1
|
Mihealsick E, Word A, Scully EP. The impact of sex on HIV immunopathogenesis and therapeutic interventions. J Clin Invest 2024; 134:e180075. [PMID: 39286972 PMCID: PMC11405047 DOI: 10.1172/jci180075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Globally, the majority of people living with HIV are women or girls, but they have been a minority of participants in clinical trials and observational studies of HIV. Despite this underrepresentation, differences in the pathogenesis of HIV have been observed between men and women, with contributions from both gender- and sex-based factors. These include differences in the risk of HIV acquisition, in viral load set point and immune activation in responses to viremia, and differences in HIV reservoir maintenance. These differences obligate adequate study in both males and females in order to optimize treatments, but also provide a powerful leverage point for delineating the mechanisms of HIV pathogenesis. The shifts in exposure to sex steroid hormones across a lifespan introduce additional complexity, which again can be used to focus on either genetic or hormonal influences as the driver of an outcome. In this Review, we discuss consistent and reproducible differences by sex across the spectrum of HIV, from acquisition through pathogenesis, treatment, and cure, and explore potential mechanisms and gaps in knowledge.
Collapse
Affiliation(s)
| | | | - Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Xiao H, Wei J, Yuan L, Li J, Zhang C, Liu G, Liu X. Sex hormones in COVID-19 severity: The quest for evidence and influence mechanisms. J Cell Mol Med 2024; 28:e18490. [PMID: 38923119 PMCID: PMC11194454 DOI: 10.1111/jcmm.18490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Studies have reported variable effects of sex hormones on serious diseases. Severe disease and mortality rates in COVID-19 show marked gender differences that may be related to sex hormones. Sex hormones regulate the expression of the viral receptors ACE2 and TMPRSS2, which affect the extent of viral infection and consequently cause variable outcomes. In addition, sex hormones have complex regulatory mechanisms that affect the immune response to viruses. These hormones also affect metabolism, leading to visceral obesity and severe disease can result from complications such as thrombosis. This review presents the latest researches on the regulatory functions of hormones in viral receptors, immune responses, complications as well as their role in COVID-19 progression. It also discusses the therapeutic possibilities of these hormones by reviewing the recent findings of clinical and assay studies.
Collapse
Affiliation(s)
- Haiqing Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Jiayi Wei
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Jiayuan Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Chang Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Xuan Liu
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| |
Collapse
|
3
|
Sampson OL, Jay C, Adland E, Csala A, Lim N, Ebbrecht SM, Gilligan LC, Taylor AE, George SS, Longet S, Jones LC, Barnes E, Frater J, Klenerman P, Dunachie S, Carrol M, Hawley J, Arlt W, Groll A, Goulder P. Gonadal androgens are associated with decreased type I interferon production by plasmacytoid dendritic cells and increased IgG titres to BNT162b2 following co-vaccination with live attenuated influenza vaccine in adolescents. Front Immunol 2024; 15:1329805. [PMID: 38481993 PMCID: PMC10933029 DOI: 10.3389/fimmu.2024.1329805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 04/09/2024] Open
Abstract
mRNA vaccine technologies introduced following the SARS-CoV-2 pandemic have highlighted the need to better understand the interaction of adjuvants and the early innate immune response. Type I interferon (IFN-I) is an integral part of this early innate response that primes several components of the adaptive immune response. Women are widely reported to respond better than men to tri- and quadrivalent influenza vaccines. Plasmacytoid dendritic cells (pDCs) are the primary cell type responsible for IFN-I production, and female pDCs produce more IFN-I than male pDCs since the upstream pattern recognition receptor Toll-like receptor 7 (TLR7) is encoded by X chromosome and is biallelically expressed by up to 30% of female immune cells. Additionally, the TLR7 promoter contains several putative androgen response elements, and androgens have been reported to suppress pDC IFN-I in vitro. Unexpectedly, therefore, we recently observed that male adolescents mount stronger antibody responses to the Pfizer BNT162b2 mRNA vaccine than female adolescents after controlling for natural SARS-CoV-2 infection. We here examined pDC behaviour in this same cohort to determine the impact of IFN-I on anti-spike and anti-receptor-binding domain IgG titres to BNT162b2. Through flow cytometry and least absolute shrinkage and selection operator (LASSO) modelling, we determined that serum-free testosterone was associated with reduced pDC IFN-I, but contrary to the well-described immunosuppressive role for androgens, the most bioactive androgen dihydrotestosterone was associated with increased IgG titres to BNT162b2. Also unexpectedly, we observed that co-vaccination with live attenuated influenza vaccine boosted the magnitude of IgG responses to BNT162b2. Together, these data support a model where systemic IFN-I increases vaccine-mediated immune responses, yet for vaccines with intracellular stages, modulation of the local IFN-I response may alter antigen longevity and consequently improve vaccine-driven immunity.
Collapse
Affiliation(s)
- Oliver L. Sampson
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Cecilia Jay
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Anna Csala
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Stella M. Ebbrecht
- Department of Statistics, Technical University of Dortmund, Dortmund, Germany
| | - Lorna C. Gilligan
- Steroid Metabolome Analysis Core, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Angela E. Taylor
- Steroid Metabolome Analysis Core, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Sherley Sherafin George
- Biochemistry Department, Clinical Science Building, Wythenshawe Hospital, Manchester, United Kingdom
| | - Stephanie Longet
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lucy C. Jones
- Department of Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Ellie Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Susie Dunachie
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Miles Carrol
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - James Hawley
- Biochemistry Department, Clinical Science Building, Wythenshawe Hospital, Manchester, United Kingdom
| | - Wiebke Arlt
- Steroid Metabolome Analysis Core, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Medical Research Council London Institute of Medical Sciences (MRC LMS), Imperial College London, London, United Kingdom
| | - Andreas Groll
- Department of Statistics, Technical University of Dortmund, Dortmund, Germany
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Grünhagel B, Borggrewe M, Hagen SH, Ziegler SM, Henseling F, Glau L, Thiele RJ, Pujantell M, Sivayoganathan V, Padoan B, Claussen JM, Düsedau A, Hennesen J, Bunders MJ, Bonn S, Tolosa E, Krebs CF, Dorn C, Altfeld M. Reduction of IFN-I responses by plasmacytoid dendritic cells in a longitudinal trans men cohort. iScience 2023; 26:108209. [PMID: 37953956 PMCID: PMC10637924 DOI: 10.1016/j.isci.2023.108209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Type I interferons (IFN-I) are important mediators of antiviral immunity and autoimmune diseases. Female plasmacytoid dendritic cells (pDCs) exert an elevated capacity to produce IFN-I upon toll-like receptor 7 (TLR7) activation compared to male pDCs, and both sex hormones and X-encoded genes have been implicated in these sex-specific differences. Using longitudinal samples from a trans men cohort receiving gender-affirming hormone therapy (GAHT), the impact of testosterone injections on TLR7-mediated IFN-I production by pDCs was assessed. Single-cell RNA analyses of pDCs showed downregulation of IFN-I-related gene expression signatures but also revealed transcriptional inter-donor heterogeneity. Longitudinal quantification showed continuous reduction of IFN-I protein production by pDCs and reduced expression of IFN-I-stimulated genes in peripheral blood mononuclear cells (PBMCs). These studies in trans men demonstrate that testosterone administration reduces IFN-I production by pDCs over time and provide insights into the immune-modulatory role of testosterone in sex-specific IFN-I-mediated immune responses.
Collapse
Affiliation(s)
- Benjamin Grünhagel
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Malte Borggrewe
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Sven Hendrik Hagen
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Susanne M. Ziegler
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Florian Henseling
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Laura Glau
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Rebecca-Jo Thiele
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Maria Pujantell
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Varshi Sivayoganathan
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Translational Immunology, 20251 Hamburg, Germany
| | - Benedetta Padoan
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Janna M. Claussen
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Arne Düsedau
- Technology Platform Flow Cytometry/FACS, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Jana Hennesen
- Technology Platform Flow Cytometry/FACS, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Madeleine J. Bunders
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Eva Tolosa
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christian F. Krebs
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Translational Immunology, 20251 Hamburg, Germany
| | | | - Marcus Altfeld
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| |
Collapse
|
6
|
Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity 2023; 56:2472-2491. [PMID: 37967530 DOI: 10.1016/j.immuni.2023.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Sciarra F, Campolo F, Franceschini E, Carlomagno F, Venneri M. Gender-Specific Impact of Sex Hormones on the Immune System. Int J Mol Sci 2023; 24:ijms24076302. [PMID: 37047274 PMCID: PMC10094624 DOI: 10.3390/ijms24076302] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Sex hormones are key determinants of gender-related differences and regulate growth and development during puberty. They also exert a broad range modulation of immune cell functions, and a dichotomy exists in the immune response between the sexes. Both clinical and animal models have demonstrated that androgens, estrogens, and progestogens mediate many of the gender-specific differences in immune responses, from the susceptibility to infectious diseases to the prevalence of autoimmune disorders. Androgens and progestogens mainly promote immunosuppressive or immunomodulatory effects, whereas estrogens enhance humoral immunity both in men and in women. This study summarizes the available evidence regarding the physiological effects of sex hormones on human immune cell function and the underlying biological mechanisms, focusing on gender differences triggered by different amounts of androgens between males and females.
Collapse
|
8
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
9
|
Pujantell M, Altfeld M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front Immunol 2022; 13:986840. [PMID: 36189206 PMCID: PMC9522975 DOI: 10.3389/fimmu.2022.986840] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The immune system protects us from pathogens, such as viruses. Antiviral immune mechanisms aim to limit viral replication, and must maintain immunological homeostasis to avoid excessive inflammation and damage to the host. Sex differences in the manifestation and progression of immune-mediated disease point to sex-specific factors modulating antiviral immunity. The exact mechanisms regulating these immunological differences between females and males are still insufficiently understood. Females are known to display stronger Type I IFN responses and are less susceptible to viral infections compared to males, indicating that Type I IFN responses might contribute to the sexual dimorphisms observed in antiviral responses. Here, we review the impact of sex hormones and X chromosome-encoded genes on differences in Type I IFN responses between females and males; and discuss the consequences of sex differences in Type I IFN responses for the regulation of antiviral immune responses.
Collapse
Affiliation(s)
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Lutz CT, Livas L, Presnell SR, Sexton M, Wang P. Gender Differences in Urothelial Bladder Cancer: Effects of Natural Killer Lymphocyte Immunity. J Clin Med 2021; 10:5163. [PMID: 34768683 PMCID: PMC8584838 DOI: 10.3390/jcm10215163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Men are more likely to develop cancer than women. In fact, male predominance is one of the most consistent cancer epidemiology findings. Additionally, men have a poorer prognosis and an increased risk of secondary malignancies compared to women. These differences have been investigated in order to better understand cancer and to better treat both men and women. In this review, we discuss factors that may cause this gender difference, focusing on urothelial bladder cancer (UBC) pathogenesis. We consider physiological factors that may cause higher male cancer rates, including differences in X chromosome gene expression. We discuss how androgens may promote bladder cancer development directly by stimulating bladder urothelium and indirectly by suppressing immunity. We are particularly interested in the role of natural killer (NK) cells in anti-cancer immunity.
Collapse
Affiliation(s)
- Charles T. Lutz
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
| | - Lydia Livas
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Steven R. Presnell
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Morgan Sexton
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Peng Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
11
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
12
|
Jones JM, Jørgensen TN. Androgen-Mediated Anti-inflammatory Cellular Processes as Therapeutic Targets in Lupus. Front Immunol 2020; 11:1271. [PMID: 32655565 PMCID: PMC7324484 DOI: 10.3389/fimmu.2020.01271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE), among many other auto-immune diseases, is known to be more prevalent in females than in males. This observation has served as the foundation for studies into how sex hormones may interact with the immune system to either drive or inhibit immune activation. Early studies using castration in lupus mouse models showed the potential protective effect of testosterone against lupus development. These studies were later corroborated by observational studies in lupus patients, who upon treatment with testosterone therapy, displayed decreased disease burden. However, there are numerous limitations to treating (especially female) lupus patients with testosterone. Thus, identification of testosterone-targeted cellular and molecular mechanisms affecting immune activation is an attractive target for lupus treatment in the future. Recent studies have examined the effects of androgens on the activation of anti-inflammatory processes. As such, immunoregulatory cell types including myeloid-derived suppressor cells (MDSCs) and regulatory T and B cells have been shown to be susceptible to manipulation by sex hormones. Here, we review studies of SLE and lupus-like disease in which testosterone or testosterone-derivatives were used to skew an ongoing immune reaction toward an anti-inflammatory state. Via evaluation of both clinical studies and immunologic models we propose new areas for research with the goal of identifying testosterone-driven anti-inflammatory mediators suitable for therapeutic targeting in patients with lupus and other autoimmune diseases.
Collapse
Affiliation(s)
- Jessica M Jones
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Trine N Jørgensen
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
13
|
Leylek R, Idoyaga J. The versatile plasmacytoid dendritic cell: Function, heterogeneity, and plasticity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:177-211. [PMID: 31759431 DOI: 10.1016/bs.ircmb.2019.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their identification as the natural interferon-producing cell two decades ago, plasmacytoid dendritic cells (pDCs) have been attributed diverse functions in the immune response. Their most well characterized function is innate, i.e., their rapid and robust production of type-I interferon (IFN-I) in response to viruses. However, pDCs have also been implicated in antigen presentation, activation of adaptive immune responses and immunoregulation. The mechanisms by which pDCs enact these diverse functions are poorly understood. One central debate is whether these functions are carried out by different pDC subpopulations or by plasticity in the pDC compartment. This chapter summarizes the latest reports regarding pDC function, heterogeneity, cell conversion and environmentally influenced plasticity, as well as the role of pDCs in infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
14
|
Webb K, Peckham H, Radziszewska A, Menon M, Oliveri P, Simpson F, Deakin CT, Lee S, Ciurtin C, Butler G, Wedderburn LR, Ioannou Y. Sex and Pubertal Differences in the Type 1 Interferon Pathway Associate With Both X Chromosome Number and Serum Sex Hormone Concentration. Front Immunol 2019; 9:3167. [PMID: 30705679 PMCID: PMC6345344 DOI: 10.3389/fimmu.2018.03167] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/24/2018] [Indexed: 11/25/2022] Open
Abstract
Type 1 interferons (IFN) are an antiviral cytokine family, important in juvenile onset systemic lupus erythematosus (jSLE) which is more common in females, around puberty. We report that plasmacytoid dendritic cells (pDC) from healthy females produced more type 1 IFN after toll like receptor (TLR) 7 signaling than males, even before puberty, but that puberty itself associated with increased production of type 1 IFN. A unique human model allows us to show that this was related to X chromosome number, and serum testosterone concentration, in a manner which differed depending on the number of X chromosomes present. In addition, we have showed that pDC were more activated in females overall, and immune cell TLR7 gene expression was higher in females after puberty. Therefore, sex hormones and X chromosome number were associated individually and interactively with the type 1 IFN response, which contributes to our understanding of why females are more likely to develop an IFN mediated disease like jSLE after puberty.
Collapse
Affiliation(s)
- Kate Webb
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| | - Hannah Peckham
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| | - Anna Radziszewska
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| | - Madhvi Menon
- Division of Medicine, Centre for Rheumatology, UCL, London, United Kingdom
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, Nanostring Facility, UCL, London, United Kingdom
| | - Fraser Simpson
- Department of Genetics, Evolution and Environment, Nanostring Facility, UCL, London, United Kingdom
| | - Claire T Deakin
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom.,NIHR Biomedical Research Centre at GOSH, London, United Kingdom.,III Programme UCL GOS Institute for Child Health, London, United Kingdom
| | - Sophie Lee
- Centre for Applied Statistics Courses, Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Coziana Ciurtin
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| | - Gary Butler
- Department of Paediatric and Adolescent Endocrinology, UCLH and Great Ormond Street Institute of Child Health, UCL, London, United Kingdom.,Gender Identity Development Service (GIDS), Tavistock and Portman NHS Foundation Trust, London, United Kingdom
| | - Lucy R Wedderburn
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom.,NIHR Biomedical Research Centre at GOSH, London, United Kingdom.,III Programme UCL GOS Institute for Child Health, London, United Kingdom
| | - Yiannis Ioannou
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| |
Collapse
|
15
|
Kadel S, Kovats S. Sex Hormones Regulate Innate Immune Cells and Promote Sex Differences in Respiratory Virus Infection. Front Immunol 2018; 9:1653. [PMID: 30079065 PMCID: PMC6062604 DOI: 10.3389/fimmu.2018.01653] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 01/27/2023] Open
Abstract
Sex differences in the incidence and severity of respiratory virus infection are widely documented in humans and murine models and correlate with sex biases in numbers and/or functional responses of innate immune cells in homeostasis and lung infection. Similarly, changes in sex hormone levels upon puberty, pregnancy, and menopause/aging are associated with qualitative and quantitative differences in innate immunity. Immune cells express receptors for estrogens (ERα and ERβ), androgens (AR), and progesterone (PR), and experimental manipulation of sex hormone levels or receptors has revealed that sex hormone receptor activity often underlies sex differences in immune cell numbers and/or functional responses in the respiratory tract. While elegant studies have defined mechanistic roles for sex hormones and receptors in innate immune cells, much remains to be learned about the cellular and molecular mechanisms of action of ER, PR, and AR in myeloid cells and innate lymphocytes to promote the initiation and resolution of antiviral immunity in the lung. Here, we review the literature on sex differences and sex hormone regulation in innate immune cells in the lung in homeostasis and upon respiratory virus infection.
Collapse
Affiliation(s)
- Sapana Kadel
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
16
|
O'Driscoll DN, Greene CM, Molloy EJ. Immune function? A missing link in the gender disparity in preterm neonatal outcomes. Expert Rev Clin Immunol 2018; 13:1061-1071. [PMID: 28972799 DOI: 10.1080/1744666x.2017.1386555] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION In neonatology, males exhibit a more severe disease course and poorer prognosis in many pathological states when compared to females. Perinatal brain injury, respiratory morbidity, and sepsis, among other complications, preferentially affect males. Preterm neonates (born <37 weeks gestation) display a particularly marked sexual disparity in pathology, especially at the borders of viability. The sex biases in preterm neonatal outcomes and underlying multifactorial mechanisms have been incompletely explored. Sex-specific clinical phenomena may be partially explained by intrinsic differences in immune function. The distinct immune system of preterm neonates renders this patient population vulnerable, and it is increasingly important to consider biological sex in disease processes and to strive for improved outcomes for both sexes. Areas covered: We discuss the cellular responses and molecular intermediates in immune function which are strongly dependent on sex-specific factors such as the genetic and hormonal milieu of premature birth and consider novel findings in a clinical context. Expert commentary: The role of immune function in the manifestation of sex-specific disease manifestations and outcomes in preterm neonates is a critical prognostic variable. Further mechanistic elucidation will yield valuable translational and clinical information of disease processes in preterm neonates which may be harnessed for modulation.
Collapse
Affiliation(s)
- David N O'Driscoll
- a Neonatology , National Maternity Hospital , Dublin , Ireland.,b Pediatrics, Trinity College, Trinity Centre for Health Sciences , The University of Dublin, National Children's Hospital, AMNCH , Dublin , Ireland
| | - Catherine M Greene
- c Clinical Microbiology , Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Eleanor J Molloy
- a Neonatology , National Maternity Hospital , Dublin , Ireland.,b Pediatrics, Trinity College, Trinity Centre for Health Sciences , The University of Dublin, National Children's Hospital, AMNCH , Dublin , Ireland.,d Neonatology , Coombe Women and Infants' University Hospital , Dublin , Ireland.,e Neonatology , Our Lady's Children's Hospital Crumlin , Dublin , Ireland
| |
Collapse
|
17
|
Leffler J, Stumbles PA, Strickland DH. Immunological Processes Driving IgE Sensitisation and Disease Development in Males and Females. Int J Mol Sci 2018; 19:E1554. [PMID: 29882879 PMCID: PMC6032271 DOI: 10.3390/ijms19061554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 01/15/2023] Open
Abstract
IgE sensitisation has increased significantly over the last decades and is a crucial factor in the development of allergic diseases. IgE antibodies are produced by B cells through the process of antigen presentation by dendritic cells, subsequent differentiation of CD4⁺ Th2 cells, and class switching in B cells. However, many of the factors regulating these processes remain unclear. These processes affect males and females differently, resulting in a significantly higher prevalence of IgE sensitisation in males compared to females from an early age. Before the onset of puberty, this increased prevalence of IgE sensitisation is also associated with a higher prevalence of clinical symptoms in males; however, after puberty, females experience a surge in the incidence of allergic symptoms. This is particularly apparent in allergic asthma, but also in other allergic diseases such as food and contact allergies. This has been partly attributed to the pro- versus anti-allergic effects of female versus male sex hormones; however, it remains unclear how the expression of sex hormones translates IgE sensitisation into clinical symptoms. In this review, we describe the recent epidemiological findings on IgE sensitisation in male and females and discuss recent mechanistic studies casting further light on how the expression of sex hormones may influence the innate and adaptive immune system at mucosal surfaces and how sex hormones may be involved in translating IgE sensitisation into clinical manifestations.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6008, Australia.
| | - Philip A Stumbles
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6008, Australia.
- School of Paediatrics and Child Health, The University of Western Australia, Subiaco, WA 6008, Australia.
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | - Deborah H Strickland
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6008, Australia.
| |
Collapse
|
18
|
Franconi F, Rosano G, Basili S, Montella A, Campesi I. Human cells involved in atherosclerosis have a sex. Int J Cardiol 2016; 228:983-1001. [PMID: 27915217 DOI: 10.1016/j.ijcard.2016.11.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/06/2016] [Indexed: 12/30/2022]
Abstract
The influence of sex has been largely described in cardiovascular diseases. Atherosclerosis is a complex process that involves many cell types such as vessel cells, immune cells and endothelial progenitor cells; however, many, if not all, studies do not report the sex of the cells. This review focuses on sex differences in human cells involved in the atherosclerotic process, emphasizing the role of sex hormones. Furthermore, we report sex differences and issues related to the processes that determine the fate of the cells such as apoptotic and autophagic mechanisms. The analysis of the data reveals that there are still many gaps in our knowledge regarding sex influences in atherosclerosis, largely for the cell types that have not been well studied, stressing the urgent need for a clear definition of experimental conditions and the inclusion of both sexes in preclinical studies.
Collapse
Affiliation(s)
- Flavia Franconi
- Assessorato alle Politiche per la Persona of Basilicata Region, Potenza, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, United Kingdom
| | - Stefania Basili
- Department of Internal Medicine and Medical Specialties - Research Center on Gender and Evaluation and Promotion of Quality in Medicine (CEQUAM), Sapienza University of Rome, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Osilo, Italy.
| |
Collapse
|
19
|
Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol 2015; 294:87-94. [PMID: 25708485 DOI: 10.1016/j.cellimm.2015.02.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 12/14/2022]
Abstract
Sex-based disparities in immune responses are well known phenomena. The two most important factors accounting for the sex-bias in immunity are genetics and sex hormones. Effects of female sex hormones, estrogen and progesterone are well established, however the role of testosterone is not completely understood. Evidence from unrelated studies points to an immunosuppressive role of testosterone on different components of the immune system, but the underlying molecular mechanisms remains unknown. In this review we evaluate the effect of testosterone on key cellular components of innate and adaptive immunity. Specifically, we highlight the importance of testosterone in down-regulating the systemic immune response by cell type specific effects in the context of immunological disorders. Further studies are required to elucidate the molecular mechanisms of testosterone-induced immunosuppression, leading the way to the identification of novel therapeutic targets for immune disorders.
Collapse
Affiliation(s)
- Abhishek Trigunaite
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA.
| | - Joana Dimo
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA.
| | - Trine N Jørgensen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, OH, USA.
| |
Collapse
|
20
|
Fawzy IO, Negm M, Ahmed R, Esmat G, Hamdi N, Abdelaziz AI. Tamoxifen downregulates MxA expression by suppressing TLR7 expression in PBMCs of males infected with HCV. J Med Virol 2014; 86:1113-9. [PMID: 24615767 DOI: 10.1002/jmv.23928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 11/11/2022]
Abstract
Gender discrepancies in immune response to HCV infections and during HCV therapy exist and previous findings including those from this research team indicate the female sex hormone, 17β-estradiol (E2), to be one probable cause of such inconsistencies. Also, it was recently demonstrated that estrogen receptor modulator Tamoxifen (TAM) exerts an upmodulating/enhancing effect on the TLR7 and JAK-STAT pathways in PBMCs of premenopausal females infected with HCV. Pursuing this work, a discrepancy was noticed in the results from male patients, therefore this study aimed to determine whether the effects of TAM previously observed in the PBMCs of women would hold true in PBMCs from males infected with HCV. Isolated PBMCs were pooled and relative expression of the TLR7 was quantified using RTqPCR. Sets of PBMCs were treated with exogenous interferon alpha (IFNα) or the TLR7 ligand, Imiquimod; these stimulations were performed with and without E2 and TAM pretreatment and the relative gene expressions of TLR7 and MxA were measured. Pretreatment with E2 and IFNα downregulated TLR7 (**P = 0.0080) and TAM further decreased this expression significantly (*P = 0.0284). TAM pretreatment also caused a significant downregulation in MxA expression in Imiquimod-stimulated PBMCs (*P = 0.0218). In conclusion, TAM displays several paradoxical effects in PBMCs of males infected with HCV compared to those of females. Contrary to the previous study involving premenopausal females, in PBMCs of infected males TAM may decrease IFNα release as indicated by reduced MxA expression possibly via the suppression of TLR7 expression.
Collapse
Affiliation(s)
- Injie O Fawzy
- The Molecular Pathology Research Group, Department of Pharmacology, German University in Cairo, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
21
|
Intrinsic autoimmune capacities of hematopoietic cells from female New Zealand hybrid mice. Genes Immun 2014; 15:153-61. [PMID: 24477163 PMCID: PMC3999239 DOI: 10.1038/gene.2014.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 01/04/2023]
Abstract
Most systemic autoimmune diseases occur more frequently in females than in males. This is particularly evident in Sjögren’s Syndrome, Systemic Lupus Erythromatosis (SLE) and thyroid autoimmunity, where the ratio of females to males ranges from 20:1 to 8:1. Our understanding of the etiology of SLE implies important roles for genetics, environmental factors and sex hormones, but the relative significance of each remains unknown. Using the New Zealand hybrid mouse model system of SLE we present here a new fetal liver chimera-based system in which we can segregate effects of immune system genes from that of sex hormones in vivo. We show that female hematopoietic cells express an intrinsic capacity to drive lupus-like disease in both male and female recipient mice, suggesting that this capacity is hormone independent. Particularly, only chimeric mice with a female hematopoietic system showed significantly increased numbers of germinal center B cells, memory B cells and plasma cells followed by a spontaneous loss of tolerance to nuclear components and hence elevated serum anti-nuclear autoantibodies. A protective effect of testosterone was noted with regards to disease onset, not disease incidence. Thus, genetic factors encoded within the female hematopoietic system can effectively drive lupus-like disease even in male recipients.
Collapse
|
22
|
Cho P, Gelinas L, Corbett NP, Tebbutt SJ, Turvey SE, Fortuno ES, Kollmann TR. Association of common single-nucleotide polymorphisms in innate immune genes with differences in TLR-induced cytokine production in neonates. Genes Immun 2013; 14:199-211. [DOI: 10.1038/gene.2013.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|