewed 53 studies published during 2014-2015 that utilized transcriptomic resources from this taxonomic group in an effort to identify commonalities as well as potential weaknesses that have applicability beyond just crustaceans. In general, these studies utilized RNA-Seq data, both novel and publicly available, to characterize transcriptomes and/or identify differentially expressed genes (DEGs) between treatments. Although the software suite Trinity was popular in assembly pipelines and other programs were also commonly employed, many studies failed to report crucial details regarding bioinformatic methodologies, including read mappers and the utilized parameters in identifying and characterizing DEGs. Annotation percentages for assembled transcriptomic contigs were low, averaging 32% overall. While other metrics, such as numbers of contigs and DEGs reported, correlated with the number of sequence reads utilized per sample, these did reach apparent saturation with increasing sequencing depth. Most disturbingly, a number of studies (55%) reported DEGs based on non-replicated experimental designs and single biological replicates for each treatment. Given this, we suggest future RNA-Seq experiments targeting transcriptome characterization conduct deeper (i.e., 50-100 M reads) sequencing while those examining differential expression instead focus more on increased biological replicates at shallower (i.e., ∼10-20 M reads/sample) sequencing depths. Moreover, the community must avoid submitting for review, or accepting for publication, non-replicated differential expression studies. Finally, mining the ever growing publicly available transcriptomic data from crustaceans will allow future studies to focus on hypothesis-driven research instead of continuing to simply characterize transcriptomes. As an example of this, we utilized neurotoxin sequences from the recently described remipede venom gland transcriptome in conjunction with publicly available crustacean transcriptomic data to derive preliminary results and hypotheses regarding the evolution of venom in crustaceans.
Collapse
Affiliation(s)
- Justin C Havird
- *Department of Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| |
Collapse
|
44
|
Havird JC, Mitchell RT, Henry RP, Santos SR. Salinity-induced changes in gene expression from anterior and posterior gills of Callinectes sapidus (Crustacea: Portunidae) with implications for crustacean ecological genomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:34-44. [PMID: 27337176 DOI: 10.1016/j.cbd.2016.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 01/05/2023]
Abstract
Decapods represent one of the most ecologically diverse taxonomic groups within crustaceans, making them ideal to study physiological processes like osmoregulation. However, prior studies have failed to consider the entire transcriptomic response of the gill - the primary organ responsible for ion transport - to changing salinity. Moreover, the molecular genetic differences between non-osmoregulatory and osmoregulatory gill types, as well as the hormonal basis of osmoregulation, remain underexplored. Here, we identified and characterized differentially expressed genes (DEGs) via RNA-Seq in anterior (non-osmoregulatory) and posterior (osmoregulatory) gills during high to low salinity transfer in the blue crab Callinectes sapidus, a well-studied model for crustacean osmoregulation. Overall, we confirmed previous expression patterns for individual ion transport genes and identified novel ones with salinity-mediated expression. Notable, novel DEGs among salinities and gill types for C. sapidus included anterior gills having higher expression of structural genes such as actin and cuticle proteins while posterior gills exhibit elevated expression of ion transport and energy-related genes, with the latter likely linked to ion transport. Potential targets among recovered DEGs for hormonal regulation of ion transport between salinities and gill types included neuropeptide Y and a KCTD16-like protein. Using publically available sequence data, constituents for a "core" gill transcriptome among decapods are presented, comprising genes involved in ion transport and energy conversion and consistent with salinity transfer experiments. Lastly, rarefication analyses lead us to recommend a modest number of sequence reads (~10-15M), but with increased biological replication, be utilized in future DEG analyses of crustaceans.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biological Sciences, Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, AL 36849, USA; Dept. of Biology, Colorado State University, Room E106 Anatomy/Zoology Building, Fort Collins, CO 80523, USA.
| | - Reed T Mitchell
- Dept. of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, AL 36849, USA; Walter Reed Biosystematics Unit, 4210 Silver Hill Rd, Suitland, MD, 20746, USA
| | - Raymond P Henry
- Dept. of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, AL 36849, USA
| | - Scott R Santos
- Department of Biological Sciences, Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, AL 36849, USA
| |
Collapse
|
45
|
Shama LNS, Mark FC, Strobel A, Lokmer A, John U, Mathias Wegner K. Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean. Evol Appl 2016; 9:1096-1111. [PMID: 27695518 PMCID: PMC5039323 DOI: 10.1111/eva.12370] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/28/2016] [Indexed: 12/25/2022] Open
Abstract
Transgenerational effects can buffer populations against environmental change, yet little is known about underlying mechanisms, their persistence or the influence of environmental cue timing. We investigated mitochondrial respiratory capacity (MRC) and gene expression of marine sticklebacks that experienced acute or developmental acclimation to simulated ocean warming (21°C) across three generations. Previous work showed that acute acclimation of grandmothers to 21°C led to lower (optimized) offspring MRCs. Here, developmental acclimation of mothers to 21°C led to higher, but more efficient offspring MRCs. Offspring with a 21°C × 17°C grandmother-mother environment mismatch showed metabolic compensation: their MRCs were as low as offspring with a 17°C thermal history across generations. Transcriptional analyses showed primarily maternal but also grandmaternal environment effects: genes involved in metabolism and mitochondrial protein biosynthesis were differentially expressed when mothers developed at 21°C, whereas 21°C grandmothers influenced genes involved in hemostasis and apoptosis. Genes involved in mitochondrial respiration all showed higher expression when mothers developed at 21° and lower expression in the 21°C × 17°C group, matching the phenotypic pattern for MRCs. Our study links transcriptomics to physiology under climate change, and demonstrates that mechanisms underlying transgenerational effects persist across multiple generations with specific outcomes depending on acclimation type and environmental mismatch between generations.
Collapse
Affiliation(s)
- Lisa N S Shama
- Coastal Ecology Section Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung Wadden Sea Station Sylt Germany
| | - Felix C Mark
- Integrative Ecophysiology Section Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung Bremerhaven Germany
| | - Anneli Strobel
- Integrative Ecophysiology Section Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung Bremerhaven Germany; Man Society Environment (MGU) Department of Environmental Sciences University of Basel Switzerland
| | - Ana Lokmer
- Coastal Ecology Section Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung Wadden Sea Station Sylt Germany
| | - Uwe John
- Ecological Chemistry Section Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung Bremerhaven Germany
| | - K Mathias Wegner
- Coastal Ecology Section Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung Wadden Sea Station Sylt Germany
| |
Collapse
|
46
|
Li S, Huang J, Liu C, Liu Y, Zheng G, Xie L, Zhang R. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1157-1165. [PMID: 26727167 DOI: 10.1021/acs.est.5b05107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture.
Collapse
Affiliation(s)
- Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Jingliang Huang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Chuang Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yangjia Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Guilan Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|
47
|
Hu MY, Guh YJ, Shao YT, Kuan PL, Chen GL, Lee JR, Jeng MS, Tseng YC. Strong Ion Regulatory Abilities Enable the Crab Xenograpsus testudinatus to Inhabit Highly Acidified Marine Vent Systems. Front Physiol 2016; 7:14. [PMID: 26869933 PMCID: PMC4734175 DOI: 10.3389/fphys.2016.00014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Hydrothermal vent organisms have evolved physiological adaptations to cope with extreme abiotic conditions including temperature and pH. To date, acid-base regulatory abilities of vent organisms are poorly investigated, although this physiological feature is essential for survival in low pH environments. We report the acid-base regulatory mechanisms of a hydrothermal vent crab, Xenograpsus testudinatus, endemic to highly acidic shallow-water vent habitats with average environment pH-values ranging between 5.4 and 6.6. Within a few hours, X. testudinatus restores extracellular pH (pHe) in response to environmental acidification of pH 6.5 (1.78 kPa pCO2) accompanied by an increase in blood HCO3- levels from 8.8 ± 0.3 to 31 ± 6 mM. Branchial Na+/K+-ATPase (NKA) and V-type H+-ATPase (VHA), the major ion pumps involved in branchial acid-base regulation, showed dynamic increases in response to acidified conditions on the mRNA, protein and activity level. Immunohistochemical analyses demonstrate the presence of NKA in basolateral membranes, whereas the VHA is predominantly localized in cytoplasmic vesicles of branchial epithelial- and pillar-cells. X. testudinatus is closely related to other strong osmo-regulating brachyurans, which is also reflected in the phylogeny of the NKA. Accordingly, our results suggest that the evolution of strong ion regulatory abilities in brachyuran crabs that allowed the occupation of ecological niches in euryhaline, freshwater, and terrestrial habitats are probably also linked to substantial acid-base regulatory abilities. This physiological trait allowed X. testudinatus to successfully inhabit one of the world's most acidic marine environments.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Cellular and Organismic Biology, Academia SinicaTaipei, Taiwan; Institute of Physiology, Christian-Albrechts University KielKiel, Germany
| | - Ying-Jey Guh
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Yi-Ta Shao
- Institute of Marine Biology, National Taiwan Ocean University Keelung, Taiwan
| | - Pou-Long Kuan
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| | - Guan-Lin Chen
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica Taipei, Taiwan
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| | - Yung-Che Tseng
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| |
Collapse
|
48
|
Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Sci Rep 2016; 6:18943. [PMID: 26732540 PMCID: PMC4702168 DOI: 10.1038/srep18943] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture.
Collapse
|
49
|
Gunderson AR, Armstrong EJ, Stillman JH. Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment. ANNUAL REVIEW OF MARINE SCIENCE 2016; 8:357-78. [PMID: 26359817 DOI: 10.1146/annurev-marine-122414-033953] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic conditions (e.g., temperature and pH) fluctuate through time in most marine environments, sometimes passing intensity thresholds that induce physiological stress. Depending on habitat and season, the peak intensity of different abiotic stressors can occur in or out of phase with one another. Thus, some organisms are exposed to multiple stressors simultaneously, whereas others experience them sequentially. Understanding these physicochemical dynamics is critical because how organisms respond to multiple stressors depends on the magnitude and relative timing of each stressor. Here, we first discuss broad patterns of covariation between stressors in marine systems at various temporal scales. We then describe how these dynamics will influence physiological responses to multi-stressor exposures. Finally, we summarize how multi-stressor effects are currently assessed. We find that multi-stressor experiments have rarely incorporated naturalistic physicochemical variation into their designs, and emphasize the importance of doing so to make ecologically relevant inferences about physiological responses to global change.
Collapse
Affiliation(s)
- Alex R Gunderson
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California 94920;
| | - Eric J Armstrong
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California 94920;
| | - Jonathon H Stillman
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California 94920;
| |
Collapse
|
50
|
Richardson MF, Sherman CDH. De Novo Assembly and Characterization of the Invasive Northern Pacific Seastar Transcriptome. PLoS One 2015; 10:e0142003. [PMID: 26529321 PMCID: PMC4631335 DOI: 10.1371/journal.pone.0142003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Invasive species are a major threat to global biodiversity but can also serve as valuable model systems to examine important evolutionary processes. While the ecological aspects of invasions have been well documented, the genetic basis of adaptive change during the invasion process has been hampered by a lack of genomic resources for the majority of invasive species. Here we report the first larval transcriptomic resource for the Northern Pacific Seastar, Asterias amurensis, an invasive marine predator in Australia. Approximately 117.5 million 100 base-pair (bp) paired-end reads were sequenced from a single RNA-Seq library from a pooled set of full-sibling A. amurensis bipinnaria larvae. We evaluated the efficacy of a pre-assembly error correction pipeline on subsequent de novo assembly. Error correction resulted in small but important improvements to the final assembly in terms of mapping statistics and core eukaryotic genes representation. The error-corrected de novo assembly resulted in 115,654 contigs after redundancy clustering. 41,667 assembled contigs were homologous to sequences from NCBI’s non-redundant protein and UniProt databases. We assigned Gene Ontology, KEGG Orthology, Pfam protein domain terms and predicted protein-coding sequences to > 36,000 contigs. The final transcriptome dataset generated here provides functional information for 18,319 unique proteins, comprising at least 11,355 expressed genes. Furthermore, we identified 9,739 orthologs to P. miniata proteins, evaluated our annotation pipeline and generated a list of 150 candidate genes for responses to several environmental stressors that may be important for adaptation of A. amurensis in the invasive range. Our study has produced a large set of A. amurensis RNA contigs with functional annotations that can serve as a resource for future comparisons to other echinoderm transcriptomes and gene expression studies. Our data can be used to study the genetic basis of adaptive change and other important evolutionary processes during a successful invasion.
Collapse
Affiliation(s)
- Mark F. Richardson
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
- * E-mail:
| | - Craig D. H. Sherman
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|