1
|
Liu Q, Liu Y, Yang Z. Leukocyte immunoglobulin-like receptor B4: A keystone in immune modulation and therapeutic target in cancer and beyond. CANCER INNOVATION 2024; 3:e153. [PMID: 39444949 PMCID: PMC11495969 DOI: 10.1002/cai2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024]
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) significantly impacts immune regulation and the pathogenesis and progression of various cancers. This review discusses LILRB4's structural attributes, expression patterns in immune cells, and molecular mechanisms in modulating immune responses. We describe the influence of LILRB4 on T cells, dendritic cells, NK cells, and macrophages, and its dual role in stimulating and suppressing immune activities. The review discusses the current research on LILRB4's involvement in acute myeloid leukemia, chronic lymphocytic leukemia, and solid tumors, such as colorectal cancer, pancreatic cancer, non-small cell lung cancer, hepatocellular carcinoma, and extramedullary multiple myeloma. The review also describes LILRB4's role in autoimmune disorders, infectious diseases, and other conditions. We evaluate the recent advancements in targeting LILRB4 using monoclonal antibodies and peptide inhibitors and their therapeutic potential in cancer treatment. Together, these studies underscore the need for further research on LILRB4's interactions in the tumor microenvironment and highlight its importance as a therapeutic target in oncology and for future clinical innovations.
Collapse
Affiliation(s)
- Qi Liu
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingYunnanChina
| | - Zhanyu Yang
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
2
|
Jin H, Huan Z, Wu Y, Yao H, Zhang L, Ge X. Lilrb4 ameliorates ileal injury in rats with hemorrhagic shock and suppresses the activation of NF-κB signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167082. [PMID: 38367899 DOI: 10.1016/j.bbadis.2024.167082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Hemorrhagic shock (HS) leads to intestinal damage and subsequent multiple organ dysfunction syndrome. Intestinal barrier dysfunction is the main cause of multiple organ failure associated with HS. Leukocyte immunoglobulin-like receptor B4 (Lilrb4) belongs to the Ig superfamily and is a vital natural immunomodulatory receptor. The purpose of this study was to identify the role and molecular mechanism of Lilrb4 in HS-induced ileal injury. In this work, HS was established by femoral artery cannula and 90 min of HS (blood pressure, 35-40 mmHg), followed by resuscitation. RNA sequencing analysis showed that Lilrb4 was highly expressed in the ileum of HS rats. As observed, HS rats exhibited severe ileal injury, characterized by enlarged subepithelial space, edema, exfoliation and extensive loss of villi. Whereas, lentivirus system-mediated Lilrb4 overexpression considerably mitigated these alterations. HS led to increased release of markers associated with intestinal injury, which was effectively reversed by Lilrb4 overexpression. In addition, after resuscitation, Lilrb4 overexpression inhibited HS-triggered inflammatory response, as evidenced by decreased levels of proinflammatory cytokines. Lilrb4 also inhibited the activation of NF-κB signal induced by HS. Notably, Lilrb4 modulated the balance of regulatory T (Treg)-T helper 17 (Th17) cells in the mesenteric lymph node (MLN), which may also contribute to its protective role in HS progression. In aggregate, these findings confirmed that Lilrb4 overexpression protected against ileal injury caused by HS, indicating that Lilrb4 may be a potential candidate for the treatment of HS.
Collapse
Affiliation(s)
- Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Yifeng Wu
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Hao Yao
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Leyao Zhang
- Department of Gastroenterology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
3
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
4
|
Shang Y, Liu X, Wei L, Liang S, Zou Z, Wu M, Xia J. Leukocyte Immunoglobulin-like Receptor A5 Deletion Aggravates the Pathogenesis of Pseudomonas aeruginosa Keratitis by Promoting Proinflammatory Cytokines. Cornea 2023; 42:607-614. [PMID: 36729030 DOI: 10.1097/ico.0000000000003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/29/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this study was to assess the role of leukocyte immunoglobulin-like receptor A5 (LILRA5) in regulating bacterial infection and corneal inflammation. METHODS The human corneal tissue microarray data set GSE58291 from Gene Expression Omnibus was downloaded. Then, the differentially expressed genes, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis, and the immune infiltration analysis were conducted. We constructed the Pseudomonas aeruginosa ( P. aeruginosa ) keratitis mice model using wild-type and LILRA5-deficient mice. The results of the bioinformatics analysis were verified by the cell in vitro and animal in vivo experiments. RESULTS This study revealed that LILRA5 is substantially expressed in human keratitis and regulates the immune response negatively. Neutrophils were identified as the core fraction of immune cells in keratitis. After P. aeruginosa infection, neutrophils lacking LILRA5 induced elevated levels of proinflammatory cytokines and toll-like receptor 4. LILRA5 deficiency exacerbated the severity of the infection and the production of proinflammatory cytokines in mice. CONCLUSIONS LILRA5 was discovered as an immunosuppressive regulator in P. aeruginosa keratitis, highlighting its significance in activated immune responses.
Collapse
Affiliation(s)
- Yuqi Shang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liwen Wei
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Siping Liang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhengyu Zou
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minhao Wu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Xia
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Hu Y, Lu X, Qiu W, Liu H, Wang Q, Chen Y, Liu W, Feng F, Sun H. The Role of Leukocyte Immunoglobulin-Like Receptors Focusing on the Therapeutic Implications of the Subfamily B2. Curr Drug Targets 2022; 23:1430-1452. [PMID: 36017847 DOI: 10.2174/1389450123666220822201605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
The leukocyte immunoglobulin (Ig)-like receptors (LILRs) are constituted by five inhibitory subpopulations (LILRB1-5) and six stimulatory subpopulations (LILRA1-6). The LILR populations substantially reside in immune cells, especially myeloid cells, functioning as a regulator in immunosuppressive and immunostimulatory responses, during which the nonclassical major histocompatibility complex (MHC) class I molecules are widely involved. In addition, LILRs are also distributed in certain tumor cells, implicated in the malignancy progression. Collectively, the suppressive Ig-like LILRB2 is relatively well-studied to date. Herein, we summarized the whole family of LILRs and their biologic function in various diseases upon ligation to the critical ligands, therefore providing more information on their potential roles in these pathological processes and giving the clinical significance of strategies targeting LILRs.
Collapse
Affiliation(s)
- Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Weimin Qiu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hui Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghua Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, 223005, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
6
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Kasper M, Heming M, Schafflick D, Li X, Lautwein T, Meyer zu Horste M, Bauer D, Walscheid K, Wiendl H, Loser K, Heiligenhaus A, Meyer zu Hörste G. Intraocular dendritic cells characterize HLA-B27-associated acute anterior uveitis. eLife 2021; 10:e67396. [PMID: 34783307 PMCID: PMC8594918 DOI: 10.7554/elife.67396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Uveitis describes a heterogeneous group of inflammatory eye diseases characterized by infiltration of leukocytes into the uveal tissues. Uveitis associated with the HLA haplotype B27 (HLA-B27) is a common subtype of uveitis and a prototypical ocular immune-mediated disease. Local immune mechanisms driving human uveitis are poorly characterized mainly due to the limited available biomaterial and subsequent technical limitations. Here, we provide the first high-resolution characterization of intraocular leukocytes in HLA-B27-positive (n = 4) and -negative (n = 2) anterior uveitis and an infectious endophthalmitis control (n = 1) by combining single-cell RNA-sequencing with flow cytometry and protein analysis. Ocular cell infiltrates consisted primarily of lymphocytes in both subtypes of uveitis and of myeloid cells in infectious endophthalmitis. HLA-B27-positive uveitis exclusively featured a plasmacytoid and classical dendritic cell (cDC) infiltrate. Moreover, cDCs were central in predicted local cell-cell communication. This suggests a unique pattern of ocular leukocyte infiltration in HLA-B27-positive uveitis with relevance to DCs.
Collapse
Affiliation(s)
- Maren Kasper
- Ophtha-Lab, Department of Ophthalmology, and Uveitis Centre at St. Franziskus HospitalMünsterGermany
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital MuensterMuensterGermany
| | - David Schafflick
- Department of Neurology with Institute of Translational Neurology, University Hospital MuensterMuensterGermany
| | - Xiaolin Li
- Department of Neurology with Institute of Translational Neurology, University Hospital MuensterMuensterGermany
| | - Tobias Lautwein
- Department of Neurology with Institute of Translational Neurology, University Hospital MuensterMuensterGermany
| | | | - Dirk Bauer
- Ophtha-Lab, Department of Ophthalmology, and Uveitis Centre at St. Franziskus HospitalMünsterGermany
| | - Karoline Walscheid
- Ophtha-Lab, Department of Ophthalmology, and Uveitis Centre at St. Franziskus HospitalMünsterGermany
- Department of Ophthalmology, University of Duisburg-EssenEssenGermany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital MuensterMuensterGermany
| | - Karin Loser
- Department of Human Medicine, University of OldenburgOldenburgGermany
| | - Arnd Heiligenhaus
- Ophtha-Lab, Department of Ophthalmology, and Uveitis Centre at St. Franziskus HospitalMünsterGermany
- University of Duisburg-EssenEssenGermany
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital MuensterMuensterGermany
| |
Collapse
|
8
|
Storm L, Bruijnesteijn J, de Groot NG, Bontrop RE. The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Front Immunol 2021; 12:716289. [PMID: 34737739 PMCID: PMC8562567 DOI: 10.3389/fimmu.2021.716289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The genes of the leukocyte immunoglobulin-like receptor (LILR) family map to the leukocyte receptor complex (LRC) on chromosome 19, and consist of both activating and inhibiting entities. These receptors are often involved in regulating immune responses, and are considered to play a role in health and disease. The human LILR region and evolutionary equivalents in some rodent and bird species have been thoroughly characterized. In non-human primates, the LILR region is annotated, but a thorough comparison between humans and non-human primates has not yet been documented. Therefore, it was decided to undertake a comprehensive comparison of the human and non-human primate LILR region at the genomic level. During primate evolution the organization of the LILR region remained largely conserved. One major exception, however, is provided by the common marmoset, a New World monkey species, which seems to feature a substantial contraction of the number of LILR genes in both the centromeric and the telomeric region. Furthermore, genomic analysis revealed that the killer-cell immunoglobulin-like receptor gene KIR3DX1, which maps in the LILR region, features one copy in humans and great ape species. A second copy, which might have been introduced by a duplication event, was observed in the lesser apes, and in Old and New World monkey species. The highly conserved gene organization allowed us to standardize the LILR gene nomenclature for non-human primate species, and implies that most of the receptors encoded by these genes likely fulfill highly preserved functions.
Collapse
Affiliation(s)
- Lisanne Storm
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, Abi-Rached L, Lambotte O, Favier B. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol 2021; 12:717998. [PMID: 34594332 PMCID: PMC8478328 DOI: 10.3389/fimmu.2021.717998] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.
Collapse
Affiliation(s)
- Florence Abdallah
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Margaux Gardet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Laurent Abi-Rached
- Aix-Marseille University, IRD, APHM, MEPHI, IHU Mediterranean Infection, SNC5039 CNRS, Marseille, France.,SNC5039 CNRS, Marseille, France
| | - Olivier Lambotte
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.,Public-Hospital Assistance of Paris, Department of Internal Medicine and Clinical Immunology, Paris-Saclay University Hospital Group, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
10
|
Mitsune A, Yamada M, Fujino N, Numakura T, Ichikawa T, Suzuki A, Matsumoto S, Mitsuhashi Y, Itakura K, Makiguchi T, Koarai A, Tamada T, Endo S, Takai T, Okada Y, Suzuki S, Ichinose M, Sugiura H. Upregulation of leukocyte immunoglobulin-like receptor B4 on interstitial macrophages in COPD; their possible protective role against emphysema formation. Respir Res 2021; 22:232. [PMID: 34425800 PMCID: PMC8383377 DOI: 10.1186/s12931-021-01828-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Leukocyte immunoglobulin-like receptor B4 (LILRB4) is one of the inhibitory receptors in various types of immune cells including macrophages. Previous reports suggested that LILRB4 could be involved in a negative feedback system to prevent excessive inflammatory responses. However, its role has been unclear in chronic obstructive pulmonary disease (COPD), in which macrophages play a crucial role in the pathogenesis. In this study, we aimed to examine the changes of LILRB4 on macrophages both in the lung specimens of COPD patients and the lungs of a mouse emphysema model. We then tried to compare the differences in both inflammation and emphysematous changes of the model between wild-type and LILRB4-deficient mice in order to elucidate the role of LILRB4 in the pathogenesis of COPD. Methods We prepared single-cell suspensions of resected lung specimens of never-smokers (n = 21), non-COPD smokers (n = 16), and COPD patients (n = 14). The identification of LILRB4-expressing cells and the level of LILRB4 expression were evaluated by flow cytometry. We analyzed the relationships between the LILRB4 expression and clinical characteristics including respiratory function. In the experiments using an elastase-induced mouse model of emphysema, we also analyzed the LILRB4 expression on lung macrophages. We compared inflammatory cell accumulation and emphysematous changes induced by elastase instillation between wild-type and LILRB4-deficient mice. Results The levels of surface expression of LILRB4 are relatively high on monocyte linage cells including macrophages in the human lungs. The percentage of LILRB4+ cells in lung interstitial macrophages was increased in COPD patients compared to non-COPD smokers (p = 0.018) and correlated with the severity of emphysematous lesions detected by CT scan (rs = 0.559, p < 0.001), whereas the amount of smoking showed no correlation with LILRB4 expression. Increased LILRB4 on interstitial macrophages was also observed in elastase-treated mice (p = 0.008). LILRB4-deficient mice showed severer emphysematous lesions with increased MMP-12 expression in the model. Conclusions LILRB4 on interstitial macrophages was upregulated both in human COPD lungs and in a mouse model of emphysema. This upregulated LILRB4 may have a protective effect against emphysema formation, possibly through decreasing MMP-12 expression in the lungs.
Collapse
Affiliation(s)
- Ayumi Mitsune
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan.
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Ayumi Suzuki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Shuichiro Matsumoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Yoshiya Mitsuhashi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Koji Itakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Tomonori Makiguchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 9808575, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 9808575, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 9808575, Japan
| | - Satoshi Suzuki
- Department of Thoracic Surgery, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Miyagi, 9868522, Japan
| | - Masakazu Ichinose
- Academic Center, Osaki Citizen Hospital, Osaki, Miyagi, 9896183, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| |
Collapse
|
11
|
Shibru B, Fey K, Fricke S, Blaudszun AR, Fürst F, Weise M, Seiffert S, Weyh MK, Köhl U, Sack U, Boldt A. Detection of Immune Checkpoint Receptors - A Current Challenge in Clinical Flow Cytometry. Front Immunol 2021; 12:694055. [PMID: 34276685 PMCID: PMC8281132 DOI: 10.3389/fimmu.2021.694055] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immunological therapy principles are increasingly determining modern medicine. They are used to treat diseases of the immune system, for tumors, but also for infections, neurological diseases, and many others. Most of these therapies base on antibodies, but small molecules, soluble receptors or cells and modified cells are also used. The development of immune checkpoint inhibitors is amazingly fast. T-cell directed antibody therapies against PD-1 or CTLA-4 are already firmly established in the clinic. Further targets are constantly being added and it is becoming increasingly clear that their expression is not only relevant on T cells. Furthermore, we do not yet have any experience with the long-term systemic effects of the treatment. Flow cytometry can be used for diagnosis, monitoring, and detection of side effects. In this review, we focus on checkpoint molecules as target molecules and functional markers of cells of the innate and acquired immune system. However, for most of the interesting and potentially relevant parameters, there are still no test kits suitable for routine use. Here we give an overview of the detection of checkpoint molecules on immune cells in the peripheral blood and show examples of a possible design of antibody panels.
Collapse
Affiliation(s)
- Benjamin Shibru
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katharina Fey
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | | - Friederike Fürst
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Max Weise
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sabine Seiffert
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Maria Katharina Weyh
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Köhl
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andreas Boldt
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
NKG2D Natural Killer Cell Receptor-A Short Description and Potential Clinical Applications. Cells 2021; 10:cells10061420. [PMID: 34200375 PMCID: PMC8229527 DOI: 10.3390/cells10061420] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are natural cytotoxic, effector cells of the innate immune system. They can recognize transformed or infected cells. NK cells are armed with a set of activating and inhibitory receptors which are able to bind to their ligands on target cells. The right balance between expression and activation of those receptors is fundamental for the proper functionality of NK cells. One of the best known activating receptors is NKG2D, a member of the CD94/NKG2 family. Due to a specific NKG2D binding with its eight different ligands, which are overexpressed in transformed, infected and stressed cells, NK cells are able to recognize and attack their targets. The NKG2D receptor has an enormous significance in various, autoimmune diseases, viral and bacterial infections as well as for transplantation outcomes and complications. This review focuses on the NKG2D receptor, the mechanism of its action, clinical relevance of its gene polymorphisms and a potential application in various clinical settings.
Collapse
|
13
|
Taman H, Fenton CG, Anderssen E, Florholmen J, Paulssen RH. DNA hypo-methylation facilitates anti-inflammatory responses in severe ulcerative colitis. PLoS One 2021; 16:e0248905. [PMID: 33793617 PMCID: PMC8016308 DOI: 10.1371/journal.pone.0248905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/06/2021] [Indexed: 12/16/2022] Open
Abstract
Severe ulcerative colitis (UC) is a potentially life-threatening disease with a potential colorectal cancer (CRC) risk. The aim of this study was to explore the relationship between transcriptomic and genome-wide DNA methylation profiles in a well-stratified, treatment-naïve severe UC patient population in order to define specific epigenetic changes that could be responsible for the grade of disease severity. Mucosal biopsies from treatment-naïve severe UC patients (n = 8), treatment-naïve mild UC (n = 8), and healthy controls (n = 8) underwent both whole transcriptome RNA-Seq and genome-wide DNA bisulfite- sequencing, and principal component analysis (PCA), cell deconvolutions and diverse statistical methods were applied to obtain a dataset of significantly differentially expressed genes (DEGs) with correlation to DNA methylation for severe UC. DNA hypo-methylation correlated with approximately 80% of all DEGs in severe UC when compared to mild UC. Enriched pathways of annotated hypo-methylated genes revealed neutrophil degranulation, and immuno-regulatory interactions of the lymphoid system. Specifically, hypo-methylated anti-inflammatory genes found for severe UC were IL10, SIGLEC5, CD86, CLMP and members of inflammasomes NLRP3 and NLRC4. Hypo-methylation of anti-inflammatory genes during severe UC implies an interplay between the epithelium and lamina propria in order to mitigate inflammation in the gut. The specifically DNA hypo-methylated genes found for severe UC can potentially be useful biomarkers for determining disease severity and in the development of new targeted treatment strategies for severe UC patients.
Collapse
Affiliation(s)
- Hagar Taman
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
- Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Christopher G. Fenton
- Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Endre Anderssen
- Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Jon Florholmen
- Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Ruth H. Paulssen
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
- Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
14
|
Parasar P, Guru N, Nayak NR. Contribution of macrophages to fetomaternal immunological tolerance. Hum Immunol 2021; 82:325-331. [PMID: 33715911 DOI: 10.1016/j.humimm.2021.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
The semi-allogeneic fetus develops in a uniquely immune tolerant environment within the uterus. For successful pregnancy, both the innate and adaptive immune systems must favor acceptance of the fetal allograft. Macrophages are the second most abundant immune cells after natural killer (NK) cells in the decidua. In coordination with decidual NK cells and dendritic cells, macrophages aid in implantation, vascular remodeling, placental development, immune tolerance to placental cells, and maintenance of tissue homeostasis at the maternal-fetal interface. Decidual macrophages show the classical activated (M1) and alternatively activated (M2) phenotypes under the influence of the local milieu of growth factors and cytokines, and appropriate temporal regulation of the M1/M2 switch is vital for successful pregnancy. Disturbances in the mechanisms that control the M1/M2 balance and associated functions during pregnancy can trigger a spectrum of pregnancy complications ranging from preeclampsia and fetal growth restriction to preterm delivery. This review addresses various mechanisms of tolerance, focusing on the basic biology of macrophages, their plasticity and polarization, and their protective roles at the immune-privileged maternal-fetal interface, including direct and indirect roles in promoting fetomaternal immune tolerance.
Collapse
Affiliation(s)
- P Parasar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Henry Ford Hospital, Detroit, MI 48202, United States.
| | - N Guru
- Department of Infectious Diseases, School of Medicine, Wayne State University, Detroit, MI 48202, United States
| | - N R Nayak
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Obstetrics and Gynecology, University of Missouri, Kansas City, MO 64108, United States
| |
Collapse
|
15
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Argyriou E, Nezos A, Roussos P, Venetsanopoulou A, Voulgarelis M, Boki K, Tzioufas AG, Moutsopoulos HM, Mavragani CP. Leukocyte Immunoglobulin-Like Receptor A3 (LILRA3): A Novel Marker for Lymphoma Development among Patients with Young Onset Sjogren's Syndrome. J Clin Med 2021; 10:jcm10040644. [PMID: 33567548 PMCID: PMC7915360 DOI: 10.3390/jcm10040644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Primary Sjogren’s syndrome (SS) is an autoimmune disease with a strong predilection for lymphoma development, with earlier disease onset being postulated as an independent risk factor for this complication. Variations of the Leukocyte immunoglobulin-like receptor A3(LILRA3) gene have been previously shown to increase susceptibility for both SS and non-Hodgkin B-cell lymphoma (B-NHL) in the general population. We aimed to investigate whether variations of the LILRA3 gene could predispose for lymphoma development in the context of SS. Methods: Study population, all of Greek origin, included 101 SS cases with a current or previous diagnosis of lymphoma (SS-lymphoma, SS-L) and 301 primary SS patients not complicated by lymphoma (SS-non-lymphoma, SS-nL). All SS patients fulfilled the 2016 SS American College of Rheumatology/European league against Rheumatism (ACR/EULAR) classification criteria. A total of 381 healthy controls (HC) of similar age/sex/race distribution were also included. On the basis of the age of SS onset and the presence or absence of adverse predictors for lymphoma development, SS patients were further stratified into younger (≤40 years) and older (>40 years) age of disease onset, as well as into high/medium and low risk groups. Polymerase chain reaction (PCR) was implemented for the detection of the following LILRA3 gene variants: homozygous non-deleted or functional wild type (+/+) heterozygous (+/−) and homozygous deleted (−/−). LILRA3 serum protein levels were quantitated by enzyme-linked immunosorbent assay (ELISA) in 85 individuals (29 SS-L, 35 SS-nL patients and 21 HC). Results: While no statistically significant differences were detected in the overall frequency of LILRA3 gene variants between SS-L, SS-nL and HC groups, LILRA3 serum protein levels were increased in the SS-L group compared to HC (1.27 ± 1.34 vs. 0.38 ± 0.34 ng/mL, p-value: 0.004). After stratification according to the age of SS onset and history of lymphoma, as well as the presence or absence of adverse predictors for lymphoma development, the prevalence of the functional LILRA3 gene variant was found to be significantly increased in the young onset SS-L group compared to the HC of similar age and sex distribution (100% vs. 82.9%, p = 0.03), as well as in the high/medium risk SS compared to the low risk SS (91.3 vs. 78.3%, p = 0.0012). Of note, young onset SS-L and SS-nL groups displayed higher LILRA3 serum levels compared to their older counterparts (p-values: 0.007 and 0.0005, respectively). Conclusion: The functional LILRA3 gene variant increases susceptibility to SS-related lymphoma development in patients with a disease onset of <40 years old, implying that genetically determined deranged immune responses in younger SS individuals could underly their pronounced risk for lymphoma development.
Collapse
Affiliation(s)
- Evangelia Argyriou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (A.N.); (P.R.)
- Rheumatology Unit, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Adrianos Nezos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (A.N.); (P.R.)
| | - Petros Roussos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (A.N.); (P.R.)
| | - Aliki Venetsanopoulou
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (M.V.); (A.G.T.)
| | - Michael Voulgarelis
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (M.V.); (A.G.T.)
| | - Kyriaki Boki
- Rheumatology Unit, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (M.V.); (A.G.T.)
- Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Clio P. Mavragani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (A.N.); (P.R.)
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.V.); (M.V.); (A.G.T.)
- Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-210-746-2714
| |
Collapse
|
17
|
Bogunia-Kubik K, Łacina P. Non-KIR NK cell receptors: Role in transplantation of allogeneic haematopoietic stem cells. Int J Immunogenet 2020; 48:157-171. [PMID: 33352617 DOI: 10.1111/iji.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells are of major significance in patients after allogeneic haematopoietic stem cell transplantation (HSCT). They are the first subset of lymphocytes to appear in peripheral blood after transplantation and play an important role in the immune responses against cancer and viral infections. The function of NK cells is controlled by various surface receptors, of which type I integral proteins with immunoglobulin-like domains (killer-cell immunoglobulin-like receptors, KIRs) have been the most extensively studied. The present review focuses on less studied NK cell receptors, such as type II integral proteins with lectin-like domains (CD94/NKG2, NKG2D), natural cytotoxicity receptors (NCRs), immunoglobulin-like transcripts (ILTs) and their ligands. Their potential role in patients with haematological disorders subjected to HSC transplant procedure in the context of post-transplant complications such as viral reactivation and acute graft-versus-host disease (GvHD) will be presented and discussed.
Collapse
Affiliation(s)
- Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
18
|
Davidov V, Jensen G, Mai S, Chen SH, Pan PY. Analyzing One Cell at a TIME: Analysis of Myeloid Cell Contributions in the Tumor Immune Microenvironment. Front Immunol 2020; 11:1842. [PMID: 32983100 PMCID: PMC7492293 DOI: 10.3389/fimmu.2020.01842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Tumor-mediated regulation of the host immune system involves an intricate signaling network that results in the tumor's inherent survival benefit. Myeloid cells are central in orchestrating the mechanisms by which tumors escape immune detection and continue their proliferative programming. Myeloid cell activation has historically been classified using a dichotomous system of classical (M1-like) and alternative (M2-like) states, defining general pro- and anti-inflammatory functions, respectively. Explosions in bioinformatics analyses have rapidly expanded the definitions of myeloid cell pro- and anti-inflammatory states with different combinations of tissue- and disease-specific phenotypic and functional markers. These new definitions have allowed researchers to target specific subsets of disease-propagating myeloid cells in order to modify or arrest the natural progression of the associated disease, especially in the context of tumor-immune interactions. Here, we discuss the myeloid cell contribution to solid tumor initiation and maintenance, and strategies to reprogram their phenotypic and functional fate, thereby disabling the network that benefits tumor survival.
Collapse
Affiliation(s)
- Vitaliy Davidov
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Garrett Jensen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Sunny Mai
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Shu-Hsia Chen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Ping-Ying Pan
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
19
|
Liu J, Wu Q, Shi J, Guo W, Jiang X, Zhou B, Ren C. LILRB4, from the immune system to the disease target. Am J Transl Res 2020; 12:3149-3166. [PMID: 32774691 PMCID: PMC7407714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Leukocyte immunoglobulin (Ig)-like receptor B4 (LILRB4) is a member of leukocyte Ig-like receptors (LILRs), which associate with membrane adaptors to signal through multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Under physiological conditions, LILRB4 plays a very important role in the function of the immune system through its expression on various immune cells, such as T cells and plasma cells. Under pathological conditions, LILRB4 affects the processes of various diseases, such as the transformation and infiltration of tumors and leukemias, through various signaling pathways. Differential expression of LILRB4 is present in a variety of immune system diseases, such as Kawasaki disease, systemic lupus erythematosus (SLE), and sepsis. Recent studies have shown that LILRB4 also plays a role in mental illness. The important role of LILRB4 in the immune system and its differential expression in a variety of diseases make LILRB4 a potential prophylactic and therapeutic target for a variety of diseases.
Collapse
Affiliation(s)
- Jiachen Liu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Qiwen Wu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Jing Shi
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Weihua Guo
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Bolun Zhou
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
20
|
Ming S, Li M, Wu M, Zhang J, Zhong H, Chen J, Huang Y, Bai J, Huang L, Chen J, Lin Q, Liu J, Tao J, He D, Huang X. Immunoglobulin-Like Transcript 5 Inhibits Macrophage-Mediated Bacterial Killing and Antigen Presentation During Sepsis. J Infect Dis 2020; 220:1688-1699. [PMID: 31250008 DOI: 10.1093/infdis/jiz319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Immunosuppression contributes to the mortality of sepsis. However, the underlying mechanism remains unclear. METHODS In the present study, we investigated the role of inhibitory receptor immunoglobulin-like transcript 5 (ILT5) in sepsis. We first screened the expression of ILT family members, and we found that ILT5 was dramatically up-regulated in the peripheral blood mononuclear cells from sepsis patients versus healthy donors. RESULTS Knockdown of ILT5 by small interfering ribonucleic acid increased bacterial killing and reactive oxygen species production in THP-1 and RAW264.7 cells. Moreover, ILT5-expressing monocytes/macrophages exhibited lower expression of antigen-presenting molecules including major histocompatibility complex-II and CD80. In the in vitro coculture system with monocytes/macrophages, blockage of ILT5 facilitated Th1 proliferation and differentiation of CD4+ T cells. Furthermore, in vivo experiments demonstrated that pretreatment with ILT5 blocking peptide improved the survival and pulmonary pathology of septic mice. CONCLUSIONS Together, our study identified ILT5 as an immunosuppressive regulator during sepsis, which may provide potential therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Musheng Li
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Minhao Wu
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Jianhui Zhang
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Haibo Zhong
- The Third People's Hospital of Shantou, Shantou, China
| | - Junyang Chen
- The Third People's Hospital of Shantou, Shantou, China
| | - Yaopan Huang
- The Third People's Hospital of Shantou, Shantou, China
| | - Jun Bai
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Li Huang
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Juan Chen
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Quanshi Lin
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Jiao Liu
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Jianping Tao
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Duanman He
- The Third People's Hospital of Shantou, Shantou, China
| | - Xi Huang
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| |
Collapse
|
21
|
Truong AD, Hong Y, Tran HTT, Dang HV, Nguyen VK, Pham TT, Lillehoj HS, Hong YH. Characterization and functional analyses of novel chicken leukocyte immunoglobulin-like receptor subfamily B members 4 and 5. Poult Sci 2020; 98:6989-7002. [PMID: 31376355 PMCID: PMC8913971 DOI: 10.3382/ps/pez442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
The inhibitory leukocyte immuno-globulin-like receptors (LILRBs) play an important role in innate immunity. Currently, no data exist regarding the role of LILRB4 and LILRB5 in the activation of immune signaling pathways in mammalian and avian species. Here, we report for the first time, the cloning and structural and functional analyses of chicken LILRB4–5 genes identified from 2 genetically disparate chicken lines. Comparison of LILRB4–5 amino acid sequences from lines 6.3 and 7.2 with those of mammalian proteins revealed 17 to 62% and 19 to 29% similarity, respectively. Phylogenetic analysis indicated that the chicken LILRB4–5 genes were closely associated with those of other species. LILRB4–5 could be subdivided into 2 groups having distinct immunoreceptor tyrosine-based inhibitory motifs, which bind to Src homology 2-containing tyrosine phosphatase 2 (SHP-2). Importantly, LILRB4–5 also upregulated the major histocompatibility complex (MHC) class I and β2-microglobulin gene expression as well as the expression of transporter associated with antigen processing 1–2, which play an important role in MHC class I activation. Our results indicate that LILRB4–5 are transcriptional regulators of the MHC class I pathway components and regulate innate immune responses. Furthermore, LILRB4–5 could activate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway genes in macrophages and induce the expression of chemokines and T helper (Th)1, Th2, and Th17 cytokines. Our data suggest that LILRB4–5 are innate immune receptors associated with SHP-2, MHC class I, and β2-microglobulin. Additionally, they activate the JAK/STAT signaling pathway and control the expression of cytokines in macrophages.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Viet Khong Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Thu Thao Pham
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
22
|
Lewis Marffy AL, McCarthy AJ. Leukocyte Immunoglobulin-Like Receptors (LILRs) on Human Neutrophils: Modulators of Infection and Immunity. Front Immunol 2020; 11:857. [PMID: 32477348 PMCID: PMC7237751 DOI: 10.3389/fimmu.2020.00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Neutrophils have a crucial role in defense against microbes. Immune receptors allow neutrophils to sense their environment, with many receptors functioning to recognize signs of infection and to promote antimicrobial effector functions. However, the neutrophil response must be tightly regulated to prevent excessive inflammation and tissue damage, and regulation is achieved by expression of inhibitory receptors that can raise activation thresholds. The leukocyte immunoglobulin-like receptor (LILR) family contain activating and inhibitory members that can up- or down-regulate immune cell activity. New ligands and functions for LILR continue to emerge. Understanding the role of LILR in neutrophil biology is of general interest as they can activate and suppress antimicrobial responses of neutrophils and because several human pathogens exploit these receptors for immune evasion. This review focuses on the role of LILR in neutrophil biology. We focus on the current knowledge of LILR expression on neutrophils, the known functions of LILR on neutrophils, and how these receptors may contribute to shaping neutrophil responses during infection.
Collapse
Affiliation(s)
- Alexander L Lewis Marffy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Alex J McCarthy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Agallou M, Athanasiou E, Kammona O, Tastsoglou S, Hatzigeorgiou AG, Kiparissides C, Karagouni E. Transcriptome Analysis Identifies Immune Markers Related to Visceral Leishmaniasis Establishment in the Experimental Model of BALB/c Mice. Front Immunol 2019; 10:2749. [PMID: 31849951 PMCID: PMC6902045 DOI: 10.3389/fimmu.2019.02749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022] Open
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani and L. infantum is a potentially fatal disease. To date there are no registered vaccines for disease prevention despite the fact that several vaccines are in preclinical development. Thus, new strategies are needed to improve vaccine efficacy based on a better understanding of the mechanisms mediating protective immunity and mechanisms of host immune responses subversion by immunopathogenic components of Leishmania. We found that mice vaccinated with CPA162−189-loaded p8-PLGA nanoparticles, an experimental nanovaccine, induced the differentiation of antigen-specific CD8+ T cells in spleen compared to control mice, characterized by increased dynamics of proliferation and high amounts of IFN-γ production after ex vivo re-stimulation with CPA162−189 antigen. Vaccination with CPA162−189-loaded p8-PLGA nanoparticles resulted in about 80% lower parasite load in spleen and liver at 4 weeks after challenge with L. infantum promastigotes as compared to control mice. However, 16 weeks after infection the parasite load in spleen was comparable in both mouse groups. Decreased protection levels in vaccinated mice were followed by up-regulation of the anti-inflammatory IL-10 production although at lower levels in comparison to control mice. Microarray analysis in spleen tissue at 4 weeks post challenge revealed different immune-related profiles among the two groups. Specifically, vaccinated mice were characterized by similar profile to naïve mice. On the other hand, the transcriptome of the non-vaccinated mice was dominated by increased expression of genes related to interferon type I, granulocyte chemotaxis, and immune cells suppression. This profile was significantly enriched at 16 weeks post challenge, a time-point which is relative to disease establishment, and was common for both groups, further suggesting that type I signaling and granulocyte influx has a significant role in disease establishment, pathogenesis and eventually in decreased vaccine efficacy for stimulating long-term protection. Overall, we put a spotlight on host immune networks during active VL as potential targets to improve and design more effective vaccines against disease.
Collapse
Affiliation(s)
- Maria Agallou
- Parasite Immunology Group, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Evita Athanasiou
- Parasite Immunology Group, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, Volos, Greece
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, Volos, Greece.,DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece.,Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Karagouni
- Parasite Immunology Group, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
24
|
Sugahara-Tobinai A, Inui M, Metoki T, Watanabe Y, Onuma R, Takai T, Kumaki S. Augmented ILT3/LILRB4 Expression of Peripheral Blood Antibody Secreting Cells in the Acute Phase of Kawasaki Disease. Pediatr Infect Dis J 2019; 38:431-438. [PMID: 30882741 DOI: 10.1097/inf.0000000000002259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kawasaki disease (KD) is an acute, systemic vasculitis syndrome that occurs in children. The clinical symptoms and epidemiologic features of KD strongly suggest that KD is triggered by unidentified infectious agents in genetically predisposed patients. In addition, a number of studies have described the role of B cells in the development of KD. To obtain a mechanistic insight into the humoral immune response of B-lineage cells in KD patients, we examined peripheral blood antibody secreting cells (ASCs) and inhibitory immunoreceptors, immunoglobulin-like transcript (ILT)/leukocyte immunoglobulin-like receptor (LILR), on each B cell subpopulation. METHODS Eighteen Japanese KD patients and thirteen healthy control subjects were recruited for this study. Their peripheral blood mononuclear cells were examined by flow cytometry for the number of CD19 B cells, the size of each B cell subset and the expression of the inhibitory isoforms of ILT/LILR on the B cell subset. RESULTS The frequency of CD19CD27 ASCs was significantly increased in the acute phase of KD and reduced after high-dose intravenous immunoglobulin (IVIG) treatment. Interestingly, while ILT2/LILRB1 expression was ubiquitously observed on every B cell/ASCs subset and the level was not significantly different after IVIG, ILT3/LILRB4 (B4) was uniquely expressed on only ASCs, and its expression was significantly decreased after IVIG. CONCLUSIONS In the acute phase of KD, the frequency of ASCs is high with augmented B4 expression, whereas it is lower with decreased B4 expression after IVIG. Further studies of B4 expression on ASCs in autoimmune and infectious diseases will be needed to confirm the significance of our findings.
Collapse
Affiliation(s)
- Akiko Sugahara-Tobinai
- From the Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Masanori Inui
- From the Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takaya Metoki
- Department of Pediatrics, Sendai Medical Center, Sendai, Japan
| | - Yohei Watanabe
- Department of Pediatrics, Sendai Medical Center, Sendai, Japan
| | - Ryoichi Onuma
- Department of Pediatrics, Sendai Medical Center, Sendai, Japan
| | - Toshiyuki Takai
- From the Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Satoru Kumaki
- Department of Pediatrics, Sendai Medical Center, Sendai, Japan
| |
Collapse
|
25
|
Li Q, Wei G, Tao T. Leukocyte immunoglobulin-like receptor B4 (LILRB4) negatively mediates the pathological cardiac hypertrophy by suppressing fibrosis, inflammation and apoptosis via the activation of NF-κB signaling. Biochem Biophys Res Commun 2019; 509:16-23. [DOI: 10.1016/j.bbrc.2018.11.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 11/25/2022]
|
26
|
Molecular and functional heterogeneity of IL-10-producing CD4 + T cells. Nat Commun 2018; 9:5457. [PMID: 30575716 PMCID: PMC6303294 DOI: 10.1038/s41467-018-07581-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
IL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4+ T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3neg CD4+ T cells that displays regulatory activity unlike other IL-10-producing CD4+ T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4+ T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3neg CD4+ T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease demonstrate a deficiency in this specific regulatory T-cell subpopulation. Tr1 cells are considered an immunosuppressive CD4 T cell population producing IL-10. Here the authors show that IL-10 is insufficient for Tr1 immunosuppression, define surface markers and transcriptional program of the immunosuppressive subset within Tr1, and reveal its deficiency in patients with IBD.
Collapse
|
27
|
Truong AD, Hong Y, Lee J, Lee K, Tran HTT, Dang HV, Nguyen VK, Lillehoj HS, Hong YH. Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:614-628. [PMID: 30381742 PMCID: PMC6502725 DOI: 10.5713/ajas.18.0561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Objective The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%–99%, while homologies between chicken and mammal proteins ranged between 13%–19%, and 13%–69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, β2-microglobulin, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Viet Khong Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
28
|
Oshota O, Conway M, Fookes M, Schreiber F, Chaudhuri RR, Yu L, Morgan FJE, Clare S, Choudhary J, Thomson NR, Lio P, Maskell DJ, Mastroeni P, Grant AJ. Transcriptome and proteome analysis of Salmonella enterica serovar Typhimurium systemic infection of wild type and immune-deficient mice. PLoS One 2017; 12:e0181365. [PMID: 28796780 PMCID: PMC5552096 DOI: 10.1371/journal.pone.0181365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported.
Collapse
Affiliation(s)
- Olusegun Oshota
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Max Conway
- Computer Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, United Kingdom
| | - Maria Fookes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Fernanda Schreiber
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Roy R. Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Fiona J. E. Morgan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jyoti Choudhary
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pietro Lio
- Computer Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, United Kingdom
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
van der Touw W, Chen HM, Pan PY, Chen SH. LILRB receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunol Immunother 2017. [PMID: 28638976 DOI: 10.1007/s00262-017-2023-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The leukocyte immunoglobulin-like receptor (LILR) family comprises a set of paired immunomodulatory receptors expressed among human myeloid and lymphocyte cell populations. While six members of LILR subfamily A (LILRA) associate with membrane adaptors to signal via immunoreceptor tyrosine-based activating motifs (ITAM), LILR subfamily B (LILRB) members signal via multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIM). Ligand specificity of some LILR family members has been studied in detail, but new perspective into the immunoregulatory aspects of this receptor family in human myeloid cells has been limited. LILRB receptors and the murine ortholog, paired immunoglobulin-like receptor B (PIRB), have been shown to negatively regulate maturation pathways in myeloid cells including mast cells, neutrophils, dendritic cells, as well as B cells. Our laboratory further demonstrated in mouse models that PIRB regulated functional development of myeloid-derived suppressor cell and the formation of a tumor-permissive microenvironment. Based on observations from the literature and our own studies, our laboratory is focusing on how LILRs modulate immune homeostasis of human myeloid cells and how these pathways may be targeted in disease states. Integrity of this pathway in tumor microenvironments, for example, permits a myeloid phenotype that suppresses antitumor adaptive immunity. This review presents the evidence supporting a role of LILRs as myeloid cell regulators and ongoing efforts to understand the functional immunology surrounding this family.
Collapse
Affiliation(s)
- William van der Touw
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Hui-Ming Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Cai Q, Tu M, Xu-Monette ZY, Sun R, Manyam GC, Xu X, Tzankov A, Hsi ED, Møller MB, Medeiros LJ, Ok CY, Young KH. NF-κB p50 activation associated with immune dysregulation confers poorer survival for diffuse large B-cell lymphoma patients with wild-type p53. Mod Pathol 2017; 30:854-876. [PMID: 28281555 DOI: 10.1038/modpathol.2017.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022]
Abstract
Dysregulated NF-κB signaling is critical for lymphomagenesis, however, the expression and clinical relevance of NF-κB subunit p50 in diffuse large B-cell lymphoma have not been evaluated. In this study, we analyzed the prognostic significance and gene expression signatures of p50 nuclear expression as a surrogate for p50 activation in 465 patients with de novo diffuse large B-cell lymphoma. We found that p50+ nuclear expression, observed in 34.6% of diffuse large B-cell lymphoma, predominantly composed of activated B-cell-like subtype, was an independent adverse prognostic factor in patients with activated B-cell-like diffuse large B-cell lymphoma. It was also an adverse prognostic factor in patients with wild-type TP53 independent of the activated B-cell-like and germinal center B-cell-like subtypes, even though p50 activation correlated with significantly lower levels of Myc, PI3K, phospho-AKT, and CXCR4 expression and less frequent BCL2 translocations. In contrast, in germinal center B-cell-like diffuse large B-cell lymphoma patients with TP53 mutations, p50+ nuclear expression correlated with significantly better clinical outcomes, and decreased p53, Bcl-2, and Myc expression. Gene expression profiling revealed multiple signaling pathways potentially upstream the p50 activation through either canonical or noncanonical NF-κB pathways, and suggested that immune suppression, including that by the immune checkpoint TIM-3 and that through leukocyte immunoglobulin-like receptors, but not antiapoptosis and proliferation, may underlie the observed poorer survival rates associated with p50+ nuclear expression in diffuse large B-cell lymphoma. In conclusion, these data show that p50 is important as a unique mechanism of R-CHOP-resistance in activated B-cell-like diffuse large B-cell lymphoma and in patients without TP53 mutations. The results also provide insights into the regulation and function of p50 in diffuse large B-cell lymphoma and its cross talk with the p53 pathway with important therapeutic implications.
Collapse
Affiliation(s)
- Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meifeng Tu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital &Institute, Beijing, China
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaolu Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | | | - Eric D Hsi
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
31
|
Zhang J, Mai S, Chen HM, Kang K, Li XC, Chen SH, Pan PY. Leukocyte immunoglobulin-like receptors in human diseases: an overview of their distribution, function, and potential application for immunotherapies. J Leukoc Biol 2017; 102:351-360. [PMID: 28351852 DOI: 10.1189/jlb.5mr1216-534r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 01/03/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a population of immature myeloid cells expanded and accumulated in tumor-bearing mice and in patients with cancer, have been shown to mediate immune suppression and to promote tumor progression, thereby, posing a major hurdle to the success of immune-activating cancer therapies. MDSCs, like their healthy counterparts, such as monocytes/macrophages and granulocytes, express an array of costimulatory and coinhibitory molecules as well as myeloid activators and inhibitory receptors, such as leukocyte immunoglobulin-like receptors (LILR) A and B. This review summarizes current findings on the LILR family members in various diseases, their potential roles in the pathogenesis, and possible strategies to revert or enhance the suppressive function of MDSCs for the benefit of patients by targeting LILRs.
Collapse
Affiliation(s)
- Jilu Zhang
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Sunny Mai
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Hui-Ming Chen
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Kyeongah Kang
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Xian Chang Li
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA.,Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai, New York, New York, USA; and.,Department of General Surgery, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Ping-Ying Pan
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, New York, USA; .,Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai, New York, New York, USA; and
| |
Collapse
|
32
|
Assessment of CD37 B-cell antigen and cell of origin significantly improves risk prediction in diffuse large B-cell lymphoma. Blood 2016; 128:3083-3100. [PMID: 27760757 DOI: 10.1182/blood-2016-05-715094] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023] Open
Abstract
CD37 (tetraspanin TSPAN26) is a B-cell surface antigen widely expressed on mature B cells. CD37 is involved in immune regulation and tumor suppression but its function has not been fully elucidated. We assessed CD37 expression in de novo diffuse large B-cell lymphoma (DLBCL), and investigated its clinical and biologic significance in 773 patients treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) and 231 patients treated with CHOP. We found that CD37 loss (CD37-) in ∼60% of DLBCL patients showed significantly decreased survival after R-CHOP treatment, independent of the International Prognostic Index (IPI), germinal center B-cell-like (GCB)/activated B-cell-like (ABC) cell of origin, nodal/extranodal primary origin, and the prognostic factors associated with CD37-, including TP53 mutation, NF-κBhigh, Mychigh, phosphorylated STAT3high, survivinhigh, p63-, and BCL6 translocation. CD37 positivity predicted superior survival, abolishing the prognostic impact of high IPI and above biomarkers in GCB-DLBCL but not in ABC-DLBCL. Combining risk scores for CD37- status and ABC cell of origin with the IPI, defined as molecularly adjusted IPI for R-CHOP (M-IPI-R), or IPI plus immunohistochemistry (IHC; IPI+IHC) for CD37, Myc, and Bcl-2, significantly improved risk prediction over IPI alone. Gene expression profiling suggested that decreased CD20 and increased PD-1 levels in CD37- DLBCL, ICOSLG upregulation in CD37+ GCB-DLBCL, and CD37 functions during R-CHOP treatment underlie the pivotal role of CD37 status in clinical outcomes. In conclusion, CD37 is a critical determinant of R-CHOP outcome in DLBCL especially in GCB-DLBCL, representing its importance for optimal rituximab action and sustained immune responses. The combined molecular and clinical prognostic indices, M-IPI-R and IPI+IHC, have remarkable predictive values in R-CHOP-treated DLBCL.
Collapse
|
33
|
Inui M, Sugahara-Tobinai A, Fujii H, Itoh-Nakadai A, Fukuyama H, Kurosaki T, Ishii T, Harigae H, Takai T. Tolerogenic immunoreceptor ILT3/LILRB4 paradoxically marks pathogenic auto-antibody-producing plasmablasts and plasma cells in non-treated SLE. Int Immunol 2016; 28:597-604. [DOI: 10.1093/intimm/dxw044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
|
34
|
Kang X, Kim J, Deng M, John S, Chen H, Wu G, Phan H, Zhang CC. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016; 15:25-40. [PMID: 26636629 PMCID: PMC4825776 DOI: 10.1080/15384101.2015.1121324] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.
Collapse
Affiliation(s)
- Xunlei Kang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Jaehyup Kim
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Mi Deng
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Samuel John
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Heyu Chen
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Guojin Wu
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hiep Phan
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Cheng Cheng Zhang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
35
|
Park M, Raftery MJ, Thomas PS, Geczy CL, Bryant K, Tedla N. Leukocyte immunoglobulin-like receptor B4 regulates key signalling molecules involved in FcγRI-mediated clathrin-dependent endocytosis and phagocytosis. Sci Rep 2016; 6:35085. [PMID: 27725776 PMCID: PMC5057125 DOI: 10.1038/srep35085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023] Open
Abstract
FcγRI cross-linking on monocytes may trigger clathrin-mediated endocytosis, likely through interaction of multiple intracellular molecules that are controlled by phosphorylation and dephosphorylation events. However, the identity of phospho-proteins and their regulation are unknown. We proposed the leukocyte immunoglobulin-like receptor B4 (LILRB4) that inhibits FcγRI-mediated cytokine production via Tyr dephosphorylation of multiple kinases, may also regulate endocytosis/phagocytosis through similar mechanisms. FcγRI and/or LILRB4 were antibody-ligated on THP-1 cells, lysates immunoprecipitated using anti-pTyr antibody and peptides sequenced by mass spectrometry. Mascot Search identified 25 Tyr phosphorylated peptides with high confidence. Ingenuity Pathway Analysis revealed that the most significantly affected pathways were clathrin-mediated endocytosis and Fc-receptor dependent phagocytosis. Tyr phosphorylation of key candidate proteins in these pathways included common γ-chain of the Fc receptors, Syk, clathrin, E3 ubiquitin protein ligase Cbl, hepatocyte growth factor-regulated tyrosine kinase substrate, tripartite motif-containing 21 and heat shock protein 70. Importantly, co-ligation of LILRB4 with FcγRI caused significant dephosphorylation of these proteins and was associated with suppression of Fc receptor-dependent uptake of antibody-opsonised bacterial particles, indicating that LILRB4. These results suggest that Tyr phosphorylation may be critical in FcγRI-dependent endocytosis/phagocytosis that may be regulated by LILRB4 by triggering dephosphorylation of key signalling proteins.
Collapse
Affiliation(s)
- Mijeong Park
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, Department of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul S Thomas
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia.,Department of Respiratory Medicine, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Carolyn L Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Katherine Bryant
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| |
Collapse
|
36
|
Hudson LE, Allen RL. Leukocyte Ig-Like Receptors - A Model for MHC Class I Disease Associations. Front Immunol 2016; 7:281. [PMID: 27504110 PMCID: PMC4959025 DOI: 10.3389/fimmu.2016.00281] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023] Open
Abstract
MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral infections and autoimmune diseases. MHC-I proteins present antigenic peptides and are recognized by receptors on natural killer cells and cytotoxic T lymphocytes, thus enabling the immune system to detect self-antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors on cytotoxic leukocytes. Members of the leukocyte Ig-like receptor (LILR) family are expressed on monocytic cells and can recognize both classical and non-classical MHC-I alleles. Despite their relatively broad specificity when compared to the T cell receptor or killer Ig-like receptors, variations in the strength of LILR binding between different MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that LILR recognition may mediate MHC-I disease association in a manner that does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, the effects of LILR activity following engagement by MHC-I may represent a “degrees of self” model, whereby strength of binding to different alleles determines the degree of influence exerted by these receptors on immune cell functions. LILRs are expressed by myelomonocytic cells and lymphocytes, extending their influence across antigen-presenting cell subsets including dendritic cells, macrophages, and B cells. They have been identified as important players in the response to infection, inflammatory diseases, and cancer, with recent literature to indicate that MHC-I recognition by these receptors and consequent allelic effects could extend an influence beyond the immune system.
Collapse
Affiliation(s)
- Laura Emily Hudson
- Institute for Infection and Immunity, St George's, University of London , London , UK
| | - Rachel Louise Allen
- Institute for Infection and Immunity, St George's, University of London , London , UK
| |
Collapse
|
37
|
Hogan LE, Jones DC, Allen RL. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci Rep 2016; 6:21780. [PMID: 26908331 PMCID: PMC4764857 DOI: 10.1038/srep21780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
Antigen presenting cells (APC) are critical components of innate immunity and consequently shape the adaptive response. Leukocyte Ig Like Receptors (LILR) are innate immune receptors predominantly expressed on myeloid cells. LILR can influence the antigen presenting phenotype of monocytic cells to determine the nature of T cell responses in infections including Mycobaterium leprae. We therefore investigated the relevance of LILR in the context of Mycobacterium tuberculosis. Real-time PCR studies indicated that the transcriptional profile of the orphan receptor LILRB5 was significantly up-regulated following exposure to mycobacteria. Furthermore, LILRA1 and LILRB5 were able to trigger signalling through direct engagement of mycobacteria using tranfectant cells incorporating a reporter system. We describe for the first time the expression of this receptor on T cells, and highlight the potential relevance to mycobacterial recognition. Furthermore, we demonstrate that crosslinking of this receptor on T cells increases proliferation of cytotoxic, but not helper, T cells.
Collapse
Affiliation(s)
- Louise E. Hogan
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE
- TB Research Group, Animal and Plant Health Agency, Weybridge, New Haw, KT15 3NB, UK
| | - Des C. Jones
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP
| | - Rachel L. Allen
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE
| |
Collapse
|
38
|
Inui M, Hirota S, Hirano K, Fujii H, Sugahara-Tobinai A, Ishii T, Harigae H, Takai T. Human CD43+ B cells are closely related not only to memory B cells phenotypically but also to plasmablasts developmentally in healthy individuals. Int Immunol 2015; 27:345-55. [PMID: 25744616 DOI: 10.1093/intimm/dxv009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/02/2015] [Indexed: 01/02/2023] Open
Abstract
CD20(+)CD27(+)CD43(+) B (CD43(+) B) cells have been newly defined among PBMCs and proposed to be human B1 cells. However, it is controversial as to whether they are orthologs of murine B1 cells and how they are related to other B-cell populations, particularly CD20(+)CD27(+)CD43(-) memory B cells and CD20(low)CD27(high)CD43(high) plasmablasts. Our objective is to identify phenotypically the position of CD43(+) B cells among peripheral B-lineage cell compartments in healthy donors, with reference to B-cell subsets from patients with systemic lupus erythematosus (SLE). We found that CD43(+) B cells among PBMCs from healthy subjects were indistinguishable phenotypically from memory B cells in terms of surface markers, and spontaneous in vitro Ig and IL-10 secretion capability, but quite different from plasmablasts. However, a moderate correlation was found in the frequency of CD43(+) B cells with that of plasmablasts in healthy donors but not in SLE patients. An in vitro differentiation experiment indicated that CD43(+) B cells give rise to plasmablasts more efficiently than do memory B cells, suggesting that they are more closely related to plasmablasts developmentally than are memory B cells, which is also supported by quantitative PCR analysis of mRNA expression of B-cell and plasma cell signature genes. Thus, we conclude that, in healthy individuals, CD43(+) B cells are closely related not only to memory B cells phenotypically but also to plasmablasts developmentally, although the developmental origin of CD43(+) B cells is not necessarily the same as that of plasmablasts.
Collapse
Affiliation(s)
- Masanori Inui
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Saeko Hirota
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kumiko Hirano
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hiroshi Fujii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akiko Sugahara-Tobinai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Tomonori Ishii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
39
|
Munukka E, Pekkala S, Wiklund P, Rasool O, Borra R, Kong L, Ojanen X, Cheng SM, Roos C, Tuomela S, Alen M, Lahesmaa R, Cheng S. Gut-adipose tissue axis in hepatic fat accumulation in humans. J Hepatol 2014; 61:132-8. [PMID: 24613361 DOI: 10.1016/j.jhep.2014.02.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/27/2014] [Accepted: 02/25/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Recent evidence suggests that in animals gut microbiota composition (GMC) affects the onset and progression of hepatic fat accumulation. The aim of this study was to investigate in humans whether subjects with high hepatic fat content (HHFC) differ in their GMC from those with low hepatic fat content (LHFC), and whether these differences are associated with body composition, biomarkers and abdominal adipose tissue inflammation. METHODS Hepatic fat content (HFC) was measured using proton magnetic resonance spectroscopy ((1)H MRS). Fecal GMC was profiled by 16S rRNA fluorescence in situ hybridization and flow cytometry. Adipose tissue gene expression was analyzed using Affymetrix microarrays and quantitative PCR. RESULTS The HHFC group had unfavorable GMC described by lower amount of Faecalibacterium prausnitzii (FPrau) (p<0.05) and relatively higher Enterobacteria than the LHFC group. Metabolically dysbiotic GMC associated with HOMA-IR and triglycerides (p<0.05 for both). Several inflammation-related adipose tissue genes were differentially expressed and correlated with HFC (p<0.05). In addition, the expression of certain genes correlated with GMC dysbiosis, i.e., low FPrau-to-Bacteroides ratio. CONCLUSIONS HHFC subjects differ unfavorably in their GMC from LHFC subjects. Adipose tissue inflammation may be an important link between GMC, metabolic disturbances, and hepatic fat accumulation.
Collapse
Affiliation(s)
- Eveliina Munukka
- Department of Health Sciences, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland; Department of Medical Microbiology and Immunology, University of Turku, Finland
| | - Satu Pekkala
- Department of Health Sciences, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Petri Wiklund
- Department of Health Sciences, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ronald Borra
- Department of Diagnostic Radiology, Turku University Hospital, Turku, Finland
| | - Lingjia Kong
- Tampere University of Technology, Tampere, Finland
| | - Xiaowei Ojanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Shu Mei Cheng
- Department of Health Sciences, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | | | - Soile Tuomela
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Markku Alen
- Department of Medical Rehabilitation, Oulu University Hospital, Oulu, Finland; Institute of Health Sciences, University of Oulu, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sulin Cheng
- Department of Health Sciences, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland; Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
40
|
López-Álvarez MR, Jones DC, Jiang W, Traherne JA, Trowsdale J. Copy number and nucleotide variation of the LILR family of myelomonocytic cell activating and inhibitory receptors. Immunogenetics 2014; 66:73-83. [PMID: 24257760 PMCID: PMC3894450 DOI: 10.1007/s00251-013-0742-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
Abstract
Leukocyte immunoglobulin-like receptors (LILR) are cell surface molecules that regulate the activities of myelomonocytic cells through the balance of inhibitory and activation signals. LILR genes are located within the leukocyte receptor complex (LRC) on chromosome 19q13.4 adjacent to KIR genes, which are subject to allelic and copy number variation (CNV). LILRB3 (ILT5) and LILRA6 (ILT8) are highly polymorphic receptors with similar extracellular domains. LILRB3 contains inhibitory ITIM motifs and LILRA6 is coupled to an adaptor with activating ITAM motifs. We analysed the sequences of the extracellular immunoglobulin domain-encoding regions of LILRB3 and LILRA6 in 20 individuals, and determined the copy number of these receptors, in addition to those of other members of the LILR family. We found 41 polymorphic sites within the extracellular domains of LILRB3 and LILRA6. Twenty-four of these sites were common to both receptors. LILRA6, but not LILRB3, exhibited CNV. In 20 out of 48 human cell lines from the International Histocompatibility Working Group, LILRA6 was deleted or duplicated. The only other LILR gene exhibiting genomic aberration was LILRA3, in this case due to a partial deletion.
Collapse
Affiliation(s)
- María R. López-Álvarez
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - Des C. Jones
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Wei Jiang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - James A. Traherne
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
- Immunology Division, Pathology Department, University of Cambridge, Cambridge, CB2 1QP UK
| |
Collapse
|
41
|
Waters-Banker C, Butterfield TA, Dupont-Versteegden EE. Immunomodulatory effects of massage on nonperturbed skeletal muscle in rats. J Appl Physiol (1985) 2013; 116:164-75. [PMID: 24201707 DOI: 10.1152/japplphysiol.00573.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Massage is an ancient manual therapy widely utilized by individuals seeking relief from various musculoskeletal maladies. Despite its popularity, the majority of evidence associated with massage benefits is anecdotal. Recent investigations have uncovered physiological evidence supporting its beneficial use following muscle injury; however, the effects of massage on healthy, unperturbed skeletal muscle are unknown. Utilizing a custom-fabricated massage mimetic device, the purpose of this investigation was to elucidate the effects of various loading magnitudes on healthy skeletal muscle with particular interest in the gene expression profile and modulation of key immune cells involved in the inflammatory response. Twenty-four male Wistar rats (200 g) were subjected to cyclic compressive loading (CCL) over the right tibialis anterior muscle for 30 min, once a day, for 4 consecutive days using four loading conditions: control (0N), low load (1.4N), moderate load (4.5N), and high load (11N). Microarray analysis showed that genes involved with the immune response were the most significantly affected by application of CCL. Load-dependent changes in cellular abundance were seen in the CCL limb for CD68(+) cells, CD163(+) cells, and CD43(+)cells. Surprisingly, load-independent changes were also discovered in the non-CCL contralateral limb, suggesting a systemic response. These results show that massage in the form of CCL exerts an immunomodulatory response to uninjured skeletal muscle, which is dependent upon the applied load.
Collapse
|
42
|
Si YQ, Bian XK, Lu N, Jia YF, Hou ZH, Zhang Y. Cyclosporine induces up-regulation of immunoglobulin-like transcripts 3 and 4 expression on and activity of NKL cells. Transplant Proc 2012; 44:1407-11. [PMID: 22664025 DOI: 10.1016/j.transproceed.2011.10.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/27/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND Immunoglobulin-like transcripts (ILTs), which belong to a kind of receptor family discovered recently, are differentially expressed on myeloid and lymphoid cells. Most of them play important roles to regulate human immune responses by interacting with ligands. Cyclosporine (CsA) is frequently used to prevent graft-versus-host disease and treat autoimmune diseases. There are some studies about the effects of CsA on various human immunologic reactions, but its impact on ILT3 and ILT4 expression on natural killer (NK) cells is less well understood. METHODS An NKL cell line was exposed to CsA (5, 10, 15, or 20 mg/L) for 12, 24, or 36 hours before real-time quantitative polymerase chain reaction and flow cytometry were used to detect alterations in ILT3 and ILT4 mRNA and protein expressions. NKL cells treated for 36 hours with or without CsA (15 mg/L) and then coincubated with BGC-823 or JEG-3 cells, in cytolytic and proliferative systems measured by Thiazoyl blue tetrazolium bromide assays. RESULTS After CsA treatment both RNA and protein levels of ILT3 and ILT4 on NKL cells were increased for 12, 24, or 36 hours. CsA at various concentrations inhibited the proliferation of NKL cells to varying degrees; at 36 hours CsA (15 mg/L) showed greater effects on ILT3 and ILT4 expression and less influence on NKL growth. The ability of NKL cells primed with CsA (15 mg/L) for 36 hours to kill tumor cells was decreased markedly. CONCLUSIONS CsA up-regulated the expression of ILT3 and ILT4 on NKL cells, which influenced their cytotoxicity against tumor cells with different expression of HLA-G and proliferation of NKL cells.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Coculture Techniques
- Cyclosporine/pharmacology
- Cytotoxicity, Immunologic/drug effects
- Dose-Response Relationship, Drug
- Flow Cytometry
- HLA-G Antigens/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Neoplasms/immunology
- Neoplasms/pathology
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription, Genetic/drug effects
- Up-Regulation
Collapse
Affiliation(s)
- Y-Q Si
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
43
|
Petrizzo A, Tornesello ML, Napolitano M, D'Alessio G, Salomone Megna A, Dolcetti R, De Re V, Wang E, Marincola FM, Buonaguro FM, Buonaguro L. Multiparametric analyses of human PBMCs loaded ex vivo with a candidate idiotype vaccine for HCV-related lymphoproliferative disorders. PLoS One 2012; 7:e44870. [PMID: 23028651 PMCID: PMC3445594 DOI: 10.1371/journal.pone.0044870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) has been identified as one of the major risk factors for type II mixed cryoglobulinemia (MC), during the clinical evolution of chronic hepatitis, which may lead to development of B cell non-Hodgkin's lymphoma (NHL). We have previously shown that the candidate idiotype vaccine, based on the IGKV3-20 light chain protein, is able to induce activation and maturation of circulating antigen presenting cells (APCs) in both HCV-positive and HCV-negative healthy control subjects, with production of Th2-type cytokines. Here, the effect of the recombinant IGKV3-20 protein on human peripheral blood mononuclear cells (PBMCs) from HCV-positive subjects, with known blood levels of cryoglobulins, is shown via gene expression profiling analysis combined to multiparameter flow cytometry and multiplex analyses of cytokines.
Collapse
Affiliation(s)
- Annacarmen Petrizzo
- Laboratory of Molecular Biology and Viral Oncogenesis, National Cancer Institute “Fond. G. Pascale”, Naples, Italy
| | - Maria Lina Tornesello
- Laboratory of Molecular Biology and Viral Oncogenesis, National Cancer Institute “Fond. G. Pascale”, Naples, Italy
| | - Maria Napolitano
- Laboratory of Clinical Immunology, National Cancer Institute “Fond. G. Pascale”, Naples, Italy
| | | | | | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Valli De Re
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, and trans-NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Franco M. Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, and trans-NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Franco M. Buonaguro
- Laboratory of Molecular Biology and Viral Oncogenesis, National Cancer Institute “Fond. G. Pascale”, Naples, Italy
| | - Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncogenesis, National Cancer Institute “Fond. G. Pascale”, Naples, Italy
- * E-mail:
| |
Collapse
|
44
|
Global effect of interleukin-10 on the transcriptional profile induced by Neisseria meningitidis in human monocytes. Infect Immun 2012; 80:4046-54. [PMID: 22966040 DOI: 10.1128/iai.00386-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In meningococcal septic shock, the dominant inducer of inflammation is lipopolysaccharide (LPS) in the outer membrane of Neisseria meningitidis, while interleukin-10 (IL-10) is the principal anti-inflammatory cytokine. We have used microarrays and Ingenuity Pathway Analysis to study the global effects of IL-10 on gene expression induced by N. meningitidis, after exposure of human monocytes (n = 5) for 3 h to N. meningitidis (10(6) cells/ml), recombinant human IL-10 (rhIL-10) (25 ng/ml), and N. meningitidis combined with rhIL-10. N. meningitidis and IL-10 differentially expressed 3,579 and 648 genes, respectively. IL-10 downregulated 125 genes which were upregulated by N. meningitidis, including NLRP3, the key molecule of the NLRP3 inflammasome. IL-10 also upregulated 270 genes which were downregulated by N. meningitidis, including members of the leukocyte immunuglobulin-like receptor (LIR) family. Fifty-three genes revealed a synergistically increased expression when N. meningitidis and IL-10 were combined. AIM2 (the principal molecule of the AIM2 inflammasome) was among these genes (fold change [FC], 18.3 versus 7.4 and 9.4 after stimulation by N. meningitidis and IL-10, respectively). We detected reduced concentrations (92% to 40%) of six cytokines (IL-1b, IL-6, IL-8, tumor necrosis factor alpha [TNF-α], macrophage inflammatory protein alpha [MIP-α], MIP-β) in the presence of IL-10, compared with concentrations with stimulation by N. meningitidis alone. Our data analysis of the effects of IL-10 on gene expression induced by N. meningitidis suggests that high plasma levels of IL-10 in meningococcal septic shock plasma may have a profound effect on a variety of functions and cellular processes in human monocytes, including cell-to-cell signaling, cellular movement, cellular development, antigen presentation, and cell death.
Collapse
|
45
|
Lisciandro JG, Prescott SL, Nadal-Sims MG, Devitt CJ, Richmond PC, Pomat W, Siba PM, Holt PG, Strickland DH, van den Biggelaar AHJ. Neonatal antigen-presenting cells are functionally more quiescent in children born under traditional compared with modern environmental conditions. J Allergy Clin Immunol 2012; 130:1167-1174.e10. [PMID: 22818765 DOI: 10.1016/j.jaci.2012.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 06/03/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND One explanation for the high burden of allergic and autoimmune diseases in industrialized countries is inappropriate immune development under modern environmental conditions. There is increasing evidence that the process of immune deviation already begins in utero, but the underlying immunologic mechanisms are not clear. OBJECTIVE We sought to identify differences in the function of neonatal antigen-presenting cells (APCs) in children born in settings that are more traditional versus those of modern societies. METHODS Cord blood mononuclear cells were collected from newborns from Papua New Guinea (PNG; traditional) and Australia (modern) and compared for differences in APCs and T-cell phenotype and function. RESULTS Australian cord naive T cells (CD4(+)CD25(-)CD127(+) cells) showed an enhanced and more rapid proliferative response in an autologous, APC-dependent culture system, a result of differences in neonatal APCs rather than T-cell function. This included an increased capacity to process antigen and to upregulate activation markers after stimulation. In contrast, resting PNG APCs exhibited higher baseline levels of activation and inhibitory markers and were less responsive or nonresponsive to stimulation in vitro. CONCLUSIONS This study supports the hypothesis that prenatal environments can influence the developing immune system in utero. Children born under modern environmental conditions exhibit increased APC reactivity at birth compared with children born under traditional environmental conditions. The functionally more quiescent nature of PNG neonatal APCs might protect against the development of harmful inflammatory responses in early life.
Collapse
Affiliation(s)
- Joanne G Lisciandro
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang Y, Lu N, Xue Y, Zhang M, Li Y, Si Y, Bian X, Jia Y, Wang Y. Expression of immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical significance. Mol Med Rep 2012; 5:910-6. [PMID: 22246571 PMCID: PMC3493079 DOI: 10.3892/mmr.2012.744] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022] Open
Abstract
Immune inhibitory receptors play an important role in organ transplantation, autoimmune diseases and cancers. Immunoglobulin-like transcript (ILT)2 and ILT3 belong to the inhibitory receptors of the ILT family, which have been reported to regulate a broad range of cellular functions involved in the immune response. They contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which are related to immune regulation. Although ILT receptors have been studied in dendritic cells (DCs), T cells, NK cells and other cell types, the expression and clinical significance of ILT2 and ILT3 in gastric cancer have yet to be elucidated. Here, the expression of ILT2 and ILT3 in gastric cancer cell lines and pathologic tissues, as well as their effects on the cytotoxicity of NK92MI against the gastric cancer cell lines MKNI with ILT2lowILT3low and HGC-27 with ILT2highILT3high were detected. The results suggest that ILT2 and ILT3 are expressed with diverse degrees in gastric cancer cells and tissues, and the expression of ILT2 is related with differentiation and size of tumors. Furthermore, the cytotoxic activity of NK92MI against the MKNI cell line was stronger than that against HGC-27. This study indicates that ILT2 and ILT3 play a key role in gastric cancer immune escape, and ILT2 may be a new target in the clinical diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Buschow SI, Lasonder E, Szklarczyk R, Oud MM, de Vries IJM, Figdor CG. Unraveling the human dendritic cell phagosome proteome by organellar enrichment ranking. J Proteomics 2011; 75:1547-62. [PMID: 22146474 DOI: 10.1016/j.jprot.2011.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) take up pathogens through phagocytosis and process them into protein and lipid fragments for presentation to T cells. So far, the proteome of the human DC phagosome, a detrimental compartment for antigen processing and presentation as well as for DC activation, remains largely uncharacterized. Here we have analyzed the protein composition of phagosomes from human monocyte-derived DC. For LC-MS/MS analysis we purified phagosomes from DC using latex beads targeted to DC-SIGN, and quantified proteins using a label-free method. We used organellar enrichment ranking (OER) to select proteins with a high potential to be relevant for phagosome function. The method compares phagosome protein abundance with protein abundance in whole DC. Phagosome enrichment indicates specific recruitment to the phagosome rather than co-purification or passive incorporation. Using OER we extracted the most enriched proteins that we further complemented with functionally associated proteins to define a set of 90 phagosomal proteins that included many proteins with established relevance on DC phagosomes as well as high potential novel candidates. We already experimentally confirmed phagosomal recruitment of Galectin-9, which has not been previously associated with phagocytosis, to both bead and pathogen containing phagosomes, suggesting a role for Galectin-9 in DC phagocytosis.
Collapse
Affiliation(s)
- Sonja I Buschow
- Department of Tumor Immunology at the Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Hoshino S, Kurishima A, Inaba M, Ando Y, Fukui T, Uchida K, Nishio A, Iwai H, Yokoi T, Ito T, Hasegawa-Ishii S, Shimada A, Li M, Okazaki K, Ikehara S. Amelioration of 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice by immunoregulatory dendritic cells. J Gastroenterol 2011; 46:1368-81. [PMID: 21922185 DOI: 10.1007/s00535-011-0460-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/17/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dendritic cells (DCs) are widely distributed throughout the lymphoid and nonlymphoid tissues, and are important initiators of acquired immunity. They also serve as regulators by inducing self-tolerance. However, it has not been thoroughly clarified whether DCs are somehow involved in the regulation or treatment of inflammatory bowel diseases. METHODS We established an ileitis model by transmurally injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the lumen of the ileocolonic junction. The kinetic movement of DCs at the inflammatory sites was analyzed histologically and by flow cytometry, and DCs obtained from the small intestine were analyzed in order to determine the expression of paired immunoglobulin-like receptor-A/B (PIR-A/B) by flow cytometry and quantitative RT-PCR. Furthermore, the regulatory role of DCs was directly determined by a transfer experiment using TNBS-induced colitis model mice. RESULTS We observed three DC subsets (PIR-A/B(high), PIR-A/B(med), and PIR-A/B(-) DCs) in the conventional DCs (cDCs) from day 3, and the number of PIR-A/B(med) cDCs increased from the time the inflammatory responses ceased (day 7). PIR-A/B(med) cDCs actually migrated to the inflamed colon, and ameliorated the colitis induced by TNBS when transferred to colitis-induced recipients. The colitis was greatly exacerbated when mice had been treated with the indoleamine-pyrrole 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan (1-mT) at the time PIR-A/B(med) cDCs were transferred, indicating that the therapeutic ability of PIR-A/B(med) cDCs is partially dependent on IDO. CONCLUSION The PIR-A/B(med) cDCs, which increase in number during the final stages of inflammation, can be used to treat colitis via an IDO-dependent mechanism.
Collapse
Affiliation(s)
- Shoichi Hoshino
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Moriguchi, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nam J, Perera P, Liu J, Rath B, Deschner J, Gassner R, Butterfield TA, Agarwal S. Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis. PLoS One 2011; 6:e24320. [PMID: 21931681 PMCID: PMC3172226 DOI: 10.1371/journal.pone.0024320] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/05/2011] [Indexed: 11/19/2022] Open
Abstract
Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced arthritis (MIA) of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade 1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to Grade 3-3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression, and the expression of salient genes was confirmed by real-time-PCR. Functional networks generated by Ingenuity Pathways Analysis (IPA) from the microarray data correlated the macroscopic/histologic findings with molecular interactions of genes/gene products. Temporal changes in gene expression during the progression of MIA were categorized into five major gene clusters. IPA revealed that Grade 1 damage was associated with upregulation of acute/innate inflammatory responsive genes (Cluster I) and suppression of genes associated with musculoskeletal development and function (Cluster IV). Grade 2 damage was associated with upregulation of chronic inflammatory and immune trafficking genes (Cluster II) and downregulation of genes associated with musculoskeletal disorders (Cluster IV). The Grade 3 to 3.5 cartilage damage was associated with chronic inflammatory and immune adaptation genes (Cluster III). These findings suggest that temporal regulation of discrete gene clusters involving inflammatory mediators, receptors, and proteases may control the progression of cartilage destruction. In this process, IL-1β, TNF-α, IL-15, IL-12, chemokines, and NF-κB act as central nodes of the inflammatory networks, regulating catabolic processes. Simultaneously, upregulation of asporin, and downregulation of TGF-β complex, SOX-9, IGF and CTGF may be central to suppress matrix synthesis and chondrocytic anabolic activities, collectively contributing to the progression of cartilage destruction in MIA.
Collapse
Affiliation(s)
- Jin Nam
- The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Priyangi Perera
- The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Jie Liu
- The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Bjoern Rath
- Department of Orthopedic Surgery, University of Aachen, Aachen, Germany
| | - James Deschner
- Department of Periodontics, University of Köln, Köln, Germany
| | - Robert Gassner
- Department of Oral and Maxillofacial Surgery, University of Innsbruck College of Medicine, Innsbruck, Austria
| | - Timothy A. Butterfield
- Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sudha Agarwal
- The Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
- Department of Orthopedics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
50
|
Modulation of Toll-like receptor activity by leukocyte Ig-like receptors and their effects during bacterial infection. Mediators Inflamm 2010; 2010:536478. [PMID: 20634939 PMCID: PMC2903975 DOI: 10.1155/2010/536478] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/30/2010] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors (TLRs) are a potent trigger for inflammatory immune responses. Without tight regulation their activation could lead to pathology, so it is imperative to extend our understanding of the regulatory mechanisms that govern TLR expression and function. One family of immunoregulatory proteins which can provide a balancing effect on TLR activity are the Leukocyte Ig-like receptors (LILRs), which act as innate immune receptors for self-proteins. Here we describe the LILR family, their inhibitory effect on TLR activity in cells of the monocytic lineage, their signalling pathway, and their antimicrobial effects during bacterial infection. Agents have already been identified which enhances or inhibits LILR activity raising the future possibility that modulation of LILR function could be used as a means to modulate TLR activity.
Collapse
|