1
|
Leestemaker-Palmer A, Ong T, Bermudez LE. Exposure of Mycobacteriodes abscessus clones to mucin affects bacterial phenotype. Sci Rep 2025; 15:393. [PMID: 39747334 PMCID: PMC11697318 DOI: 10.1038/s41598-024-84451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
In the past 20 years infections caused by Mycobacterioides abscessus have become increasingly common in patients with chronic lung conditions. The microorganisms are also resistant to a number of antibiotic classes, making treatment challenging. To begin understanding how the bacterium adapts to the lung environment, pure colonies of M. abscessus strain 19,977 were grown in 7H9 broth with or without mucin over 30-day intervals for 6 months and analyzed for colony morphology, 7 day-growth curves, the ability to form biofilms after 14 days, and the susceptibility to antibiotics determined using previous published methods. In presence of mucin by month 3 the non-replicating stage of growth occurred by day 3, compared to earlier months. Similar characteristics were seen in colonies grown in absence of mucin by month 5. During biofilm formation, the amount of protein in the matrix started to decrease at month 3 between day 7 and day 14, with progressive overall biomass decreased in month 6. Mucin exposed clones had less of this decrease between day 7 and day 14 compared to clones naïve to mucin. The number of bacteria in the biofilms were similar in all 6 months in 7H9 medium and 7H9 with mucin. Some of the strains increased the amount of carbohydrates in the biofilm matrix overtime while others exported more DNA, the matrix containing large amounts of it. The presence of mucin was associated with increased antibiotic resistance to amikacin, 5-fold increase of MIC in 7 out of 8 strains evaluated. Some of the colonies transitioned from smooth to rough morphotypes, again indicating the influence of different environments. Overall, M. abscessus phenotype changes overtime influenced by mucin, an important component in the host lung environment. Bacteria clones arrested growth, produced different biofilms compositions, increased the resistance to antibiotics, and some changed the cell wall surfaces. These observations have direct implications in virulence and the response of the pathogen to treatment.
Collapse
Affiliation(s)
- Amy Leestemaker-Palmer
- Department of Biomedical Sciences, Carlton College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Tiffany Ong
- Department of Biomedical Sciences, Carlton College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Carlton College of Veterinary Medicine, Oregon State University, Corvallis, USA.
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, USA.
| |
Collapse
|
2
|
Malmsheimer S, Daher W, Tasrini Y, Hamela C, Aguilera-Correa JJ, Chalut C, Hatfull GF, Kremer L. Trehalose polyphleates participate in Mycobacterium abscessus fitness and pathogenesis. mBio 2024; 15:e0297024. [PMID: 39475242 PMCID: PMC11633156 DOI: 10.1128/mbio.02970-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 12/12/2024] Open
Abstract
Mycobacteria produce a large repertoire of surface-exposed lipids with major biological functions. Among these lipids, trehalose polyphleates (TPPs) are instrumental in the infection of Mycobacterium abscessus by the therapeutic phage BPs. However, while the biosynthesis and transport of TPPs across the membrane by MmpL10 have been reported, the role of TPPs in host infection remains enigmatic. Here, we addressed whether the loss of TPPs influences interactions with macrophages and the virulence of M. abscessus. As anticipated, the deletion of mmpL10 in smooth (S) and rough (R) variants of M. abscessus abrogated TPP production, which was rescued upon gene complementation. Importantly, infection of human THP-1 cells with the mmpL10 mutants was associated with decreased intramacrophage survival and a reduced proportion of infected cells. The rough mmpL10 mutant showed an impaired capacity to block phagosomal acidification and was unable to co-localize with Galectin-3, a marker of phagosomal membrane damage. This suggests that TPPs participate, directly or indirectly, in phagolysosomal fusion and in phagosomal membrane damage to establish cytosolic communication. The TPP defect that affects the fitness and virulence of M. abscessus was further demonstrated in zebrafish embryos using a rough clinical strain resistant to phage BPs and harboring a frameshift mutation in mmpL10. Infection with this strain was correlated with a slight decrease in embryo survival and a reduced bacterial burden as compared to the corresponding parental and complemented derivatives. Together, these results indicate that TPPs are important surface lipids contributing to the pathogenicity of M. abscessus.IMPORTANCETrehalose polyphleates (TPPs) are complex lipids associated with the mycobacterial cell surface and were identified 50 years ago. While the TPP biosynthetic pathway has been described recently, the role of these lipids in the biology of mycobacteria remains yet to be established. The wide distribution of TPPs across mycobacterial species suggests that they may exhibit important functions in these actinobacteria. Here, we demonstrate that Mycobacterium abscessus, an emerging multidrug-resistant pathogen that causes severe lung diseases in cystic fibrosis patients, requires TPPs for survival in macrophages and virulence in a zebrafish model of infection. These findings support the importance of this underexplored family of lipids in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Silke Malmsheimer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
3
|
Faboro T, Daniel J. Biofilm formation and polar lipid biosynthesis in Mycobacterium abscessus are inhibited by naphthylmethylpiperazine. PLoS One 2024; 19:e0311669. [PMID: 39531471 PMCID: PMC11556751 DOI: 10.1371/journal.pone.0311669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Mycobacterium abscessus is a biofilm-forming, non-tuberculous mycobacterium that is highly resistant to antibiotics. Bacterial efflux pumps contribute to biofilm formation, export of biofilm-associated lipids and antibiotic tolerance. The Resistance Nodulation Cell Division (RND) and ATP-Binding Cassette (ABC) families of efflux pumps export lipids to the mycobacterial cell surface. 1-(1-naphthyl methyl)-piperazine (NMP) is a chemosensitizer that causes membrane destabilization and is an inhibitor of RND efflux pumps. The effects of NMP on biofilm formation and lipid metabolism in M. abscessus biofilms have not been investigated. Plumbagin (PLU) is an inhibitor of ABC efflux pumps that has not been studied for its effects on antibiotic tolerance in M. abscessus biofilms. In this study, we report that the efflux pump inhibitors NMP and PLU inhibit biofilm formation by 50% at sub-MIC levels. We show that NMP inhibits the incorporation of the radiolabeled long-chain fatty acid 14C-palmitate into glycopeptidolipids in cell surface lipids of log-phase M. abscessus. NMP also inhibits the utilization of the radiolabel in the biosynthesis of phosphatidylethanolamine in the cell surface and cellular lipids of M. abscessus cells in log-phase and in biofilms. Incorporation of the radiolabel into cardiolipin in the cellular lipids of M. abscessus biofilms was inhibited by NMP. The incorporation of 14C-acetate into cell surface phosphatidylethanolamine in log-phase and biofilm cells was also inhibited by NMP. Triacylglycerol biosynthesis using 14C-palmitate and 14C-acetate in cellular lipids of log-phase and biofilm cells was increased several folds by NMP. Efflux pump activity in M. abscessus cells was inhibited by 97% and 68% by NMP and PLU respectively. NMP and PLU caused 5-fold decreases in the minimum inhibitory concentrations of ciprofloxacin and clarithromycin against M. abscessus. Our results demonstrate that NMP and PLU affect important physiological processes in M. abscessus associated with its pathogenesis.
Collapse
Affiliation(s)
- Timilehin Faboro
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Jaiyanth Daniel
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
4
|
Aguilera-Correa JJ, Wei F, Leclercq LD, Tasrini Y, Mullapudi E, Daher W, Nakajima K, Canaan S, Herrmann JL, Wilmanns M, Guérardel Y, Wen L, Kremer L. A dTDP-L-rhamnose 4-epimerase required for glycopeptidolipid biosynthesis in Mycobacterium abscessus. J Biol Chem 2024; 300:107852. [PMID: 39362472 PMCID: PMC11549994 DOI: 10.1016/j.jbc.2024.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Mycobacterium abscessus causes severe lung infections in cystic fibrosis patients and exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in the S-to-R transition but the underlying molecular mechanisms of this transition remain incompletely understood. Herein, we characterized MAB_4111c in relation to GPL synthesis and investigated the effects of MAB_4111c deletion in M. abscessus pathogenicity. An enzymatic assay indicated that MAB_4111c, also designated Tle for Talose epimerase, is converting dTDP-L-Rhamnose into dTDP-6-deoxy-L-Talose. A tle deletion mutant was constructed in the S variant of M. abscessus and relative areas of Rhamnose and 6-deoxy-Talose and their methylated forms expressed as ratios of total monosaccharides, showed an altered GPL profile lacking 6-deoxy-Talose. Thus, Tle provides dTDP-6-deoxy-L-Talose, subsequently used by the glycosyltransferase Gtf1 to transfer 6-deoxy-Talose to the GPL backbone. Strikingly, the tle mutant exhibited an R morphotype, showed impaired sliding motility and biofilm formation, and these phenotypes were rescued upon functional complementation. Moreover, deletion of tle in M. abscessus results in increased pathogenicity and killing in zebrafish embryos. Together, our results underscore the importance of the dTDP-L-Rhamnose 4-epimerase activity in GPL biosynthesis and in influencing M. abscessus virulence.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Fangyu Wei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | | | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, LISM, IMM, Marseille, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany; University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| |
Collapse
|
5
|
Smedile D, Iurescia M, Carfora V, Cocumelli C, Palmerini T, Diaconu EL, Congiu I, Donati V, Stravino F, Sorbara L, Romano E, Caprioli A, Battisti A. Genomics Insights into Mycolicibacterium Hassiacum Causing Infection in a Cat with Pyogranulomatous Dermatitis and Panniculitis. Pathogens 2024; 13:785. [PMID: 39338976 PMCID: PMC11435378 DOI: 10.3390/pathogens13090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Mycolicibacterium hassiacum (homotypic synonym: Mycobacterium hassiacum) represents an ungrouped thermotolerant rapidly growing mycobacteria (RGM) species occasionally associated with infections and disease in humans. In this report, we describe a case of pyogranulomatous dermatitis and panniculitis due to M. hassiacum in an immunocompetent adult cat. To the best of our knowledge, this represents the first report of M. hassiacum infection in animals. We also report the results of the in-depth genome characterization of the isolate using a combined short- and long-read whole-genome sequencing (WGS) approach. We observed the lack of acquired-resistance genes and no evidence of mutations in housekeeping genes associated with resistance to rifampicin and isoniazid. We detected some virulence factors in our isolate, such as some associated with the interaction of mycobacteria with host cells, and the presence of multiple copies of heavy metal resistance genes (arsB, arsR, and arsL/cadL). In conclusion, M. hassiacum should be included among the RGM species associated with feline subcutaneous atypical mycobacteriosis (SAM). A reliable and fast RGM laboratory identification and characterization is important not only for an accurate etiological diagnosis but also for a correct approach to SAM treatment options.
Collapse
Affiliation(s)
- Daniele Smedile
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Manuela Iurescia
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Virginia Carfora
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Cristiano Cocumelli
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Tiziana Palmerini
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Elena Lavinia Diaconu
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Ilaria Congiu
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Valentina Donati
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Fiorentino Stravino
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Luigi Sorbara
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | | | - Andrea Caprioli
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Antonio Battisti
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| |
Collapse
|
6
|
McGowen K, Funck T, Wang X, Zinga S, Wolf ID, Akusobi CC, Denkinger CM, Rubin EJ, Sullivan MR. Efflux pumps and membrane permeability contribute to intrinsic antibiotic resistance in Mycobacterium abscessus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609441. [PMID: 39229117 PMCID: PMC11370614 DOI: 10.1101/2024.08.23.609441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mycobacterium abscessus is a pulmonary pathogen that exhibits intrinsic resistance to antibiotics, but the factors driving this resistance are incompletely understood. Insufficient intracellular drug accumulation could explain broad-spectrum resistance, but whether antibiotics fail to accumulate in M. abscessus and the mechanisms required for drug exclusion remain poorly understood. We measured antibiotic accumulation in M. abscessus using mass spectrometry and found a wide range of drug accumulation across clinically relevant antibiotics. Of these compounds, linezolid accumulates the least, suggesting that inadequate uptake impacts its efficacy. We utilized transposon mutagenesis screening to identify genes that cause linezolid resistance and found multiple transporters that promote membrane permeability or efflux, including an uncharacterized, M. abscessus-specific protein that effluxes linezolid and several chemically related antibiotics. This demonstrates that membrane permeability and drug efflux are critical mechanisms of antibiotic resistance in M. abscessus and suggests that targeting membrane transporters could potentiate the efficacy of certain antibiotics.
Collapse
Affiliation(s)
- Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Tobias Funck
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital & German Center of Infection Research partner site, Germany
| | - Xin Wang
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Samuel Zinga
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Chidiebere C Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Claudia M Denkinger
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital & German Center of Infection Research partner site, Germany
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Mark R Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Azumi H, Kubo M, Otani A, Ochi S, Kobayashi S, Miyataka Y, Nakamura F, Yagi H. Patient with Adult T-cell Leukemia and Lung Infection Caused by Mycobacterium abscessus: Successful Treatment with Intensive Chemotherapy Followed by Haploidentical Hematopoietic Stem Cell Transplantation. Intern Med 2024; 63:2069-2076. [PMID: 38072408 PMCID: PMC11309854 DOI: 10.2169/internalmedicine.1181-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/18/2023] [Indexed: 07/17/2024] Open
Abstract
A 63-year-old woman with adult T-cell leukemia (ATL) lymphomatous type developed a mild dry cough. Computed tomography revealed lung lesions with a tree-in-bud appearance during intensive chemotherapy. Antibodies against Mycobacterium avium complex were positive. Bronchoalveolar lavage culture showed growth of M. abscessus complex. Finally, M. abscessus subsp. massiliense was also identified. Sequential use of antimicrobials, including macrolides, was introduced during intensive chemotherapy, and the patient successfully underwent allogeneic hematopoietic stem cell transplantation (AHSCT). This is the first case report of a patient with ATL complicated by M. massiliense lung infection, who was successfully treated with haploidentical AHSCT using various combinations of antimicrobials.
Collapse
Affiliation(s)
- Hidekazu Azumi
- Department of Hematology and Oncology, Nara Prefecture General Medical Center, Japan
| | - Masayuki Kubo
- Department of Blood Transfusion Medicine, Nara Medical University, Japan
| | - Atsushi Otani
- Department of Hematology and Oncology, Nara Prefecture General Medical Center, Japan
| | - Shinichi Ochi
- Department of Hematology and Oncology, Nara Prefecture General Medical Center, Japan
| | - Shinya Kobayashi
- Department of Hematology and Oncology, Nara Prefecture General Medical Center, Japan
| | - Yasumasa Miyataka
- Department of Respiratory Medicine, Nara Prefecture General Medical Center, Japan
| | - Fumihiko Nakamura
- Department of the Clinical Laboratory, Nara Prefecture General Medical Center, Japan
| | - Hideo Yagi
- Department of Hematology and Oncology, Nara Prefecture General Medical Center, Japan
| |
Collapse
|
8
|
Yanagisawa A, Takimoto T, Kurahara Y, Tsuyuguchi K, Yoshida S, Hirose M, Inoue Y, Arai T. Lymphangioleiomyomatosis Showing the Development of Mycobacterium abscessus subsp. massiliense Infection during Sirolimus Therapy. Intern Med 2024; 63:2043-2047. [PMID: 38008448 PMCID: PMC11309859 DOI: 10.2169/internalmedicine.2847-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 11/28/2023] Open
Abstract
Among nontuberculous mycobacterial pulmonary diseases (NTM-PDs), Mycobacterium abscessus species pulmonary disease (MABS-PD) is one of the most severe and intractable infections. We herein report a 45-year-old woman with advanced lymphangioleiomyomatosis (LAM) who developed MABS-PD while undergoing sirolimus therapy. MABS-PD was immediately controlled using antibiotic therapy, although the patient's lung transplant registration was significantly delayed. To our knowledge, this is the first case report on the development of NTM-PD in a patient with LAM before lung transplantation. This case suggests that the early diagnosis and optimal treatment of NTM-PD are crucial in patients with advanced LAM.
Collapse
Affiliation(s)
- Atsushi Yanagisawa
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Takayuki Takimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Yu Kurahara
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Kazunari Tsuyuguchi
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
- Department of Internal Medicine, Osaka Anti-Tuberculosis Association Osaka Fukujuji Hospital, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Japan
| |
Collapse
|
9
|
Villar-Hernández R, Latorre I, Noguera-Julian A, Martínez-Planas A, Minguell L, Vallmanya T, Méndez M, Soriano-Arandes A, Baquero-Artigao F, Rodríguez-Molino P, Guillén-Martín S, Toro-Rueda C, De Souza-Galvão ML, Jiménez-Fuentes MÁ, Stojanovic Z, Sabriá J, Santos JR, Puig J, Domínguez-Álvarez M, Millet JP, Altet N, Galea Y, Muriel-Moreno B, García-García E, Bach-Griera M, Prat-Aymerich C, Julián E, Torrelles JB, Rodrigo C, Domínguez J. Development and Evaluation of an NTM-IGRA to Guide Pediatric Lymphadenitis Diagnosis. Pediatr Infect Dis J 2024; 43:278-285. [PMID: 38113520 DOI: 10.1097/inf.0000000000004211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Diagnosis of nontuberculous mycobacteria (NTM) infections remains a challenge. In this study, we describe the evaluation of an immunological NTM-interferon (IFN)-γ release assay (IGRA) that we developed using glycopeptidolipids (GPLs) as NTM-specific antigens. METHODS We tested the NTM-IGRA in 99 samples from pediatric patients. Seventy-five were patients with lymphadenitis: 25 were NTM confirmed, 45 were of unknown etiology but compatible with mycobacterial infection and 5 had lymphadenitis caused by an etiologic agent other than NTM. The remaining 24 samples were from control individuals without lymphadenitis (latently infected with M. tuberculosis , uninfected controls and active tuberculosis patients). Peripheral blood mononuclear cells were stimulated overnight with GPLs. Detection of IFN-γ producing cells was evaluated by enzyme-linked immunospot assay. RESULTS NTM culture-confirmed lymphadenitis patient samples had a significantly higher response to GPLs than the patients with lymphadenitis of unknown etiology but compatible with mycobacterial infection ( P < 0.001) and lymphadenitis not caused by NTM ( P < 0.01). We analyzed the response against GPLs in samples from unknown etiology lymphadenitis but compatible with mycobacterial infection cases according to the tuberculin skin test (TST) response, and although not statistically significant, those with a TST ≥5 mm had a higher response to GPLs when compared with the TST <5 mm group. CONCLUSIONS Stimulation with GPLs yielded promising results in detecting NTM infection in pediatric patients with lymphadenitis. Our results indicate that the test could be useful to guide the diagnosis of pediatric lymphadenitis. This new NTM-IGRA could improve the clinical handling of NTM-infected patients and avoid unnecessary misdiagnosis and treatments.
Collapse
Affiliation(s)
- Raquel Villar-Hernández
- From the Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- R&D Department, Genome Identification Diagnostics (GenID) GmbH, Strassberg, Germany
| | - Irene Latorre
- From the Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Noguera-Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Servei de Malalties Infeccioses i Patologia Importada, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Red de Investigación Translacional en Infectología Pediátrica, RITIP, Madrid, Spain
- Departament de Cirurgia i Especialitats Medicoquirúrgiques, Universitat de Barcelona, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Aina Martínez-Planas
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Servei de Malalties Infeccioses i Patologia Importada, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Red de Investigación Translacional en Infectología Pediátrica, RITIP, Madrid, Spain
| | - Laura Minguell
- Department of Pediatrics, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Teresa Vallmanya
- Department of Pediatrics, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - María Méndez
- Servei de Pediatria, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, Institut d'Investigació Germans Trias i Pujol
| | - Antoni Soriano-Arandes
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Fernando Baquero-Artigao
- Servicio de Pediatría, Enfermedades Infecciosas y Tropicales, Hospital Universitario de La Paz
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III
| | - Paula Rodríguez-Molino
- Servicio de Pediatría, Enfermedades Infecciosas y Tropicales, Hospital Universitario de La Paz
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III
| | | | | | | | | | - Zoran Stojanovic
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Universitari Germans Trias i Pujol
| | - Josefina Sabriá
- Servei de Pneumologia, Hospital Sant Joan Despí Moises Broggi, Sant Joan Despí, Barcelona, Spain
| | - José Ramón Santos
- Fundació Lluita contra les Infeccions, Servicio de Enfermedades Infecciosas, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jordi Puig
- Fundació Lluita contra les Infeccions, Servicio de Enfermedades Infecciosas, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Joan-Pau Millet
- CIBER de Epidemiología y Salud Pública, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Clínica de Tratamiento Directamente Observado "Serveis Clinics," Barcelona, Spain
| | - Neus Altet
- CIBER de Epidemiología y Salud Pública, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Clínica de Tratamiento Directamente Observado "Serveis Clinics," Barcelona, Spain
| | - Yolanda Galea
- Servei de Pneumologia, Hospital General de Granollers, Granollers, Spain
| | - Beatriz Muriel-Moreno
- From the Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther García-García
- From the Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Bach-Griera
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Prat-Aymerich
- From the Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas
| | - Carlos Rodrigo
- Servei de Pediatria, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, Institut d'Investigació Germans Trias i Pujol
| | - José Domínguez
- From the Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Shallom SJ, Tettelin H, Chandrasekaran P, Park IK, Agrawal S, Arora K, Sadzewicz L, Milstone AM, Aitken ML, Brown-Elliott BA, Wallace RJ, Sampaio EP, Niederweis M, Olivier KN, Holland SM, Zelazny AM. Evolution of Mycobacterium abscessus in the human lung: Cumulative mutations and genomic rearrangement of porin genes in patient isolates. Virulence 2023; 14:2215602. [PMID: 37221835 PMCID: PMC10243398 DOI: 10.1080/21505594.2023.2215602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Mycobacterium abscessus subspecies massiliense (M. massiliense) is increasingly recognized as an emerging bacterial pathogen, particularly in cystic fibrosis (CF) patients and CF centres' respiratory outbreaks. We characterized genomic and phenotypic changes in 15 serial isolates from two CF patients (1S and 2B) with chronic pulmonary M. massiliense infection leading to death, as well as four isolates from a CF centre outbreak in which patient 2B was the index case. RESULTS Comparative genomic analysis revealed the mutations affecting growth rate, metabolism, transport, lipids (loss of glycopeptidolipids), antibiotic susceptibility (macrolides and aminoglycosides resistance), and virulence factors. Mutations in 23S rRNA, mmpL4, porin locus and tetR genes occurred in isolates from both CF patients. Interestingly, we identified two different spontaneous mutation events at the mycobacterial porin locus: a fusion of two tandem porin paralogs in patient 1S and a partial deletion of the first porin paralog in patient 2B. These genomic changes correlated with reduced porin protein expression, diminished 14C-glucose uptake, slower bacterial growth rates, and enhanced TNF-α induction in mycobacteria-infected THP-1 human cells. Porin gene complementation of porin mutants partly restored 14C-glucose uptake, growth rate and TNF-α levels to those of intact porin strains. CONCLUSIONS We hypothesize that specific mutations accumulated and maintained over time in M. massiliense, including mutations shared among transmissible strains, collectively lead to more virulent, host adapted lineages in CF patients and other susceptible hosts.
Collapse
Affiliation(s)
- Shamira J. Shallom
- Microbiology Service, Department of Laboratory Medicine (DLM), Clinical Center, NIH, Bethesda, MD, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prabha Chandrasekaran
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - In Kwon Park
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Sonia Agrawal
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kriti Arora
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron M. Milstone
- Pediatric Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Moira L. Aitken
- Division of Pulmonary and Critical Care Medicine, University of Washington Medical Center, Seattle, WA, USA
| | | | - Richard J. Wallace
- Mycobacteria/Nocardia Laboratory, University of Texas Health Science Center, Tyler, TX, USA
| | - Elizabeth P. Sampaio
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | | | - Kenneth N. Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Adrian M. Zelazny
- Microbiology Service, Department of Laboratory Medicine (DLM), Clinical Center, NIH, Bethesda, MD, USA
| |
Collapse
|
11
|
Liu W, Cen H, Wu Z, Zhou H, Chen S, Yang X, Zhao G, Zhang G. Mycobacteriaceae Phenome Atlas (MPA): A Standardized Atlas for the Mycobacteriaceae Phenome Based on Heterogeneous Sources. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:439-456. [PMID: 37881319 PMCID: PMC10593683 DOI: 10.1007/s43657-023-00101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 10/27/2023]
Abstract
The bacterial family Mycobacteriaceae includes pathogenic and nonpathogenic bacteria, and systematic research on their genome and phenome can give comprehensive perspectives for exploring their disease mechanism. In this study, the phenotypes of Mycobacteriaceae were inferred from available phenomic data, and 82 microbial phenotypic traits were recruited as data elements of the microbial phenome. This Mycobacteriaceae phenome contains five categories and 20 subcategories of polyphasic phenotypes, and three categories and eight subcategories of functional phenotypes, all of which are complementary to the existing data standards of microbial phenotypes. The phenomic data of Mycobacteriaceae strains were compiled by literature mining, third-party database integration, and bioinformatics annotation. The phenotypes were searchable and comparable from the website of the Mycobacteriaceae Phenome Atlas (MPA, https://www.biosino.org/mpa/). A topological data analysis of MPA revealed the co-evolution between Mycobacterium tuberculosis and virulence factors, and uncovered potential pathogenicity-associated phenotypes. Two hundred and sixty potential pathogen-enriched pathways were found by Fisher's exact test. The application of MPA may provide novel insights into the pathogenicity mechanism and antimicrobial targets of Mycobacteriaceae. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00101-5.
Collapse
Affiliation(s)
- Wan Liu
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Hui Cen
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Zhile Wu
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- Shanghai Southgene Technology Co., Ltd., Shanghai, 201210 China
| | - Haokui Zhou
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Shuo Chen
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xilan Yang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Guoping Zhao
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
12
|
Bar-Oz M, Martini MC, Alonso MN, Meir M, Lore NI, Miotto P, Riva C, Angala SK, Xiao J, Masiello CS, Misiakou MA, Sun H, Moy JK, Jackson M, Johansen HK, Cirillo DM, Shell SS, Barkan D. The small non-coding RNA B11 regulates multiple facets of Mycobacterium abscessus virulence. PLoS Pathog 2023; 19:e1011575. [PMID: 37603560 PMCID: PMC10470900 DOI: 10.1371/journal.ppat.1011575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/31/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Mycobacterium abscessus causes severe disease in patients with cystic fibrosis. Little is known in M. abscessus about the roles of small regulatory RNAs (sRNA) in gene regulation. We show that the sRNA B11 controls gene expression and virulence-associated phenotypes in this pathogen. B11 deletion from the smooth strain ATCC_19977 produced a rough strain, increased pro-inflammatory signaling and virulence in multiple infection models, and increased resistance to antibiotics. Examination of clinical isolate cohorts identified isolates with B11 mutations or reduced expression. We used RNAseq and proteomics to investigate the effects of B11 on gene expression and test the impact of mutations found in clinical isolates. Over 200 genes were differentially expressed in the deletion mutant. Strains with the clinical B11 mutations showed expression trends similar to the deletion mutant, suggesting partial loss of function. Among genes upregulated in the B11 mutant, there was a strong enrichment for genes with B11-complementary sequences in their predicted ribosome binding sites (RBS), consistent with B11 functioning as a negative regulator that represses translation via base-pairing to RBSs. Comparing the proteomes similarly revealed that upregulated proteins were strongly enriched for B11-complementary sequences. Intriguingly, genes upregulated in the absence of B11 included components of the ESX-4 secretion system, critical for M. abscessus virulence. Many of these genes had B11-complementary sequences at their RBSs, which we show is sufficient to mediate repression by B11 through direct binding. Altogether, our data show that B11 acts as a direct negative regulator and mediates (likely indirect) positive regulation with pleiotropic effects on gene expression and clinically important phenotypes in M. abscessus. The presence of hypomorphic B11 mutations in clinical strains is consistent with the idea that lower B11 activity may be advantageous for M. abscessus in some clinical contexts. This is the first report on an sRNA role in M. abscessus.
Collapse
Affiliation(s)
- Michal Bar-Oz
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Carla Martini
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Maria Natalia Alonso
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | | | | | - Paolo Miotto
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Riva
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Shiva K Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Junpei Xiao
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Catherine S Masiello
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Maria-Anna Misiakou
- Center for Genomic Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Huaming Sun
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Justin K Moy
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | | | - Scarlet S Shell
- Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
13
|
Illouz M, Leclercq LD, Dessenne C, Hatfull G, Daher W, Kremer L, Guérardel Y. Multiple Mycobacterium abscessus O-acetyltransferases influence glycopeptidolipid structure and colony morphotype. J Biol Chem 2023; 299:104979. [PMID: 37390990 PMCID: PMC10400925 DOI: 10.1016/j.jbc.2023.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Mycobacterium abscessus causes severe lung infections. Clinical isolates can have either smooth (S) or rough (R) colony morphotypes; of these, S but not R variants have abundant cell wall glycopeptidolipids (GPL) consisting of a peptidolipid core substituted by a 6-deoxy-α-L-talose (6-dTal) and rhamnose residues. Deletion of gtf1, encoding the 6-dTal transferase, results in the S-to-R transition, mycobacterial cord formation, and increased virulence, underscoring the importance of 6-dTal in infection outcomes. However, since 6-dTal is di-O-acetylated, it is unclear whether the gtf1 mutant phenotypes are related to the loss of the 6-dTal or the result of the absence of acetylation. Here, we addressed whether M. abscessus atf1 and atf2, encoding two putative O-acetyltransferases located within the gpl biosynthetic locus, transfer acetyl groups to 6-dTal. We found deletion of atf1 and/or atf2 did not drastically alter the GPL acetylation profile, suggesting there are additional enzymes with redundant functions. We subsequently identified two paralogs of atf1 and atf2, MAB_1725c and MAB_3448. While deletion of MAB_1725c and MAB_3448 had no effect on GPL acetylation, the triple atf1-atf2-MAB_1725c mutant did not synthetize fully acetylated GPL, and the quadruple mutant was totally devoid of acetylated GPL. Moreover, both triple and quadruple mutants accumulated hyper-methylated GPL. Finally, we show deletion of atf genes resulted in subtle changes in colony morphology but had no effect on M. abscessus internalization by macrophages. Overall, these findings reveal the existence of functionally redundant O-acetyltransferases and suggest that O-acetylation influences the glycan moiety of GPL by deflecting biosynthetic flux in M. abscessus.
Collapse
Affiliation(s)
- Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Louis-David Leclercq
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Clara Dessenne
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Graham Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| | - Yann Guérardel
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France; Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
14
|
Bach H, Lorenzo-Leal AC. Use of niosomes for the treatment of intracellular pathogens infecting the lungs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1891. [PMID: 37032602 DOI: 10.1002/wnan.1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The delivery of drugs in an encapsulated environment is designed to precisely target specific tissues, avoiding a systemic circulation of the drug. Lungs are organs exposed to the environment with multiple defense barriers. However, many pathogens can still colonize and infect the airways bypassing the hostile environment of the lungs. In more complicated situations, some pathogens have developed strategies to multiply and survive within macrophages, one of the first immune cell responses to clearing infections in mammals. Niosomes are artificial vesicles that can be loaded with drugs, offering an alternative strategy to treat intracellular pathogens as nanocarriers. Members of the mycobacteria genus are intracellular pathogens that have evolved to escape the immunological response, specifically in macrophages, the white cells responsible for the clearance of pathogens. This review analyzed the state-of-the-art niosome synthesis aimed at tackling the problem of intracellular pathogen therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana C Lorenzo-Leal
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
The synergetic effect of sitafloxacin-arbekacin combination in the Mycobacterium abscessus species. Sci Rep 2023; 13:2027. [PMID: 36739345 PMCID: PMC9899205 DOI: 10.1038/s41598-023-29021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium abscessus species (MABS) is the most commonly isolated rapidly growing mycobacteria (RGM) and is one of the most antibiotic-resistant RGM with rapid progression, therefore, treatment of MABS is still challenging. We here presented a new combination treatment with sitafloxacin that targeted rough morphotypes of MABS, causing aggressive infections. Thirty-four clinical strains of MABS were isolated from various clinical samples at the Juntendo university hospital from 2011 to 2020. The susceptibility to a combination of sitafloxacin and antimicrobial agents was compared to that of the antimicrobial agents alone. Out of 34 MABS, 8 strains treated with sitafloxacin-amikacin combination, 9 of sitafloxacin-imipenem combination, 19 of sitafloxacin-arbekacin combination, and 9 of sitafloxacin-clarithromycin combination showed synergistic effects, respectively. Sitafloxacin-arbekacin combination also exhibited the synergistic effects against 10 of 22 Mycobacterium abscessus subspecies massiliense (Mma) strains and 8 of 11 Mycobacterium abscessus subspecies abscessus (Mab) strains, a highly resistant subspecies of MABS. The sitafloxacin-arbekacin combination revealed more synergistic effects in rough morphotypes of MABS (p = 0.008). We demonstrated the synergistic effect of the sitafloxacin-arbekacin combination against MABS. Further, this combination regimen might be more effective against Mab or rough morphotypes of MABS.
Collapse
|
16
|
Ratna S, Daniel J. Stress-induced non-replicating Mycobacterium smegmatis incorporates exogenous fatty acids into glycopeptidolipids. Microb Pathog 2023; 174:105943. [PMID: 36502992 DOI: 10.1016/j.micpath.2022.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Nontuberculous mycobacteria (NTM) such as Mycobacterium smegmatis accumulate high levels of glycopeptidolipids (GPLs) on their outer surface. The biosynthesis of GPLs is critically linked to biofilm formation by NTM which also includes opportunistic pathogens such as Mycobacterium abscessus. Although GPLs have been investigated in many earlier studies, the biosynthesis of GPLs using exogenous fatty acids in M. smegmatis subjected to stresses encountered by mycobacteria during infection of the human body has not been studied. Therefore, we subjected M. smegmatis to different combinations of the three stresses of hypoxia, acidic pH and nutrient starvation and report here that the metabolic incorporation of radiolabeled long-chain fatty acids into alkali-stable GPLs was significantly increased under these stress conditions. Endogenously synthesized fatty acids were not preferred for GPL biosynthesis by M. smegmatis subjected to the triple stress combination. Our observations indicate that GPLs may play important roles in cell surface modifications associated with the non-replicating state of M. smegmatis. Our experimental model reported here would be useful in the further study of GPL biosynthesis from exogenous fatty acid sources in M. smegmatis subjected to hypoxia, nutrient starvation and acidic stress conditions and help in the screening of candidate drugs that target this biochemical pathway in pathogenic NTM.
Collapse
Affiliation(s)
- Sushanta Ratna
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA
| | - Jaiyanth Daniel
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA.
| |
Collapse
|
17
|
Nicola F, Cirillo DM, Lorè NI. Preclinical murine models to study lung infection with Mycobacterium abscessus complex. Tuberculosis (Edinb) 2023; 138:102301. [PMID: 36603391 DOI: 10.1016/j.tube.2022.102301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacterium (NTM) able to cause invasive pulmonary infections, named NTM pulmonary disease. The therapeutic approaches are limited, and infections are difficult to treat due to antibiotic resistance conferred by an impermeable cell wall, drug efflux pumps, or drug-modifying enzymes. The development of new therapeutics, intended as antimicrobials or drug limiting immunopathology, is urgently necessary. In this context, the preclinical murine models of M. abscessus represent a useful tool to validate and translate in vitro-proofed concepts. These in vivo models are essential for developing new targets and drugs, ameliorating our knowledge in combinatorial regimens of current existing antibiotic treatments, and repurposing existing drugs for new therapeutic options against M. abscessus infection. Thus, this review aims at providing an overview of the current state of the art of preclinical murine models to study M. abscessus lung infection and its exploitation for new therapeutic approaches. This review discusses the murine models available focusing on the different bacterial challenges (aerosol, intranasal, intratracheal, and intravenous administrations), murine genetic background, and additional bacterial related factors. Then, we discuss the successful preclinical models for M. abscessus respiratory infection exploited to study the efficacy and safety of new antimicrobials or to determine the best dosage and route of administration of existing drugs. Finally, we present the current murine models exploited to develop new therapeutic approaches to modulate the host immune response and limit immunopathological damage during M. abscessus lung disease. In conclusion, our review article provides an overview of current and available murine models to characterize acute or chronic infections and to study the outcome of new therapeutic strategies against M. abscessus lung infection.
Collapse
Affiliation(s)
- Francesca Nicola
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
18
|
Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM. Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria. Nat Commun 2022; 13:5320. [PMID: 36085278 PMCID: PMC9463166 DOI: 10.1038/s41467-022-32553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) survives and replicates within host macrophages (MΦ) and subverts multiple antimicrobial defense mechanisms. Previously, we reported that lipids shed by pathogenic mycobacteria inhibit NPC1, the lysosomal membrane protein deficient in the lysosomal storage disorder Niemann-Pick disease type C (NPC). Inhibition of NPC1 leads to a drop in lysosomal calcium levels, blocking phagosome-lysosome fusion leading to mycobacterial survival. We speculated that the production of specific cell wall lipid(s) that inhibit NPC1 could have been a critical step in the evolution of pathogenicity. We therefore investigated whether lipid extracts from clinical Mtb strains from multiple Mtb lineages, Mtb complex (MTBC) members and non-tubercular mycobacteria (NTM) inhibit the NPC pathway. We report that inhibition of the NPC pathway was present in all clinical isolates from Mtb lineages 1, 2, 3 and 4, Mycobacterium bovis and the NTM, Mycobacterium abscessus and Mycobacterium avium. However, lipid extract from Mycobacterium canettii, which is considered to resemble the common ancestor of the MTBC did not inhibit the NPC1 pathway. We conclude that the evolution of NPC1 inhibitory mycobacterial cell wall lipids evolved early and post divergence from Mycobacterium canettii-related mycobacteria and that this activity contributes significantly to the promotion of disease.
Collapse
Affiliation(s)
- Yuzhe Weng
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
19
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
20
|
Daher W, Leclercq LD, Johansen MD, Hamela C, Karam J, Trivelli X, Nigou J, Guérardel Y, Kremer L. Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chem Biol 2022; 29:910-924.e7. [PMID: 35358417 DOI: 10.1016/j.chembiol.2022.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Mycobacterium abscessus is an emerging and difficult-to-manage mycobacterial species that exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in transition from S to R and severe lung disease. A structure-activity relationship study was undertaken to decipher the role of GPL glycosylation in morphotype transition and pathogenesis. Deletion of gtf3 uncovered the prominent role of the extra rhamnose in enhancing mannose receptor-mediated internalization of M. abscessus by macrophages. In contrast, the absence of the 6-deoxy-talose and the first rhamnose in mutants lacking gtf1 and gtf2, respectively, affected M abscessus phagocytosis but also resulted in the S-to-R transition. Strikingly, gtf1 and gtf2 mutants displayed a strong propensity to form cords and abscesses in zebrafish, leading to robust and lethal infection. Together, these results underscore the importance and differential contribution of GPL monosaccharides in promoting virulence and infection outcomes.
Collapse
Affiliation(s)
- Wassim Daher
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Matt D Johansen
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Claire Hamela
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Jona Karam
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000 Lille, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Laurent Kremer
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
21
|
Dokic A, Peterson E, Arrieta-Ortiz ML, Pan M, Di Maio A, Baliga N, Bhatt A. Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile. Cell Surf 2021; 7:100051. [PMID: 33912773 PMCID: PMC8066798 DOI: 10.1016/j.tcsw.2021.100051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
A non-tuberculous mycobacterium, Mycobacterium abscessus is an emerging opportunistic pathogen associated with difficult to treat pulmonary infections, particularly in patients suffering from cystic fibrosis. It is capable of forming biofilms in vitro that result in an increase of already high levels of antibiotic resistance in this bacterium. Evidence that M. abscessus forms biofilm-like microcolonies in patient lungs and on medical devices further implicated the need to investigate this biofilm in detail. Therefore, in this study we characterized the M. abscessus pellicular biofilm, formed on a liquid-air interface, by studying its molecular composition, and its transcriptional profile in comparison to planktonic cells. Using scanning electron micrographs and fluorescence microscopy, we showed that M. abscessus biofilms produce an extracellular matrix composed of lipids, proteins, carbohydrates and extracellular DNA. Transcriptomic analysis of biofilms revealed an upregulation of pathways involved in the glyoxylate shunt, redox metabolism and mycolic acid biosynthesis. Genes involved in elongation and desaturation of mycolic acids were highly upregulated in biofilms and, mirroring those findings, biochemical analysis of mycolates revealed molecular changes and an increase in mycolic acid chain length. Together these results give us an insight into the complex structure of M. abscessus biofilms, the understanding of which may be adapted for clinical use in treatment of biofilm infections, including strategies for dispersing the extracellular matrix, allowing antibiotics to gain access to bacteria within the biofilm.
Collapse
Affiliation(s)
- Anja Dokic
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109 USA
| | - Alessandro Di Maio
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nitin Baliga
- Institute for Systems Biology, Seattle, WA 98109 USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
22
|
Lewin A, Kamal E, Semmler T, Winter K, Kaiser S, Schäfer H, Mao L, Eschenhagen P, Grehn C, Bender J, Schwarz C. Genetic diversification of persistent Mycobacterium abscessus within cystic fibrosis patients. Virulence 2021; 12:2415-2429. [PMID: 34546836 PMCID: PMC8526041 DOI: 10.1080/21505594.2021.1959808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium (M.) abscessus infections in Cystic Fibrosis (CF) patients cause a deterioration of lung function. Treatment of these multidrug-resistant pathogens is associated with severe side-effects, while frequently unsuccessful. Insight on M. abscessus genomic evolvement during chronic lung infection would be beneficial for improving treatment strategies. A longitudinal study enrolling 42 CF patients was performed at a CF center in Berlin, Germany, to elaborate phylogeny and genomic diversification of in-patient M. abscessus. Eleven of the 42 CF patients were infected with M. abscessus. Five of these 11 patients were infected with global human-transmissible M. abscessus cluster strains. Phylogenetic analysis of 88 genomes from isolates of the 11 patients excluded occurrence of M. abscessus transmission among members of the study group. Genome sequencing and variant analysis of 30 isolates from 11 serial respiratory samples collected over 4.5 years from a chronically infected patient demonstrated accumulation of gene mutations. In total, 53 genes exhibiting non-synonymous variations were identified. Enrichment analysis emphasized genes involved in synthesis of glycopeptidolipids, genes from the embABC (arabinosyltransferase) operon, betA (glucose-methanol-choline oxidoreductase) and choD (cholesterol oxidase). Genetic diversity evolved in a variety of virulence- and resistance-associated genes. The strategy of M. abscessus populations in chronic lung infection is not clonal expansion of dominant variants, but to sustain simultaneously a wide range of genetic variants facilitating adaptation of the population to changing living conditions in the lung. Genomic diversification during chronic infection requires increased attention when new control strategies against M. abscessus infections are explored.
Collapse
Affiliation(s)
- Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Elisabeth Kamal
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Unit NG 1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katja Winter
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Sandra Kaiser
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Lei Mao
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.,Unit 31 Infectious Disease Data Science Unit, Robert Koch Institute, Berlin, Germany
| | - Patience Eschenhagen
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Grehn
- Department of Pediatrics, Division of Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Berlin, Germany
| | - Jennifer Bender
- Unit 13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany.,ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
23
|
Jia Khor M, Broda A, Kostrzewa M, Drobniewski F, Larrouy-Maumus G. An Improved Method for Rapid Detection of Mycobacterium abscessus Complex Based on Species-Specific Lipid Fingerprint by Routine MALDI-TOF. Front Chem 2021; 9:715890. [PMID: 34386482 PMCID: PMC8353234 DOI: 10.3389/fchem.2021.715890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Rapid diagnostics of bacterial infection is the key to successful recovery and eradication of the disease. Currently, identification of bacteria is based on the detection of highly abundant proteins, mainly ribosomal proteins, by routine MALDI-TOF mass spectrometry. However, relying solely on proteins is limited in subspecies typing for some pathogens. This is the case for, for example, the mycobacteria belonging to the Mycobacterium abscessus (MABS) complex, which is classified into three subspecies, namely, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Being able to detect bacteria accurately and rapidly at the subspecies level could not only reliably identify the pathogen causing the disease but also enable better antibiotic stewardship. For instance, M. abscessus subsp. abscessus and M. abscessus subsp. bolletii possess a functional erm41 (erythromycin ribosomal methylation gene 41) gene, whilst M. abscessus subsp. massiliense does not, resulting in differences in macrolide antibiotic (e.g., clarithromycin and azithromycin) susceptibilities. This presents a challenge for physicians when designing an appropriate treatment regimen. To address this challenge, in addition to proteins, species-specific lipids have now been considered as a game changer in clinical microbiology diagnostics. However, their extraction can be time-consuming, and analysis requires the use of apolar toxic organic solvents (e.g., chloroform). Here, we present a new method to accurately detect species and subspecies, allowing the discrimination of the mycobacteria within the MABS complex and relying on the use of ethanol. We found that a combination of the matrix named super-DHB with 25% ethanol with a bacterial suspension at McFarland 20 gave robust and reproducible data, allowing the discrimination of the bacteria within the MABS complex strains tested in this study (n = 9). Further investigations have to be conducted to validate the method on a larger panel of strains for its use in diagnostic laboratories.
Collapse
Affiliation(s)
- Min Jia Khor
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Cornejo-Granados F, Kohl TA, Sotomayor FV, Andres S, Hernández-Pando R, Hurtado-Ramirez JM, Utpatel C, Niemann S, Maurer FP, Ochoa-Leyva A. Secretome characterization of clinical isolates from the Mycobacterium abscessus complex provides insight into antigenic differences. BMC Genomics 2021; 22:385. [PMID: 34034663 PMCID: PMC8152154 DOI: 10.1186/s12864-021-07670-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium abscessus (MAB) is a widely disseminated pathogenic non-tuberculous mycobacterium (NTM). Like with the M. tuberculosis complex (MTBC), excreted / secreted (ES) proteins play an essential role for its virulence and survival inside the host. Here, we used a robust bioinformatics pipeline to predict the secretome of the M. abscessus ATCC 19977 reference strain and 15 clinical isolates belonging to all three MAB subspecies, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. RESULTS We found that ~ 18% of the proteins encoded in the MAB genomes were predicted as secreted and that the three MAB subspecies shared > 85% of the predicted secretomes. MAB isolates with a rough (R) colony morphotype showed larger predicted secretomes than isolates with a smooth (S) morphotype. Additionally, proteins exclusive to the secretomes of MAB R variants had higher antigenic densities than those exclusive to S variants, independent of the subspecies. For all investigated isolates, ES proteins had a significantly higher antigenic density than non-ES proteins. We identified 337 MAB ES proteins with homologues in previously investigated M. tuberculosis secretomes. Among these, 222 have previous experimental support of secretion, and some proteins showed homology with protein drug targets reported in the DrugBank database. The predicted MAB secretomes showed a higher abundance of proteins related to quorum-sensing and Mce domains as compared to MTBC indicating the importance of these pathways for MAB pathogenicity and virulence. Comparison of the predicted secretome of M. abscessus ATCC 19977 with the list of essential genes revealed that 99 secreted proteins corresponded to essential proteins required for in vitro growth. CONCLUSIONS This study represents the first systematic prediction and in silico characterization of the MAB secretome. Our study demonstrates that bioinformatics strategies can help to broadly explore mycobacterial secretomes including those of clinical isolates and to tailor subsequent, complex and time-consuming experimental approaches accordingly. This approach can support systematic investigation exploring candidate proteins for new vaccines and diagnostic markers to distinguish between colonization and infection. All predicted secretomes were deposited in the Secret-AAR web-server ( http://microbiomics.ibt.unam.mx/tools/aar/index.php ).
Collapse
Affiliation(s)
- Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Flor Vásquez Sotomayor
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sönke Andres
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Juan Manuel Hurtado-Ramirez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Florian P Maurer
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany.
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
- Institute of Medical Microbiology, Virology and Hospital Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
25
|
Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of Therapeutically Useful Phages, and Phage Resistance. mBio 2021; 12:mBio.03431-20. [PMID: 33785625 PMCID: PMC8092298 DOI: 10.1128/mbio.03431-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium abscessus infections in cystic fibrosis patients are challenging to treat due to widespread antibiotic resistance. The therapeutic use of lytic bacteriophages presents a new potential strategy, but the great variation among clinical M. abscessus isolates demands determination of phage susceptibility prior to therapy. Mycobacterium abscessus is an opportunistic pathogen whose treatment is confounded by widespread multidrug resistance. The therapeutic use of bacteriophages against Mycobacterium abscessus infections offers a potential alternative approach, although the spectrum of phage susceptibilities among M. abscessus isolates is not known. We determined the phage infection profiles of 82 M. abscessus recent clinical isolates and find that colony morphotype—rough or smooth—is a key indicator of phage susceptibility. None of the smooth strains are efficiently killed by any phages, whereas 80% of rough strains are infected and efficiently killed by at least one phage. The repertoire of phages available for potential therapy of rough morphotype infections includes those with relatively broad host ranges, host range mutants of Mycobacterium smegmatis phages, and lytically propagated viruses derived from integrated prophages. The rough colony morphotype results from indels in the glycopeptidolipid synthesis genes mps1 and mps2, negating reversion to smooth as a common route to phage resistance. Resistance is thus rare, and although mutations in polyketide synthesis, uvrD2, and rpoZ can confer resistance, these likely also impair survival in vivo. The expanded therapeutic repertoire and the resistance profiles show that small cocktails or single phages could be suitable for controlling infections with rough strains.
Collapse
|
26
|
Liu TY, Tsai SH, Chen JW, Wang YC, Hu ST, Chen YY. Mab_3083c Is a Homologue of RNase J and Plays a Role in Colony Morphotype, Aggregation, and Sliding Motility of Mycobacterium abscessus. Microorganisms 2021; 9:microorganisms9040676. [PMID: 33805851 PMCID: PMC8064342 DOI: 10.3390/microorganisms9040676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium abscessus is an opportunistic pathogen causing human diseases, especially in immunocompromised patients. M. abscessus strains with a rough morphotype are more virulent than those with a smooth morphotype. Morphotype switch may occur during a clinical infection. To investigate the genes involved in colony morphotype switching, we performed transposon mutagenesis in a rough clinical strain of M. abscessus. A morphotype switching mutant (smooth) named mab_3083c::Tn was obtained. This mutant was found to have a lower aggregative ability and a higher sliding motility than the wild type strain. However, its glycopeptidolipid (GPL) content remained the same as those of the wild type. Complementation of the mutant with a functional mab_3083c gene reverted its morphotype back to rough, indicating that mab_3083c is associated with colony morphology of M. abscessus. Bioinformatic analyses showed that mab_3083c has a 75.4% identity in amino acid sequence with the well-characterized ribonuclease J (RNase J) of M. smegmatis (RNase JMsmeg). Complementation of the mutant with the RNase J gene of M. smegmatis also switched its colony morphology from smooth back to rough. These results suggest that Mab_3083c is a homologue of RNase J and involved in regulating M. abscessus colony morphotype switching.
Collapse
Affiliation(s)
- Ting-Yu Liu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan; (T.-Y.L.); (S.-H.T.)
| | - Sheng-Hui Tsai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan; (T.-Y.L.); (S.-H.T.)
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
| | - Yu-Ching Wang
- Department of Biochemical Science and Technology, National Chiayi Univeristy, Chiayi City 600, Taiwan;
| | - Shiau-Ting Hu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan; (T.-Y.L.); (S.-H.T.)
- Correspondence: (S.-T.H.); (Y.-Y.C.)
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi Univeristy, Chiayi City 600, Taiwan;
- Correspondence: (S.-T.H.); (Y.-Y.C.)
| |
Collapse
|
27
|
Gutiérrez AV, Baron SA, Sardi FS, Saad J, Coltey B, Reynaud-Gaubert M, Drancourt M. Beyond phenotype: The genomic heterogeneity of co-infecting Mycobacterium abscessus smooth and rough colony variants in cystic fibrosis patients. J Cyst Fibros 2021; 20:421-423. [PMID: 33610476 DOI: 10.1016/j.jcf.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/18/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Two unrelated cystic fibrosis patients were co-infected with Mycobacterium abscessus smooth and rough phenotypes. Smooth M. abscessus is proposed as the infecting form, and the subsequent loss of glycopeptidolipids in the host leads to a rough phenotype. Whole-genome sequencing (WGS) diagnosed two different M. abscessus strains in patient N°1 but only one strain in patient N°2. In patient N°1, rough isolate had novel mutations potentially involved in smooth-to-rough morphology changes. In patient N°2, four genes were present in only the smooth isolate. In addition, we obtained different susceptibility profiles in the four clinical isolates. We revealed a new paradigm describing a cystic fibrosis patient infected with two different clones, including a rough isolate, and identifying a rough M. abscessus clone that did not lose glycopeptidolipids. We propose WGS for the identification of heterogenic isolates and genetic determinants of antimicrobial resistance, which we believe will positively influence treatment prognosis.
Collapse
Affiliation(s)
- Ana Victoria Gutiérrez
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Feyrouz Sonia Sardi
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Jamal Saad
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Bérengère Coltey
- Department of Respiratory Diseases, Adult Cystic Fibrosis Centre, Lung Transplant Team, University Hospital of Marseille, Marseille, France
| | - Martine Reynaud-Gaubert
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; Department of Respiratory Diseases, Adult Cystic Fibrosis Centre, Lung Transplant Team, University Hospital of Marseille, Marseille, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
28
|
Solntceva V, Kostrzewa M, Larrouy-Maumus G. Detection of Species-Specific Lipids by Routine MALDI TOF Mass Spectrometry to Unlock the Challenges of Microbial Identification and Antimicrobial Susceptibility Testing. Front Cell Infect Microbiol 2021; 10:621452. [PMID: 33634037 PMCID: PMC7902069 DOI: 10.3389/fcimb.2020.621452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
MALDI-TOF mass spectrometry has revolutionized clinical microbiology diagnostics by delivering accurate, fast, and reliable identification of microorganisms. It is conventionally based on the detection of intracellular molecules, mainly ribosomal proteins, for identification at the species-level and/or genus-level. Nevertheless, for some microorganisms (e.g., for mycobacteria) extensive protocols are necessary in order to extract intracellular proteins, and in some cases a protein-based approach cannot provide sufficient evidence to accurately identify the microorganisms within the same genus (e.g., Shigella sp. vs E. coli and the species of the M. tuberculosis complex). Consequently lipids, along with proteins are also molecules of interest. Lipids are ubiquitous, but their structural diversity delivers complementary information to the conventional protein-based clinical microbiology matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based approaches currently used. Lipid modifications, such as the ones found on lipid A related to polymyxin resistance in Gram-negative pathogens (e.g., phosphoethanolamine and aminoarabinose), not only play a role in the detection of microorganisms by routine MALDI-TOF mass spectrometry but can also be used as a read-out of drug susceptibility. In this review, we will demonstrate that in combination with proteins, lipids are a game-changer in both the rapid detection of pathogens and the determination of their drug susceptibility using routine MALDI-TOF mass spectrometry systems.
Collapse
Affiliation(s)
- Vera Solntceva
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochem J 2020; 477:1983-2006. [PMID: 32470138 PMCID: PMC7261415 DOI: 10.1042/bcj20200194] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.
Collapse
|
30
|
Daher W, Leclercq LD, Viljoen A, Karam J, Dufrêne YF, Guérardel Y, Kremer L. O-Methylation of the Glycopeptidolipid Acyl Chain Defines Surface Hydrophobicity of Mycobacterium abscessus and Macrophage Invasion. ACS Infect Dis 2020; 6:2756-2770. [PMID: 32857488 DOI: 10.1021/acsinfecdis.0c00490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mycobacterium abscessus, an emerging pathogen responsible for severe lung infections in cystic fibrosis patients, displays either smooth (S) or rough (R) morphotypes. The S-to-R transition is associated with reduced levels of glycopeptidolipid (GPL) production and is correlated with increased pathogenicity in animal and human hosts. While the structure of GPL is well established, its biosynthetic pathway is incomplete. In addition, the biological functions of the distinct structural parts of this complex lipid remain elusive. Herein, the fmt gene encoding a putative O-methyltransferase was deleted in the M. abscessus S variant. Subsequent biochemical and structural analyses demonstrated that methoxylation of the fatty acyl chain of GPL was abrogated in the Δfmt mutant, and this defect was rescued upon complementation with a functional fmt gene. In contrast, the introduction of fmt derivatives mutated at residues essential for methyltransferase activity failed to complement GPL defects, indicating that fmt encodes an O-methyltransferase. Unexpectedly, phenotypic analyses showed that Δfmt was more hydrophilic than its parental progenitor, as demonstrated by hexadecane-aqueous buffer partitioning and atomic force microscopy experiments with hydrophobic probes. Importantly, the invasion rate of THP-1 macrophages by Δfmt was reduced by 50% when compared to the wild-type strain. Together, these results indicate that Fmt O-methylates the lipid moiety of GPL and plays a substantial role in conditioning the surface hydrophobicity of M. abscessus as well as in the early steps of the interaction between the bacilli and macrophages.
Collapse
Affiliation(s)
- Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Jona Karam
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
31
|
Le Moigne V, Roux AL, Jobart-Malfait A, Blanc L, Chaoui K, Burlet-Schiltz O, Gaillard JL, Canaan S, Nigou J, Herrmann JL. A TLR2-Activating Fraction From Mycobacterium abscessus Rough Variant Demonstrates Vaccine and Diagnostic Potential. Front Cell Infect Microbiol 2020; 10:432. [PMID: 32984067 PMCID: PMC7481331 DOI: 10.3389/fcimb.2020.00432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium abscessus is a prevalent pathogenic mycobacterium in cystic fibrosis (CF) patients and one of the most highly drug resistant mycobacterial species to antimicrobial agents. It possesses the property to transition from a smooth (S) to a rough (R) morphotype, thereby influencing the host innate immune response. This transition from the S to the R morphotype takes place in patients with an exacerbation of the disease and a persistence of M. abscessus. We have previously shown that the exacerbation of the Toll-like receptor 2 (TLR2)-mediated inflammatory response, following this S to R transition, is essentially due to overproduction of bacilli cell envelope surface compounds, which we were able to extract by mechanical treatment and isolation by solvent partition in a fraction called interphase. Here, we set up a purification procedure guided by bioactivity to isolate a fraction from the R variant of M. abscessus cells which exhibits a high TLR2 stimulating activity, referred to as TLR2-enriched fraction (TLR2eF). As expected, TLR2eF was found to contain several lipoproteins and proteins known to be stimuli for TLR2. Vaccination with TLR2eF showed no protection toward an M. abscessus aerosol challenge, but provided mild protection in ΔF508 mice and their FVB littermates when intravenously challenged by M. abscessus. Interestingly however, antibodies against TLR2eF compounds were detected during disease in CF patients. In conclusion, we show the potential for compounds in TLR2eF as vaccine and diagnostic candidates, in order to enhance diagnosis, prevent and/or treat M. abscessus-related infections.
Collapse
Affiliation(s)
- Vincent Le Moigne
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France
| | - Anne-Laure Roux
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France
| | - Aude Jobart-Malfait
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France
| | - Landry Blanc
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Louis Gaillard
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France
| | - Stéphane Canaan
- Université Aix-Marseille, CNRS, LISM, IMM FR3479, Marseille, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France.,APHP, GHU Paris-Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France
| |
Collapse
|
32
|
Wiersma CJ, Belardinelli JM, Avanzi C, Angala SK, Everall I, Angala B, Kendall E, de Moura VCN, Verma D, Benoit J, Brown KP, Jones V, Malcolm KC, Strong M, Nick JA, Floto RA, Parkhill J, Ordway DJ, Davidson RM, McNeil MR, Jackson M. Cell Surface Remodeling of Mycobacterium abscessus under Cystic Fibrosis Airway Growth Conditions. ACS Infect Dis 2020; 6:2143-2154. [PMID: 32551551 DOI: 10.1021/acsinfecdis.0c00214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Understanding the physiological processes underlying the ability of Mycobacterium abscessus to become a chronic pathogen of the cystic fibrosis (CF) lung is important to the development of prophylactic and therapeutic strategies to better control and treat pulmonary infections caused by these bacteria. Gene expression profiling of a diversity of M. abscessus complex isolates points to amino acids being significant sources of carbon and energy for M. abscessus in both CF sputum and synthetic CF medium and to the bacterium undergoing an important metabolic reprogramming in order to adapt to this particular nutritional environment. Cell envelope analyses conducted on the same representative isolates further revealed unexpected structural alterations in major cell surface glycolipids known as the glycopeptidolipids (GPLs). Besides showing an increase in triglycosylated forms of these lipids, CF sputum- and synthetic CF medium-grown isolates presented as yet unknown forms of GPLs representing as much as 10% to 20% of the total GPL content of the cells, in which the classical amino alcohol located at the carboxy terminal of the peptide, alaninol, is replaced with the branched-chain amino alcohol leucinol. Importantly, both these lipid changes were exacerbated by the presence of mucin in the culture medium. Collectively, our results reveal potential new drug targets against M. abscessus in the CF airway and point to mucin as an important host signal modulating the cell surface composition of this pathogen.
Collapse
Affiliation(s)
- Crystal J. Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Juan Manuel Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Isobel Everall
- MRC-Laboratory of Molecular Biology, Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Edward Kendall
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Vinicius Calado Nogueira de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Jeanne Benoit
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206, United States
| | - Karen P. Brown
- MRC-Laboratory of Molecular Biology, Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, United Kingdom
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge CB2 0AY, United Kingdom
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Kenneth C. Malcolm
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, United Kingdom
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206, United States
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jerry A. Nick
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, United Kingdom
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - R. Andres Floto
- MRC-Laboratory of Molecular Biology, Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, United Kingdom
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge CB2 0AY, United Kingdom
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Diane J. Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Rebecca M. Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206, United States
| | - Michael R. McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| |
Collapse
|
33
|
16S and 23S rRNA Gene Mutation Independent Multidrug Resistance of Non-Tuberculous Mycobacteria Isolated from South Korean Soil. Microorganisms 2020; 8:microorganisms8081114. [PMID: 32722306 PMCID: PMC7465728 DOI: 10.3390/microorganisms8081114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/02/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitous microorganisms that have the potential to cause disease in both humans and animals. Recently, NTM infections have rapidly increased in South Korea, especially in urbanized areas. However, the distribution of species and the antibiotic resistance profile of NTM in environmental sources have not yet been investigated. Therefore, we analyzed the distribution of species and the antibiotic resistance profile of NTM in soil within urban areas of South Korea. A total of 132 isolates of NTM were isolated from soil samples from 1 municipal animal shelter and 4 urban area parks. Among the 132 isolates, 105 isolates were identified as slowly growing mycobacteria (SGM) and 27 isolates as rapidly growing mycobacteria (RGM) based on the sequences of the rpoB and hsp65 genes. The antibiotic resistance patterns of NTM isolates differed from species to species. Additionally, a mutation in the rrs gene found in this study was not associated with aminoglycoside resistance. In conclusion, our results showed that NTM isolates from South Korean soil exhibit multidrug resistance to streptomycin, amikacin, azithromycin, ethambutol, isoniazid, and imipenem. These results suggest that NTM may pose a public threat.
Collapse
|
34
|
Wu Z, Wei W, Zhou Y, Guo H, Zhao J, Liao Q, Chen L, Zhang X, Zhou L. Integrated Quantitative Proteomics and Metabolome Profiling Reveal MSMEG_6171 Overexpression Perturbing Lipid Metabolism of Mycobacterium smegmatis Leading to Increased Vancomycin Resistance. Front Microbiol 2020; 11:1572. [PMID: 32793136 PMCID: PMC7393984 DOI: 10.3389/fmicb.2020.01572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/17/2020] [Indexed: 01/29/2023] Open
Abstract
In recent years, the treatment of tuberculosis is once again facing a severe situation because the existing antituberculosis drugs have become weaker and weaker with the emergence of drug-resistant Mycobacterium tuberculosis (Mtb). The studies of cell division and cell cycle-related factors in Mtb are particularly important for the development of new drugs with broad-spectrum effects. Mycobacterium smegmatis (Msm) has been used as a model organism to study the molecular, physiological, and drug-resistant mechanisms of Mtb. Bioinformatics analysis has predicted that MSMEG_6171 is a MinD-like protein of the septum site-determining protein family associated with cell division in Mycobacterium smegmatis. In our study, we use ultrastructural analysis, proteomics, metabolomics, and molecular biology techniques to comprehensively investigate the function of MSMEG_6171. Overexpression of MSMEG_6171 in Msm resulted in elongated cells, suggesting an important role of MSMEG_6171 in regulating cell wall morphology. The MSMEG_6171 overexpression could enhance the bacterial resistance to vancomycin, ethionamide, meropenem, and cefamandole. The MSMEG_6171 overexpression could alter the lipid metabolism of Msm to cause the changes on cellular biofilm property and function, which enhances bacterial resistance to antibiotics targeting cell wall synthesis. MSMEG_6171 could also induce the glyceride and phospholipid alteration in vivo to exhibit the pleiotropic phenotypes and various cellular responses. The results showed that amino acid R249 in MSMEG_6171 was a key site that can affect the level of bacterial drug resistance, suggesting that ATPase activity is required for function.
Collapse
Affiliation(s)
- Zhuhua Wu
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Wenjing Wei
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Huixin Guo
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Jiao Zhao
- School of Medicine, Jinan University, Guangzhou, China
| | - Qinghua Liao
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Liang Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Xiaoli Zhang
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Lin Zhou
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
35
|
Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 2020; 18:392-407. [PMID: 32086501 DOI: 10.1038/s41579-020-0331-1] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
Infections caused by non-tuberculous mycobacteria (NTM) are increasing globally and are notoriously difficult to treat due to intrinsic resistance of these bacteria to many common antibiotics. NTM are diverse and ubiquitous in the environment, with only a few species causing serious and often opportunistic infections in humans, including Mycobacterium abscessus. This rapidly growing mycobacterium is one of the most commonly identified NTM species responsible for severe respiratory, skin and mucosal infections in humans. It is often regarded as one of the most antibiotic-resistant mycobacteria, leaving us with few therapeutic options. In this Review, we cover the proposed infection process of M. abscessus, its virulence factors and host interactions and highlight the commonalities and differences of M. abscessus with other NTM species. Finally, we discuss drug resistance mechanisms and future therapeutic options. Taken together, this knowledge is essential to further our understanding of this overlooked and neglected global threat.
Collapse
Affiliation(s)
- Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France.,AP-HP. GHU Paris Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France. .,Inserm, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France.
| |
Collapse
|
36
|
Skwark MJ, Torres PHM, Copoiu L, Bannerman B, Floto RA, Blundell TL. Mabellini: a genome-wide database for understanding the structural proteome and evaluating prospective antimicrobial targets of the emerging pathogen Mycobacterium abscessus. Database (Oxford) 2019; 2019:5611286. [PMID: 31681953 PMCID: PMC6853642 DOI: 10.1093/database/baz113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 02/02/2023]
Abstract
Mycobacterium abscessus, a rapid growing, multidrug resistant, nontuberculous mycobacteria, can cause a wide range of opportunistic infections, particularly in immunocompromised individuals. M. abscessus has emerged as a growing threat to patients with cystic fibrosis, where it causes accelerated inflammatory lung damage, is difficult and sometimes impossible to treat and can prevent safe transplantation. There is therefore an urgent unmet need to develop new therapeutic strategies. The elucidation of the M. abscessus genome in 2009 opened a wide range of research possibilities in the field of drug discovery that can be more effectively exploited upon the characterization of the structural proteome. Where there are no experimental structures, we have used the available amino acid sequences to create 3D models of the majority of the remaining proteins that constitute the M. abscessus proteome (3394 proteins and over 13 000 models) using a range of up-to-date computational tools, many developed by our own group. The models are freely available for download in an on-line database, together with quality data and functional annotation. Furthermore, we have developed an intuitive and user-friendly web interface (http://www.mabellinidb.science) that enables easy browsing, querying and retrieval of the proteins of interest. We believe that this resource will be of use in evaluating the prospective targets for design of antimicrobial agents and will serve as a cornerstone to support the development of new molecules to treat M. abscessus infections.
Collapse
Affiliation(s)
- Marcin J Skwark
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Pedro H M Torres
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Liviu Copoiu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Bridget Bannerman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
and,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB23 3RE, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK,Corresponding author: Tel: +44 1223 333628; Fax: +44 1223 766002;
| |
Collapse
|
37
|
Madani A, Ridenour JN, Martin BP, Paudel RR, Abdul Basir A, Le Moigne V, Herrmann JL, Audebert S, Camoin L, Kremer L, Spilling CD, Canaan S, Cavalier JF. Cyclipostins and Cyclophostin Analogues as Multitarget Inhibitors That Impair Growth of Mycobacterium abscessus. ACS Infect Dis 2019; 5:1597-1608. [PMID: 31299146 DOI: 10.1021/acsinfecdis.9b00172] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Twelve new Cyclophostin and Cyclipostins analogues (CyC19-30) were synthesized, thus extending our series to 38 CyCs. Their antibacterial activities were evaluated against four pathogenic mycobacteria (Mycobacterium abscessus, Mycobacterium marinum, Mycobacterium bovis BCG, and Mycobacterium tuberculosis) and two Gram negative bacteria. The CyCs displayed very low toxicity toward host cells and were only active against mycobacteria. Importantly, several CyCs were active against extracellular M. abscessus (CyC17/CyC18β/CyC25/CyC26) or intramacrophage residing mycobacteria (CyC7(α,β)/CyC8(α,β)) with minimal inhibitory concentrations (MIC50) values comparable to or better than those of amikacin or imipenem, respectively. An activity-based protein profiling combined with mass spectrometry allowed identification of the potential target enzymes of CyC17/CyC26, mostly being involved in lipid metabolism and/or in cell wall biosynthesis. Overall, these results strengthen the selective activity of the CyCs against mycobacteria, including the most drug-resistant M. abscessus, through the cumulative inhibition of a large number of Ser- and Cys-enzymes participating in key physiological processes.
Collapse
Affiliation(s)
- Abdeldjalil Madani
- Aix-Marseille Université, CNRS, LISM, Institut de Microbiologie de la Méditerranée, Marseille, France 13402 Cedex 20
| | - Jeremy N. Ridenour
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Benjamin P. Martin
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Rishi R. Paudel
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Anosha Abdul Basir
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Vincent Le Moigne
- APHP, GHU PIFO, Hôpital Raymond-Poincaré−Hôpital Ambroise-Paré, 92100 Boulogne-Billancourt, France
| | - Jean-Louis Herrmann
- APHP, GHU PIFO, Hôpital Raymond-Poincaré−Hôpital Ambroise-Paré, 92100 Boulogne-Billancourt, France
- 2I, UVSQ, INSERM UMR 1173, Université Paris-Saclay, 78035 Versailles, France
| | - Stéphane Audebert
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13273 Marseille Cedex 09, France
| | - Luc Camoin
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13273 Marseille Cedex 09, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293 Montpellier, France
- IRIM, INSERM, 34293 Montpellier, France
| | - Christopher D. Spilling
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, LISM, Institut de Microbiologie de la Méditerranée, Marseille, France 13402 Cedex 20
| | - Jean-François Cavalier
- Aix-Marseille Université, CNRS, LISM, Institut de Microbiologie de la Méditerranée, Marseille, France 13402 Cedex 20
| |
Collapse
|
38
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
39
|
Kim BJ, Kim BR, Jeong J, Lim JH, Park SH, Lee SH, Kim CK, Kook YH, Kim BJ. A description of Mycobacterium chelonae subsp. gwanakae subsp. nov., a rapidly growing mycobacterium with a smooth colony phenotype due to glycopeptidolipids. Int J Syst Evol Microbiol 2018; 68:3772-3780. [PMID: 30311876 DOI: 10.1099/ijsem.0.003056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Three rapidly growing mycobacterial strains, MOTTH4W, MOTT36WT and MOTT68W, were isolated from the sputa of three independent Korean patients co-infected with Mycobacterium yongonense Type II strains. The 16S rRNA gene sequences of all three strains were unique, which were closest to that of Mycobacterium chelonae subsp. bovis KCTC 39630T (99.9 % similarity). Multilocus sequence typing analysis targeting 10 housekeeping genes including hsp65 and rpoB revealed the distinct phylogenetic location of these strains, which were clustered with M. chelonae subsp. chelonae ATCC 35752T and M. chelonae subsp. bovis KCTC 39630T. Phylogenetic analysis based on whole genome sequences revealed a 95.89 % average nucleotide identity (ANI) value with M. chelonae subsp. chelonae, slightly higher than the 95.0 % ANI criterion for determining a novel species. In addition, phenotypic characteristics such as a smooth colony morphology and growth inhibition at 37 °C, distinct MALDI-TOF MS profiles of extracted total lipids due to surface glycopeptidolipids, and distinct drug susceptibility profiles further supported the taxonomic characterization of these strains as representing a novel subspecies of Mycobacterium chelonae. Mycobacterium chelonae subsp. gwanakae subsp. nov. is proposed and the type strain is MOTT36WT (=KCTC 29127T=JCM 32454T).
Collapse
Affiliation(s)
- Byoung-Jun Kim
- 1Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Liver Research Institute, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bo-Ram Kim
- 1Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Liver Research Institute, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joseph Jeong
- 2Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ji-Hun Lim
- 2Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Sang Hyuk Park
- 2Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Seung-Heon Lee
- 3Korean Institute of Tubercuosis, Chungbuk, Republic of Korea
| | - Chang Ki Kim
- 3Korean Institute of Tubercuosis, Chungbuk, Republic of Korea
| | - Yoon-Hoh Kook
- 1Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Liver Research Institute, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Joon Kim
- 1Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Liver Research Institute, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Mullowney MW, McClure RA, Robey MT, Kelleher NL, Thomson RJ. Natural products from thioester reductase containing biosynthetic pathways. Nat Prod Rep 2018; 35:847-878. [PMID: 29916519 PMCID: PMC6146020 DOI: 10.1039/c8np00013a] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: up to 2018 Thioester reductase domains catalyze two- and four-electron reductions to release natural products following assembly on nonribosomal peptide synthetases, polyketide synthases, and their hybrid biosynthetic complexes. This reductive off-loading of a natural product yields an aldehyde or alcohol, can initiate the formation of a macrocyclic imine, and contributes to important intermediates in a variety of biosyntheses, including those for polyketide alkaloids and pyrrolobenzodiazepines. Compounds that arise from reductase-terminated biosynthetic gene clusters are often reactive and exhibit biological activity. Biomedically important examples include the cancer therapeutic Yondelis (ecteinascidin 743), peptide aldehydes that inspired the first therapeutic proteasome inhibitor bortezomib, and numerous synthetic derivatives and antibody drug conjugates of the pyrrolobenzodiazepines. Recent advances in microbial genomics, metabolomics, bioinformatics, and reactivity-based labeling have facilitated the detection of these compounds for targeted isolation. Herein, we summarize known natural products arising from this important category, highlighting their occurrence in Nature, biosyntheses, biological activities, and the technologies used for their detection and identification. Additionally, we review publicly available genomic data to highlight the remaining potential for novel reductively tailored compounds and drug leads from microorganisms. This thorough retrospective highlights various molecular families with especially privileged bioactivity while illuminating challenges and prospects toward accelerating the discovery of new, high value natural products.
Collapse
Affiliation(s)
- Michael W Mullowney
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Ryan A McClure
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Matthew T Robey
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
41
|
Gutiérrez AV, Viljoen A, Ghigo E, Herrmann JL, Kremer L. Glycopeptidolipids, a Double-Edged Sword of the Mycobacterium abscessus Complex. Front Microbiol 2018; 9:1145. [PMID: 29922253 PMCID: PMC5996870 DOI: 10.3389/fmicb.2018.01145] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/14/2018] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium abscessus is a rapidly-growing species causing a diverse panel of clinical manifestations, ranging from cutaneous infections to severe respiratory disease. Its unique cell wall, contributing largely to drug resistance and to pathogenicity, comprises a vast panoply of complex lipids, among which the glycopeptidolipids (GPLs) have been the focus of intense research. These lipids fulfill various important functions, from sliding motility or biofilm formation to interaction with host cells and intramacrophage trafficking. Being highly immunogenic, the induction of a strong humoral response is likely to select for rough low-GPL producers. These, in contrast to the smooth high-GPL producers, display aggregative properties, which strongly impacts upon intracellular survival. A propensity to grow as extracellular cords allows these low-GPL producing bacilli to escape the innate immune defenses. Transitioning from high-GPL to low-GPL producers implicates mutations within genes involved in biosynthesis or transport of GPL. This leads to induction of an intense pro-inflammatory response and robust and lethal infections in animal models, explaining the presence of rough isolates in patients with decreased pulmonary functions. Herein, we will discuss how, thanks to the generation of defined GPL mutants and the development of appropriate cellular and animal models to study pathogenesis, GPL contribute to M. abscessus biology and physiopathology.
Collapse
Affiliation(s)
- Ana Victoria Gutiérrez
- Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, UMR 9004, Université de Montpellier, Montpellier, France.,CNRS, IRD 198, INSERM U1095, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, UMR 7278, Aix-Marseille Université, Marseille, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, UMR 9004, Université de Montpellier, Montpellier, France
| | - Eric Ghigo
- CNRS, Campus Joseph Aiguier, Marseille, France
| | | | - Laurent Kremer
- Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, UMR 9004, Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| |
Collapse
|
42
|
RND transporters in the living world. Res Microbiol 2018; 169:363-371. [PMID: 29577985 DOI: 10.1016/j.resmic.2018.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/22/2022]
Abstract
Transporters of the RND superfamily are well-known as the major drug efflux pumps of Gram-negative bacteria. However, they are widespread in organisms ranging from Archaea to Eukaryotes, and perform diverse functions. This review gives a brief overview of these diverse members of the superfamily with emphasis on their structure and functions.
Collapse
|
43
|
Roux AL, Viljoen A, Bah A, Simeone R, Bernut A, Laencina L, Deramaudt T, Rottman M, Gaillard JL, Majlessi L, Brosch R, Girard-Misguich F, Vergne I, de Chastellier C, Kremer L, Herrmann JL. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol 2017; 6:rsob.160185. [PMID: 27906132 PMCID: PMC5133439 DOI: 10.1098/rsob.160185] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium responsible for pulmonary and cutaneous infections in immunocompetent patients and in patients with Mendelian disorders, such as cystic fibrosis (CF). Mycobacterium abscessus is known to transition from a smooth (S) morphotype with cell surface-associated glycopeptidolipids (GPL) to a rough (R) morphotype lacking GPL. Herein, we show that M. abscessus S and R variants are able to grow inside macrophages and are present in morphologically distinct phagosomes. The S forms are found mostly as single bacteria within phagosomes characterized by a tightly apposed phagosomal membrane and the presence of an electron translucent zone (ETZ) surrounding the bacilli. By contrast, infection with the R form leads to phagosomes often containing more than two bacilli, surrounded by a loose phagosomal membrane and lacking the ETZ. In contrast to the R variant, the S variant is capable of restricting intraphagosomal acidification and induces less apoptosis and autophagy. Importantly, the membrane of phagosomes enclosing the S forms showed signs of alteration, such as breaks or partial degradation. Although not frequently encountered, these events suggest that the S form is capable of provoking phagosome-cytosol communication. In conclusion, M. abscessus S exhibits traits inside macrophages that are reminiscent of slow-growing mycobacterial species.
Collapse
Affiliation(s)
- Anne-Laure Roux
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France.,Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Aïcha Bah
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Roxane Simeone
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Audrey Bernut
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France
| | - Laura Laencina
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Therese Deramaudt
- UMR1179, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Martin Rottman
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Jean-Louis Gaillard
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Laleh Majlessi
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Roland Brosch
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Fabienne Girard-Misguich
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Isabelle Vergne
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France .,INSERM, CPBS, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| |
Collapse
|
44
|
Gregoire SA, Byam J, Pavelka MS. galK-based suicide vector mediated allelic exchange in Mycobacterium abscessus. MICROBIOLOGY-SGM 2017; 163:1399-1408. [PMID: 28933689 DOI: 10.1099/mic.0.000528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium abscessus is a fast-growing environmental organism and an important emerging pathogen. It is highly resistant to many antibiotics and undergoes a smooth to rough colony morphology change that appears to be important for pathogenesis. Smooth environmental strains have a glycopeptidolipid (GPL) on the surface, while certain types of clinical strains are often rough and lack this GPL, due to mutations in biosynthetic genes or the mmpL4b transporter gene. We report here the development and evaluation of an allelic exchange system for unmarked alleles in M. abscessus ATCC19977, using a suicide vector bearing the E. coli galK gene and 2-deoxygalactose counterselection. We describe here two variant galK suicide vectors, and demonstrate their utility in constructing a variety of mutants with deletion alleles of the mmpL4b GPL transporter gene, the mbtH GPL biosynthesis gene, the known β-lactamase gene MAB_2875 and a putative β-lactamase gene, MAB_2833. We also show that a novel allele of the E. coli aacC4 gene, conferring apramycin resistance (aacC41), can be used as a selectable marker in M. abscessus ATCC19977 at single copy.
Collapse
Affiliation(s)
- Stacy A Gregoire
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joel Byam
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
45
|
Kim BJ, Kim GN, Kim BR, Jeon CO, Jeong J, Lee SH, Lim JH, Lee SH, Kim CK, Kook YH, Kim BJ. Description of Mycobacterium chelonae subsp. bovis subsp. nov., isolated from cattle (Bos taurus coreanae), emended description of Mycobacterium chelonae and creation of Mycobacterium chelonae subsp. chelonae subsp. nov. Int J Syst Evol Microbiol 2017; 67:3882-3887. [PMID: 28895525 DOI: 10.1099/ijsem.0.002217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Three rapidly growing mycobacterial strains, QIA-37T, QIA-40 and QIA-41, were isolated from the lymph nodes of three separate Korean native cattle, Hanwoo (Bos taurus coreanae). These strains were previously shown to be phylogenetically distinct but closely related to Mycobacterium chelonae ATCC 35752T by taxonomic approaches targeting three genes (16S rRNA, hsp6 and rpoB) and were further characterized using a polyphasic approach in this study. The 16S rRNA gene sequences of all three strains showed 99.7 % sequence similarity with that of the M. chelonae type strain. A multilocus sequence typing analysis targeting 10 housekeeping genes, including hsp65 and rpoB, revealed a phylogenetic cluster of these strains with M. chelonae. DNA-DNA hybridization values of 78.2 % between QIA-37T and M. chelonae indicated that it belongs to M. chelonae but is a novel subspecies distinct from M. chelonae. Phylogenetic analysis based on whole-genome sequences revealed a 95.44±0.06 % average nucleotide identity (ANI) value with M. chelonae, slightly higher than the 95.0 % ANI criterion for determining a novel species. In addition, distinct phenotypic characteristics such as positive growth at 37 °C, at which temperature M. chelonae does not grow, further support the taxonomic status of these strains as representatives of a novel subspecies of M. chelonae. Therefore, we propose an emended description of Mycobacterium chelonae, and descriptions of M. chelonae subsp. chelonae subsp. nov. and M. chelonae subsp. bovis subsp. nov. are presented; strains ATCC 35752T(=CCUG 47445T=CIP 104535T=DSM 43804T=JCM 6388T=NCTC 946T) and QIA-37T (=KCTC 39630T=JCM 30986T) are the type strains of the two novel subspecies.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Liver Research Institute, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ga-Na Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Liver Research Institute, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bo-Ram Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Liver Research Institute, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Che Ok Jeon
- School of Biological Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Joseph Jeong
- Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Seon Ho Lee
- Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ji-Hun Lim
- Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Seung-Heon Lee
- Korean Institute of Tubercuosis, Chungbuk, Republic of Korea
| | - Chang Ki Kim
- Korean Institute of Tubercuosis, Chungbuk, Republic of Korea
| | - Yoon-Hoh Kook
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Liver Research Institute, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Liver Research Institute, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
46
|
Ribeiro GM, Matsumoto CK, Real F, Teixeira D, Duarte RS, Mortara RA, Leão SC, de Souza Carvalho-Wodarz C. Increased survival and proliferation of the epidemic strain Mycobacterium abscessus subsp. massiliense CRM0019 in alveolar epithelial cells. BMC Microbiol 2017; 17:195. [PMID: 28903728 PMCID: PMC5598063 DOI: 10.1186/s12866-017-1102-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Outbreaks of infections caused by rapidly growing mycobacteria have been reported worldwide generally associated with medical procedures. Mycobacterium abscessus subsp. massiliense CRM0019 was obtained during an epidemic of postsurgical infections and was characterized by increased persistence in vivo. To better understand the successful survival strategies of this microorganism, we evaluated its infectivity and proliferation in macrophages (RAW and BMDM) and alveolar epithelial cells (A549). For that, we assessed the following parameters, for both M. abscessus CRM0019 as well as the reference strain M. abscessus ATCC 19977: internalization, intracellular survival for up 3 days, competence to subvert lysosome fusion and the intracellular survival after cell reinfection. RESULTS CRM0019 and ATCC 19977 strains showed the same internalization rate (approximately 30% after 6 h infection), in both A549 and RAW cells. However, colony forming units data showed that CRM0019 survived better in A549 cells than the ATCC 19977 strain. Phagosomal characteristics of CRM0019 showed the bacteria inside tight phagosomes in A549 cells, contrasting to the loosely phagosomal membrane in macrophages. This observation holds for the ATCC 19977 strain in both cell types. The competence to subvert lysosome fusion was assessed by acidification and acquisition of lysosomal protein. For M. abscessus strains the phagosomes were acidified in all cell lines; nevertheless, the acquisition of lysosomal protein was reduced by CRM0019 compared to the ATCC 19977 strain, in A549 cells. Conversely, in macrophages, both M. abscessus strains were located in mature phagosomes, however without bacterial death. Once recovered from macrophages M. abscessus could establish a new intracellular infection. Nevertheless, only CRM0019 showed a higher growth rate in A549, increasing nearly 10-fold after 48 and 72 h. CONCLUSION M. abscessus CRM0019 creates a protective and replicative niche in alveolar epithelial cells mainly by avoiding phagosome maturation. Once recovered from infected macrophages, CRM0019 remains infective and displays greater intracellular growth in A549 cells compared to the ATCC 19977 strain. This evasion strategy in alveolar epithelial cells may contribute to the long survival of the CRM0019 strain in the host and thus to the inefficacy of in vivo treatment.
Collapse
Affiliation(s)
- Giovanni Monteiro Ribeiro
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristianne Kayoko Matsumoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernando Real
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Laboratoire Entrée muqueuse du VIH et Immunité muqueuse, Department Infection, Immunité et Inflammation, Institut Cochin, Paris, France
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rafael Silva Duarte
- Laboratório de Micobactérias, Instituto de Microbiologia Professor Paulo de Góes, Cidade Universitária, Rio de Janeiro, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristiane de Souza Carvalho-Wodarz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil. .,Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
| |
Collapse
|
47
|
Lee SY, Kim HY, Kim BJ, Kim H, Seok SH, Kim BJ, Kook YH. Effect of amikacin on cell wall glycopeptidolipid synthesis in Mycobacterium abscessus. J Microbiol 2017; 55:640-647. [PMID: 28752292 DOI: 10.1007/s12275-017-6503-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/24/2017] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
|
48
|
Bannantine JP, Etienne G, Laval F, Stabel JR, Lemassu A, Daffé M, Bayles DO, Ganneau C, Bonhomme F, Branger M, Cochard T, Bay S, Biet F. Cell wall peptidolipids of Mycobacterium avium: from genetic prediction to exact structure of a nonribosomal peptide. Mol Microbiol 2017; 105:525-539. [PMID: 28558126 DOI: 10.1111/mmi.13717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Mycobacteria have a complex cell wall structure that includes many lipids; however, even within a single subspecies of Mycobacterium avium these lipids can differ. Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide (L5P), yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis as well as biochemical and physico-chemical approaches. This strategy showed that a nonribosomal peptide synthase, encoded by mps1, contains three amino acid specifying modules in ovine strains, compared to five modules in bovine strains (C-type). Sequence analysis predicted these modules would produce the tripeptide Phe-N-Methyl-Val-Ala with a lipid moiety, termed lipotripeptide (L3P). Comprehensive physico-chemical analysis of Map S397 extracts confirmed the structural formula of the native L3P as D-Phe-N-Methyl-L-Val-L-Ala-OMe attached in N-ter to a 20-carbon fatty acid chain. These data demonstrate that S-type strains, which are more adapted in sheep, produce a unique lipid. There is a dose-dependent effect observed for L3P on upregulation of CD25+ CD8 T cells from infected cows, while L5P effects were static. In contrast, L5P demonstrated a significantly stronger induction of CD25+ B cells from infected animals compared to L3P.
Collapse
Affiliation(s)
- John P Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Françoise Laval
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Judith R Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Université de Toulouse, UPS, IPBS, Toulouse, 31000, France
| | - Darrell O Bayles
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, 50010, USA
| | - Christelle Ganneau
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Frédéric Bonhomme
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Maxime Branger
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| | - Thierry Cochard
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| | - Sylvie Bay
- Institut Pasteur, Unité Chimie des Biomolécules, 75724 Paris Cedex 15, France.,CNRS UMR 3523, 75724 Paris Cedex 15, France
| | - Franck Biet
- Infectiologie et Santé Publique, INRA, Université de Tours, UMR1282, Nouzilly, F-37380, France
| |
Collapse
|
49
|
Viljoen A, Dubois V, Girard-Misguich F, Blaise M, Herrmann JL, Kremer L. The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments. Mol Microbiol 2017; 104:889-904. [DOI: 10.1111/mmi.13675] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM); CNRS, UMR 9004, Université de Montpellier, France
| | - Violaine Dubois
- INSERM, UMR1173; Université de Versailles Saint-Quentin-en-Yvelines; Montigny-le-Bretonneux 78180 France
| | - Fabienne Girard-Misguich
- INSERM, UMR1173; Université de Versailles Saint-Quentin-en-Yvelines; Montigny-le-Bretonneux 78180 France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM); CNRS, UMR 9004, Université de Montpellier, France
| | - Jean-Louis Herrmann
- INSERM, UMR1173; Université de Versailles Saint-Quentin-en-Yvelines; Montigny-le-Bretonneux 78180 France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM); CNRS, UMR 9004, Université de Montpellier, France
- IRIM; INSERM; 34293 Montpellier France
| |
Collapse
|
50
|
Zanfardino A, Migliardi A, D'Alonzo D, Lombardi A, Varcamonti M, Cordone A. Inactivation of MSMEG_0412 gene drastically affects surface related properties of Mycobacterium smegmatis. BMC Microbiol 2016; 16:267. [PMID: 27825305 PMCID: PMC5101647 DOI: 10.1186/s12866-016-0888-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/04/2016] [Indexed: 01/03/2023] Open
Abstract
Background The outermost layer of mycobacterial cell wall is rich in lipids and glycolipids, surface molecules which differ among species. Mycobacterium smegmatis, an attractive model for the study of both pathogenic and non-pathogenic mycobacteria, presents glycopeptidolipids (GPLs). All the genes necessary for the biosynthesis of such molecules are clustered in a single region of 65 kb and among them, the msmeg_0412 gene has not been characterized yet. Here we report the isolation and subsequent analysis of a MSMEG_0412 null mutant strain. Results The inactivation of the msmeg_0412 gene had a drastic impact on bacterial surface properties which resulted in the lack of sliding motility, altered biofilm formation and enhanced drug susceptibility. The GPLs analysis showed that the observed mutant phenotype was due to GPLs deficiencies on the mycobacterial cell wall. In addition, we report that the expression of the gene is enhanced in the presence of lipidic substrates and that the encoded protein has a membrane localization. Conclusion msmeg_0412 plays a crucial role for GPLs production and translocation on M. smegmatis surface. Its deletion alters the surface properties and the antibiotic permeability of the mycobacterial cell barrier. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0888-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zanfardino
- Department of Biology, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Adriana Migliardi
- Department of Biology, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Angela Cordone
- Department of Biology, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy.
| |
Collapse
|