1
|
Yao Y, He Z, Li X, Xu J, Han X, Liang H, Zhuo R, Qiu W. Genome-wide identification of bHLH gene family and its response to cadmium stress in Populus × canescens. PeerJ 2024; 12:e17410. [PMID: 38818458 PMCID: PMC11138517 DOI: 10.7717/peerj.17410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
The basic helix-loop-helix (bHLH) gene family is integral to various aspects of plant development and the orchestration of stress response. This study focuses on the bHLH genes within Populus × canescens, a poplar species noted for its significant tolerance to cadmium (Cd) stress. Through our comprehensive genomic analysis, we have identified and characterized 170 bHLH genes within the P. canescens genome. These genes have been systematically classified into 22 distant subfamilies based on their evolutionary relationships. A notable conservation in gene structure and motif compositions were conserved across these subfamilies. Further analysis of the promoter regions of these genes revealed an abundance of essential cis-acting element, which are associated with plant hormonal regulation, development processes, and stress response pathway. Utilizing quantitative PCR (qPCR), we have documented the differential regulation of PcbHLHs in response to elevated Cd concentrations, with distinct expression patterns observed across various tissues. This study is poised to unravel the molecular mechanism underpinning Cd tolerance in P. canescens, offering valuable insights for the development of new cultivars with enhanced Cd accumulation capacity and tolerance. Such advancements are crucial for implementing effective phytoremediation strategies to mitigate soil pollution caused by Cd.
Collapse
Affiliation(s)
- Yuneng Yao
- China Three Gorges University, Yichang, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | | | - Xinmeng Li
- China Three Gorges University, Yichang, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Jing Xu
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xiaojiao Han
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | | | - Renying Zhuo
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenmin Qiu
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Chen B, Shi Y, Lu L, Wang L, Sun Y, Ning W, Liu Z, Cheng S. PsNRT2.3 interacts with PsNAR to promote high-affinity nitrate uptake in pea (Pisum sativum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108191. [PMID: 38016367 DOI: 10.1016/j.plaphy.2023.108191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Nitrate, the primary form of nitrogen absorbed by plants, supplies essential compounds for plant growth and development. Peas are frequently used as rotation crops to improve and stabilize soil fertility. However, the determinants of nitrate uptake and transport in peas remain largely unclear, primarily due to the pea genome's complexity and size. In this study, we utilized the complete genomic information of peas to identify three PsNRT2 family genes within the pea genome. We conducted a comprehensive examination of their protein conserved domains, physicochemical properties, gene structure, and phylogenetic evolution, revealing PsNRT2.3 as the potential key gene for high-affinity nitrate transport in peas. Subcellular localization studies indicated that PsNRT2.3 resides on the plasma membrane. Using hairy root transformation, we noted the predominant expression of PsNRT2.3 in the root stele, which is inducible by nitrate. Our experiments involving overexpression and silencing methods further confirmed that PsNRT2.3 plays a key role in enhancing nitrate uptake in peas. Additionally, our work showed that PsNAR could interact with PsNRT2.3, modulating pea nitrate uptake. After silencing PsNAR, even with the normal expression of PsNRT2.3, the ability of peas to absorb nitrate was significantly reduced. In conclusion, this study identifies the high-affinity nitrate transport gene PsNRT2.3 in peas and clarifies its critical role and regulatory network in nitrate transport, contributing to a new understanding of nitrate utilization in peas.
Collapse
Affiliation(s)
- Baizhi Chen
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Yan Shi
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Lu Lu
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China; College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Yuchen Sun
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Weidong Ning
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Zijian Liu
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Shifeng Cheng
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China.
| |
Collapse
|
3
|
Wang X, Hu Y, Wang W. Comparative Analysis of Circadian Transcriptomes Reveals Circadian Characteristics between Arabidopsis and Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:3344. [PMID: 37836084 PMCID: PMC10574400 DOI: 10.3390/plants12193344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The circadian clock, an endogenous timing system, exists in nearly all organisms on Earth. The plant circadian clock has been found to be intricately linked with various essential biological activities. Extensive studies of the plant circadian clock have yielded valuable applications. However, the distinctions of circadian clocks in two important plant species, Arabidopsis thaliana and Glycine max (soybean), remain largely unexplored. This study endeavors to address this gap by conducting a comprehensive comparison of the circadian transcriptome profiles of Arabidopsis and soybean to uncover their distinct circadian characteristics. Utilizing non-linear regression fitting (COS) integrated with weights, we identified circadian rhythmic genes within both organisms. Through an in-depth exploration of circadian parameters, we unveiled notable differences between Arabidopsis and soybean. Furthermore, our analysis of core circadian clock genes shed light on the distinctions in central oscillators between these two species. Additionally, we observed that the homologous genes of Arabidopsis circadian clock genes in soybean exert a significant influence on the regulation of flowering and maturity of soybean. This phenomenon appears to stem from shifts in circadian parameters within soybean genes. These findings highlight contrasting biological activities under circadian regulation in Arabidopsis and soybean. This study not only underscores the distinctive attributes of these species, but also offers valuable insights for further scrutiny into the soybean circadian clock and its potential applications.
Collapse
Affiliation(s)
- Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (X.W.); (Y.H.)
- Center for Life Sciences, Beijing 100871, China
| | - Yanfei Hu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (X.W.); (Y.H.)
- Center for Life Sciences, Beijing 100871, China
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (X.W.); (Y.H.)
- Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
4
|
Wang X, Jin Z, Ding Y, Guo M. Characterization of HSP70 family in watermelon ( Citrullus lanatus): identification, structure, evolution, and potential function in response to ABA, cold and drought stress. Front Genet 2023; 14:1201535. [PMID: 37323666 PMCID: PMC10265491 DOI: 10.3389/fgene.2023.1201535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Watermelon (Citrullus lanatus) as a crop with important economic value, is widely cultivated around the world. The heat shock protein 70 (HSP70) family in plant is indispensable under stress conditions. However, no comprehensive analysis of watermelon HSP70 family is reported to date. In this study, 12 ClHSP70 genes were identified from watermelon, which were unevenly located in 7 out of 11 chromosomes and divided into three subfamilies. ClHSP70 proteins were predicted to be localized primarily in cytoplasm, chloroplast, and endoplasmic reticulum. Two pairs of segmental repeats and 1 pair of tandem repeats existed in ClHSP70 genes, and ClHSP70s underwent strong purification selection. There were many abscisic acid (ABA) and abiotic stress response elements in ClHSP70 promoters. Additionally, the transcriptional levels of ClHSP70s in roots, stems, true leaves, and cotyledons were also analyzed. Some of ClHSP70 genes were also strongly induced by ABA. Furthermore, ClHSP70s also had different degrees of response to drought and cold stress. The above data indicate that ClHSP70s may be participated in growth and development, signal transduction and abiotic stress response, laying a foundation for further analysis of the function of ClHSP70s in biological processes.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
| | - Zhi Jin
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
| | - Yina Ding
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
| | - Meng Guo
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, Ningxia, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| |
Collapse
|
5
|
Jiang L, Wang P, Jia H, Wu T, Yuan S, Jiang B, Sun S, Zhang Y, Wang L, Han T. Haplotype Analysis of GmSGF14 Gene Family Reveals Its Roles in Photoperiodic Flowering and Regional Adaptation of Soybean. Int J Mol Sci 2023; 24:ijms24119436. [PMID: 37298387 DOI: 10.3390/ijms24119436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Flowering time and photoperiod sensitivity are fundamental traits that determine soybean adaptation to a given region or a wide range of geographic environments. The General Regulatory Factors (GRFs), also known as 14-3-3 family, are involved in protein-protein interactions in a phosphorylation-dependent manner, thus regulating ubiquitous biological processes, such as photoperiodic flowering, plant immunity and stress response. In this study, 20 soybean GmSGF14 genes were identified and divided into two categories according to phylogenetic relationships and structural characteristics. Real-time quantitative PCR analysis revealed that GmSGF14g, GmSGF14i, GmSGF14j, GmSGF14k, GmSGF14m and GmSGF14s were highly expressed in all tissues compared to other GmSGF14 genes. In addition, we found that the transcript levels of GmSGF14 family genes in leaves varied significantly under different photoperiodic conditions, indicating that their expression responds to photoperiod. To explore the role of GmSGF14 in the regulation of soybean flowering, the geographical distribution of major haplotypes and their association with flowering time in six environments among 207 soybean germplasms were studied. Haplotype analysis confirmed that the GmSGF14mH4 harboring a frameshift mutation in the 14-3-3 domain was associated with later flowering. Geographical distribution analysis demonstrated that the haplotypes related to early flowering were frequently found in high-latitude regions, while the haplotypes associated with late flowering were mostly distributed in low-latitude regions of China. Taken together, our results reveal that the GmSGF14 family genes play essential roles in photoperiodic flowering and geographical adaptation of soybean, providing theoretical support for further exploring the function of specific genes in this family and varietal improvement for wide adaptability.
Collapse
Affiliation(s)
- Liwei Jiang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163316, China
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Peiguo Wang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongchang Jia
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe 164399, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yuxian Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Liwei Wang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Tianfu Han
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163316, China
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
6
|
Shirazi Z, Khakdan F, Rafiei F, Balalami MY, Ranjbar M. Genome-wide identification and expression profile analysis of metal tolerance protein gene family in Eucalyptus grandis under metal stresses. BMC PLANT BIOLOGY 2023; 23:240. [PMID: 37149585 PMCID: PMC10163719 DOI: 10.1186/s12870-023-04240-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Metal tolerance proteins (MTPs) as Me2+/H+(K+) antiporters participate in the transport of divalent cations, leading to heavy metal stress resistance and mineral utilization in plants. In the present study, to obtain better knowledge of the biological functions of the MTPs family, 20 potential EgMTPs genes were identified in Eucalyptus grandis and classified into seven groups belonging to three cation diffusion facilitator groups (Mn-CDFs, Zn/Fe-CDFs, and Zn-CDFs) and seven groups. EgMTP-encoded amino acids ranged from 315 to 884, and most of them contained 4-6 recognized transmembrane domains and were clearly prognosticated to localize into the cell vacuole. Almost all EgMTP genes experienced gene duplication events, in which some might be uniformly distributed in the genome. The numbers of cation efflux and the zinc transporter dimerization domain were highest in EgMTP proteins. The promoter regions of EgMTP genes have different cis-regulatory elements, indicating that the transcription rate of EgMTP genes can be a controlled response to different stimuli in multiple pathways. Our findings provide accurate perception on the role of the predicted miRNAs and the presence of SSR marker in the Eucalyptus genome and clarify their functions in metal tolerance regulation and marker-assisted selection, respectively. Gene expression profiling based on previous RNA-seq data indicates a probable function for EgMTP genes during development and responses to biotic stress. Additionally, the upregulation of EgMTP6, EgMTP5, and EgMTP11.1 to excess Cd2+ and Cu2+ exposure might be responsible for metal translocation from roots to leaves.
Collapse
Affiliation(s)
- Zahra Shirazi
- Department of Biotechnology Research, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran.
| | | | - Fariba Rafiei
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Mahdi Yahyazadeh Balalami
- Department of Medicinal Plant Research, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran
| | - Mojtaba Ranjbar
- Microbial Biotechnology Department, College of Biotechnology, University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
7
|
Yang W, Feng L, Luo J, Zhang H, Jiang F, He Y, Li X, Du J, Owusu Adjei M, Luan A, Ma J. Genome-Wide Identification and Characterization of R2R3-MYB Provide Insight into Anthocyanin Biosynthesis Regulation Mechanism of Ananas comosus var. bracteatus. Int J Mol Sci 2023; 24:3133. [PMID: 36834551 PMCID: PMC9964748 DOI: 10.3390/ijms24043133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The R2R3-MYB proteins comprise the largest class of MYB transcription factors, which play an essential role in regulating anthocyanin synthesis in various plant species. Ananas comosus var. bracteatus is an important colorful anthocyanins-rich garden plant. The spatio-temporal accumulation of anthocyanins in chimeric leaves, bracts, flowers, and peels makes it an important plant with a long ornamental period and highly improves its commercial value. We conducted a comprehensive bioinformatic analysis of the R2R3-MYB gene family based on genome data from A. comosus var. bracteatus. Phylogenetic analysis, gene structure and motif analysis, gene duplication, collinearity, and promoter analysis were used to analyze the characteristics of this gene family. In this work, a total of 99 R2R3-MYB genes were identified and classified into 33 subfamilies according to phylogenetic analysis, and most of them were localized in the nucleus. We found these genes were mapped to 25 chromosomes. Gene structure and protein motifs were conserved among AbR2R3-MYB genes, especially within the same subfamily. Collinearity analysis revealed four pairs of tandem duplicated genes and 32 segmental duplicates in AbR2R3-MYB genes, indicating that segmental duplication contributed to the amplification of the AbR2R3-MYB gene family. A total of 273 ABRE responsiveness, 66 TCA elements, 97 CGTCA motifs, and TGACG motifs were the main cis elements in the promoter region under response to ABA, SA, and MEJA. These results revealed the potential function of AbR2R3-MYB genes in response to hormone stress. Ten R2R3-MYBs were found to have high homology to MYB proteins reported to be involved in anthocyanin biosynthesis from other plants. RT-qPCR results revealed the 10 AbR2R3-MYB genes showed tissue-specific expression patterns, six of them expressed the highest in the flower, two genes in the bract, and two genes in the leaf. These results suggested that these genes may be the candidates that regulate anthocyanin biosynthesis of A. comosus var. bracteatus in the flower, leaf, and bract, respectively. In addition, the expressions of these 10 AbR2R3-MYB genes were differentially induced by ABA, MEJA, and SA, implying that these genes may play crucial roles in hormone-induced anthocyanin biosynthesis. Our study provided a comprehensive and systematic analysis of AbR2R3-MYB genes and identified the AbR2R3-MYB genes regulating the spatial-temporal anthocyanin biosynthesis in A. comosus var. bracteatus, which would be valuable for further study on the anthocyanin regulation mechanism of A. comosus var. bracteatus.
Collapse
Affiliation(s)
- Wei Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Lijun Feng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Jiaheng Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Huiling Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Juan Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Mark Owusu Adjei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Aiping Luan
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| |
Collapse
|
8
|
Genome-wide identification and expression analysis of metal tolerance protein (MTP) gene family in soybean (Glycine max) under heavy metal stress. Mol Biol Rep 2023; 50:2975-2990. [PMID: 36653731 DOI: 10.1007/s11033-022-08100-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/08/2022] [Indexed: 01/19/2023]
Abstract
AIM Plant metal tolerance proteins (MTPs) are plant membrane divalent cation transporters that specifically contribute to heavy metal stress resistance and mineral uptake. However, little is known about this family's molecular behaviors and biological activities in soybean. METHODS AND RESULTS A total of 20 potential MTP candidate genes were identified and studied in the soybean genome for phylogenetic relationships, chromosomal distributions, gene structures, gene ontology, cis-elements, and previous gene expression. Furthermore, the expression of MTPs has been investigated under different heavy metals treatments. All identified soybean MTPs (GmaMTPs) contain a cation efflux domain or a ZT dimer and are further divided into three primary cation diffusion facilitator (CDF) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The developmental analysis reveals that segmental duplication contributes to the GmaMTP family's expansion. Tissue-specific expression profiling revealed comparative expression profiling in similar groups, although gene expression differed between groups. GmaMTP genes displayed biased responses in either plant leaves or roots when treated with heavy metal. In the leaves and roots, nine and ten GmaMTPs responded to at least one metal ion treatment. Furthermore, in most heavy metal treatments, GmaMTP1.1, GmaMTP1.2, GmaMTP3.1, GmaMTP3.2, GmaMTP4.1, and GmaMTP4.3 exhibited significant expression responses. CONCLUSION Our findings provided insight into the evolution of MTPs in soybean. Overall, our findings shed light on the evolution of the MTP gene family in soybean and pave the path for further functional characterization of this gene family.
Collapse
|
9
|
Vu NT, Nguyen NBT, Ha HH, Nguyen LN, Luu LH, Dao HQ, Vu TT, Huynh HTT, Le HTT. Evolutionary analysis and expression profiling of the HSP70 gene family in response to abiotic stresses in tomato ( Solanum lycopersicum). Sci Prog 2023; 106:368504221148843. [PMID: 36650980 PMCID: PMC10358566 DOI: 10.1177/00368504221148843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heat shock protein 70 (HSP70) genes play essential roles in guarding plants against abiotic stresses, including heat, drought, and salt. In this study, the SlHSP70 gene family in tomatoes has been characterized using bioinformatic tools. 25 putative SlHSP70 genes in the tomato genome were found and classified into five subfamilies, with multi-subcellular localizations. Twelve pairs of gene duplications were identified, and segmental events were determined as the main factor for the gene family expansion. Based on public RNA-seq data, gene expression analysis identified the majority of genes expressed in the examined organelles. Further RNA-seq analysis and then quantitative RT-PCR validation showed that many SlHSP70 members are responsible for cellular feedback to heat, drought, and salt treatments, in which, at least five genes might be potential key players in the stress response. Our results provided a thorough overview of the SlHSP70 gene family in the tomato, which may be useful for the evolutionary and functional analysis of SlHSP70 under abiotic stress conditions.
Collapse
Affiliation(s)
- Nam Tuan Vu
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Bich Thi Nguyen
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hanh Hong Ha
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Nhat Nguyen
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ly Han Luu
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Quang Dao
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trinh Thi Vu
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hue Thu Thi Huynh
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hien Thu Thi Le
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
10
|
Zhao S, Yan F, Liu Y, Sun M, Wang Y, Li J, Zhang X, Yang X, Wang Q. Genome-wide identification and expression analysis of diacylglycerol acyltransferase genes in soybean ( Glycine max). PeerJ 2023; 11:e14941. [PMID: 36968000 PMCID: PMC10035420 DOI: 10.7717/peerj.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 03/29/2023] Open
Abstract
Background Soybean (Glycine max) is a major protein and vegetable oil source. In plants, diacylglycerol acyltransferase (DGAT) can exert strong flux control, which is rate-limiting for triacylglycerol biosynthesis in seed oil formation. Methods Here, we identified soybean DGAT genes via a bioinformatics method, thereby laying a solid foundation for further research on their function. Based on our bioinformatics analyses, including gene structure, protein domain characteristics, and phylogenetic analysis, 26 DGAT putative gene family members unevenly distributed on 12 of the 20 soybean chromosomes were identified and divided into the following four groups: DGAT1, DGAT2, WS/DGAT, and cytoplasmic DGAT. Results The Ka/Ks ratio of most of these genes indicated a significant positive selection pressure. DGAT genes exhibited characteristic expression patterns in soybean tissues. The differences in the structure and expression of soybean DGAT genes revealed the diversity of their functions and the complexity of soybean fatty acid metabolism. Our findings provide important information for research on the fatty acid metabolism pathway in soybean. Furthermore, our results will help identify candidate genes for potential fatty acid-profile modifications to improve soybean seed oil content. Conclusions This is the first time that in silico studies have been used to report the genomic and proteomic characteristics of DGAT in soybean and the effect of its specific expression on organs, age, and stages.
Collapse
|
11
|
Li Y, Zhang H, Dong F, Zou J, Gao C, Zhu Z, Liu Y. Multiple roles of wheat calmodulin genes during stress treatment and TaCAM2-D as a positive regulator in response to drought and salt tolerance. Int J Biol Macromol 2022; 220:985-997. [PMID: 36027985 DOI: 10.1016/j.ijbiomac.2022.08.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are the most prominent calcium (Ca2+) sensing proteins involved in Ca2+-signaling processes. However, the function of these calcium sensors in wheat remains unclear. In this study, 15 TaCAMs and 113 TaCMLs were identified from the wheat reference genome. The analysis of cis-acting elements and expression patterns showed that TaCAMs might play an important role in response to abiotic and biotic stresses. TaCAM2-D gene was found to be significantly upregulated under drought and salt stresses, and thus, it was selected to further explore the biological function. Moreover, TaCAM2-D was observed to be localized in the nucleus, membrane and cytoplasm. Overexpression of TaCAM2-D in Arabidopsis conferred greater tolerance to drought and salt. The prediction analysis, the yeast two-hybrid analysis, and bimolecular fluorescence complementation assay indicated that TaCAM2-D interacted with TaMPK8, which is one of the wheat mitogen-activated protein kinases. Thus, the current study provides insights into the understanding of the TaCAM and TaCML genes in wheat.
Collapse
Affiliation(s)
- Yaqian Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Huadong Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Feiyan Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Juan Zou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Chunbao Gao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Zhanwang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wheat Disease Biology Research Station for Central China, Wuhan, China.
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wheat Disease Biology Research Station for Central China, Wuhan, China.
| |
Collapse
|
12
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Goumperis T, Raffaello T. Risk assessment of a new bioinformatics evaluation of the insertion sites of genetically modified soybean event 40-3-2. EFSA J 2022; 20:e07412. [PMID: 35898294 PMCID: PMC9305392 DOI: 10.2903/j.efsa.2022.7412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetically modified (GM) soybean 40-3-2 expresses a 5-enolpyruvylshikimate-3-phosphate synthase protein from Agrobacterium sp. strain CP4 (CP4 EPSPS), which confers tolerance to glyphosate. This event was previously assessed by the GMO Panel as a single event and as part of a two-event stack and was found to be as safe as its conventional counterparts and other appropriate comparators with respect to potential effects on human and animal health and the environment. On September 2021, the European Commission requested EFSA to evaluate a new bioinformatics study which revealed predicted genomic deletions at the insertion sites using the available soybean reference genome. Considering the variability of the soybean genome, with a number of structural variants such as presence/absence variants and copy number variants including genic regions, as well as the fact that a number of genes are present only in particular varieties, the GMO Panel concludes that comparing only to the reference genome does not allow to conclude that the transformation event resulted in gene loss. In support of this, the transcriptomic analysis did not show major differences in gene expression when comparing the soybean 40-3-2 with the most closely related conventional variety, indicating that the genetic redundancy may compensate for the potential gene loss. Moreover, the composition, phenotypic and agronomic analyses already assessed by the GMO Panel in previous opinions did not show differences between soybean 40-3-2 and its comparators suggesting that the potential gene loss may not have a significant phenotypic effect in soybean 40-3-2. For these reasons, the EFSA GMO Panel concludes that the new information provided by the applicant on soybean 40-3-2 does not alter EFSA's previous conclusions.
Collapse
|
13
|
Li G, Wang Q, Lu L, Wang S, Chen X, Khan MHU, Zhang Y, Yang S. Identification of the soybean small auxin upregulated RNA (SAUR) gene family and specific haplotype for drought tolerance. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Davoudi M, Chen J, Lou Q. Genome-Wide Identification and Expression Analysis of Heat Shock Protein 70 ( HSP70) Gene Family in Pumpkin ( Cucurbita moschata) Rootstock under Drought Stress Suggested the Potential Role of these Chaperones in Stress Tolerance. Int J Mol Sci 2022; 23:ijms23031918. [PMID: 35163839 PMCID: PMC8836791 DOI: 10.3390/ijms23031918] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 70s (HSP70s) are highly conserved proteins that are involved in stress responses. These chaperones play pivotal roles in protein folding, removing the extra amounts of oxidized proteins, preventing protein denaturation, and improving the antioxidant system activities. This conserved family has been characterized in several crops under drought stress conditions. However, there is no study on HSP70s in pumpkin (Cucurbita moschata). Therefore, we performed a comprehensive analysis of this gene family, including phylogenetic relationship, motif and gene structure analysis, gene duplication, collinearity, and promoter analysis. In this research, we found 21 HSP70s that were classified into five groups (from A to E). These genes were mostly localized in the cytoplasm, chloroplast, mitochondria, nucleus, and endoplasmic reticulum (ER). We could observe more similarity in closely linked subfamilies in terms of motifs, the number of introns/exons, and the corresponding cellular compartments. According to the collinearity analysis, gene duplication had occurred as a result of purifying selection. The results showed that the occurrence of gene duplication for all nine gene pairs was due to segmental duplication (SD). Synteny analysis revealed a closer relationship between pumpkin and cucumber than pumpkin and Arabidopsis. Promoter analysis showed the presence of various cis-regulatory elements in the up-stream region of the HSP70 genes, such as hormones and stress-responsive elements, indicating a potential role of this gene family in stress tolerance. We furtherly performed the gene expression analysis of the HSP70s in pumpkin under progressive drought stress. Pumpkin is widely used as a rootstock to improve stress tolerance, as well as fruit quality of cucumber scion. Since stress-responsive mobile molecules translocate through vascular tissue from roots to the whole plant body, we used the xylem of grafted materials to study the expression patterns of the HSP70 (potentially mobile) gene family. The results indicated that all CmoHSP70s had very low expression levels at 4 days after stress (DAS). However, the genes showed different expression patterns by progressing he drought period. For example, the expression of CmoHSP70-4 (in subgroup E) and CmoHSP70-14 (in subgroup C) sharply increased at 6 and 11 DAS, respectively. However, the expression of all genes belonging to subgroup A did not change significantly in response to drought stress. These findings indicated the diverse roles of this gene family under drought stress and provided valuable information for further investigation on the function of this gene family, especially under stressful conditions.
Collapse
|
15
|
El- Sappah AH, Elrys AS, Desoky ESM, Zhao X, Bingwen W, El-Sappah HH, Zhu Y, Zhou W, Zhao X, Li J. Comprehensive genome wide identification and expression analysis of MTP gene family in tomato ( Solanum lycopersicum) under multiple heavy metal stress. Saudi J Biol Sci 2021; 28:6946-6956. [PMID: 34866994 PMCID: PMC8626246 DOI: 10.1016/j.sjbs.2021.07.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Plant metal tolerance proteins (MTPs) play major roles in enhancing resistance to heavy metal tolerance and homeostasis. However, the role of MTPs genes in tomato, which is one of the most popular crops, is still largely limited. Hence, we investigated genome-wide study of tomato MTPs, including phylogenetic, duplication, gene structure, gene ontology and previous transcriptomic data analysis. Moreover, the MTPs expression behaviour under various heavy metals stress has rarely been investigated. In the current study, eleven MTP candidate genes were genome-wide identified and classified into three major groups; Mn-cation diffusion facilitators (CDFs), Fe/Zn-CDFs, and Zn-CDFs based on the phylogeny. Structural analysis of SlMTPs showed high gene similarity within the same group with cation_efflux or ZT_dimerdomains. Evolutionary analysis revealed that segmental duplication contributed to the expansion of the SlMTP family. Gene ontology further showed the vital roles of MTPs in metal-related processes. Tissue-specific expression profiling exhibited similar expression patterns in the same group, whereas gene expression varied among groups. The MTPs expression was evaluated after tomato treatments by five divalent heavy metals (Cd2+, Co2+, Mn2+, Zn2+, and Fe2+). SlMTP genes displayed differential responses in either plant leaves or roots under heavy metals treatments. Nine and ten SlMTPs responded to at least one metal ion treatment in leaves and roots, respectively. In addition SlMTP1, SlMTP3, SlMTP4, SlMTP8, SlMTP10 and SlMTP11 exhibited the highest expression responses in most of heavy metals treatments. Overall, our findings presented a standpoint on the evolution of MTPs and their evolution in tomato and paved the way for additional functional characterization under heavy metal toxicity.
Collapse
Affiliation(s)
- Ahmed H. El- Sappah
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Xia Zhao
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, Sichuan, China
| | - Wang Bingwen
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, Sichuan, China
| | | | - Yumin Zhu
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, Sichuan, China
| | - Wanhai Zhou
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, Sichuan, China
| | - Xianming Zhao
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, Sichuan, China
| | - Jia Li
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, Sichuan, China
| |
Collapse
|
16
|
Discovery of SNPs in important legumes through comparative genome analysis and conversion of SNPs into PCR-based markers. J Genet 2021. [DOI: 10.1007/s12041-021-01320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
El-Sappah AH, Elbaiomy RG, Elrys AS, Wang Y, Zhu Y, Huang Q, Yan K, Xianming Z, Abbas M, El-Tarabily KA, Li J. Genome-Wide Identification and Expression Analysis of Metal Tolerance Protein Gene Family in Medicago truncatula Under a Broad Range of Heavy Metal Stress. Front Genet 2021; 12:713224. [PMID: 34603378 PMCID: PMC8482800 DOI: 10.3389/fgene.2021.713224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Metal tolerance proteins (MTPs) encompass plant membrane divalent cation transporters to specifically participate in heavy metal stress resistance and mineral acquisition. However, the molecular behaviors and biological functions of this family in Medicago truncatula are scarcely known. A total of 12 potential MTP candidate genes in the M. truncatula genome were successfully identified and analyzed for a phylogenetic relationship, chromosomal distributions, gene structures, docking analysis, gene ontology, and previous gene expression. M. truncatula MTPs (MtMTPs) were further classified into three major cation diffusion facilitator (CDFs) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The structural analysis of MtMTPs displayed high gene similarity within the same group where all of them have cation_efflux domain or ZT_dimer. Cis-acting element analysis suggested that various abiotic stresses and phytohormones could induce the most MtMTP gene transcripts. Among all MTPs, PF16916 is the specific domain, whereas GLY, ILE, LEU, MET, ALA, SER, THR, VAL, ASN, and PHE amino acids were predicted to be the binding residues in the ligand-binding site of all these proteins. RNA-seq and gene ontology analysis revealed the significant role of MTP genes in the growth and development of M. truncatula. MtMTP genes displayed differential responses in plant leaves, stems, and roots under five divalent heavy metals (Cd2+, Co2+, Mn2+, Zn2+, and Fe2+). Ten, seven, and nine MtMTPs responded to at least one metal ion treatment in the leaves, stems, and roots, respectively. Additionally, MtMTP1.1, MtMTP1.2, and MtMTP4 exhibited the highest expression responses in most heavy metal treatments. Our results presented a standpoint on the evolution of MTPs in M. truncatula. Overall, our study provides a novel insight into the evolution of the MTP gene family in M. truncatula and paves the way for additional functional characterization of this gene family.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.,Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Yumin Zhu
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Qiulan Huang
- College of Tea Science, Yibin University, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Zhao Xianming
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.,Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| |
Collapse
|
18
|
Hu X, Zuo J. The CCCH zinc finger family of soybean (Glycine max L.): genome-wide identification, expression, domestication, GWAS and haplotype analysis. BMC Genomics 2021; 22:511. [PMID: 34233625 PMCID: PMC8261996 DOI: 10.1186/s12864-021-07787-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CCCH zinc finger (zf_CCCH) is a unique subfamily featured one or more zinc finger motif(s) comprising of three Cys and one His residues. The zf_CCCH family have been reported involving in various processes of plant development and adaptation. RESULTS In this study, the zf_CCCH genes were identified via a genome-wide search and were systematically analyzed. 116 Gmzf_CCCHs were obtained and classified into seventeen subfamilies. Gene duplication and expansion analysis showed that tandem and segmental duplications contributed to the expansion of the Gmzf_CCCH gene family, and that segmental duplication play the main role. The expression patterns of Gmzf_CCCH genes were tissue-specific. Eleven domesticated genes were detected involved in the regulation of seed oil and protein synthesis as well as growth and development of soybean through GWAS and haplotype analysis for Gmzf_CCCH genes among the 164 of 302 soybeans resequencing data. Among which, 8 genes play an important role in the synthesis of seed oil or fatty acid, and the frequency of their elite haplotypes changes significantly among wild, landrace and improved cultivars, indicating that they have been strongly selected in the process of soybean domestication. CONCLUSIONS This study provides a scientific foundation for the comprehensive understanding, future cloning and functional studies of Gmzf_CCCH genes in soybean, meanwhile, it was also helpful for the improvement of soybean with high oil content.
Collapse
Affiliation(s)
- Xin Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China.
| | - Jianfang Zuo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
19
|
Chen ZF, Ru JN, Sun GZ, Du Y, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Zhang XH. Genomic-Wide Analysis of the PLC Family and Detection of GmPI-PLC7 Responses to Drought and Salt Stresses in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:631470. [PMID: 33763092 PMCID: PMC7982816 DOI: 10.3389/fpls.2021.631470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) performs significant functions in a variety of biological processes, including plant growth and development. The PLC family of enzymes principally catalyze the hydrolysis of phospholipids in organisms. This exhaustive exploration of soybean GmPLC members using genome databases resulted in the identification of 15 phosphatidylinositol-specific PLC (GmPI-PLC) and 9 phosphatidylcholine-hydrolyzing PLC (GmNPC) genes. Chromosomal location analysis indicated that GmPLC genes mapped to 10 of the 20 soybean chromosomes. Phylogenetic relationship analysis revealed that GmPLC genes distributed into two groups in soybean, the PI-PLC and NPC groups. The expression patterns and tissue expression analysis showed that GmPLCs were differentially expressed in response to abiotic stresses. GmPI-PLC7 was selected to further explore the role of PLC in soybean response to drought and salt stresses by a series of experiments. Compared with the transgenic empty vector (EV) control lines, over-expression of GmPI-PLC7 (OE) conferred higher drought and salt tolerance in soybean, while the GmPI-PLC7-RNAi (RNAi) lines exhibited the opposite phenotypes. Plant tissue staining and physiological parameters observed from drought- and salt-stressed plants showed that stress increased the contents of chlorophyll, oxygen free radical (O2 -), hydrogen peroxide (H2O2) and NADH oxidase (NOX) to amounts higher than those observed in non-stressed plants. This study provides new insights in the functional analysis of GmPLC genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Zhi-Feng Chen
- College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jing-Na Ru
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Guo-Zhong Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yan Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xiao-Hong Zhang
- College of Life Sciences, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
20
|
Li Y, Song J, Zhu G, Hou Z, Wang L, Wu X, Fang Z, Liu Y, Gao C. Genome-wide identification and expression analysis of ADP-ribosylation factors associated with biotic and abiotic stress in wheat ( Triticum aestivum L.). PeerJ 2021; 9:e10963. [PMID: 33717696 PMCID: PMC7934654 DOI: 10.7717/peerj.10963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
The ARF gene family plays important roles in intracellular transport in eukaryotes and is involved in conferring tolerance to biotic and abiotic stresses in plants. To explore the role of these genes in the development of wheat (Triticum aestivum L.), 74 wheat ARF genes (TaARFs; including 18 alternate transcripts) were identified and clustered into seven sub-groups. Phylogenetic analysis revealed that TaARFA1 sub-group genes were strongly conserved. Numerous cis-elements functionally associated with the stress response and hormones were identified in the TaARFA1 sub-group, implying that these TaARFs are induced in response to abiotic and biotic stresses in wheat. According to available transcriptome data and qRT-PCR analysis, the TaARFA1 genes displayed tissue-specific expression patterns and were regulated by biotic stress (powdery mildew and stripe rust) and abiotic stress (cold, heat, ABA, drought and NaCl). Protein interaction network analysis further indicated that TaARFA1 proteins may interact with protein phosphatase 2C (PP2C), which is a key protein in the ABA signaling pathway. This comprehensive analysis will be useful for further functional characterization of TaARF genes and the development of high-quality wheat varieties.
Collapse
Affiliation(s)
- Yaqian Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Jinghan Song
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Zehao Hou
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Lin Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaoxue Wu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhengwu Fang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Chunbao Gao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
21
|
Dong J, Zielinski RE, Hudson ME. t-SNAREs bind the Rhg1 α-SNAP and mediate soybean cyst nematode resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:318-331. [PMID: 32645235 DOI: 10.1111/tpj.14923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 05/27/2023]
Abstract
Soybean cyst nematode (SCN; Heterodera glycines) is the largest pathogenic cause of soybean yield loss. The Rhg1 locus is the most used and best characterized SCN resistance locus, and contains three genes including one encoding an α-SNAP protein. Although the Rhg1 α-SNAP is known to play an important role in vesicle trafficking and SCN resistance, the protein's binding partners and the molecular mechanisms underpinning SCN resistance remain unclear. In this report, we show that the Rhg1 α-SNAP strongly interacts with two syntaxins of the t-SNARE family (Glyma.12G194800 and Glyma.16G154200) in yeast and plants; importantly, the genes encoding these syntaxins co-localize with SCN resistance quantitative trait loci. Fluorescent visualization revealed that the α-SNAP and the two interacting syntaxins localize to the plasma membrane and perinuclear space in both tobacco epidermal and soybean root cells. The two syntaxins and their two homeologs were mutated, individually and in combination, using the CRISPR-Cas9 system in the SCN-resistant Peking and SCN-susceptible Essex soybean lines. Peking roots with deletions introduced into syntaxin genes exhibited significantly reduced resistance to SCN, confirming that t-SNAREs are critical to resisting SCN infection. The results presented here uncover a key step in the molecular mechanism of SCN resistance, and will be invaluable to soybean breeders aiming to develop highly SCN-resistant soybean varieties.
Collapse
Affiliation(s)
- Jia Dong
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Raymond E Zielinski
- Department of Plant Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
22
|
Wilkes J, Saski C, Klepadlo M, Fallen B, Agudelo P. Quantitative Trait Loci Associated with Rotylenchulus reniformis Host Suitability in Soybean. PHYTOPATHOLOGY 2020; 110:1511-1521. [PMID: 32370659 DOI: 10.1094/phyto-02-20-0035-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reniform nematode (Rotylenchulus reniformis) is a yield-limiting pathogen of soybean (Glycine max) in the southeastern region of the United States. A population of 250 recombinant inbred lines (RIL) (F2:8) developed from a cross between reniform nematode resistant soybean cultivar Forrest and susceptible cultivar Williams 82 was utilized to identify regions associated with host suitability. A genetic linkage map was constructed using single-nucleotide polymorphism markers generated by genotyping-by-sequencing. The phenotype was measured in the RIL population and resistance was characterized using normalized and transformed nematode reproduction indices in an optimal univariate cluster analysis. Quantitative trait loci (QTL) analysis using normalized phenotype scores identified two QTLs on each arm of chromosome 18 (rrn-1 and rrn-2). The same QTL analysis performed with log10(x) transformed phenotype data also identified two QTLs: one on chromosome 18 overlapping the same region in the other analysis (rrn-1), and one on chromosome 11 (rrn-3). While rrn-1 and rrn-3 have been reported associated with reduced reproduction of reniform nematode, this is the first report of the rrn-2 region associated with host suitability to reniform nematode. The resistant parent allele at rrn-2 showed an inverse relationship with the resistance phenotype, correlating with an increase in nematode reproduction or host suitability. Several candidate genes within these regions corresponded with host plant defense systems. Interestingly, a characteristic pathogen resistance gene with a leucine-rich repeat was discovered within rrn-2. These genetic markers can be used by soybean breeders in marker-assisted selection to develop lines with resistance to reniform nematode.
Collapse
Affiliation(s)
- Juliet Wilkes
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Mariola Klepadlo
- Division of Plant Sciences, University of Missouri, Columbia, MO 65201
| | - Benjamin Fallen
- Pee Dee Research and Education Center, Clemson University, Florence, SC 29506
| | - Paula Agudelo
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
23
|
Liu M, Wang Y, Nie Z, Gai J, Bhat JA, Kong J, Zhao T. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr]. PLANT MOLECULAR BIOLOGY 2020; 103:527-543. [PMID: 32323129 DOI: 10.1007/s11103-020-01008-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Two homologous, chloroplast located CAAX proteases were identified to be functional redundancy in determining soybean leaf color, and they probably play essential roles in regulating light harvesting and absorption during photosynthesis process. Leaf color mutants are ideal materials for studying photosynthesis and chlorophyll metabolism. The soybean [Glycine max (L.) Merr.] yellowing leaf (yl) variation is a recombinant mutant characterized by yellow foliage, which derived from the specific cross between green seed-coated and yellow seed-coated soybean varieties. Molecular cloning and subsequent gene silencing revealed that the yellow leaf trait of yl was controlled by two recessive nuclear genes, glyma11g04660 and glyma01g40650, named as YL1 and YL2 respectively, and the latter was confirmed to be same as the earlier reported green seed-coat gene G. Both YL1 and YL2 belonged to chloroplast-located proteases possessing Abi domain, and these genes were expressed in various tissues, especially in young leaves. In yl, the expression of YL1 and YL2 were suppressed in most tissues, and the young leaf of yl presented an increased maximal photochemical efficiency (Fv/Fm) as well as enhanced net photosynthesis activity (Pn), indicating that YL1 and YL2 are involved in light absorption regulation during photosynthesis process. Collectively, the identification and description of YL1 and YL2 in our study provides insights for the regulatory mechanism of photosynthesis process, and these findings will further assist to clarify the close relationship between photosynthesis and chlorophyll metabolism.
Collapse
Affiliation(s)
- Meifeng Liu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yaqi Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhixing Nie
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiejie Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
24
|
Su HG, Zhang XH, Wang TT, Wei WL, Wang YX, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Min DH. Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:726. [PMID: 32670311 PMCID: PMC7332888 DOI: 10.3389/fpls.2020.00726] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 05/03/2023]
Abstract
GDSL-type esterase/lipase proteins (GELPs) belong to the SGNH hydrolase superfamily and contain a conserved GDSL motif at their N-terminus. GELPs are widely distributed in nature, from microbes to plants, and play crucial roles in growth and development, stress responses and pathogen defense. However, the identification and functional analysis of GELP genes are hardly explored in soybean. This study describes the identification of 194 GELP genes in the soybean genome and their phylogenetic classification into 11 subfamilies (A-K). GmGELP genes are disproportionally distributed on 20 soybean chromosomes. Large-scale WGD/segmental duplication events contribute greatly to the expansion of the soybean GDSL gene family. The Ka/Ks ratios of more than 70% of duplicated gene pairs ranged from 0.1-0.3, indicating that most GmGELP genes were under purifying selection pressure. Gene structure analysis indicate that more than 74% of GmGELP genes are interrupted by 4 introns and composed of 5 exons in their coding regions, and closer homologous genes in the phylogenetic tree often have similar exon-intron organization. Further statistics revealed that approximately 56% of subfamily K members contain more than 4 introns, and about 28% of subfamily I members consist of less than 4 introns. For this reason, the two subfamilies were used to simulate intron gain and loss events, respectively. Furthermore, a new model of intron position distribution was established in current study to explore whether the evolution of multi-gene families resulted from the diversity of gene structure. Finally, RNA-seq data were used to investigate the expression profiles of GmGELP gene under different tissues and multiple abiotic stress treatments. Subsequently, 7 stress-responsive GmGELP genes were selected to verify their expression levels by RT-qPCR, the results were consistent with RNA-seq data. Among 7 GmGELP genes, GmGELP28 was selected for further study owing to clear responses to drought, salt and ABA treatments. Transgenic Arabidopsis thaliana and soybean plants showed drought and salt tolerant phenotype. Overexpression of GmGELP28 resulted in the changes of several physiological indicators, which allowed plants to adapt adverse conditions. In all, GmGELP28 is a potential candidate gene for improving the salinity and drought tolerance of soybean.
Collapse
Affiliation(s)
- Hong-Gang Su
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xiao-Hong Zhang
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Ting-Ting Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Zhao-Shi Xu,
| | - Dong-Hong Min
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Dong-Hong Min,
| |
Collapse
|
25
|
Wang Q, Li G, Zheng K, Zhu X, Ma J, Wang D, Tang K, Feng X, Leng J, Yu H, Yang S, Feng X. The Soybean Laccase Gene Family: Evolution and Possible Roles in Plant Defense and Stem Strength Selection. Genes (Basel) 2019; 10:E701. [PMID: 31514462 PMCID: PMC6770974 DOI: 10.3390/genes10090701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Laccase is a widely used industrial oxidase for food processing, dye synthesis, paper making, and pollution remediation. At present, laccases used by industries come mainly from fungi. Plants contain numerous genes encoding laccase enzymes that show properties which are distinct from that of the fungal laccases. These plant-specific laccases may have better potential for industrial purposes. The aim of this work was to conduct a genome-wide search for the soybean laccase genes and analyze their characteristics and specific functions. A total of 93 putative laccase genes (GmLac) were identified from the soybean genome. All 93 GmLac enzymes contain three typical Cu-oxidase domains, and they were classified into five groups based on phylogenetic analysis. Although adjacent members on the tree showed highly similar exon/intron organization and motif composition, there were differences among the members within a class for both conserved and differentiated functions. Based on the expression patterns, some members of laccase were expressed in specific tissues/organs, while some exhibited a constitutive expression pattern. Analysis of the transcriptome revealed that some laccase genes might be involved in providing resistance to oomycetes. Analysis of the selective pressures acting on the laccase gene family in the process of soybean domestication revealed that 10 genes could have been under artificial selection during the domestication process. Four of these genes may have contributed to the transition of the soft and thin stem of wild soybean species into strong, thick, and erect stems of the cultivated soybean species. Our study provides a foundation for future functional studies of the soybean laccase gene family.
Collapse
Affiliation(s)
- Quan Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kaijie Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xiaobin Zhu
- School of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongmei Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingxing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
26
|
Thu SW, Rai KM, Sandhu D, Rajangam A, Balasubramanian VK, Palmer RG, Mendu V. Mutation in a PHD-finger protein MS4 causes male sterility in soybean. BMC PLANT BIOLOGY 2019; 19:378. [PMID: 31455245 PMCID: PMC6712664 DOI: 10.1186/s12870-019-1979-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/15/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Male sterility has tremendous scientific and economic importance in hybrid seed production. Identification and characterization of a stable male sterility gene will be highly beneficial for making hybrid seed production economically feasible. In soybean, eleven male-sterile, female-fertile mutant lines (ms1, ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms9, msMOS, and msp) have been identified and mapped onto various soybean chromosomes, however the causal genes responsible for male sterility are not isolated. The objective of this study was to identify and functionally characterize the gene responsible for the male sterility in the ms4 mutant. RESULTS The ms4 locus was fine mapped to a 216 kb region, which contains 23 protein-coding genes including Glyma.02G243200, an ortholog of Arabidopsis MALE MEIOCYTE DEATH 1 (MMD1), which is a Plant Homeodomain (PHD) protein involved in male fertility. Isolation and sequencing of Glyma.02G243200 from the ms4 mutant line showed a single base insertion in the 3rd exon causing a premature stop codon resulting in truncated protein production. Phylogenetic analysis showed presence of a homolog protein (MS4_homolog) encoded by the Glyma.14G212300 gene. Both proteins were clustered within legume-specific clade of the phylogenetic tree and were likely the result of segmental duplication during the paleoploidization events in soybean. The comparative expression analysis of Ms4 and Ms4_homologs across the soybean developmental and reproductive stages showed significantly higher expression of Ms4 in early flowering (flower bud differentiation) stage than its homolog. The functional complementation of Arabidopsis mmd1 mutant with the soybean Ms4 gene produced normal stamens, successful tetrad formation, fertile pollens and viable seeds, whereas the Ms4_homolog was not able to restore male fertility. CONCLUSIONS Overall, this is the first report, where map based cloning approach was employed to isolate and characterize a gene responsible for the male-sterile phenotype in soybean. Characterization of male sterility genes may facilitate the establishment of a stable male sterility system, highly desired for the viability of hybrid seed production in soybean. Additionally, translational genomics and genome editing technologies can be utilized to generate new male-sterile lines in other plant species.
Collapse
Affiliation(s)
- Sandi Win Thu
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | - Krishan Mohan Rai
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | | | - Alex Rajangam
- Wisconsin Institute of Sustainable Technology, University of Wisconsin-Stevens Point, Stevens Point, WI 54481 USA
| | - Vimal Kumar Balasubramanian
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | - Reid G. Palmer
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Venugopal Mendu
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| |
Collapse
|
27
|
Ahmad MZ, Sana A, Jamil A, Nasir JA, Ahmed S, Hameed MU, Abdullah. A genome-wide approach to the comprehensive analysis of GASA gene family in Glycine max. PLANT MOLECULAR BIOLOGY 2019; 100:607-620. [PMID: 31123969 DOI: 10.1007/s11103-019-00883-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/16/2019] [Indexed: 05/24/2023]
Abstract
A vital role of short amino acid gene family, gibberellic acid stimulated arabidopsis (GASA), has been reported in plant growth and development. Although, little information is available about these cysteine rich short proteins in different plant species and this is the first comprehensive approach to exploit available genomic data and to analyze the GASA family in G. max. The phylogenetic and sequence composition analysis distributed the 37 identified GmGASA genes into three groups. Further investigation of the tissue expression pattern, phylogenetic analysis, motif, gene structure, chromosome distributions, duplication patterns, positive-selection pressure and cis-element analysis of 37 GmGASA genes. A conserved GASA domain was found in all identified GmGASA genes and exhibited similar characteristics. The online gene expression profile based analysis of GmGASA genes reveled that these genes were highly expressed in almost all soybean parts and some have high expression in flower which indicates that GmGASA genes displayed special or distinct expression pattern among different tissues. The segmental duplication was found in five pairs from 37 GmGASA genes and was distributed on 15 different chromosomes. The Ka/Ks ratio of 5 pairs of segmentally duplicated gene indicated that after the occurrence of duplication events, the duplicated gene pairs were purified and selected after restrictive functional differentiation. This investigated study of GmGASA gene will useful to support the statement about GASA genes role during flower induction in flowering plants.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan.
| | - Aiman Sana
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| | - Arshad Jamil
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| | - Jamal Abdul Nasir
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| | - Shakeel Ahmed
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Muhammad Uzair Hameed
- Department of Horticulture, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| | - Abdullah
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| |
Collapse
|
28
|
Su H, Xing M, Liu X, Fang Z, Yang L, Zhuang M, Zhang Y, Wang Y, Lv H. Genome-wide analysis of HSP70 family genes in cabbage (Brassica oleracea var. capitata) reveals their involvement in floral development. BMC Genomics 2019; 20:369. [PMID: 31088344 PMCID: PMC6518785 DOI: 10.1186/s12864-019-5757-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Heat shock proteins have important functions in regulating plant growth and response to abiotic stress. HSP70 family genes have been described in several plant species, but a comprehensive analysis of the HSP70 family genes in cabbage has not been reported to date, especially their roles in floral development. RESULTS In this study, we identified 52 BoHSP70 genes in cabbage. The gene structures, motifs, and chromosome locations of the BoHSP70 genes were analyzed. The genes were divided into seven classes using a phylogenetic analysis. An expression analysis showed that the BoHSP70 genes were highly expressed in actively growing tissues, including buds and calluses. In addition, six BoHSP70 genes were highly expressed in the binuclear-pollen-stage buds of a male fertile line compared with its near isogenic sterile line. These results were further verified using qRT-PCR. Subcellular localization analysis of the bud-specific gene BoHSP70-5 showed that it was localized in the cytoplasm. CONCLUSIONS Our results help to elucidate the involvement of the BoHSP70 family genes in cabbage floral development and establish the groundwork for future research on the functions of these genes.
Collapse
Affiliation(s)
- Henan Su
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Miaomiao Xing
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
29
|
Evolution and Expression Divergence of the CYP78A Subfamily Genes in Soybean. Genes (Basel) 2018; 9:genes9120611. [PMID: 30544641 PMCID: PMC6316016 DOI: 10.3390/genes9120611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
Gene expression divergence is an important evolutionary driving force for the retention of duplicate genes. In this study, we identified three CYP78A subfamily genes in soybean, GmCYP78A70, GmCYP78A57 and GmCYP78A72, which experienced different duplication events. GmCYP78A70 was mainly expressed in leaf tissue and the vegetative phase, whereas GmCYP78A57 was mainly expressed in floral tissue and seed, i.e., the reproductive phase. Expression of GmCYP78A72 could be detected in all the tissues and phases mentioned above. The expression levels of GmCYP78A70 and GmCYP78A57 in different soybean cultivars showed positive correlations with leaf size and 100-seed weight, respectively. The population genetics analysis indicated that the three genes had experienced different selective pressures during domestication and improved breeding of soybean. Deciphering the function of this subfamily of genes may well prove useful to breeders for improving soybean’s agronomic traits.
Collapse
|
30
|
The Hsp70 Gene Family in Solanum tuberosum: Genome-Wide Identification, Phylogeny, and Expression Patterns. Sci Rep 2018; 8:16628. [PMID: 30413778 PMCID: PMC6226454 DOI: 10.1038/s41598-018-34878-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/28/2018] [Indexed: 11/08/2022] Open
Abstract
Heat shock protein 70 (Hsp70) family members play important roles in protecting plants against abiotic stresses, including salt, drought, heat, and cold. In this study, 20 putative StHsp70 genes were identified in potato (Solanum tuberosum L.) through the integration of the gene structures, chromosome locations, phylogenetic relationships, and expression profiles. These StHsp70 genes were classified into five sub-families based on phylogenetic analysis. Chromosome mapping revealed that they were unevenly and unequally distributed on 10 of the 12 chromosomes. Furthermore, segmental and tandem duplication events contributed to the expansion of the StHsp70 genes. Phylogenetic tree of the HSP70 genes from potato and other plant species revealed multiple sub-families. These findings indicated a common ancestor which had generated diverse sub-families prior to a mono-dicot split. In addition, expression analysis using RNA-seq revealed that the majority of these genes were expressed in at least one of the tested tissue, and were induced by Phytophthora infestans. Then, based on qRT-PCR analysis, the results showed that the transcript levels of some of the StHsp70 genes could be remarkably induced by such abiotic and hormone stresses, which indicated their potential roles in mediating the responses of potato plants to both abiotic and biotic stress conditions.
Collapse
|
31
|
Genome-Wide Identification of the Alba Gene Family in Plants and Stress-Responsive Expression of the Rice Alba Genes. Genes (Basel) 2018; 9:genes9040183. [PMID: 29597290 PMCID: PMC5924525 DOI: 10.3390/genes9040183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/17/2022] Open
Abstract
Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa, Zea mays, Sorghum bicolor, Cicer arietinum, and Vitis vinifera, and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii, Physcomitrella patens, and Amborella trichopoda, revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice (OsAlba), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.
Collapse
|
32
|
Zhang D, Chang E, Yu X, Chen Y, Yang Q, Cao Y, Li X, Wang Y, Fu A, Xu M. Molecular Characterization of Magnesium Chelatase in Soybean [ Glycine max (L.) Merr.]. FRONTIERS IN PLANT SCIENCE 2018; 9:720. [PMID: 29971071 PMCID: PMC6018531 DOI: 10.3389/fpls.2018.00720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/14/2018] [Indexed: 05/07/2023]
Abstract
Soybean (Glycine max) seed yields rely on the efficiency of photosynthesis, which is poorly understood in soybean. Chlorophyll, the major light harvesting pigment, is crucial for chloroplast biogenesis and photosynthesis. Magnesium chelatase catalyzes the insertion of Mg2+ into protoporphyrin IX in the first committed and key regulatory step of chlorophyll biosynthesis. It consists of three types of subunits, ChlI, ChlD, and ChlH. To gain a better knowledge of chlorophyll biosynthesis in soybean, we analyzed soybean Mg-chelatase subunits and their encoding genes. Soybean genome harbors 4 GmChlI genes, 2 GmChlD genes, and 3 GmChlH genes, likely evolved from two rounds of gene duplication events. The qRT-PCR analysis revealed that GmChlI, GmChlD, and GmChlH genes predominantly expressed in photosynthetic tissues, but the expression levels among paralogs are different. In silicon promoter analyses revealed these genes harbor different cis-regulatory elements in their promoter regions, suggesting they could differentially respond to various environmental and developmental signals. Subcellular localization analyses illustrated that GmChlI, GmChlD, and GmChlH isoforms are all localized in chloroplast, consistent with their functions. Yeast two hybrid and bimolecular fluorescence complementation (BiFC) assays showed each isoform has a potential to be assembled into the Mg-chelatase holocomplex. We expressed each GmChlI, GmChlD, and GmChlH isoform in Arabidopsis corresponding mutants, and results showed that 4 GmChlI and 2 GmChlD isoforms and GmChlH1 could rescue the severe phenotype of Arabidopsis mutants, indicating that they maintain normal biochemical functions in vivo. However, GmChlH2 and GmChlH3 could not completely rescue the chlorotic phenotype of Arabidopsis gun5-2 mutant, suggesting that the functions of these two proteins could be different from GmChlH1. Considering the differences shown on primary sequences, biochemical functions, and gene expression profiles, we conclude that the paralogs of each soybean Mg-chelatase subunit have diverged more or less during evolution. Soybean could have developed a complex regulatory mechanism to control chlorophyll content to adapt to different developmental and environmental situations.
Collapse
|
33
|
|
34
|
Wang Y, Yuan J, Yang W, Zhu L, Su C, Wang X, Wu H, Sun Z, Li X. Genome Wide Identification and Expression Profiling of Ethylene Receptor Genes during Soybean Nodulation. FRONTIERS IN PLANT SCIENCE 2017; 8:859. [PMID: 28659933 PMCID: PMC5469071 DOI: 10.3389/fpls.2017.00859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/09/2017] [Indexed: 05/28/2023]
Abstract
It has long been known that the gaseous plant hormone ethylene plays a key role in nodulation in legumes. The perception of ethylene by a family of five membrane-localized receptors is necessary to trigger the ethylene signaling pathway, which regulates various biological responses in Arabidopsis. However, a systematic analysis of the ethylene receptors in leguminous plants and their roles in nodule development is lacking. In this study, we performed a characterization of ethylene receptor genes based on the latest Glycine max genome sequence and a public microarray database. Eleven ethylene receptor family genes were identified in soybean through homology searches, and they were divided into two subgroups. Exon-intron analysis showed that the gene structures are highly conserved within each group. Further analysis of their expression patterns showed that these ethylene receptor genes are differentially expressed in various soybean tissues and organs, including functional nodules. Notably, the ethylene receptor genes showed different responses to rhizobial infection and Nod factors, suggesting a possible role for ethylene receptors and ethylene signaling in rhizobia-host cell interactions and nodulation in soybean. Together, these data indicate the functional divergence of ethylene receptor genes in soybean, and that some of these receptors mediate nodulation, including rhizobial infection, nodule development, and nodule functionality. These findings provide a foundation for further elucidation of the molecular mechanism by which the ethylene signaling pathway regulates nodulation in soybean, as well as other legumes.
Collapse
Affiliation(s)
- Youning Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jinhong Yuan
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Wei Yang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chao Su
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiaodi Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Haiyan Wu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zhengxi Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology – Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
35
|
Stephens ZD, Hudson ME, Mainzer LS, Taschuk M, Weber MR, Iyer RK. Simulating Next-Generation Sequencing Datasets from Empirical Mutation and Sequencing Models. PLoS One 2016; 11:e0167047. [PMID: 27893777 PMCID: PMC5125660 DOI: 10.1371/journal.pone.0167047] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022] Open
Abstract
An obstacle to validating and benchmarking methods for genome analysis is that there are few reference datasets available for which the “ground truth” about the mutational landscape of the sample genome is known and fully validated. Additionally, the free and public availability of real human genome datasets is incompatible with the preservation of donor privacy. In order to better analyze and understand genomic data, we need test datasets that model all variants, reflecting known biology as well as sequencing artifacts. Read simulators can fulfill this requirement, but are often criticized for limited resemblance to true data and overall inflexibility. We present NEAT (NExt-generation sequencing Analysis Toolkit), a set of tools that not only includes an easy-to-use read simulator, but also scripts to facilitate variant comparison and tool evaluation. NEAT has a wide variety of tunable parameters which can be set manually on the default model or parameterized using real datasets. The software is freely available at github.com/zstephens/neat-genreads.
Collapse
Affiliation(s)
- Zachary D. Stephens
- Department of Electrical and Computer Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| | - Matthew E. Hudson
- Department of Crop Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Liudmila S. Mainzer
- Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- National Center for Supercomputing Applications, Univ. of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Morgan Taschuk
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Matthew R. Weber
- National Center for Supercomputing Applications, Univ. of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Ravishankar K. Iyer
- Department of Electrical and Computer Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
36
|
Reinprecht Y, Pauls KP. Microsomal Omega-3 Fatty Acid Desaturase Genes in Low Linolenic Acid Soybean Line RG10 and Validation of Major Linolenic Acid QTL. Front Genet 2016; 7:38. [PMID: 27066063 PMCID: PMC4810023 DOI: 10.3389/fgene.2016.00038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
High levels of linolenic acid (80 g kg(-1)) are associated with the development of off-flavors and poor stability in soybean oil. The development of low linolenic acid lines such as RG10 (20 g kg(-1) linolenic acid) can reduce these problems. The level of linolenic acid in seed oil is determined by the activities of microsomal omega-3 fatty acid desaturases (FAD3). A major linolenic acid QTL (>70% of variation) on linkage group B2 (chromosome Gm14) was previously detected in a recombinant inbred line population from the RG10 × OX948 cross. The objectives of this study were to validate the major linolenic acid QTL in an independent population and characterize all the soybean FAD3 genes. Four FAD3 genes were sequenced and localized in RG10 and OX948 and compared to the genes in the reference Williams 82 genome. The FAD3A gene sequences mapped to the locus Glyma.14g194300 [on the chromosome Gm14 (B2)], which is syntenic to the FAD3B gene (locus Glyma.02g227200) on the chromosome Gm02 (D1b). The location of the FAD3A gene is the same as was previously determined for the fan allele, that conditions low linolenic acid content and several linolenic acid QTL, including Linolen 3-3, mapped previously with the RG10 × OX948 population and confirmed in the PI 361088B × OX948 population as Linolen-PO (FAD3A). The FAD3B gene-based marker, developed previously, was mapped to the chromosome Gm02 (D1b) in a region containing a newly detected linolenic acid QTL [Linolen-RO(FAD3B)] in the RG10 × OX948 genetic map and corresponds well with the in silico position of the FAD3B gene sequences. FAD3C and FAD3D gene sequences, mapped to syntenic regions on chromosomes Gm18 (locus Glyma.18g062000) and Gm11 (locus Glyma.11g227200), respectively. Association of linolenic acid QTL with the desaturase genes FAD3A and FAD3B, their validation in an independent population, and development of FAD3 gene-specific markers should simplify and accelerate breeding for low linolenic acid soybean cultivars.
Collapse
Affiliation(s)
| | - K Peter Pauls
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| |
Collapse
|
37
|
Teixeira RN, Ligterink W, França-Neto JDB, Hilhorst HWM, da Silva EAA. Gene expression profiling of the green seed problem in Soybean. BMC PLANT BIOLOGY 2016; 16:37. [PMID: 26829931 PMCID: PMC4736698 DOI: 10.1186/s12870-016-0729-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/28/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Due to the climate change of the past few decades, some agricultural areas in the world are now experiencing new climatic extremes. For soybean, high temperatures and drought stress can potentially lead to the "green seed problem", which is characterized by chlorophyll retention in mature seeds and is associated with lower oil and seed quality, thus negatively impacting the production of soybean seeds. RESULTS Here we show that heat and drought stress result in a "mild" stay-green phenotype and impaired expression of the STAY-GREEN 1 and STAY-GREEN 2 (D1, D2), PHEOPHORBIDASE 2 (PPH2) and NON-YELLOW COLORING 1 (NYC1_1) genes in soybean seeds of a susceptible soybean cultivar. We suggest that the higher expression of these genes in fully mature seeds of a tolerant cultivar allows these seeds to cope with stressful conditions and complete chlorophyll degradation. CONCLUSIONS The gene expression results obtained in this study represent a significant advance in understanding chlorophyll retention in mature soybean seeds produced under stressful conditions. This will open new research possibilities towards finding molecular markers for breeding programs to produce cultivars which are less susceptible to chlorophyll retention under the hot and dry climate conditions which are increasingly common in the largest soybean production areas of the world.
Collapse
Affiliation(s)
- Renake N Teixeira
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
- Departamento de Produção e Melhoramento Vegetal, Faculdade de Ciências Agronômicas-UNESP, Universidade Estadual Paulista, Botucatu, SP, 18.610-307, Brazil.
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - José de B França-Neto
- Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Soja, EMBRAPA Soja, Caixa-postal 231, Londrina, PR, 86001970, Brazil.
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Edvaldo A A da Silva
- Departamento de Produção e Melhoramento Vegetal, Faculdade de Ciências Agronômicas-UNESP, Universidade Estadual Paulista, Botucatu, SP, 18.610-307, Brazil.
| |
Collapse
|
38
|
Chen H, Chung MC, Tsai YC, Wei FJ, Hsieh JS, Hsing YIC. Distribution of new satellites and simple sequence repeats in annual and perennial Glycine species. BOTANICAL STUDIES 2015; 56:22. [PMID: 28510831 PMCID: PMC5430363 DOI: 10.1186/s40529-015-0103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/17/2015] [Indexed: 06/07/2023]
Abstract
The repeat sequences occupied more than 50 % of soybean genome. In order to understand where these repeat sequences distributed in soybean genome and its related Glycine species, we examined three new repeat sequences-soybean repeat sequence (SBRS1, SBRS2 and SBRS3), some nonspecific repeat sequences and 45S rDNA on several Glycine species, including annual and perennial accessions in this study. In the annual species, G. soja, signals for SBRS1 and ATT repeat can be found on each chromosome in GG genome, but those for SBRS2 and SBRS3 were located at three specific loci. In perennial Glycine species, these three SBR repeat frequently co-localized with 45S rDNA, two major 45S rDNA loci were found in all tetraploid species. However, an extra minor locus was found in one accession of the G. pescadrensis (Tab074), but not in another accession (Tab004). We demonstrate that some repetitive sequences are present in all Glycine species used in the study, but the abundancy is different in annual or perennial species. We suggest this study may provide additional information in investigations of the phylogeny in the Glycine species.
Collapse
Affiliation(s)
- Hsuan Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Mei-Chu Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Yuan-Ching Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Jaw-Shu Hsieh
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Yue-Ie C. Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
39
|
Guo G, Xu K, Zhang X, Zhu J, Lu M, Chen F, Liu L, Xi ZY, Bachmair A, Chen Q, Fu YF. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions. PLoS One 2015; 10:e0136601. [PMID: 26371882 PMCID: PMC4570765 DOI: 10.1371/journal.pone.0136601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/06/2015] [Indexed: 12/25/2022] Open
Abstract
The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth.
Collapse
Affiliation(s)
- Guangyu Guo
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Kun Xu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomei Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, China
| | - Jinlong Zhu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, China
| | - Mingyang Lu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fulu Chen
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, China
| | - Linpo Liu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, China
| | - Zhang-Ying Xi
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Andreas Bachmair
- Dept. of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohr Gasse 9, A-1030 Vienna, Austria
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yong-Fu Fu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing, China
| |
Collapse
|
40
|
Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots. PLoS One 2015; 10:e0136064. [PMID: 26284791 PMCID: PMC4540462 DOI: 10.1371/journal.pone.0136064] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/29/2015] [Indexed: 12/29/2022] Open
Abstract
As a new technology for gene editing, the CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) system has been rapidly and widely used for genome engineering in various organisms. In the present study, we successfully applied type II CRISPR/Cas9 system to generate and estimate genome editing in the desired target genes in soybean (Glycine max (L.) Merrill.). The single-guide RNA (sgRNA) and Cas9 cassettes were assembled on one vector to improve transformation efficiency, and we designed a sgRNA that targeted a transgene (bar) and six sgRNAs that targeted different sites of two endogenous soybean genes (GmFEI2 and GmSHR). The targeted DNA mutations were detected in soybean hairy roots. The results demonstrated that this customized CRISPR/Cas9 system shared the same efficiency for both endogenous and exogenous genes in soybean hairy roots. We also performed experiments to detect the potential of CRISPR/Cas9 system to simultaneously edit two endogenous soybean genes using only one customized sgRNA. Overall, generating and detecting the CRISPR/Cas9-mediated genome modifications in target genes of soybean hairy roots could rapidly assess the efficiency of each target loci. The target sites with higher efficiencies can be used for regular soybean transformation. Furthermore, this method provides a powerful tool for root-specific functional genomics studies in soybean.
Collapse
Affiliation(s)
- Yupeng Cai
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Chen
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiujie Liu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Sun
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cunxiang Wu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bingjun Jiang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Hou
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
41
|
Reinprecht Y, Arif M, Simon LC, Pauls KP. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites. PLoS One 2015; 10:e0130371. [PMID: 26167917 PMCID: PMC4500502 DOI: 10.1371/journal.pone.0130371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.
Collapse
Affiliation(s)
| | - Muhammad Arif
- University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada
- University of Waterloo, Department of Chemical Engineering, Waterloo, ON, Canada
| | - Leonardo C. Simon
- University of Waterloo, Department of Chemical Engineering, Waterloo, ON, Canada
| | - K. Peter Pauls
- University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada
| |
Collapse
|
42
|
Zhao M, Gu Y, He L, Chen Q, He C. Sequence and expression variations suggest an adaptive role for the DA1-like gene family in the evolution of soybeans. BMC PLANT BIOLOGY 2015; 15:120. [PMID: 25975199 PMCID: PMC4432951 DOI: 10.1186/s12870-015-0519-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/01/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND The DA1 gene family is plant-specific and Arabidopsis DA1 regulates seed and organ size, but the functions in soybeans are unknown. The cultivated soybean (Glycine max) is believed to be domesticated from the annual wild soybeans (Glycine soja). To evaluate whether DA1-like genes were involved in the evolution of soybeans, we compared variation at both sequence and expression levels of DA1-like genes from G. max (GmaDA1) and G. soja (GsoDA1). RESULTS Sequence identities were extremely high between the orthologous pairs between soybeans, while the paralogous copies in a soybean species showed a relatively high divergence. Moreover, the expression variation of DA1-like paralogous genes in soybean was much greater than the orthologous gene pairs between the wild and cultivated soybeans during development and challenging abiotic stresses such as salinity. We further found that overexpressing GsoDA1 genes did not affect seed size. Nevertheless, overexpressing them reduced transgenic Arabidopsis seed germination sensitivity to salt stress. Moreover, most of these genes could improve salt tolerance of the transgenic Arabidopsis plants, corroborated by a detection of expression variation of several key genes in the salt-tolerance pathways. CONCLUSIONS Our work suggested that expression diversification of DA1-like genes is functionally associated with adaptive radiation of soybeans, reinforcing that the plant-specific DA1 gene family might have contributed to the successful adaption to complex environments and radiation of the plants.
Collapse
Affiliation(s)
- Man Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China.
- College of Biological and Environmental Engineering, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Yongzhe Gu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China.
| | - Lingli He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China.
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China.
| |
Collapse
|
43
|
Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 2015. [PMID: 25879861 DOI: 10.1186/s12896-12015-10131-12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND The ability to selectively alter genomic DNA sequences in vivo is a powerful tool for basic and applied research. The CRISPR/Cas9 system precisely mutates DNA sequences in a number of organisms. Here, the CRISPR/Cas9 system is shown to be effective in soybean by knocking-out a green fluorescent protein (GFP) transgene and modifying nine endogenous loci. RESULTS Targeted DNA mutations were detected in 95% of 88 hairy-root transgenic events analyzed. Bi-allelic mutations were detected in events transformed with eight of the nine targeting vectors. Small deletions were the most common type of mutation produced, although SNPs and short insertions were also observed. Homoeologous genes were successfully targeted singly and together, demonstrating that CRISPR/Cas9 can both selectively, and generally, target members of gene families. Somatic embryo cultures were also modified to enable the production of plants with heritable mutations, with the frequency of DNA modifications increasing with culture time. A novel cloning strategy and vector system based on In-Fusion® cloning was developed to simplify the production of CRISPR/Cas9 targeting vectors, which should be applicable for targeting any gene in any organism. CONCLUSIONS The CRISPR/Cas9 is a simple, efficient, and highly specific genome editing tool in soybean. Although some vectors are more efficient than others, it is possible to edit duplicated genes relatively easily. The vectors and methods developed here will be useful for the application of CRISPR/Cas9 to soybean and other plant species.
Collapse
Affiliation(s)
- Thomas B Jacobs
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
- Present address: Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA.
| | - Peter R LaFayette
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Wayne A Parrott
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
44
|
Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 2015; 15:16. [PMID: 25879861 PMCID: PMC4365529 DOI: 10.1186/s12896-015-0131-2] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/27/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The ability to selectively alter genomic DNA sequences in vivo is a powerful tool for basic and applied research. The CRISPR/Cas9 system precisely mutates DNA sequences in a number of organisms. Here, the CRISPR/Cas9 system is shown to be effective in soybean by knocking-out a green fluorescent protein (GFP) transgene and modifying nine endogenous loci. RESULTS Targeted DNA mutations were detected in 95% of 88 hairy-root transgenic events analyzed. Bi-allelic mutations were detected in events transformed with eight of the nine targeting vectors. Small deletions were the most common type of mutation produced, although SNPs and short insertions were also observed. Homoeologous genes were successfully targeted singly and together, demonstrating that CRISPR/Cas9 can both selectively, and generally, target members of gene families. Somatic embryo cultures were also modified to enable the production of plants with heritable mutations, with the frequency of DNA modifications increasing with culture time. A novel cloning strategy and vector system based on In-Fusion® cloning was developed to simplify the production of CRISPR/Cas9 targeting vectors, which should be applicable for targeting any gene in any organism. CONCLUSIONS The CRISPR/Cas9 is a simple, efficient, and highly specific genome editing tool in soybean. Although some vectors are more efficient than others, it is possible to edit duplicated genes relatively easily. The vectors and methods developed here will be useful for the application of CRISPR/Cas9 to soybean and other plant species.
Collapse
Affiliation(s)
- Thomas B Jacobs
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
- Present address: Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA.
| | - Peter R LaFayette
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Wayne A Parrott
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
45
|
Wang Z, Zhou Z, Liu Y, Liu T, Li Q, Ji Y, Li C, Fang C, Wang M, Wu M, Shen Y, Tang T, Ma J, Tian Z. Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis. THE PLANT CELL 2015; 27:323-36. [PMID: 25663621 PMCID: PMC4456927 DOI: 10.1105/tpc.114.135103] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 05/03/2023]
Abstract
Gene duplication provides resources for novel gene functions. Identification of the amino acids responsible for functional conservation and divergence of duplicated genes will strengthen our understanding of their evolutionary course. Here, we conducted a systemic functional investigation of phosphatidylethanolamine binding proteins (PEBPs) in soybean (Glycine max) and Arabidopsis thaliana. Our results demonstrated that after the ancestral duplication, the lineage of the common ancestor of the FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) subfamilies functionally diverged from the MOTHER OF FT AND TFL1 (MFT) subfamily to activate flowering and repress flowering, respectively. They also underwent further specialization after subsequent duplications. Although the functional divergence increased with duplication age, we observed rapid functional divergence for a few pairs of young duplicates in soybean. Association analysis between amino acids and functional variations identified critical amino acid residues that led to functional differences in PEBP members. Using transgenic analysis, we validated a subset of these differences. We report clear experimental evidence for the functional evolution of the PEBPs in the MFT, FT, and TFL1 subfamilies, which predate the origin of angiosperms. Our results highlight the role of amino acid divergence in driving evolutionary novelty after duplication.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengkui Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunfeng Liu
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qing Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuanyuan Ji
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Congcong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Min Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mian Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, Grant School of Life Sciences, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
46
|
Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, Li HY, Xing GJ, Li QY, Dong YS. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). FRONTIERS IN PLANT SCIENCE 2015; 6:773. [PMID: 26442082 PMCID: PMC4585176 DOI: 10.3389/fpls.2015.00773] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/09/2015] [Indexed: 05/03/2023]
Abstract
Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.
Collapse
Affiliation(s)
- Ling Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Hong-Kun Zhao
- Crop Germplasm Institute, Jilin Academy of Agricultural SciencesGongzhuling, China
| | - Qian-Li Dong
- Department of Biology, Beijing Normal UniversityBeijing, China
| | - Yuan-Yu Zhang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Yu-Min Wang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Hai-Yun Li
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Guo-Jie Xing
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Qi-Yun Li
- Institute of Plant Protection, Jilin Academy of Agricultural SciencesGongzhuling, China
- *Correspondence: Qi-Yun Li, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, No. 303 Kemaoxi Street, Gongzhuling, JiLin 136100, China
| | - Ying-Shan Dong
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
- Ying-Shan Dong, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363 Shengtai Street, Jing Yue District, ChangChun, JiLin 130033, China
| |
Collapse
|
47
|
Wang X, Zhang H, Gao Y, Sun G, Zhang W, Qiu L. A comprehensive analysis of the Cupin gene family in soybean (Glycine max). PLoS One 2014; 9:e110092. [PMID: 25360675 PMCID: PMC4215997 DOI: 10.1371/journal.pone.0110092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022] Open
Abstract
Cupin superfamily of proteins, including germin and germin-like proteins (GLPs) from higher plants, is known to play crucial roles in plant development and defense. To date, no systematic analysis has been conducted in soybean (Glycine max) incorporating genome organization, gene structure, expression compendium. In this study, 69 putative Cupin genes were identified from the whole-genome of soybean, which were non-randomly distributed on 17 of the 20 chromosomes. These Gmcupin proteins were phylogenetically clustered into ten distinct subgroups among which the gene structures were highly conserved. Eighteen pairs (52.2%) of duplicate paralogous genes were preferentially retained in duplicated regions of the soybean genome. The distributions of GmCupin genes implied that long segmental duplications contributed significantly to the expansion of the GmCupin gene family. According to the RNA-seq data analysis, most of the Gmcupins were differentially expressed in tissue-specific expression pattern and the expression of some duplicate genes were partially redundant while others showed functional diversity, suggesting the Gmcupins have been retained by substantial subfunctionalization during soybean evolutionary processes. Selective analysis based on single nucleotide polymorphisms (SNPs) in cultivated and wild soybeans revealed sixteen Gmcupins had selected site(s), with all SNPs in Gmcupin10.3 and Gmcupin07.2 genes were selected sites, which implied these genes may have undergone strong selection effects during soybean domestication. Taken together, our results contribute to the functional characterization of Gmcupin genes in soybean.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Haowei Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yali Gao
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Genlou Sun
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Biology Department, Saint Mary's University, Halifax, NS, Canada
| | - Wenming Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Lijuan Qiu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
48
|
Saladié M, Wright LP, Garcia-Mas J, Rodriguez-Concepcion M, Phillips MA. The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5077-92. [PMID: 25013119 PMCID: PMC4144782 DOI: 10.1093/jxb/eru275] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway provides the precursors for the biosynthesis of plastidial isoprenoids, which include the carotenoid pigments of many fruits. We have analysed the genes encoding the seven enzymes of the MEP pathway in melon (Cucumis melo L.) and determined that the first one, 1-deoxyxylulose 5-phosphate synthase (DXS), and the last one, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (HDR), are represented in the genome as a small gene family and paralogous pair, respectively. In the case of DXS, three genes encode functional DXS activities which fall into previously established type I (CmDXS1) and II (CmDXS2a and CmDXS2b) categories, while a fourth DXS-like gene belonging to the type III group did not encode a protein with DXS activity. Their expression patterns and phylogenies suggest that CmDXS1 is functionally specialized for developmental and photosynthetic processes, while CmDXS2a and CmDXS2b are induced in flowers and ripening fruit of orange- (but not white-) fleshed varieties, coinciding with β-carotene accumulation. This is the first instance connecting type II DXS genes to specialized isoprenoid biosynthesis in the fruit of an agronomically important species. Two HDR paralogues were shown to encode functional enzymes, although only CmHDR1 was highly expressed in the tissues and developmental stages tested. Phylogenetic analysis showed that in cucurbits such as melon, these HDR paralogues probably arose through individual gene duplications in a common angiosperm ancestor, mimicking a prior division in gymnosperms, while other flowering plants, including apple, soy, canola, and poplar, acquired HDR duplicates recently as homoeologues through large-scale genome duplications. We report the influence of gene duplication history on the regulation of the MEP pathway in melon and the role of specialized MEP-pathway isoforms in providing precursors for β-carotene production in orange-fleshed melon varieties.
Collapse
Affiliation(s)
- Montserrat Saladié
- Plant and Animal Genomics Programme, Institut de Recerca i Tecnologia Agroalimentàries and Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Louwrance P Wright
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans Knöll Street 8, 07745 Jena, Germany
| | - Jordi Garcia-Mas
- Plant and Animal Genomics Programme, Institut de Recerca i Tecnologia Agroalimentàries and Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Plant Metabolism and Metabolic Engineering Programme, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Michael A Phillips
- Plant Metabolism and Metabolic Engineering Programme, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| |
Collapse
|
49
|
Kalunke RM, Cenci A, Volpi C, O’Sullivan DM, Sella L, Favaron F, Cervone F, De Lorenzo G, D’Ovidio R. The pgip family in soybean and three other legume species: evidence for a birth-and-death model of evolution. BMC PLANT BIOLOGY 2014; 14:189. [PMID: 25034494 PMCID: PMC4115169 DOI: 10.1186/s12870-014-0189-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/14/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. RESULTS BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. CONCLUSIONS The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.
Collapse
Affiliation(s)
- Raviraj M Kalunke
- Dipartimento di Scienze e tecnologie per l’Agricoltura, le Foreste, la Natura e l’Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, Viterbo, Italy
| | - Alberto Cenci
- Bioversity International, Commodity systems & genetic resources programme, Parc Scientifique Agropolis II, 1990 Boulevard de la Lironde, Montpellier Cedex 5, 34397, France
| | - Chiara Volpi
- Dipartimento di Scienze e tecnologie per l’Agricoltura, le Foreste, la Natura e l’Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, Viterbo, Italy
- Present address: Enza Zaden Italia Research SRL, S.S. Aurelia km 96.710, Tarquinia (VT), 01016, Italy
| | - Donal M O’Sullivan
- NIAB, Huntingdon Road, Cambridge CB3 0LE, UK
- Present address: School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK
| | - Luca Sella
- Dipartimento Territorio e Sistemi agro-forestali (TESAF), Università di Padova, Agripolis, Viale dell’Università 16, Legnaro (PD), 35020, Italy
| | - Francesco Favaron
- Dipartimento Territorio e Sistemi agro-forestali (TESAF), Università di Padova, Agripolis, Viale dell’Università 16, Legnaro (PD), 35020, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro, 5, Roma, 00185, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro, 5, Roma, 00185, Italy
| | - Renato D’Ovidio
- Dipartimento di Scienze e tecnologie per l’Agricoltura, le Foreste, la Natura e l’Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, Viterbo, Italy
| |
Collapse
|
50
|
Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, Zhu G, Qi J, Ma H, Nian H, Wang Y. RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC PLANT BIOLOGY 2014; 14:169. [PMID: 24939556 PMCID: PMC4070088 DOI: 10.1186/1471-2229-14-169] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/05/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Soybean is one of the most important crops, providing large amounts of dietary proteins and edible oil, and is also an excellent model for studying evolution of duplicated genes. However, relative to the model plants Arabidopsis and rice, the present knowledge about soybean transcriptome is quite limited. RESULTS In this study, we employed RNA-seq to investigate transcriptomes of 11 soybean tissues, for genome-wide discovery of truly expressed genes, and novel and alternative transcripts, as well as analyses of conservation and divergence of duplicated genes and their functional implications. We detected a total of 54,132 high-confidence expressed genes, and identified 6,718 novel transcriptional regions with a mean length of 372 bp. We also provided strong evidence for alternative splicing (AS) events for ~15.9% of the genes with two or more exons. Among them, 1,834 genes exhibited stage-dependent AS, and 202 genes had tissue-biased exon-skipping events. We further defined the conservation and divergence in expression patterns between duplicated gene pairs from recent whole genome duplications (WGDs); differentially expressed genes, tissue preferentially expressed genes, transcription factors and specific gene family members were identified for shoot apical meristem and flower development. CONCLUSIONS Our results significantly improved soybean gene annotation, and also provide valuable resources for functional genomics and studies of the evolution of duplicated genes from WGDs in soybean.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 200433 Shanghai, China
| | - Chenlong Cao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 200433 Shanghai, China
| | - Qibin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Sub-Center of National Soybean Improvement Center, South China Agricultural University, 510642 Guangzhou, China
| | - Qiaoying Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Sub-Center of National Soybean Improvement Center, South China Agricultural University, 510642 Guangzhou, China
| | - Haifeng Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 200433 Shanghai, China
- Institute of Biomedical Sciences, Fudan University, 200032 Shanghai, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 200433 Shanghai, China
| | - Genfeng Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 200433 Shanghai, China
- Institute of Biomedical Sciences, Fudan University, 200032 Shanghai, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 200433 Shanghai, China
- Institute of Biomedical Sciences, Fudan University, 200032 Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 200433 Shanghai, China
- Institute of Biomedical Sciences, Fudan University, 200032 Shanghai, China
- Institute of Biodiversity Sciences, Fudan University, 200433 Shanghai, China
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Sub-Center of National Soybean Improvement Center, South China Agricultural University, 510642 Guangzhou, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 200433 Shanghai, China
| |
Collapse
|