1
|
Been LE, Halliday AR, Blossom SM, Bien EM, Bernhard AG, Roth GE, Domenech Rosario KI, Pollock KB, Abramenko PE, Behbehani LM, Pascal GJ, Kelly ME. Long-Term Oral Tamoxifen Administration Decreases Brain-Derived Neurotrophic Factor in the Hippocampus of Female Long-Evans Rats. Cancers (Basel) 2024; 16:1373. [PMID: 38611051 PMCID: PMC11010888 DOI: 10.3390/cancers16071373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator (SERM), is commonly used as an adjuvant drug therapy for estrogen-receptor-positive breast cancers. Though effective at reducing the rate of cancer recurrence, patients often report unwanted cognitive and affective side effects. Despite this, the impacts of chronic tamoxifen exposure on the brain are poorly understood, and rodent models of tamoxifen exposure do not replicate the chronic oral administration seen in patients. We, therefore, used long-term ad lib consumption of medicated food pellets to model chronic tamoxifen exposure in a clinically relevant way. Adult female Long-Evans Hooded rats consumed tamoxifen-medicated food pellets for approximately 12 weeks, while control animals received standard chow. At the conclusion of the experiment, blood and brain samples were collected for analyses. Blood tamoxifen levels were measured using a novel ultra-performance liquid chromatography-tandem mass spectrometry assay, which found that this administration paradigm produced serum levels of tamoxifen similar to those in human patients. In the brain, brain-derived neurotrophic factor (BDNF) was visualized in the hippocampus using immunohistochemistry. Chronic oral tamoxifen treatment resulted in a decrease in BDNF expression across several regions of the hippocampus. These findings provide a novel method of modeling and measuring chronic oral tamoxifen exposure and suggest a putative mechanism by which tamoxifen may cause cognitive and behavioral changes reported by patients.
Collapse
Affiliation(s)
- Laura E. Been
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Amanda R. Halliday
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Sarah M. Blossom
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Elena M. Bien
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Anya G. Bernhard
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Grayson E. Roth
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Karina I. Domenech Rosario
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Karlie B. Pollock
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Petra E. Abramenko
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Leily M. Behbehani
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Gabriel J. Pascal
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
| | - Mary Ellen Kelly
- Department of Psychology and Neuroscience Program, Haverford College, Haverford, PA 19041, USA; (A.R.H.); (S.M.B.); (E.M.B.); (A.G.B.); (G.E.R.); (K.I.D.R.); (K.B.P.); (P.E.A.); (L.M.B.); (G.J.P.); (M.E.K.)
- Neuroscience Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Assessment of Genetic Diversity, Runs of Homozygosity, and Signatures of Selection in Tropical Milking Criollo Cattle Using Pedigree and Genomic Data. Genes (Basel) 2022; 13:genes13101896. [PMID: 36292782 PMCID: PMC9602073 DOI: 10.3390/genes13101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to evaluate the genetic diversity of the Tropical Milking Criollo cattle (TMC) breed in Mexico through parameters derived from pedigree and genomic information assessment. The pedigree file consisted of 3780 animals. Seventy-nine bovines were genotyped with the medium-density single nucleotide polymorphism chip and considered a reference population for pedigree analysis. The effective population size and the probability of gene origin used to assess the evolution of genetic diversity were calculated with pedigree information. Inbreeding coefficients were evaluated based on pedigree (FPed), the genomic relationship matrix (FGRM), and runs of homozygosity (FROH) of different length classes. The average inbreeding was 2.82 ± 2.66%, −0.7 ± 3.8%, and 10.9 ± 3.0% for FPED, FGRM, and FROH, respectively. Correlation between FPED and FROH was significant only for runs of homozygosity > 4 Mb, indicating the FPED of a population with an average equivalent complete generation of five only recovers the most recent inbreeding. The parameters of the probability of gene origin indicated the existence of genetic bottlenecks and the loss of genetic diversity in the history of the TMC cattle population; however, pedigree and genomic information revealed the existence of current sufficient genetic diversity to design a sustainable breeding program.
Collapse
|
3
|
Sivas MC, Tapisiz OL, Ayik RT, Kahraman D, Kiykac Altinbas S, Moraloglu Tekin O. Effects of melatonin on uterine hypertrophy/hyperplasia: A preliminary experimental rat study. Heliyon 2020; 6:e05142. [PMID: 33072913 PMCID: PMC7548983 DOI: 10.1016/j.heliyon.2020.e05142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Endometrial hyperplasia is a process of endometrial proliferation that results in a thickening of the endometrial tissue. Melatonin might be able to change the pathophysiological process and prognosis into a positive way that might prevent and heal endometrial hyperplasia, which is the first stage of endometrial cancer. For this perspective, we tried to investigate the effect of melatonin on uterine hypertrophy/hyperplasia in an experimental rat model. Forty Wistar-Albino rats were undergone bilateral oophorectomy and randomized into four groups. To create a model of uterine hypertrophy/hyperplasia in all groups, except the control group [C] (n = 10), 4 mg/kg/day estradiol hemihydrate were given for 14 days. The uterine hypertrophy/hyperplasia was evaluated histopathologically in the left uterine horns, then the groups were treated for 14 days as follows; melatonin (10 mg/kg/day/po) [M] (n = 10), melatonin + estradiol hemihydrate (10 mg/kg/day/po and 4 mg/kg/day/po) [M + E] (n = 10), and dark environment [D] (n = 10). Finally, the effects of the melatonin were examined histopathologically in the right uterine horns. An uterine hypertrophy/hyperplasia model was established in all groups compared to the control group (p < 0.05). In the [M] and [M + E] groups, epithelial cell height and luminal epithelial cell height significantly decreased (41μm vs 12μm, p = 0.005; 14μm vs 10μm, p = 0.005, respectively for [M] group) and (32μm vs 14μm, p = 0.012; 17μm vs 10μm, p = 0.017, respectively for [M + E] group). The [D] group exhibited a significant decrease in epithelial cell height (33μm vs 20μm, p = 0.017). With or without estrogen exposure, melatonin-treated and physiologically melatonin-released rats experienced a significant uterine hypertrophy/hyperplasia recovery. Melatonin may have protective effects on endometrial hyperplasia.
Collapse
Affiliation(s)
- Mustafa Can Sivas
- Department of Obstetrics and Gynecology, University of Health Sciences, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - Omer Lutfi Tapisiz
- Department of Obstetrics and Gynecology, University of Health Sciences, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - Rasit Tan Ayik
- Department of Obstetrics and Gynecology, University of Health Sciences, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - Devrim Kahraman
- Department of Pathology, School of Medicine, The Union of Chambers and Commodity Exchanges of Turkey, University of Economics and Technology (TOBB ETU), Ankara, Turkey
| | - Sadiman Kiykac Altinbas
- Department of Obstetrics and Gynecology, University of Health Sciences, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - Ozlem Moraloglu Tekin
- Department of Obstetrics and Gynecology, University of Health Sciences, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
4
|
Ahn SH, Granger A, Rankin MM, Lam CJ, Cox AR, Kushner JA. Tamoxifen suppresses pancreatic β-cell proliferation in mice. PLoS One 2019; 14:e0214829. [PMID: 31490929 PMCID: PMC6731016 DOI: 10.1371/journal.pone.0214829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tamoxifen is a mixed agonist/antagonist estrogen analogue that is frequently used to induce conditional gene deletion in mice using Cre-loxP mediated gene recombination. Tamoxifen is routinely employed in extremely high-doses relative to typical human doses to induce efficient gene deletion in mice. Although tamoxifen has been widely assumed to have no influence upon β-cells, the acute developmental and functional consequences of high-dose tamoxifen upon glucose homeostasis and adult β-cells are largely unknown. We tested if tamoxifen influences glucose homeostasis in male mice of various genetic backgrounds. We then carried out detailed histomorphometry studies of mouse pancreata. We also performed gene expression studies with islets of tamoxifen-treated mice and controls. Tamoxifen had modest effects upon glucose homeostasis of mixed genetic background (F1 B6129SF1/J) mice, with fasting hyperglycemia and improved glucose tolerance but without overt effects on fed glucose levels or insulin sensitivity. Tamoxifen inhibited proliferation of β-cells in a dose-dependent manner, with dramatic reductions in β-cell turnover at the highest dose (decreased by 66%). In sharp contrast, tamoxifen did not reduce proliferation of pancreatic acinar cells. β-cell proliferation was unchanged by tamoxifen in 129S2 mice but was reduced in C57Bl6 genetic background mice (decreased by 59%). Gene expression studies revealed suppression of RNA for cyclins D1 and D2 within islets of tamoxifen-treated mice. Tamoxifen has a cytostatic effect on β-cells, independent of changes in glucose homeostasis, in mixed genetic background and also in C57Bl6 mice. Tamoxifen should be used judiciously to inducibly inactivate genes in studies of glucose homeostasis.
Collapse
Affiliation(s)
- Surl-Hee Ahn
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Anne Granger
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Matthew M. Rankin
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Carol J. Lam
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
| | - Aaron R. Cox
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
| | - Jake A. Kushner
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
5
|
Design, synthesis and biological evaluation of novel indone derivatives as selective ERβ modulators. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Fadiloglu E, Tapisiz OL, Unsal M, Fadiloglu S, Celik B, Mollamahmutoglu L. Non-Ionizing Radiation Created by Mobile Phone Progresses Endometrial Hyperplasia: An Experimental Rat Study. Arch Med Res 2019; 50:36-43. [PMID: 31349952 DOI: 10.1016/j.arcmed.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Non-ionizing radiation is related with many pathologies. AIM Determine association between non-ionizing radiation and endometrial hyperplasia. METHODS Fifty oopherectomized Wistar albino rats were administered Estradiol hemihydrate (4 mg/kg) to induce hyperplasia, and were exposed to 1800 MHz radiation created by a mobile phone and a signal generator working as base station. This study was carried out with 5 groups in two phases. The study groups were. Control group without any exposure; group receiving estrogen in first phase of the study; group receiving estrogen in both phases; group receiving estrogen in the first phase and exposed to non-ionizing radiation during second phase and group taking estrogen in both phases and exposed to non-ionizing radiation during the second phase. Following both phases, uterine horns were excised and evaluated based on glandular density (GD), epithelial cell height (ECH), and luminal epithelial cell height (LECH). RESULTS Estrogen increased all parameters during both phases (LECH, GD, and ECH values were 12,2 vs. 16,5 (p = 0.001), 34 vs. 47 (p <0.001), and 201 vs. 376.6 (p = 0.001), respectively during the first phase; LECH, GD and ECH values were 13,2 vs. 20,3 (p <0.001), 35.5 vs. 65,5 (p <0.001), 219.9 vs. 419.6 (p <0.001), respectively, during the second phase).Non-ionizing radiation increased all values without estrogen exposure (LECH, GD and ECH values were 13,2 vs. 17,2 (p = 0,074), 35,5 vs. 59 (p = 0.074), and 219 vs. 318.3 (p <0.001), respectively) or with estrogen exposure (LECH, GD, and ECH, values were 20,3 vs. 22,8 (p = 0,168), 65,5 vs. 77 (p = 0,058), and 419,6 vs. 541,6 (p = 0.004), respectively). CONCLUSION Non-ionizing radiation progressed endometrial hyperplasia in an experimental rat model with/without estrogen exposure.
Collapse
Affiliation(s)
- Erdem Fadiloglu
- Ankara Etlik Zubeyde Hanim Women's Health Teaching and Researching Hospital, Women's Health Department, Ankara, Turkey.
| | - Omer Lutfi Tapisiz
- Ankara Etlik Zubeyde Hanim Women's Health Teaching and Researching Hospital, Women's Health Department, Ankara, Turkey
| | - Mehmet Unsal
- Ankara Etlik Zubeyde Hanim Women's Health Teaching and Researching Hospital, Women's Health Department, Ankara, Turkey
| | - Seyma Fadiloglu
- Ankara Numune Education and Research Hospital, Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Burcin Celik
- Ankara Etlik Zubeyde Hanim Women's Health Teaching and Researching Hospital, Women's Health Department, Ankara, Turkey
| | - Leyla Mollamahmutoglu
- Ankara Etlik Zubeyde Hanim Women's Health Teaching and Researching Hospital, Women's Health Department, Ankara, Turkey
| |
Collapse
|
7
|
Ali A, Abouleila Y, Shimizu Y, Hiyama E, Watanabe TM, Yanagida T, Germond A. Single-Cell Screening of Tamoxifen Abundance and Effect Using Mass Spectrometry and Raman-Spectroscopy. Anal Chem 2019; 91:2710-2718. [PMID: 30664349 DOI: 10.1021/acs.analchem.8b04393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monitoring drug uptake, its metabolism, and response on the single-cell level is invaluable for sustaining drug discovery efforts. In this study, we show the possibility of accessing the information about the aforementioned processes at the single-cell level by monitoring the anticancer drug tamoxifen using live single-cell mass spectrometry (LSC-MS) and Raman spectroscopy. First, we explored whether Raman spectroscopy could be used as a label-free and nondestructive screening technique to identify and predict the drug response at the single-cell level. Then, a subset of the screened cells was isolated and analyzed by LSC-MS to measure tamoxifen and its metabolite, 4-Hydroxytamoxifen (4-OHT) in a highly selective, sensitive, and semiquantitative manner. Our results show the Raman spectral signature changed in response to tamoxifen treatment which allowed us to identify and predict the drug response. Tamoxifen and 4-OHT abundances quantified by LSC-MS suggested some heterogeneity among single-cells. A similar phenomenon was observed in the ratio of metabolized to unmetabolized tamoxifen across single-cells. Moreover, a correlation was found between tamoxifen and its metabolite, suggesting that the drug was up taken and metabolized by the cell. Finally, we found some potential correlations between Raman spectral intensities and tamoxifen abundance, or its metabolism, suggesting a possible relationship between the two signals. This study demonstrates for the first time the potential of using Raman spectroscopy and LSC-MS to investigate pharmacokinetics at the single-cell level.
Collapse
Affiliation(s)
- Ahmed Ali
- Riken Biodynamics Research Center (BDR) , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan.,Research Center , Misr International University , Cairo 19648 , Egypt
| | - Yasmine Abouleila
- Riken Biodynamics Research Center (BDR) , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan.,Research Center , Misr International University , Cairo 19648 , Egypt
| | - Yoshihiro Shimizu
- Riken Biodynamics Research Center (BDR) , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan
| | - Eiso Hiyama
- Graduate School of Biomedical and Health Sciences , 1-2-3 Kasumi , Hiroshima , 734-0037 , Japan
| | - Tomonobu M Watanabe
- Riken Biodynamics Research Center (BDR) , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan
| | - Toshio Yanagida
- Riken Biodynamics Research Center (BDR) , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan
| | - Arno Germond
- Riken Biodynamics Research Center (BDR) , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan
| |
Collapse
|
8
|
Abstract
Estrogens coordinate and integrate cellular metabolism and mitochondrial activities by direct and indirect mechanisms mediated by differential expression and localization of estrogen receptors (ER) in a cell-specific manner. Estrogens regulate transcription and cell signaling pathways that converge to stimulate mitochondrial function- including mitochondrial bioenergetics, mitochondrial fusion and fission, calcium homeostasis, and antioxidant defense against free radicals. Estrogens regulate nuclear gene transcription by binding and activating the classical genomic estrogen receptors α and β (ERα and ERβ) and by activating plasma membrane-associated mERα, mERβ, and G-protein coupled ER (GPER, GPER1). Localization of ERα and ERβ within mitochondria and in the mitochondrial membrane provides additional mechanisms of regulation. Here we review the mechanisms of rapid and longer-term effects of estrogens and selective ER modulators (SERMs, e.g., tamoxifen (TAM)) on mitochondrial biogenesis, morphology, and function including regulation of Nuclear Respiratory Factor-1 (NRF-1, NRF1) transcription. NRF-1 is a nuclear transcription factor that promotes transcription of mitochondrial transcription factor TFAM (mtDNA maintenance factorFA) which then regulates mtDNA-encoded genes. The nuclear effects of estrogens on gene expression directly controlling mitochondrial biogenesis, oxygen consumption, mtDNA transcription, and apoptosis are reviewed.
Collapse
|
9
|
de Melo TP, de Camargo GMF, de Albuquerque LG, Carvalheiro R. Genome-wide association study provides strong evidence of genes affecting the reproductive performance of Nellore beef cows. PLoS One 2017; 12:e0178551. [PMID: 28562680 PMCID: PMC5451131 DOI: 10.1371/journal.pone.0178551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
Reproductive traits are economically important for beef cattle production; however, these traits are still a bottleneck in indicine cattle since these animals typically reach puberty at older ages when compared to taurine breeds. In addition, reproductive traits are complex phenotypes, i.e., they are controlled by both the environment and many small-effect genes involved in different pathways. In this study, we conducted genome-wide association study (GWAS) and functional analyses to identify important genes and pathways associated with heifer rebreeding (HR) and with the number of calvings at 53 months of age (NC53) in Nellore cows. A total of 142,878 and 244,311 phenotypes for HR and NC53, respectively, and 2,925 animals genotyped with the Illumina Bovine HD panel (Illumina®, San Diego, CA, USA) were used in GWAS applying the weighted single-step GBLUP (WssGBLUP) method. Several genes associated with reproductive events were detected in the 20 most important 1Mb windows for both traits. Significant pathways for HR and NC53 were associated with lipid metabolism and immune processes, respectively. MHC class II genes, detected on chromosome 23 (window 25-26Mb) for NC53, were significantly associated with pregnancy success of Nellore cows. These genes have been proved previously to be associated with reproductive traits such as mate choice in other breeds and species. Our results suggest that genes associated with the reproductive traits HR and NC53 may be involved in embryo development in mammalian species. Furthermore, some genes associated with mate choice may affect pregnancy success in Nellore cattle.
Collapse
Affiliation(s)
- Thaise Pinto de Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP – Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | | | - Lucia Galvão de Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP – Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, DF, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP – Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|
10
|
Ke H, Jiang J, Xia M, Tang R, Qin Y, Chen ZJ. The Effect of Tamoxifen on Thin Endometrium in Patients Undergoing Frozen-Thawed Embryo Transfer. Reprod Sci 2017; 25:861-866. [PMID: 28345485 DOI: 10.1177/1933719117698580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tamoxifen has played a vital role in endocrine therapy for the treatment of estrogen receptor-positive breast cancer. We examined the effect of tamoxifen in patients with a thin endometrium in frozen-thawed embryo transfer (FET) cycles and compared the improvement in endometrial thickness (EMT) and pregnancy outcomes stratified by different etiologies of thin endometrium. A total of 226 women were recruited for a new tamoxifen protocol; all had an EMT of less than 7.5 mm in previous cycles, including natural cycle (NC), hormone replacement treatment (HRT), and ovulation induction (OI) cycles. Compared with previous cycles, tamoxifen cycles showed a significantly increased EMT (from 6.11 ± 0.98 mm to 7.87 ± 1.48 mm in the NC group, from 6.24 ± 1.01 mm to 8.22 ± 1.67 mm in the HRT group, and from 6.34 ± 1.03 mm to 8.05 ± 1.58 mm in the OI group; all P < .001). Patients were further divided into 3 groups based on the causes of their thin endometrium: (1) history of intrauterine adhesion (n = 34), (2) history of uterine curettage (n = 141), and (3) polycystic ovary syndrome (PCOS; n = 51). Patients with PCOS obtained the thickest EMT (9.31 ± 1.55 mm), the lowest cycle cancellation rate (11.76%), and the highest rate of clinical pregnancy (60%) and live birth (55.56%) per transfer ( P < .001). Multivariable regression analysis showed that EMT was related to live birth (odds ratio: 1.487; 95% confidence interval: 1.172-1.887). A tamoxifen protocol improves EMT in patients after NC, HRT, and OI cycles during FET. Patients with PCOS show the most benefit from tamoxifen and achieve better pregnancy outcomes.
Collapse
Affiliation(s)
- Hanni Ke
- 1 Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Shandong, China.,2 National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,3 The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China
| | - Jingjing Jiang
- 1 Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Shandong, China.,2 National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,3 The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China
| | - Mingdi Xia
- 1 Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Shandong, China.,2 National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,3 The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China
| | - Rong Tang
- 1 Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Shandong, China.,2 National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,3 The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China
| | - Yingying Qin
- 1 Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Shandong, China.,2 National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,3 The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China
| | - Zi-Jiang Chen
- 1 Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Shandong, China.,2 National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,3 The Key laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, China.,4 Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Effects of ospemifene on the female reproductive and urinary tracts: translation from preclinical models into clinical evidence. Menopause 2016; 22:786-96. [PMID: 25423325 PMCID: PMC4481022 DOI: 10.1097/gme.0000000000000365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective Treatment of menopausal symptoms by compounds with tissue-selective estrogen agonist/antagonist effects, often called selective estrogen receptor modulators, has been researched as an alternative to the use of estrogen therapy. These structurally diverse molecules elicit tissue-dependent responses in hormone-responsive tissues and organs, exhibiting variations in estrogenic activity in preclinical models of postmenopausal reproductive tissues that may improve postmenopausal women’s health (eg, prevention and treatment of breast cancer, osteoporosis, and vulvar and vaginal atrophy). Methods This literature review investigates whether preclinical data predicted the clinical effects of ospemifene on female reproductive and urinary tract tissues and compares these findings with the specific vaginal effects of other estrogen receptor agonists/antagonists (tamoxifen, raloxifene, and bazedoxifene) in preclinical and clinical studies. Lasofoxifene, although not currently available, is included because of its unique effects on vaginal tissue. Results The response of endometrial and vaginal tissues to estrogen receptor agonists/antagonists can be differentiated using transvaginal ultrasound, endometrial histopathology, cytologic examination of vaginal smears, assessment of physical changes in the vagina, and relief of symptoms associated with vulvar and vaginal atrophy (such as dyspareunia). Conclusions Available evidence indicates that ospemifene has unique effects on tissue, leading to a favorable long-term profile for the relief of vulvar and vaginal atrophy compared with other estrogen receptor agonists/antagonists (eg, tamoxifen, raloxifene, and bazedoxifene) with no short-term concerns about endometrial safety (based on endometrial hyperplasia, carcinoma, endometrial spotting, and endometrial bleeding).
Collapse
|
12
|
Zinzow-Kramer WM, Horton BM, McKee CD, Michaud JM, Tharp GK, Thomas JW, Tuttle EM, Yi S, Maney DL. Genes located in a chromosomal inversion are correlated with territorial song in white-throated sparrows. GENES BRAIN AND BEHAVIOR 2015; 14:641-54. [PMID: 26463687 DOI: 10.1111/gbb.12252] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/28/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023]
Abstract
The genome of the white-throated sparrow (Zonotrichia albicollis) contains an inversion polymorphism on chromosome 2 that is linked to predictable variation in a suite of phenotypic traits including plumage color, aggression and parental behavior. Differences in gene expression between the two color morphs, which represent the two common inversion genotypes (ZAL2/ZAL2 and ZAL2/ZAL2(m) ), may therefore advance our understanding of the molecular underpinnings of these phenotypes. To identify genes that are differentially expressed between the two morphs and correlated with behavior, we quantified gene expression and terrirorial aggression, including song, in a population of free-living white-throated sparrows. We analyzed gene expression in two brain regions, the medial amygdala (MeA) and hypothalamus. Both regions are part of a 'social behavior network', which is rich in steroid hormone receptors and previously linked with territorial behavior. Using weighted gene co-expression network analyses, we identified modules of genes that were correlated with both morph and singing behavior. The majority of these genes were located within the inversion, showing the profound effect of the inversion on the expression of genes captured by the rearrangement. These modules were enriched with genes related to retinoic acid signaling and basic cellular functioning. In the MeA, the most prominent pathways were those related to steroid hormone receptor activity. Within these pathways, the only gene encoding such a receptor was ESR1 (estrogen receptor 1), a gene previously shown to predict song rate in this species. The set of candidate genes we identified may mediate the effects of a chromosomal inversion on territorial behavior.
Collapse
Affiliation(s)
| | - B M Horton
- Department of Psychology, Emory University, Atlanta, GA
| | - C D McKee
- Department of Psychology, Emory University, Atlanta, GA
| | - J M Michaud
- Department of Psychology, Emory University, Atlanta, GA
| | - G K Tharp
- Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA
| | - J W Thomas
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Rockville, MD
| | - E M Tuttle
- Department of Biology, Indiana State University, Terre Haute, IN.,The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN
| | - S Yi
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - D L Maney
- Department of Psychology, Emory University, Atlanta, GA
| |
Collapse
|
13
|
Goldberg K, Bar-Joseph H, Grossman H, Hasky N, Uri-Belapolsky S, Stemmer SM, Chuderland D, Shalgi R, Ben-Aharon I. Pigment Epithelium–Derived Factor Alleviates Tamoxifen-Induced Endometrial Hyperplasia. Mol Cancer Ther 2015; 14:2840-9. [DOI: 10.1158/1535-7163.mct-15-0523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/21/2015] [Indexed: 11/16/2022]
|
14
|
Hu R, Hilakivi-Clarke L, Clarke R. Molecular mechanisms of tamoxifen-associated endometrial cancer (Review). Oncol Lett 2015; 9:1495-1501. [PMID: 25788989 PMCID: PMC4356269 DOI: 10.3892/ol.2015.2962] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 02/02/2015] [Indexed: 01/11/2023] Open
Abstract
Tamoxifen has been prescribed to millions of females for breast cancer prevention or treatment. However, tamoxifen is known to significantly enhance the risk of developing endometrial lesions, including hyperplasia, polyps, carcinomas, and sarcoma. Notably, tamoxifen-associated endometrial cancer often has a poor clinical outcome. Understanding the molecular mechanism of tamoxifen-induced endometrial cancer is essential for developing strategies that minimize tamoxifen’s effects on the endometrium without jeopardizing its breast cancer treatment effects. However, this understanding remains limited. Tamoxifen appears to mediate its effect on endometrial cells through estrogenic and non-genomic pathways, rather than introducing a genomic alteration as a carcinogen. Although tamoxifen functions as an agonist and promotes cell proliferation in endometrial cancer, it also displays antagonist activity towards some estrogen targets. Alterations in estrogen receptor-α and its isoforms, as well as the membrane associated estrogen receptor G protein-coupled receptor 30, have been observed with tamoxifen-exposed endometrial cells, and likely mediate the effects of tamoxifen on endometrial cancer cell proliferation and invasion. In addition, gene profile studies of short-term exposure to tamoxifen indicate that the majority of tamoxifen targets are tamoxifen-specific. However, the tamoxifen regulated gene targets that are involved in mediating the effects of long-term exposure to tamoxifen are not yet fully understood. Recent progress has indicated a potential role of unfolded protein response and mammalian target of rapamycin signaling in tamoxifen-associated endometrial cancer. In the future, studies focusing on long-term effects of tamoxifen exposure are required to understand the molecular mechanisms of tamoxifen-associated endometrial cancer.
Collapse
Affiliation(s)
- Rong Hu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington D.C. 20057, USA
| | - Leena Hilakivi-Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington D.C. 20057, USA
| | - Robert Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington D.C. 20057, USA
| |
Collapse
|
15
|
Shehata M, van Amerongen R, Zeeman AL, Giraddi RR, Stingl J. The influence of tamoxifen on normal mouse mammary gland homeostasis. Breast Cancer Res 2014; 16:411. [PMID: 25056669 PMCID: PMC4303226 DOI: 10.1186/s13058-014-0411-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 07/10/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Lineage tracing using inducible genetic labeling has emerged to be a powerful method for interrogating the developmental fate of cells in intact tissues. A common induction mechanism is the use of tamoxifen-dependent Cre recombinase (CreER and CreERT2), but the effects of tamoxifen at doses normally used in lineage-tracing studies on normal adult mammary gland homeostasis are not known. METHODS We used flow cytometry and immunostaining of intact glands to determine whether varying doses of tamoxifen skew the distribution and the apoptosis and proliferation status of different types of mammary epithelial cells in vivo. We also examined how tamoxifen influences the number of progenitor and mammary repopulating units (MRUs). RESULTS Our results indicate that ≥5 mg/25 g body weight of tamoxifen induces a transient increase in cell proliferation and in the number of basal cells in the adult mammary epithelium up to 7 days after tamoxifen administration. However, in the medium term (3 weeks), all doses of tamoxifen≥1 mg/25 g body weight result in a decrease in the number of basal and EpCAM+CD49b- luminal cells and a decrease in progenitor cell function. Tamoxifen at doses≥5 mg/25 g body weight induced a transient increase in caspase-3-mediated apoptotic cell death within the mammary epithelium. However, mammary epithelial cell numbers in all subpopulations were restored to their original levels by 8 weeks. No long-lasting effects of tamoxifen on MRU numbers or on pubertal ductal development were observed. CONCLUSION Tamoxifen can skew the distribution of mammary cell types in a dose-dependent manner, and thus caution must be taken when interpreting lineage-tracing studies using high doses of tamoxifen, particularly when short-duration analyses of a quantitative nature are being performed.
Collapse
|
16
|
Courtenay MD, Cade W, Schwartz SG, Kovach JL, Agarwal A, Wang G, Haines JL, Pericak-Vance MA, Scott WK. Set-based joint test of interaction between SNPs in the VEGF pathway and exogenous estrogen finds association with age-related macular degeneration. Invest Ophthalmol Vis Sci 2014; 55:IOVS-14-14494. [PMID: 25015356 PMCID: PMC4126792 DOI: 10.1167/iovs.14-14494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/27/2014] [Indexed: 11/24/2022] Open
Abstract
Purpose:Age-Related Macular Degeneration (AMD) is the leading cause of irreversible visual loss in developed countries. Its etiology includes genetic and environmental factors. Although VEGFA variants are associated with AMD, the joint action of variants within the VEGF pathway and their interaction with non-genetic factors has not been investigated. Methods:Affymetrix 6.0 chipsets were used to genotype 668,238 SNPs in 1,207 AMD cases and 686 controls. Environmental exposures were collected by questionnaire. A set-based test was conducted using the chi-square statistic at each SNP derived from Kraft's 2df joint test. Pathway and gene-based test statistics were calculated as the mean of all independent SNP statistics. Phenotype labels were permuted 10,000 times to generate an empirical p-value. Results: While a main effect of the VEGF pathway was not identified, the pathway was associated with neovascular AMD in women when accounting for birth control pill (BCP) use (P= 0.017). Analysis of VEGF's subpathways found that SNPs in the Proliferation subpathway were associated with neovascular AMD (P=0.029) when accounting for BCP use. Nominally significant genes within this subpathway were also observed. Stratification by BCP use revealed novel significant genetic effects in women who had taken BCPs. Conclusions: These results illustrate that some AMD genetic risk factors may only be revealed when considering complex relationships among risk factors. This shows the utility of exploring pathways of previously associated genes to find novel effects. It also demonstrates the importance of incorporating environmental exposures in tests of genetic association at the SNP, gene, or pathway level.
Collapse
Affiliation(s)
- Monique D Courtenay
- Human Genetics and Genomics, University of Miami Miller School Medicine, 1501 NW 10th Ave, Miami, FL, 33136, United States
| | - William Cade
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10 Ave, BRB-314 (M860), Miami, Florida, 33136, United States
| | - Stephen G Schwartz
- Ophthalmology, Bascom Palmer Eye Institute, Retina Center of Naples, 311 9th Street North, Naples, Florida, 34102, United States of America
| | - Jaclyn L Kovach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 311 9th St N, Naples, FL, 34102, United States of America
| | - Anita Agarwal
- VEI, Vanderbilt University, 2311 Pierce avenue, Nashville, Tennessee, 37232-8808, United States of America
| | - Gaofeng Wang
- Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue; BRB 525, Miami, Florida, 33136, United States
| | - Jonathan L Haines
- Department of Epidemiology & Biostatistics, Case Western Reserve University, 2-529 Wolstein Research Building, 2103 Cornell Road, Cleveland, Ohio, 44106, United States
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-314 (M860), Miami, Florida, 33136, United States of America
| | - Wiliam K Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10 Ave., Biomedical Research Building (BRB) # 414, Miami, Florida, 33136, United States
| |
Collapse
|
17
|
Kwekel JC, Forgacs AL, Williams KJ, Zacharewski TR. o-p′-DDT-mediated uterotrophy and gene expression in immature C57BL/6 mice and Sprague–Dawley rats. Toxicol Appl Pharmacol 2013; 273:532-41. [DOI: 10.1016/j.taap.2013.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/04/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
|
18
|
Visser K, Mortimer M, Louw A. Cyclopia extracts act as ERα antagonists and ERβ agonists, in vitro and in vivo. PLoS One 2013; 8:e79223. [PMID: 24223909 PMCID: PMC3817056 DOI: 10.1371/journal.pone.0079223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/20/2013] [Indexed: 12/28/2022] Open
Abstract
Hormone replacement therapy associated risks, and the concomitant reluctance of usage, has instigated the search for new generations of estrogen analogues that would maintain estrogen benefits without associated risks. Furthermore, if these analogues display chemo-preventative properties in breast and endometrial tissues it would be of great value. Both the selective estrogen receptor modulators as well as the selective estrogen receptor subtype modulators have been proposed as estrogen analogues with improved risk profiles. Phytoestrogen containing extracts of Cyclopia, an indigenous South African fynbos plant used to prepare Honeybush tea may serve as a source of new estrogen analogues. In this study three extracts, P104, SM6Met, and cup-of-tea, from two species of Cyclopia, C. genistoides and C. subternata, were evaluated for ER subtype specific agonism and antagonism both in transactivation and transrepression. For transactivation, the Cyclopia extracts displayed ERα antagonism and ERβ agonism when ER subtypes were expressed separately, however, when co-expressed only agonism was uniformly observed. In contrast, for transrepression, this uniform behavior was lost, with some extracts (P104) displaying uniform agonism, while others (SM6Met) displayed antagonism when subtypes were expressed separately and agonism when co-expressed. In addition, breast cancer cell proliferation assays indicate that extracts antagonize cell proliferation in the presence of estrogen at lower concentrations than that required for proliferation. Furthermore, lack of uterine growth and delayed vaginal opening in an immature rat uterotrophic model validates the ERα antagonism of extracts observed in vitro and supports the potential of the Cyclopia extracts as a source of estrogen analogues with a reduced risk profile.
Collapse
Affiliation(s)
- Koch Visser
- Department of Biochemistry, University of Stellenbosch, Matieland, Stellenbosch, Republic of South Africa
| | - Morné Mortimer
- Department of Biochemistry, University of Stellenbosch, Matieland, Stellenbosch, Republic of South Africa
| | - Ann Louw
- Department of Biochemistry, University of Stellenbosch, Matieland, Stellenbosch, Republic of South Africa
- * E-mail:
| |
Collapse
|
19
|
Ivanova MM, Radde BN, Son J, Mehta FF, Chung SH, Klinge CM. Estradiol and tamoxifen regulate NRF-1 and mitochondrial function in mouse mammary gland and uterus. J Mol Endocrinol 2013; 51:233-46. [PMID: 23892277 PMCID: PMC3772954 DOI: 10.1530/jme-13-0051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear respiratory factor-1 (NRF-1) stimulates the transcription of nuclear-encoded genes that regulate mitochondrial (mt) genome transcription and biogenesis. We reported that estradiol (E2) and 4-hydroxytamoxifen (4-OHT) stimulate NRF-1 transcription in an estrogen receptor α (ERα)- and ERβ-dependent manner in human breast cancer cells. The aim of this study was to determine whether E2 and 4-OHT increase NRF-1 in vivo. Here, we report that E2 and 4-OHT increase NRF-1 expression in mammary gland (MG) and uterus of ovariectomized C57BL/6 mice in a time-dependent manner. E2 increased NRF-1 protein in the uterus and MG; however, in MG, 4-OHT increased Nrf1 mRNA but not protein. Chromatin immunoprecipitation assays revealed increased in vivo recruitment of ERα to the Nrf1 promoter and intron 3 in MG and uterus 6 h after E2 and 4-OHT treatment, commensurate with increased NRF-1 expression. E2- and 4-OHT-induced increases in NRF-1 and its target genes Tfam, Tfb1m, and Tfb2m were coordinated in MG but not in uterus due to uterine-selective inhibition of the expression of the NRF-1 coactivators Ppargc1a and Ppargc1b by E2 and 4-OHT. E2 transiently increased NRF-1 and PGC-1α nuclear staining while reducing PGC-1α in uterus. E2, not 4-OHT, activates mt biogenesis in MG and uterus in a time-dependent manner. E2 increased mt outer membrane Tomm40 protein levels in MG and uterus whereas 4-OHT increased Tomm40 only in uterus. These data support the hypothesis of tissue-selective regulation of NRF-1 and its downstream targets by E2 and 4-OHT in vivo.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Department of Biochemistry & Molecular Biology; Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292
| | - Brandie N. Radde
- Department of Biochemistry & Molecular Biology; Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292
| | - Jieun Son
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd., Houston, TX 77204
| | - Fabiola F. Mehta
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd., Houston, TX 77204
| | - Sang-Hyuk Chung
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd., Houston, TX 77204
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Biology; Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292
| |
Collapse
|
20
|
Nault R, Forgacs AL, Dere E, Zacharewski TR. Comparisons of differential gene expression elicited by TCDD, PCB126, βNF, or ICZ in mouse hepatoma Hepa1c1c7 cells and C57BL/6 mouse liver. Toxicol Lett 2013; 223:52-9. [PMID: 23994337 DOI: 10.1016/j.toxlet.2013.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/17/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a promiscuous receptor activated by structurally diverse synthetic and natural compounds. AhR activation may lead to ligand-specific changes in gene expression despite similarities in mode of action. Therefore, differential gene expression elicited by four structurally diverse, high affinity AhR ligands (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10nM, 30 μg/kg), 3,3',4,4',5-pentachlorobiphenyl (PCB126; 100nM, 300μg/kg), β-naphthoflavone (βNF; 10 μM, 90 mg/kg), and indolo[3,2-b]carbazole (ICZ; 1μM)) in mouse Hepa1c1c7 hepatoma cells and C57BL/6 mouse liver samples were compared. A total of 288, 183, 119, and 131 Hepa1c1c7 genes were differentially expressed (|fold-change|≥ 1.5, P1(t)≥ 0.9999) by TCDD, βNF, PCB126, and ICZ, respectively. Only ∼35% were differentially expressed by all 4 ligands in Hepa1c1c7 cells. In vivo, 661, 479, and 265 hepatic genes were differentially expressed following treatment with TCDD, βNF, and PCB126, respectively. Similar to Hepa1c1c7 cells, ≤ 34% of gene expression changes were common across all ligands. Principal components analysis identified time-dependent gene expression divergence. Comparisons of ligand-elicited expression between Hepa1c1c7 cells and mouse liver identified only 11 common gene expression changes across all ligands. Although metabolism may explain some ligand-specific gene expression changes, PCB126, βNF, and ICZ also elicited divergent expression compared to TCDD, suggestive of selective AhR modulation.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
21
|
Abot A, Fontaine C, Raymond-Letron I, Flouriot G, Adlanmerini M, Buscato M, Otto C, Bergès H, Laurell H, Gourdy P, Lenfant F, Arnal JF. The AF-1 activation function of estrogen receptor α is necessary and sufficient for uterine epithelial cell proliferation in vivo. Endocrinology 2013; 154:2222-33. [PMID: 23580568 DOI: 10.1210/en.2012-2059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen receptor-α (ERα) regulates gene transcription through the 2 activation functions (AFs) AF-1 and AF-2. The crucial role of ERαAF-2 was previously demonstrated for endometrial proliferative action of 17β-estradiol (E2). Here, we investigated the role of ERαAF-1 in the regulation of gene transcription and cell proliferation in the uterus. We show that acute treatment with E2 or tamoxifen, which selectively activates ERαAF-1, similarly regulate the expression of a uterine set of estrogen-dependent genes as well as epithelial cell proliferation in the uterus of wild-type mice. These effects were abrogated in mice lacking ERαAF-1 (ERαAF-1(0)). Four weeks of E2 treatment led to uterine hypertrophy and sustained luminal epithelial and stromal cell proliferation in wild-type mice, but not in ERαAF-1(0) mice. However, ERαAF-1(0) mice still presented a moderate uterine hypertrophy essentially due to a stromal edema, potentially due to the persistence of Vegf-a induction. Epithelial apoptosis is largely decreased in these ERαAF-1(0) uteri, and response to progesterone is also altered. Finally, E2-induced proliferation of an ERα-positive epithelial cancer cell line was also inhibited by overexpression of an inducible ERα isoform lacking AF-1. Altogether, these data highlight the crucial role of ERαAF-1 in the E2-induced proliferative response in vitro and in vivo. Because ERαAF-1 was previously reported to be dispensable for several E2 extrareproductive protective effects, an optimal ERα modulation could be obtained using molecules activating ERα with a minimal ERαAF-1 action.
Collapse
Affiliation(s)
- Anne Abot
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Teraoka SN, Bernstein JL, Reiner AS, Haile RW, Bernstein L, Lynch CF, Malone KE, Stovall M, Capanu M, Liang X, Smith SA, Mychaleckyj J, Hou X, Mellemkjaer L, Boice JD, Siniard A, Duggan D, Thomas DC, Concannon P. Single nucleotide polymorphisms associated with risk for contralateral breast cancer in the Women's Environment, Cancer, and Radiation Epidemiology (WECARE) Study. Breast Cancer Res 2011; 13:R114. [PMID: 22087758 PMCID: PMC3326556 DOI: 10.1186/bcr3057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 12/19/2022] Open
Abstract
Introduction Genome-wide association studies, focusing primarily on unilateral breast cancer, have identified single nucleotide polymorphisms (SNPs) in a number of genomic regions that have alleles associated with a significantly increased risk of breast cancer. In the current study we evaluate the contributions of these previously identified regions to the risk of developing contralateral breast cancer. The most strongly disease-associated SNPs from prior studies were tested for association with contralateral breast cancer. A subset of these SNPs, selected upon their main effects on contralateral breast cancer risk was further evaluated for interaction with treatment modalities and estrogen receptor (ER) status. Methods We genotyped 21 SNPs in 708 women with contralateral breast cancer and 1394 women with unilateral breast cancer who serve as the cases and controls in the Women's Environment, Cancer and Radiation Epidemiology (WECARE) Study. Records of treatment and ER status were available for most of WECARE Study participants. Associations of SNP genotypes and risk for contralateral breast cancer were calculated with multivariable adjusted conditional logistic regression methods. Results Multiple SNPs in the FGFR2 locus were significantly associated with contralateral breast cancer, including rs1219648 (per allele rate ratio (RR) = 1.25, 95%CI = 1.08-1.45). Statistically significant associations with contralateral breast cancer were also observed at rs7313833, near the PTHLH gene (per allele RR = 1.26, 95%CI = 1.08-1.47), rs13387042 (2q35) (per allele RR = 1.19, 95%CI = 1.02-1.37), rs13281615 (8q24) (per allele RR = 1.21, 95%CI = 1.04-1.40), and rs11235127 near TMEM135 (per allele RR = 1.26, 95%CI = 1.04-1.53). The A allele of rs13387042 (2q35) was significantly associated with contralateral breast cancer in ER negative first tumors while the A allele of rs11235127 (near TMEM135) was significantly associated with contralateral breast cancer in ER positive first tumors. Although some SNP genotypes appeared to modify contralateral breast cancer risk with respect to tamoxifen treatment or particular radiation doses, trend tests for such effects were not significant. Conclusions Our results indicate that some common risk variants associated with primary breast cancer also increase risk for contralateral breast cancer, and that these risks vary with the ER status of the first tumor.
Collapse
Affiliation(s)
- Sharon N Teraoka
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908-0717, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Richeri A, Chalar C, Martínez G, Greif G, Bianchimano P, Brauer MM. Estrogen up-regulation of semaphorin 3F correlates with sympathetic denervation of the rat uterus. Auton Neurosci 2011; 164:43-50. [PMID: 21724473 DOI: 10.1016/j.autneu.2011.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 05/02/2011] [Accepted: 06/08/2011] [Indexed: 02/07/2023]
Abstract
Current evidence indicates that rises in systemic levels of estrogen create in the uterus an inhibitory environment for sympathetic nerves. However, molecular insights of these changes are far from complete. We evaluated if semaphorin 3F mRNA, a sympathetic nerve repellent, was produced by the rat uterus and if its expression was modulated by estrogen. We also analyzed whether uterine nerves express the semaphorin 3F binding receptor, neuropilin-2. Uterine levels of semaphorin 3F mRNA were measured using real time reverse transcriptase-polymerase chain reaction in prepubertal rat controls and following chronic estrogen treatment. Localization of semaphorin 3F transcripts was determined by in situ hybridization and the expression of neuropilin-2 was assessed by immunohistochemistry. These studies showed that: (1) chronic estrogen treatment led to a 5-fold induction of semaphorin 3F mRNA in the immature uterus; (2) estrogen provoked a tissue-specific induction of semaphorin 3F which was particularly localized in the connective tissue that borders muscle bundles and surrounds intrauterine blood vessels; (3) two major cell-types were recognized in the areas where transcripts were concentrated, fibroblast-like cells and infiltrating eosinophil leukocytes; and (4) some delicate nerve terminal profiles present in the estrogenized uterus were immunoreactive for neuropilin-2. Temporal and spatial expression patterns of semaphorin 3F/neuropilin-2 are consistent with a possible role of this guidance cue in the remodeling of uterine sympathetic innervation by estrogen. Though correlative in its nature, these data support a model whereby semaphorin 3F, in combination with other inhibitory molecules, converts the estrogenized myometrium to an inhospitable environment for sympathetic nerves.
Collapse
Affiliation(s)
- Analía Richeri
- Laboratorio de Biología Celular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
24
|
Marty MS, Carney EW, Rowlands JC. Endocrine Disruption: Historical Perspectives and Its Impact on the Future of Toxicology Testing. Toxicol Sci 2010; 120 Suppl 1:S93-108. [DOI: 10.1093/toxsci/kfq329] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Erdemoglu E, Güney M, Take G, Giray SG, Mungan T. RAD001 (Everolimus) Can prevent tamoxifen-related endometrial and stromal hyperplasia. Int J Gynecol Cancer 2009; 19:375-9. [PMID: 19407562 DOI: 10.1111/igc.0b013e3181a1a334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanism of tamoxifen-associated endometrial hyperplasia and cancer is not elicited. RAD001 inhibits a target protein in phosphatidyl kinase pathway, which is involved in endometrial hyperplasia and cancer. We investigated whether endometrial hyperplasia can be prevented through inhibition of the target of rapamycin by RAD001. Sixty BALB/c mice underwent oophorectomy and were divided into 6 groups: group 1, placebo group; group 2, tamoxifen-treated (4 mg/kg per 24 hours); group 3, estradiol-treated (4 mg/kg per 24 hours); group 4, RAD001-treated (1.5 mg/kg per 24 hours); group 5, tamoxifen (4 mg/kg per 24 hours)-and-RAD001 (1.5 mg/kg per 24 hours)-treated; and group 6, estradiol (4 mg/kg per 24 hours)-and-RAD001 (1.5 mg/kg per 24 hours)-treated. The count of glands, the length of epithelium, and immunohistochemical staining of proliferating cell nuclear antigen were analyzed. The count of total glands and the epithelial length were 30.8 (7.1) and 126 (43.4) microm, 53 (8.1) and 162.5 (34.8) microm, 65.2 (13.6) and 401.4 (44.0) microm, and 82.0 (5.2) and 444.7 (57.8) microm in the placebo-, the RAD001-, the tamoxifen-, and the estradiol-treated groups, respectively (P < 0.05). Although addition of RAD001 to estradiol did not decrease the count of total glands and the epithelial length, addition of RAD001 to tamoxifen did (43.3 [13.3] and 218.0 [29.2] microm, P < 0.05). The immunoreactive score of proliferating cell nuclear antigen is significantly decreased by the addition of RAD001 to either tamoxifen or estradiol in the epithelial and glandular cells. RAD001 can prevent tamoxifen-associated and estrogen-related endometrial hyperplasias in mice. RAD001 also decreases stromal cell proliferation in the tamoxifen-treated mice.
Collapse
Affiliation(s)
- Evrim Erdemoglu
- Department of Obstetrics and Gynecology, Süleyman Demirel University, Isparta, Turkey.
| | | | | | | | | |
Collapse
|
26
|
Erdemoglu E, Güney M, Giray SG, Take G, Mungan T. Effects of metformin on mammalian target of rapamycin in a mouse model of endometrial hyperplasia. Eur J Obstet Gynecol Reprod Biol 2009; 145:195-9. [PMID: 19501448 DOI: 10.1016/j.ejogrb.2009.04.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The effects of metformin on S6K1, which is a crucial effector of mTOR signaling, and on endometrium were studied in a mouse model of endometrial hyperplasia induced by unopposed estradiol or tamoxifen. STUDY DESIGN Forty-eight oophorectomized Balb/c mice were randomly assigned to receive saline, tamoxifen citrate (4 mg/kg), 17-beta estradiol hemihydrate (4 mg/kg), metformin (50 mg/kg), tamoxifen citrate (4 mg/kg) with metformin (50 mg/kg), or estradiol (4 mg/kg) with metformin (50 mg/kg) for 3 days. Histological markers of uterotrophy, including luminal epithelial cell height and density of endometrial glands were quantified for each slide. Immunohistochemical expression of PCNA and S6K1 was evaluated. H-score was used for S6K1 expression. Statistical analysis was performed using Student's t-test for comparison of two continous variables and one-way ANOVA for comparison of multiple variables. RESULTS Mice treated either with tamoxifen or estradiol had significantly increased density of endometrial glands and epithelial heights compared to vehicle-only or metformin-only group (p<0.001). Addition of metformin to tamoxifen or estradiol treated mice significantly decreased the density of endometrial glands and epithelial cell heights (p<0.05). Addition of metformin to tamoxifen significantly decreased the H-score of S6K1 (p<0.05) and the immunohistochemical expression of PCNA (p<0.05) in uterine lining epithelium, glandular and stromal cells. Addition of metformin to estradiol significantly decreased the H-score of S6K1 (p<0.05) and the immunohistochemical expression of PCNA (p<0.05) in uterine lining epithelium, glandular and stromal cells. CONCLUSION Metformin seems to have possible antiproliferative effects on the endometrium of estradiol or tamoxifen treated mice via inhibiting the mTOR mediated S6K1 activation.
Collapse
Affiliation(s)
- Evrim Erdemoglu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | | | | | | | | |
Collapse
|
27
|
Kwekel JC, Forgacs AL, Burgoon LD, Williams KJ, Zacharewski TR. Tamoxifen-elicited uterotrophy: cross-species and cross-ligand analysis of the gene expression program. BMC Med Genomics 2009; 2:19. [PMID: 19400957 PMCID: PMC2683873 DOI: 10.1186/1755-8794-2-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 04/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tamoxifen (TAM) is a well characterized breast cancer drug and selective estrogen receptor modulator (SERM) which also has been associated with a small increase in risk for uterine cancers. TAM's partial agonist activation of estrogen receptor has been characterized for specific gene promoters but not at the genomic level in vivo.Furthermore, reducing uncertainties associated with cross-species extrapolations of pharmaco- and toxicogenomic data remains a formidable challenge. RESULTS A comparative ligand and species analysis approach was conducted to systematically assess the physiological, morphological and uterine gene expression alterations elicited across time by TAM and ethynylestradiol (EE) in immature ovariectomized Sprague-Dawley rats and C57BL/6 mice. Differential gene expression was evaluated using custom cDNA microarrays, and the data was compared to identify conserved and divergent responses. 902 genes were differentially regulated in all four studies, 398 of which exhibit identical temporal expression patterns. CONCLUSION Comparative analysis of EE and TAM differentially expressed gene lists suggest TAM regulates no unique uterine genes that are conserved in the rat and mouse. This demonstrates that the partial agonist activities of TAM extend to molecular targets in regulating only a subset of EE-responsive genes. Ligand-conserved, species-divergent expression of carbonic anhydrase 2 was observed in the microarray data and confirmed by real time PCR. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates that systematic comparative genomic assessments can elucidate important conserved and divergent mechanisms in rodent estrogen signalling during uterine proliferation.
Collapse
Affiliation(s)
- Joshua C Kwekel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | |
Collapse
|
28
|
The novel immunosuppressive enzyme IL4I1 is expressed by neoplastic cells of several B-cell lymphomas and by tumor-associated macrophages. Leukemia 2009; 23:952-60. [PMID: 19436310 DOI: 10.1038/leu.2008.380] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously reported a strong IL4I1 gene expression in primary mediastinal B-cell lymphoma (PMBL) and recently identified the protein as a secreted L-phenylalanine oxidase, physiologically expressed by myeloid cells, which inhibits T-cell proliferation in vitro. Here, we analyzed the pattern of IL4I1 protein expression in 315 human lymphoid and non-lymphoid malignancies. Besides PMBL, IL4I1 expression in tumors was very frequent. IL4I1 was detected in tumor-associated macrophages from most of the tumors and in neoplastic cells from follicular lymphoma, classic and nodular lymphocyte predominant Hodgkin lymphomas and small lymphocytic lymphoma, three of which are germinal center derived. IL4I1-positive tumor cells were also detected in rare cases of solid cancers, mainly mesothelioma. The enzymatic activity paralleled protein expression, suggesting that IL4I1 is functional in vivo. Depending on the tumor type, IL4I1 may impact on different infiltrating lymphocyte populations with consequences on tumor evolution. In the particular case of follicular lymphoma cells, which are susceptible to antitumor cytotoxic T cells killing but depend on interactions with local T helper cells for survival, a high level of IL4I1 expression seems associated with the absence of bone marrow involvement and a better outcome. These findings plead for an evaluation of IL4I1 as a prognosis factor.
Collapse
|
29
|
Davis AM, Mao J, Naz B, Kohl JA, Rosenfeld CS. Comparative effects of estradiol, methyl-piperidino-pyrazole, raloxifene, and ICI 182 780 on gene expression in the murine uterus. J Mol Endocrinol 2008; 41:205-17. [PMID: 18632874 PMCID: PMC6697483 DOI: 10.1677/jme-08-0029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are potentially useful in treating various endometrial disorders, including endometrial cancer, as they block some of the detrimental effects of estrogen. It remains unclear whether each SERM regulates a unique subset of genes and, if so, whether the combination of a SERM and 17beta-estradiol has an additive or synergistic effect on gene expression. We performed microarray analysis with Affymetrix Mouse Genome 430 2.0 short oligomer arrays to determine gene expression changes in uteri of ovariectomized mice treated with estradiol (low and high dose), methyl-piperidino-pyrazole (MPP), ICI 182 780, raloxifene, and combinations of high dose of estradiol with one of the SERM and dimethyl sulfoxide (DMSO) vehicle control. The nine treatments clustered into two groups, with MPP, raloxifene, and high dose of estradiol in one, and low dose of estradiol, ICI + estradiol, ICI, MPP + estradiol, and raloxifene + estradiol in the second group. Surprisingly, combining a high dose of estradiol with a SERM markedly increased (P<0.02) the number of regulated genes compared with each individual treatment. Analysis of expression for selected genes in uteri of estradiol and SERM-treated mice by quantitative (Q)RT-PCR generally supported the microarray results. For some cancer-associated genes, including Klk1, Ihh, Cdc45l, and Cdca8, administration of MPP or raloxifene with estradiol resulted in greater expression than estradiol alone (P<0.05). By contrast, ICI 182 780 suppressed more genes governing DNA replication compared with MPP and raloxifene treatments. Therefore, ICI 182 780 might be superior to MPP and raloxifene to treat estrogen-induced endometrial cancer in women.
Collapse
Affiliation(s)
- Angela M Davis
- Department of Biomedical Sciences, 440F Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
30
|
Maranghi F, Tassinari R, Moracci G, Macrì C, Mantovani A. Effects of a low oral dose of diethylstilbestrol (DES) on reproductive tract development in F1 female CD-1 mice. Reprod Toxicol 2008; 26:146-50. [PMID: 18692564 DOI: 10.1016/j.reprotox.2008.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/27/2008] [Accepted: 07/08/2008] [Indexed: 01/20/2023]
Abstract
The synthetic estrogen diethylstilbestrol (DES) is a model to study the effects on female reproductive tract of endocrine disrupting chemicals interacting with estrogen receptors. Pregnant CD-1 mice were given daily by gavage 10microg/kg bw of DES (the lower range of therapeutic exposure) during gestational days 9-16, critical period for reproductive tract development. Parameters of sexual development were recorded after weaning and at sexual maturation. No signs of general toxicity were observed in dams. In DES-treated group, reduced litter weight during lactation and earlier vaginal patency was observed. Uterus weight was increased in F1 treated females at weaning. Histological analysis showed reduced endometrium thickness and increased polyovular follicles, irregular and oocytes with condensed chromatin in the ovary at sexual maturity. Prenatal DES oral administration induces subtle but significant effects on puberty onset, uterine and ovary morphology.
Collapse
Affiliation(s)
- Francesca Maranghi
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | |
Collapse
|