1
|
Su J, Wang P, Zhou W, Peydayesh M, Zhou J, Jin T, Donat F, Jin C, Xia L, Wang K, Ren F, Van der Meeren P, García de Arquer FP, Mezzenga R. Single-site iron-anchored amyloid hydrogels as catalytic platforms for alcohol detoxification. NATURE NANOTECHNOLOGY 2024; 19:1168-1177. [PMID: 38740933 PMCID: PMC11329373 DOI: 10.1038/s41565-024-01657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Constructing effective antidotes to reduce global health impacts induced by alcohol prevalence is a challenging topic. Despite the positive effects observed with intravenous applications of natural enzyme complexes, their insufficient activities and complicated usage often result in the accumulation of toxic acetaldehyde, which raises important clinical concerns, highlighting the pressing need for stable oral strategies. Here we present an effective solution for alcohol detoxification by employing a biomimetic-nanozyme amyloid hydrogel as an orally administered catalytic platform. We exploit amyloid fibrils derived from β-lactoglobulin, a readily accessible milk protein that is rich in coordinable nitrogen atoms, as a nanocarrier to stabilize atomically dispersed iron (ferrous-dominated). By emulating the coordination structure of the horseradish peroxidase enzyme, the single-site iron nanozyme demonstrates the capability to selectively catalyse alcohol oxidation into acetic acid, as opposed to the more toxic acetaldehyde. Administering the gelatinous nanozyme to mice suffering from alcohol intoxication significantly reduced their blood-alcohol levels (decreased by 55.8% 300 min post-alcohol intake) without causing additional acetaldehyde build-up. Our hydrogel further demonstrates a protective effect on the liver, while simultaneously mitigating intestinal damage and dysbiosis associated with chronic alcohol consumption, introducing a promising strategy in effective alcohol detoxification.
Collapse
Affiliation(s)
- Jiaqi Su
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Pengjie Wang
- Department of Nutrition and Health, Beijing Higher Institution Engineering Research Center of Animal Products, China Agricultural University, Beijing, China
| | - Wei Zhou
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jiangtao Zhou
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Tonghui Jin
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Felix Donat
- Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Zhejiang, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kaiwen Wang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fazheng Ren
- Department of Nutrition and Health, Beijing Higher Institution Engineering Research Center of Animal Products, China Agricultural University, Beijing, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Department of Materials, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Omura T, Isobe N, Miura T, Ishii S, Mori M, Ishitani Y, Kimura S, Hidaka K, Komiyama K, Suzuki M, Kasuya KI, Nomaki H, Nakajima R, Tsuchiya M, Kawagucci S, Mori H, Nakayama A, Kunioka M, Kamino K, Iwata T. Microbial decomposition of biodegradable plastics on the deep-sea floor. Nat Commun 2024; 15:568. [PMID: 38278791 PMCID: PMC10817984 DOI: 10.1038/s41467-023-44368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/11/2023] [Indexed: 01/28/2024] Open
Abstract
Microbes can decompose biodegradable plastics on land, rivers and seashore. However, it is unclear whether deep-sea microbes can degrade biodegradable plastics in the extreme environmental conditions of the seafloor. Here, we report microbial decomposition of representative biodegradable plastics (polyhydroxyalkanoates, biodegradable polyesters, and polysaccharide esters) at diverse deep-sea floor locations ranging in depth from 757 to 5552 m. The degradation of samples was evaluated in terms of weight loss, reduction in material thickness, and surface morphological changes. Poly(L-lactic acid) did not degrade at either shore or deep-sea sites, while other biodegradable polyesters, polyhydroxyalkanoates, and polysaccharide esters were degraded. The rate of degradation slowed with water depth. We analysed the plastic-associated microbial communities by 16S rRNA gene amplicon sequencing and metagenomics. Several dominant microorganisms carried genes potentially encoding plastic-degrading enzymes such as polyhydroxyalkanoate depolymerases and cutinases/polyesterases. Analysis of available metagenomic datasets indicated that these microorganisms are present in other deep-sea locations. Our results confirm that biodegradable plastics can be degraded by the action of microorganisms on the deep-sea floor, although with much less efficiency than in coastal settings.
Collapse
Affiliation(s)
- Taku Omura
- Laboratory of Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriyuki Isobe
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Shun'ichi Ishii
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Mihoko Mori
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yoshiyuki Ishitani
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Satoshi Kimura
- Laboratory of Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kohei Hidaka
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Katsuya Komiyama
- Laboratory of Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Miwa Suzuki
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma, 371-8510, Japan
| | - Ken-Ichi Kasuya
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma, 371-8510, Japan
- Green Polymer Research Laboratory, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Hidetaka Nomaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Ryota Nakajima
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Masashi Tsuchiya
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Shinsuke Kawagucci
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiroyuki Mori
- Japan BioPlastics Association (JBPA), 5-11 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo, 103-0015, Japan
| | - Atsuyoshi Nakayama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Masao Kunioka
- Standardization Promotion Office, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8560, Japan
| | - Kei Kamino
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Tadahisa Iwata
- Laboratory of Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Kho ZY, Azad MAK, Zhu Y, Han ML, Zhou QT, Velkov T, Naderer T, Li J. Transcriptomic interplay between Acinetobacter baumannii , human macrophage and polymyxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576770. [PMID: 38328180 PMCID: PMC10849618 DOI: 10.1101/2024.01.23.576770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Optimization of antibiotic therapy has been hindered by our dearth of understanding on the mechanism of the host-pathogen-drug interactions. Here, we employed dual RNA-sequencing to examine transcriptomic perturbations in response to polymyxin B in a co-culture infection model of Acinetobacter baumannii and human macrophages. Our findings revealed that polymyxin B treatment induced significant transcriptomic response in macrophage-interacting A. baumannii , exacerbating bacterial oxidative stress, disrupting metal homeostasis, affecting osmoadaptation, triggering stringent stress response, and influencing pathogenic factors. Moreover, infected macrophages adapt heme catabolism, coagulation cascade, and hypoxia-inducible signaling to confront bacterial invasion. Disrupting rcnB , ompW , and traR/dksA genes in A. baumannii impairs metal homeostasis, osmotic stress defense and stringent responses, thereby enhancing antibacterial killing by polymyxin. These findings shed light on the global stress adaptations at the network level during host-pathogen-drug interactions, revealing promising therapeutic targets for further investigation. IMPORTANCE In the context of the development of bacterial resistance during the course of antibiotic therapy, the role of macrophages in shaping bacterial response to antibiotic killing remains enigmatic. Herein we employed dual RNA-sequencing and an in vitro tripartite model to delve into the unexplored transcriptional networks of the Acinetobacter baumannii -macrophage-polymyxin axis. Our findings uncovered the potential synergy between macrophages and polymyxin B which appear to act in co-operation to disrupt multiple stress tolerance mechanisms in A. baumannii . Notably, we discovered the critical roles of bacterial nickel/cobalt homeostasis ( rcnB family), osmotic stress defense ( ompW family), and stringent response regulator ( traR/dksA C4-type zinc finger) in tolerating the last-line antibiotic polymyxin B. Our findings may lead to potential targets for the development of novel therapeutics against the problematic pathogen A. baumannii .
Collapse
|
4
|
Mukhopadhyay S, To KKW, Liu Y, Bai C, Leung SSY. A thermosensitive hydrogel formulation of phage and colistin combination for the management of multidrug-resistant Acinetobacter baumannii wound infections. Biomater Sci 2023; 12:151-163. [PMID: 37937608 DOI: 10.1039/d3bm01383a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic skin wounds are often associated with multidrug-resistant bacteria, impeding the healing process. Bacteriophage (phage) therapy has been revitalized as a promising strategy to counter the growing concerns of antibiotic resistance. However, phage monotherapy also faces several application drawbacks, such as a narrow host spectrum, the advent of resistant phenotypes and poor stability of phage preparations. Phage-antibiotic synergistic (PAS) combination therapy has recently been suggested as a possible approach to overcome these shortcomings. In the present study, we employed a model PAS combination containing a vB_AbaM-IME-AB2 phage and colistin to develop stable wound dressings of PAS to mitigate infections associated with Acinetobacter baumannii. A set of thermosensitive hydrogels were synthesized with varying amounts of Pluronic® F-127 (PF-127 at 15, 17.5 and 20 w/w%) modified with/without 3 w/w% hydroxypropyl methylcellulose (HPMC). Most hydrogel formulations had a gelation temperature around skin temperature, suitable for topical application. The solidified gels were capable of releasing the encapsulated phage and colistin in a sustained manner to kill bacteria. The highest bactericidal effect was achieved with the formulation containing 17.5% PF-127 and 3% HPMC (F5), which effectively killed bacteria in both planktonic (by 5.66 log) and biofilm (by 3 log) states and inhibited bacterial regrowth. Good storage stability of F5 was also noted with negligible activity loss after 9 months of storage at 4 °C. The ex vivo antibacterial efficacy of the F5 hydrogel formulation was also investigated in a pork skin wound infection model, where it significantly reduced the bacterial burden by 4.65 log. These positive outcomes warrant its further development as a topical PAS-wound dressing.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Changqing Bai
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Guangdong, 518055, China
| | - Sharon S Y Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
5
|
Lohitthai S, Rungruengkitkun A, Jitprasutwit N, Kong-Ngoen T, Duangurai T, Tandhavanant S, Sukphopetch P, Chantratita N, Indrawattana N, Pumirat P. Type VI Secretion System Accessory Protein TagAB-5 Promotes Burkholderia pseudomallei Pathogenicity in Human Microglia. Biomedicines 2023; 11:2927. [PMID: 38001928 PMCID: PMC10669256 DOI: 10.3390/biomedicines11112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Central nervous system (CNS) melioidosis caused by Burkholderia pseudomallei is being increasingly reported. Because of the high mortality associated with CNS melioidosis, understanding the underlying mechanism of B. pseudomallei pathogenesis in the CNS needs to be intensively investigated to develop better therapeutic strategies against this deadly disease. The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells to benefit the infection process. In this study, the role of the T6SS accessory protein TagAB-5 in B. pseudomallei pathogenicity was examined using the human microglial cell line HCM3, a unique resident immune cell of the CNS acting as a primary mediator of inflammation. We constructed B. pseudomallei tagAB-5 mutant and complementary strains by the markerless allele replacement method. The effects of tagAB-5 deletion on the pathogenicity of B. pseudomallei were studied by bacterial infection assays of HCM3 cells. Compared with the wild type, the tagAB-5 mutant exhibited defective pathogenic abilities in intracellular replication, multinucleated giant cell formation, and induction of cell damage. Additionally, infection by the tagAB-5 mutant elicited a decreased production of interleukin 8 (IL-8) in HCM3, suggesting that efficient pathogenicity of B. pseudomallei is required for IL-8 production in microglia. However, no significant differences in virulence in the Galleria mellonella model were observed between the tagAB-5 mutant and the wild type. Taken together, this study indicated that microglia might be an important intracellular niche for B. pseudomallei, particularly in CNS infection, and TagAB-5 confers B. pseudomallei pathogenicity in these cells.
Collapse
Affiliation(s)
- Sanisa Lohitthai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Niramol Jitprasutwit
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Taksaon Duangurai
- Department of Companion Animal Clinical Sciences, Kasetsart University, Bangkok 10900, Thailand;
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| |
Collapse
|
6
|
Kovařovic V, Finstrlová A, Sedláček I, Petráš P, Švec P, Mašlaňová I, Neumann-Schaal M, Šedo O, Botka T, Staňková E, Doškař J, Pantůček R. Staphylococcus brunensis sp. nov. isolated from human clinical specimens with a staphylococcal cassette chromosome-related genomic island outside of the rlmH gene bearing the ccrDE recombinase gene complex. Microbiol Spectr 2023; 11:e0134223. [PMID: 37712674 PMCID: PMC10581047 DOI: 10.1128/spectrum.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.
Collapse
Affiliation(s)
- Vojtěch Kovařovic
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Finstrlová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Praha, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Botka
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Pourhajibagher M, Etemad-Moghadam S, Alaeddini M, Miri Mousavi RS, Bahador A. DNA-aptamer-nanographene oxide as a targeted bio-theragnostic system in antimicrobial photodynamic therapy against Porphyromonas gingivalis. Sci Rep 2022; 12:12161. [PMID: 35842460 PMCID: PMC9288515 DOI: 10.1038/s41598-022-16310-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/07/2022] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to design and evaluate the specificity of a targeted bio-theragnostic system based on DNA-aptamer-nanographene oxide (NGO) against Porphyromonas gingivalis during antimicrobial photodynamic therapy (aPDT). Following synthesis and confirmation of NGO, the binding of selected labeled DNA-aptamer to NGO was performed and its hemolytic activity, cytotoxic effect, and release times were evaluated. The specificity of DNA-aptamer-NGO to P. gingivalis was determined. The antimicrobial effect, anti-biofilm potency, and anti-metabolic activity of aPDT were then assessed after the determination of the bacteriostatic and bactericidal concentrations of DNA-aptamer-NGO against P. gingivalis. Eventually, the apoptotic effect and anti-virulence capacity of aPDT based on DNA-aptamer-NGO were investigated. The results showed that NGO with a flaky, scale-like, and layered structure in non-cytotoxic DNA-aptamer-NGO has a continuous release in the weak-acid environment within a period of 240 h. The binding specificity of DNA-aptamer-NGO to P. gingivalis was confirmed by flow cytometry. When irradiated, non-hemolytic DNA-aptamer-NGO were photoactivated, generated ROS, and led to a significant decrease in the cell viability of P. gingivalis (P < 0.05). Also, the data indicated that DNA-aptamer-NGO-mediated aPDT led to a remarkable reduction of biofilms and metabolic activity of P. gingivalis compared to the control group (P < 0.05). In addition, the number of apoptotic cells increased slightly (P > 0.05) and the expression level of genes involved in bacterial biofilm formation and response to oxidative stress changed significantly after exposure to aPDT. It is concluded that aPDT using DNA-aptamer-NGO as a targeted bio-theragnostic system is a promising approach to detect and eliminate P. gingivalis as one of the main bacteria involved in periodontitis in periopathogenic complex in real-time and in situ.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvaneh Sadat Miri Mousavi
- Pharmaceutical Engineering Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
8
|
Hallaj-Nezhadi S, Hamdipour R, Shahrvirani M, Zare Tin R, Chapeland-Leclerc F, Ruprich-Robert G, Esnaashari S, Elyasi Far B, Dilmaghani A. Antimicrobial activity of Bacillus sp. isolated strains of wild honey. BMC Complement Med Ther 2022; 22:78. [PMID: 35305633 PMCID: PMC8933914 DOI: 10.1186/s12906-022-03551-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Multi-drug resistant bacteria hazards to the health of humans could be an agent in the destruction of human generation. Natural products of Bacillus species are the main source to access progressive antibiotics that can be a good candidate for the discovery of novel antibiotics. Wild honey as a valuable food has been used in medicine with antimicrobial effects. OBJECTIVE Bacillus strains isolated from wild honey were evaluated for the potential antimicrobial activity against human and plant bacterial and fungal pathogens. METHODS Three bacterial isolates were identified as strain Khuz-1 (98.27% similarity with Bacillus safensis subsp. Safensis strain FO-36bT), strain Khuz-2 (99.18% similarity with Bacillus rugosus strain SPB7T), and strain Khuz-3 (99.78% similarity with Bacillus velezensis strain CR-502 T) by 16S rRNA gene sequences. The strains were characterized by their ability to inhibit the growth of human and phytopathogenic fungi. RESULTS The results indicated that B. rugosus strain Khuz-2 inhibited the growth of phytopathogenic and human fungal more effective than other ones. It seems that the strain Khuz-2 has a suitable antimicrobial and antifungal potential as a good candidate for further pharmaceutical research. CONCLUSION Based on the results of GC-MS, Pyrrolo [1,2-a] pyrazine-1,4-dion, hexahydro-3-(2-methylpropyle) (PPDHM) was the major compound for all strains which have a various pharmacological effect. Isolation and identification of beneficial bacteria from natural sources can play an important role in future pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Somayeh Hallaj-Nezhadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Drug &Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Hamdipour
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Shahrvirani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Zare Tin
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Florence Chapeland-Leclerc
- Institut Des Energies de Demain (IED), UMR 8236, Univ Paris Descartes, Sorbonne Paris Cité, F-75205, Paris, France
| | - Gwenael Ruprich-Robert
- Institut Des Energies de Demain (IED), UMR 8236, Univ Paris Descartes, Sorbonne Paris Cité, F-75205, Paris, France
| | - Solmaz Esnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Elyasi Far
- Department of Physiology and Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Azita Dilmaghani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Kaewpan A, Duangurai T, Rungruengkitkun A, Muangkaew W, Kanjanapruthipong T, Jitprasutwit N, Ampawong S, Sukphopetch P, Chantratita N, Pumirat P. Burkholderia pseudomallei pathogenesis in human skin fibroblasts: A Bsa type III secretion system is involved in the invasion, multinucleated giant cell formation, and cellular damage. PLoS One 2022; 17:e0261961. [PMID: 35113856 PMCID: PMC8812868 DOI: 10.1371/journal.pone.0261961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Burkholderia pseudomallei-a causative agent of melioidosis that is endemic in Southeast Asia and Northern Australia-is a Gram-negative bacterium transmitted to humans via inhalation, inoculation through skin abrasions, and ingestion. Melioidosis causes a range of clinical presentations including skin infection, pneumonia, and septicemia. Despite skin infection being one of the clinical symptoms of melioidosis, the pathogenesis of B. pseudomallei in skin fibroblasts has not yet been elucidated. In this study, we investigated B. pseudomallei pathogenesis in the HFF-1 human skin fibroblasts. On the basis of co-culture assays between different B. pseudomallei clinical strains and the HFF-1 human skin fibroblasts, we found that all B. pseudomallei strains have the ability to mediate invasion, intracellular replication, and multinucleated giant cell (MNGC) formation. Furthermore, all strains showed a significant increase in cytotoxicity in human fibroblasts, which coincides with the augmented expression of matrix metalloproteinase-2. Using B. pseudomallei mutants, we showed that the B. pseudomallei Bsa type III secretion system (T3SS) contributes to skin fibroblast pathogenesis, but O-polysaccharide, capsular polysaccharide, and short-chain dehydrogenase metabolism do not play a role in this process. Taken together, our findings reveal a probable connection for the Bsa T3SS in B. pseudomallei infection of skin fibroblasts, and this may be linked to the pathogenesis of cutaneous melioidosis.
Collapse
Affiliation(s)
- Anek Kaewpan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Taksaon Duangurai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Niramol Jitprasutwit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Sameeullah M, Yildirim M, Aslam N, Baloğlu MC, Yucesan B, Lössl AG, Saba K, Waheed MT, Gurel E. Plastidial Expression of 3β-Hydroxysteroid Dehydrogenase and Progesterone 5β-Reductase Genes Confer Enhanced Salt Tolerance in Tobacco. Int J Mol Sci 2021; 22:11736. [PMID: 34769166 PMCID: PMC8584194 DOI: 10.3390/ijms222111736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 02/02/2023] Open
Abstract
The short-chain dehydrogenase/reductase (SDR) gene family is widely distributed in all kingdoms of life. The SDR genes, 3β-hydroxysteroid dehydrogenase (3β-HSD) and progesterone 5-β-reductases (P5βR1, P5βR2) play a crucial role in cardenolide biosynthesis pathway in the Digitalis species. However, their role in plant stress, especially in salinity stress management, remains unexplored. In the present study, transplastomic tobacco plants were developed by inserting the 3β-HSD, P5βR1 and P5βR2 genes. The integration of transgenes in plastomes, copy number and transgene expression at transcript and protein level in transplastomic plants were confirmed by PCR, end-to-end PCR, qRT-PCR and Western blot analysis, respectively. Subcellular localization analysis showed that 3β-HSD and P5βR1 are cytoplasmic, and P5βR2 is tonoplast-localized. Transplastomic lines showed enhanced growth in terms of biomass and chlorophyll content compared to wild type (WT) under 300 mM salt stress. Under salt stress, transplastomic lines remained greener without negative impact on shoot or root growth compared to the WT. The salt-tolerant transplastomic lines exhibited enhanced levels of a series of metabolites (sucrose, glutamate, glutamine and proline) under control and NaCl stress. Furthermore, a lower Na+/K+ ratio in transplastomic lines was also observed. The salt tolerance, mediated by plastidial expression of the 3β-HSD, P5βR1 and P5βR2 genes, could be due to the involvement in the upregulation of nitrogen assimilation, osmolytes as well as lower Na+/K+ ratio. Taken together, the plastid-based expression of the SDR genes leading to enhanced salt tolerance, which opens a window for developing saline-tolerant plants via plastid genetic engineering.
Collapse
Affiliation(s)
- Muhammad Sameeullah
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey; (M.S.); (N.A.)
- Center for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey
| | - Muhammet Yildirim
- Department of Chemistry, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey;
| | - Noreen Aslam
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey; (M.S.); (N.A.)
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 14030, Turkey;
| | - Buhara Yucesan
- Department of Seed Science and Technology, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey;
| | - Andreas G. Lössl
- Department of Applied Plant Sciences and Plant Biotechnology (DAPP), University of Natural Resources and Applied Life Sciences (BOKU), 1180 Vienna, Austria;
| | - Kiran Saba
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Department of Biochemistry, Faculty of Life Sciences, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ekrem Gurel
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey; (M.S.); (N.A.)
| |
Collapse
|
11
|
Chamchoy K, Pumirat P, Reamtong O, Pakotiprapha D, Leartsakulpanich U, Boonyuen U. Functional analysis of BPSS2242 reveals its detoxification role in Burkholderia pseudomallei under salt stress. Sci Rep 2020; 10:10453. [PMID: 32591552 PMCID: PMC7320009 DOI: 10.1038/s41598-020-67382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023] Open
Abstract
A bpss2242 gene, encoding a putative short-chain dehydrogenase/oxidoreductase (SDR) in Burkholderia pseudomallei, was identified and its expression was up-regulated by ten-fold when B. pseudomallei was cultured under high salt concentration. Previous study suggested that BPSS2242 plays important roles in adaptation to salt stress and pathogenesis; however, its biological functions are still unknown. Herein, we report the biochemical properties and functional characterization of BPSS2242 from B. pseudomallei. BPSS2242 exhibited NADPH-dependent reductase activity toward diacetyl and methylglyoxal, toxic electrophilic dicarbonyls. The conserved catalytic triad was identified and found to play critical roles in catalysis and cofactor binding. Tyr162 and Lys166 are involved in NADPH binding and mutation of Lys166 causes a conformational change, altering protein structure. Overexpression of BPSS2242 in Escherichia coli increased bacterial survival upon exposure to diacetyl and methylglyoxal. Importantly, the viability of B. pseudomallei encountered dicarbonyl toxicity was enhanced when cultured under high salt concentration as a result of BPSS2242 overexpression. This is the first study demonstrating that BPSS2242 is responsible for detoxification of toxic metabolites, constituting a protective system against reactive carbonyl compounds in B. pseudomallei..
Collapse
Affiliation(s)
- Kamonwan Chamchoy
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Burkholderia pseudomallei pathogenesis and survival in different niches. Biochem Soc Trans 2020; 48:569-579. [PMID: 32167134 DOI: 10.1042/bst20190836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023]
Abstract
Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a disease of the tropics with high clinical mortality rates. To date, no vaccines are approved for melioidosis and current treatment relies on antibiotics. Conversely, common misdiagnosis and high pathogenicity of Bp hamper efforts to fight melioidosis. This bacterium can be isolated from a wide range of niches such as waterlogged fields, stagnant water bodies, salt water bodies and from human and animal clinical specimens. Although extensive studies have been undertaken to elucidate pathogenesis mechanisms of Bp, little is known about how a harmless soil bacterium adapts to different environmental conditions, in particular, the shift to a human host to become a highly virulent pathogen. The bacterium has a large genome encoding an armory of factors that assist the pathogen in surviving under stressful conditions and assuming its role as a deadly intracellular pathogen. This review presents an overview of what is currently known about how the pathogen adapts to different environments. With in-depth understanding of Bp adaptation and survival, more effective therapies for melioidosis can be developed by targeting related genes or proteins that play a major role in the bacteria's survival.
Collapse
|
13
|
Reamtong O, Indrawattana N, Rungruengkitkun A, Thiangtrongjit T, Duangurai T, Chongsa-Nguan M, Pumirat P. Altered proteome of a Burkholderia pseudomallei mutant defective in short-chain dehydrogenase affects cell adhesion, biofilm formation and heat stress tolerance. PeerJ 2020; 8:e8659. [PMID: 32219018 PMCID: PMC7085900 DOI: 10.7717/peerj.8659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacillus that causes melioidosis and is recognized as an important public health problem in southeast Asia and northeast Australia. The treatment of B. pseudomallei infection is hampered by resistance to a wide range of antimicrobial agents and no vaccine is currently available. At present, the underlying mechanisms of B. pseudomallei pathogenesis are poorly understood. In our previous study, we reported that a B. pseudomallei short-chain dehydrogenase (SDO; BPSS2242) mutant constructed by deletion mutagenesis showed reduced B. pseudomallei invasion and initial intracellular survival. This indicated that SDO is associated with the pathogenesis of melioidosis. In the present study, the role of B. pseudomallei SDO was further investigated using the SDO deletion mutant by a proteomic approach. The protein profiles of the SDO mutant and wild-type K96243 were investigated through gel-based proteomic analysis. Quantitative intensity analysis of three individual cultures of the B. pseudomallei SDO mutant revealed significant down-regulation of five protein spots compared with the wild-type. Q-TOF MS/MS identified the protein spots as a glutamate/aspartate ABC transporter, prolyl-tRNA synthetase, Hsp70 family protein, quinone oxidoreductase and a putative carboxypeptidase. Functional assays were performed to investigate the role of these differentially expressed proteins in adhesion to host cells, biofilm induction and survival under heat stress conditions. The SDO deletion mutant showed a decreased ability to adhere to host cells. Moreover, biofilm formation and the survival rate of bacteria under heat stress conditions were also reduced in the mutant strain. Our findings provide insight into the role of SDO in the survival and pathogenesis of B. pseudomallei at the molecular level, which may be applied to the prevention and control of B. pseudomallei infection.
Collapse
Affiliation(s)
- Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Taksaon Duangurai
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Companion Animal Clinical Sciences/Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Manas Chongsa-Nguan
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology/Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Horizontal Gene Transfer of Short-Chain Dehydrogenase Coding Genes Contribute to the Biofilm Formation and Pathogenicity on Mycobacterium grossiae sp. nov. PB739 T (=DSM 104744 T). Curr Microbiol 2020; 77:528-533. [PMID: 31907602 DOI: 10.1007/s00284-019-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
Mycobacterium grossiae sp. nov. of type strain PB739T is a Gram-positive acid-alcohol-fast rod-shaped bacterium, which was recently isolated from a 76-year-old male who suffered from a 1-year history of hemoptysis. This strain was described as novel species in Mycobacterium genus. In this study, its genome was completely sequenced by PacBio technology, analyzed, and compared with other selected complete genome sequences of Mycobacterium to elucidate the distinct pathogenic features of the strain. The genomic analysis revealed that the genome of PB739T consists of one circular DNA chromosome of 5,637,923 bp with a GC content of 70.48% and one plasmid of 43,679 bp with a GC content of 66.24%. The entire genome contains 5434 predicted coding genes, 48 tRNAs, and 6 rRNA genes. Genome and comparative genomics against M. grossiae SCH identified three tandem short-chain dehydrogenase (SDR) genes which only exist in PB739T. These three tandem SDR genes locate in a Genomic island which was identified by Island Viewer. These SDR genes were predicted to be horizontally transferred from a Streptomyces ancestor based on phylogeny. Analysis of the mutant ΔSDR confirmed the relationship between these tandem genes with biofilm and pathogenicity. This report will provide us with an extended understanding of M. grossiae at the genomic level and would be helpful for understanding the evolution of Mycobacterium genus.
Collapse
|
15
|
Helmann TC, Ongsarte CL, Lam J, Deutschbauer AM, Lindow SE. Genome-Wide Transposon Screen of a Pseudomonas syringae mexB Mutant Reveals the Substrates of Efflux Transporters. mBio 2019. [PMID: 31662463 DOI: 10.1101/684605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Bacteria express numerous efflux transporters that confer resistance to diverse toxicants present in their environment. Due to a high level of functional redundancy of these transporters, it is difficult to identify those that are of most importance in conferring resistance to specific compounds. The resistance-nodulation-division (RND) protein family is one such example of redundant transporters that are widespread among Gram-negative bacteria. Within this family, the MexAB-OprM protein complex is highly expressed and conserved among Pseudomonas species. We exposed barcoded transposon mutant libraries in isogenic wild-type and ΔmexB backgrounds in P. syringae B728a to diverse toxic compounds in vitro to identify mutants with increased susceptibility to these compounds. Mutants with mutations in genes encoding both known and novel redundant transporters but with partially overlapping substrate specificities were observed in a ΔmexB background. Psyr_0228, an uncharacterized member of the major facilitator superfamily of transporters, preferentially contributes to tolerance of acridine orange and acriflavine. Another transporter located in the inner membrane, Psyr_0541, contributes to tolerance of acriflavine and berberine. The presence of multiple redundant, genomically encoded efflux transporters appears to enable bacterial strains to tolerate a diversity of environmental toxins. This genome-wide screen performed in a hypersusceptible mutant strain revealed numerous transporters that would otherwise be dispensable under these conditions. Bacterial strains such as P. syringae that likely encounter diverse toxins in their environment, such as in association with many different plant species, probably benefit from possessing multiple redundant transporters that enable versatility with respect to toleration of novel toxicants.IMPORTANCE Bacteria use protein pumps to remove toxic compounds from the cell interior, enabling survival in diverse environments. These protein pumps can be highly redundant, making their targeted examination difficult. In this study, we exposed mutant populations of Pseudomonas syringae to diverse toxicants to identify pumps that contributed to survival in those conditions. In parallel, we examined pump redundancy by testing mutants of a population lacking the primary efflux transporter responsible for toxin tolerance. We identified partial substrate overlap for redundant transporters, as well as several pumps that appeared more substrate specific. For bacteria that are found in diverse environments, having multiple, partially redundant efflux pumps likely allows flexibility in habitat colonization.
Collapse
Affiliation(s)
- Tyler C Helmann
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Caitlin L Ongsarte
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jennifer Lam
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
16
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
17
|
Feyereisen M, Mahony J, Kelleher P, Roberts RJ, O'Sullivan T, Geertman JMA, van Sinderen D. Comparative genome analysis of the Lactobacillus brevis species. BMC Genomics 2019; 20:416. [PMID: 31122208 PMCID: PMC6533708 DOI: 10.1186/s12864-019-5783-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
Background Lactobacillus brevis is a member of the lactic acid bacteria (LAB), and strains of L. brevis have been isolated from silage, as well as from fermented cabbage and other fermented foods. However, this bacterium is also commonly associated with bacterial spoilage of beer. Results In the current study, complete genome sequences of six isolated L. brevis strains were determined. Five of these L. brevis strains were isolated from beer (three isolates) or the brewing environment (two isolates), and were characterized as beer-spoilers or non-beer spoilers, respectively, while the sixth isolate had previously been isolated from silage. The genomic features of 19 L. brevis strains, encompassing the six L. brevis strains described in this study and thirteen L. brevis strains for which complete genome sequences were available in public databases, were analyzed with particular attention to evolutionary aspects and adaptation to beer. Conclusions Comparative genomic analysis highlighted evolution of the taxon allowing niche colonization, notably adaptation to the beer environment, with approximately 50 chromosomal genes acquired by L. brevis beer-spoiler strains representing approximately 2% of their total chromosomal genetic content. These genes primarily encode proteins that are putatively involved in oxidation-reduction reactions, transcription regulation or membrane transport, functions that may be crucial to survive the harsh conditions associated with beer. The study emphasized the role of plasmids in beer spoilage with a number of unique genes identified among L. brevis beer-spoiler strains.
Collapse
Affiliation(s)
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
18
|
Chamchoy K, Pakotiprapha D, Pumirat P, Leartsakulpanich U, Boonyuen U. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. BMC BIOCHEMISTRY 2019; 20:4. [PMID: 30961528 PMCID: PMC6454709 DOI: 10.1186/s12858-019-0108-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/31/2019] [Indexed: 01/12/2023]
Abstract
Background The reduction of tetrazolium salts by NAD(P)H to formazan product has been widely used to determine the metabolic activity of cells, and as an indicator of cell viability. However, the application of a WST-8 based assay for the quantitative measurement of dehydrogenase enzyme activity has not been described before. In this study, we reported the application of an assay based on the tetrazolium salt WST-8 for the quantitative measurement of dehydrogenase activity. The assay is performed in a microplate format, where a single endpoint is measured at 450 nm. Results The optimized dehydrogenase-WST-8 assay conditions, the limit of detection (LOD), accuracy, and precision for measuring NAD(P)H, were demonstrated. The sensitivity of the WST-8 assay for detecting NAD(P)H was 5-fold greater than the spectrophotometric measurement of NAD(P)H absorption at 340 nm (LOD of 0.3 nmole vs 1.7 nmole, respectively). In the dehydrogenase assay, the colorimetric WST-8 method exhibits excellent assay reproducibility with a Z’ factor of 0.9. The WST-8 assay was also used to determine dehydrogenase activity in biological samples, and for screening the substrate of uncharacterized short-chain dehydrogenase/oxidoreductase from Burkholderia pseudomallei. Conclusion The results suggest that the WST-8 assay is a sensitive and rapid method for determining NAD(P)H concentration and dehydrogenase enzyme activity, which can be further applied for the high-throughput screening of dehydrogenases.
Collapse
Affiliation(s)
- Kamonwan Chamchoy
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
19
|
Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. ISME JOURNAL 2019; 13:1575-1588. [PMID: 30787396 DOI: 10.1038/s41396-019-0372-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Abstract
Host-associated bacteria can have both beneficial and detrimental effects on host health. While some of the molecular mechanisms that determine these outcomes are known, little is known about the evolutionary histories of pathogenic or mutualistic lifestyles. Using the model plant Arabidopsis, we found that closely related strains within the Pseudomonas fluorescens species complex promote plant growth and occasionally cause disease. To elucidate the genetic basis of the transition between commensalism and pathogenesis, we developed a computational pipeline and identified genomic islands that correlate with outcomes for plant health. One island containing genes for lipopeptide biosynthesis and quorum-sensing is required for pathogenesis. Conservation of the quorum-sensing machinery in this island allows pathogenic strains to eavesdrop on quorum signals in the environment and coordinate pathogenic behavior. We found that genomic loci associated with both pathogenic and commensal lifestyles were convergently gained and lost in multiple lineages through homologous recombination, possibly constituting an early step in the differentiation of pathogenic and commensal lifestyles. Collectively this work provides novel insights into the evolution of commensal and pathogenic lifestyles within a single clade of host-associated bacteria.
Collapse
|
20
|
Sivakumar K, Scarascia G, Zaouri N, Wang T, Kaksonen AH, Hong PY. Salinity-Mediated Increment in Sulfate Reduction, Biofilm Formation, and Quorum Sensing: A Potential Connection Between Quorum Sensing and Sulfate Reduction? Front Microbiol 2019; 10:188. [PMID: 30787924 PMCID: PMC6373464 DOI: 10.3389/fmicb.2019.00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/23/2019] [Indexed: 11/30/2022] Open
Abstract
Biocorrosion in marine environment is often associated with biofilms of sulfate reducing bacteria (SRB). However, not much information is available on the mechanism underlying exacerbated rates of SRB-mediated biocorrosion under saline conditions. Using Desulfovibrio (D.) vulgaris and Desulfobacterium (Db.) corrodens as model SRBs, the enhancement effects of salinity on sulfate reduction, N-acyl homoserine lactone (AHL) production and biofilm formation by SRBs were demonstrated. Under saline conditions, D. vulgaris and Db. corrodens exhibited significantly higher specific sulfate reduction and specific AHL production rates as well as elevated rates of biofilm formation compared to freshwater medium. Salinity-induced enhancement traits were also confirmed at transcript level through reverse transcription quantitative polymerase chain reaction (RT-qPCR) approach, which showed salinity-influenced increase in the expression of genes associated with carbon metabolism, sulfate reduction, biofilm formation and histidine kinase signal transduction. In addition, by deploying quorum sensing (QS) inhibitors, a potential connection between sulfate reduction and AHL production under saline conditions was demonstrated, which is most significant during early stages of sulfate metabolism. The findings collectively revealed the interconnection between QS, sulfate reduction and biofilm formation among SRBs, and implied the potential of deploying quorum quenching approaches to control SRB-based biocorrosion in saline conditions.
Collapse
Affiliation(s)
- Krishnakumar Sivakumar
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Giantommaso Scarascia
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Noor Zaouri
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tiannyu Wang
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna H Kaksonen
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Floreat, WA, Australia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
21
|
Ruiz-Muñoz M, Cordero-Bueso G, Martínez S, Pérez F, Hughes-Herrera D, Izquierdo-Bueno I, Cantoral J. The veil of flor's structure, composition and interactions in biological ageing wines. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191502018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biological ageing occurs after fermentation of the grape must and it is due to the appearance of a biofilm on the surface of the wine called “veil of flor”. Yeast involved in veil formation are mainly Saccharomyces cerevisiae and they have traditionally been divided into four races according to their ability to metabolize different sugars. The growth of flor yeasts depends on different factors, such as the aerobic assimilation of the wine ethanol, since the medium is deficient in both sugars and nitrogen. Actually, flor yeast metabolism is different from wine S. cerevisiaeyeast, but it hasn't been analysed yet. Thus, the aim of this work is to study the diversity of flor yeast strains and to analyse the composition and the structure of the veil of flor in Jerez-Xérés-Sherry D.O. The results of this work revealed 14 different genotypes of S. cerevisiaestrains using multiplex-microsatellite PCR and these strains showed 8 different biochemical profiles using a similar procedure than traditionally. In addition, mannose and glucose were found in veil of flor complex using UHPLC-MS.
Collapse
|
22
|
Highlighting the Potency of Biosurfactants Produced by Pseudomonas Strains as Anti- Legionella Agents. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8194368. [PMID: 30426015 PMCID: PMC6217892 DOI: 10.1155/2018/8194368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a waterborne bacterium mainly found in man-made water systems in close association with free-living amoebae and multispecies biofilms. Pseudomonas strains, originating from various environments including freshwater systems or isolated from hospitalized patients, were tested for their antagonistic activity towards L. pneumophila. A high amount of tested strains was thus found to be active. This antibacterial activity was correlated to the presence of tensioactive agents in culture supernatants. As Pseudomonas strains were known to produce biosurfactants, these compounds were specifically extracted and purified from active strains and further characterized using reverse-phase HPLC and mass spectrometry methods. Finally, all biosurfactants tested (lipopeptides and rhamnolipids) were found active and this activity was shown to be higher towards Legionella strains compared to various other bacteria. Therefore, described biosurfactants are potent anti-Legionella agents that could be used in the water treatment industry although tests are needed to evaluate how effective they would be under field conditions.
Collapse
|
23
|
Das R, Romi W, Das R, Sharma HK, Thakur D. Antimicrobial potentiality of actinobacteria isolated from two microbiologically unexplored forest ecosystems of Northeast India. BMC Microbiol 2018; 18:71. [PMID: 29996765 PMCID: PMC6042205 DOI: 10.1186/s12866-018-1215-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Actinobacteria are often known to be great producers of antibiotics. The rapid increase in the global burden of antibiotic-resistance with the concurrent decline in the discovery of new antimicrobial molecules necessitates the search for novel and effective antimicrobial metabolites from unexplored ecological niches. The present study investigated the antimicrobial producing actinobacterial strains isolated from the soils of two microbiologically unexplored forest ecosystems, viz. Nameri National Park (NNP) and Panidehing Wildlife Sanctuary (PWS), located in the Eastern Himalayan Biodiversity hotspot region. RESULTS A total of 172 putative isolates of actinobacteria were isolated, of which 24 isolates showed strong antimicrobial bioactivity. Evaluation of the ethyl acetate extracts of culture supernatants against test microbial strains revealed that isolates PWS22, PWS41, PWS12, PWS52, PWS11, NNPR15, NNPR38, and NNPR69 were the potent producers of antimicrobial metabolites. The antimicrobial isolates dominantly belonged to Streptomyces, followed by Nocardia and Streptosporangium. Some of these isolates could be putative novel taxa. Analysis of the antimicrobial biosynthetic genes (type II polyketide synthase and nonribosomal peptide synthetase genes) showed that the antimicrobial metabolites were associated with pigment production and belonged to known families of bioactive secondary metabolites. Characterization of the antimicrobial metabolites of Streptomyces sp. PWS52, which showed lowest taxonomic identity among the studied potent antimicrobial metabolite producers, and their interaction with the test strains using GC-MS, UHPLC-MS, and scanning electron microscopy revealed that the potential bioactivity of PWS52 was due to the production of active antifungal and antibacterial metabolites like 2,5-bis(1,1-dimethylethyl) phenol, benzeneacetic acid and nalidixic acid. CONCLUSIONS Our findings suggest that the unexplored soil habitats of NNP and PWS forest ecosystems of Northeast India harbor previously undescribed actinobacteria with the capability to produce diverse antimicrobial metabolites that may be explored to overcome the rapidly rising global concern about antibiotic-resistance.
Collapse
Affiliation(s)
- Ranjita Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam 781035 India
| | - Wahengbam Romi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam India
| | - Rictika Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam 781035 India
| | | | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam 781035 India
| |
Collapse
|
24
|
Duangurai T, Indrawattana N, Pumirat P. Burkholderia pseudomallei Adaptation for Survival in Stressful Conditions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3039106. [PMID: 29992136 PMCID: PMC5994319 DOI: 10.1155/2018/3039106] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, which can be fatal in humans. Melioidosis is prevalent in the tropical regions of Southeast Asia and Northern Australia. Ecological data have shown that this bacterium can survive as a free-living organism in environmental niches, such as soil and water, as well as a parasite living in host organisms, such as ameba, plants, fungi, and animals. This review provides an overview of the survival and adaptation of B. pseudomallei to stressful conditions induced by hostile environmental factors, such as salinity, oxidation, and iron levels. The adaptation of B. pseudomallei in host cells is also reviewed. The adaptive survival mechanisms of this pathogen mainly involve modulation of gene and protein expression, which could cause alterations in the bacteria's cell membrane, metabolism, and virulence. Understanding the adaptations of this organism to environmental factors provides important insights into the survival and pathogenesis of B. pseudomallei, which may lead to the development of novel strategies for the control, prevention, and treatment of melioidosis in the future.
Collapse
Affiliation(s)
- Taksaon Duangurai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
25
|
Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet. Arch Microbiol 2018; 200:1111-1121. [DOI: 10.1007/s00203-018-1528-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/30/2017] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
|
26
|
Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Aziz SA. Physicochemical properties associated with the presence of Burkholderia pseudomallei in small ruminant farm water supplies in Peninsular Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:241. [PMID: 29569066 PMCID: PMC5895689 DOI: 10.1007/s10661-018-6613-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Burkholderia pseudomallei causes melioidosis, a life-threatening infection in both humans and animals. Water is an important reservoir of the bacteria and may serve as a source of environmental contamination leading to infection. B. pseudomallei has an unusual ability to survive in water for a long period. This paper investigates physicochemical properties of water associated with the presence of B. pseudomallei in water supply in small ruminant farms in Peninsular Malaysia. Physicochemical properties of water samples taken from small ruminant farms that included temperature, pH, dissolved oxygen (DO2), optical density (OD), and chemical oxygen demand (COD) were measured after which the samples were cultured for B. pseudomallei. Multivariable logistic regression model revealed that slightly acidic water pH and higher COD level were significantly associated with the likelihood of the B. pseudomallei presence in the water.
Collapse
Affiliation(s)
- Hassan Ismail Musa
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Latiffah Hassan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Zulkifli Hj Shamsuddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Zunita Zakaria
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Saleha Abdul Aziz
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
27
|
McKuen MJ, Mueller KE, Bae YS, Fields KA. Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK. Infect Immun 2017; 85:e00640-17. [PMID: 28970272 PMCID: PMC5695130 DOI: 10.1128/iai.00640-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Development of approaches to genetically manipulate Chlamydia is fostering important advances in understanding pathogenesis. Fluorescence-reported allelic exchange mutagenesis (FRAEM) now enables the complete deletion of specific genes in C. trachomatis L2. We have leveraged this technology to delete the coding sequences for a known type III effector. The evidence provided here indicates that CT694/CTL0063 is a virulence protein involved in chlamydial invasion. Based on our findings, we designate the gene product corresponding to ct694-ctl0063translocated membrane-associated effector A (TmeA). Deletion of tmeA did not impact development of intracellular chlamydiae. However, the absence of TmeA manifested as a decrease in infectivity in both tissue culture and murine infection models. The in vitro defect was reflected by impaired invasion of host cells. TmeA binds human AHNAK, and we demonstrate here that AHNAK is transiently recruited by invading chlamydiae. TmeA, however, is not required for endogenous AHNAK recruitment. TmeA also impairs AHNAK-dependent actin bundling activity. This TmeA-mediated effect likely does not explain impaired invasion displayed by the tmeA strain of Chlamydia, since AHNAK-deficient cells revealed no invasion phenotype. Overall, our data indicate the efficacy of FRAEM and reveal a role of TmeA during chlamydial invasion that manifests independently of effects on AHNAK.
Collapse
Affiliation(s)
- M J McKuen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - K E Mueller
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Y S Bae
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - K A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
28
|
Elevational distribution and morphological attributes of the entomopathogenic fungi from forests of the Qinling Mountains in China. Appl Microbiol Biotechnol 2017; 102:1483-1499. [DOI: 10.1007/s00253-017-8651-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/06/2017] [Accepted: 11/12/2017] [Indexed: 01/27/2023]
|
29
|
Amorim JC, Batista M, da Cunha ES, Lucena ACR, Lima CVDP, Sousa K, Krieger MA, Marchini FK. Quantitative proteome and phosphoproteome analyses highlight the adherent population during Trypanosoma cruzi metacyclogenesis. Sci Rep 2017; 7:9899. [PMID: 28852088 PMCID: PMC5574995 DOI: 10.1038/s41598-017-10292-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/02/2017] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma cruzi metacyclogenesis is a natural process that occurs inside the triatomine vector and corresponds to the differentiation of non-infective epimastigotes into infective metacyclic trypomastigotes. The biochemical alterations necessary for the differentiation process have been widely studied with a focus on adhesion and nutritional stress. Here, using a mass spectrometry approach, a large-scale phospho(proteome) study was performed with the aim of understanding the metacyclogenesis processes in a quantitative manner. The results indicate that major modulations in the phospho(proteome) occur under nutritional stress and after 12 and 24 h of adhesion. Significant changes involve key cellular processes, such as translation, oxidative stress, and the metabolism of macromolecules, including proteins, lipids, and carbohydrates. Analysis of the signalling triggered by kinases and phosphatases from 7,336 identified phosphorylation sites demonstrates that 260 of these sites are modulated throughout the differentiation process, and some of these modulated proteins have previously been identified as drug targets in trypanosomiasis treatment. To the best of our knowledge, this study provides the first quantitative results highlighting the modulation of phosphorylation sites during metacyclogenesis and the greater coverage of the proteome to the parasite during this process. The data are available via ProteomeXchange with identifier number PXD006171.
Collapse
Affiliation(s)
- Juliana C Amorim
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Michel Batista
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.,Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Elizabeth S da Cunha
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Aline C R Lucena
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Carla V de Paula Lima
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Karla Sousa
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Marco A Krieger
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Fabricio K Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil. .,Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
| |
Collapse
|
30
|
Hepatic metabolic effects of Curcuma longa extract supplement in high-fructose and saturated fat fed rats. Sci Rep 2017; 7:5880. [PMID: 28724959 PMCID: PMC5517472 DOI: 10.1038/s41598-017-06220-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
The metabolic effects of an oral supplementation with a Curcuma longa extract, at a dose nutritionally relevant with common human use, on hepatic metabolism in rats fed a high fructose and saturated fatty acid (HFS) diet was evaluated. High-resolution magic-angle spinning NMR and GC/MS in combination with multivariate analysis have been employed to characterize the NMR metabolite profiles and fatty acid composition of liver tissue respectively. The results showed a clear discrimination between HFS groups and controls involving metabolites such as glucose, glycogen, amino acids, acetate, choline, lysophosphatidylcholine, phosphatidylethanolamine, and β-hydroxybutyrate as well as an increase of MUFAs and a decrease of n-6 and n-3 PUFAs. Although the administration of CL did not counteract deleterious effects of the HFS diet, some metabolites, namely some n-6 PUFA and n-3 PUFA, and betaine were found to increase significantly in liver samples from rats having received extract of curcuma compared to those fed the HFS diet alone. This result suggests that curcuminoids may affect the transmethylation pathway and/or osmotic regulation. CL extract supplementation in rats appears to increase some of the natural defences preventing the development of fatty liver by acting on the choline metabolism to increase fat export from the liver.
Collapse
|
31
|
da-Silva JR, Alexandre A, Brígido C, Oliveira S. Can stress response genes be used to improve the symbiotic performance of rhizobia? AIMS Microbiol 2017; 3:365-382. [PMID: 31294167 PMCID: PMC6604987 DOI: 10.3934/microbiol.2017.3.365] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Rhizobia are soil bacteria able to form symbioses with legumes and fix atmospheric nitrogen, converting it into a form that can be assimilated by the plant. The biological nitrogen fixation is a possible strategy to reduce the environmental pollution caused by the use of chemical N-fertilizers in agricultural fields. Successful colonization of the host root by free-living rhizobia requires that these bacteria are able to deal with adverse conditions in the soil, in addition to stresses that may occur in their endosymbiotic life inside the root nodules. Stress response genes, such as otsAB, groEL, clpB, rpoH play an important role in tolerance of free-living rhizobia to different environmental conditions and some of these genes have been shown to be involved in the symbiosis. This review will focus on stress response genes that have been reported to improve the symbiotic performance of rhizobia with their host plants. For example, chickpea plants inoculated with a Mesorhizobium strain modified with extra copies of the groEL gene showed a symbiotic effectiveness approximately 1.5 fold higher than plants inoculated with the wild-type strain. Despite these promising results, more studies are required to obtain highly efficient and tolerant rhizobia strains, suitable for different edaphoclimatic conditions, to be used as field inoculants.
Collapse
Affiliation(s)
- José Rodrigo da-Silva
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| | - Ana Alexandre
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| | - Clarisse Brígido
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| | - Solange Oliveira
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| |
Collapse
|
32
|
Glycosulfatase-Encoding Gene Cluster in Bifidobacterium breve UCC2003. Appl Environ Microbiol 2016; 82:6611-6623. [PMID: 27590817 DOI: 10.1128/aem.02022-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
Bifidobacteria constitute a specific group of commensal bacteria typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breastfed infants. In the present study, we investigated glycosulfatase activity in a bacterial isolate from a nursling stool sample, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support the growth of B. breve UCC2003, while N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate, and N-acetylgalactosamine-6-sulfate did not support appreciable growth. By using a combination of transcriptomic and functional genomic approaches, a gene cluster designated ats2 was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a repressor open reading frame kinase (ROK) family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. IMPORTANCE Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant- and host-derived carbohydrates that allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely, the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of the ability of this species to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant gut and adult gut.
Collapse
|
33
|
Liu X, Luo Y, Li Z, Wei G. Functional analysis of PrkA - a putative serine protein kinase from Mesorhizobium alhagi CCNWXJ12-2 - in stress resistance. BMC Microbiol 2016; 16:227. [PMID: 27686068 PMCID: PMC5041497 DOI: 10.1186/s12866-016-0849-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/24/2016] [Indexed: 01/12/2023] Open
Abstract
Background Serine/threonine protein kinases are highly conserved kinases with a wide distribution in microbes and with multiple functions. Mesorhizobium alhagi CCNWXJ12-2, a α-proteobacterium which could be able to form symbiosis with Alhagi sparsifolia in northwest of China, contains a putative PrkA-family serine protein kinase, PrkA. In our previous study, the expression of prkA was found to be downregulated in high-salt conditions. To elucidate the function of M. alhagi PrkA, a prkA deletion mutant was constructed and the phenotypes of the mutant were analyzed. Results The salt and alkaline tolerance and antioxidant capacity of the wild-type strain and the prkA deletion mutant was measured. Our results showed that the deletion mutant had higher salt and alkaline tolerance than the wild-type strain. The total cellular Na+ content was measured and showed no significant difference between the wild-type strain and the mutant. The prkA deletion mutant also showed a higher H2O2 tolerance than the wild-type strain. Therefore the activities of antioxidant enzymes were measured. Catalase activity was similar in the wild-type and the deletion mutant, while the superoxide dismutase activity in the mutant was higher than that in the wild-type. Conclusions We firstly analyze the function of a serine protein kinase, PrkA, in M. alhagi. Our data indicate that PrkA could reduce the survival of M. alhagi under environmental stress and deletion of prkA dramatically improved the salt and alkaline tolerance and antioxidant capacity of M. alhagi.
Collapse
Affiliation(s)
- Xiaodong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yantao Luo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhefei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
34
|
Microbial production of fatty alcohols. World J Microbiol Biotechnol 2016; 32:152. [PMID: 27465852 DOI: 10.1007/s11274-016-2099-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022]
Abstract
Fatty alcohols have numerous commercial applications, including their use as lubricants, surfactants, solvents, emulsifiers, plasticizers, emollients, thickeners, and even fuels. Fatty alcohols are currently produced by catalytic hydrogenation of fatty acids from plant oils or animal fats. Microbial production of fatty alcohols may be a more direct and environmentally-friendly strategy since production is carried out by heterologous enzymes, called fatty acyl-CoA reductases, able to reduce different acyl-CoA molecules to their corresponding primary alcohols. Successful examples of metabolic engineering have been reported in Saccharomyces cerevisiae and Escherichia coli in which the production of fatty alcohols ranged from 1.2 to 1.9 g/L, respectively. Due to their metabolic advantages, oleaginous yeasts are considered the best hosts for production of fatty acid-derived chemicals. Some of these species can naturally produce, under specific growth conditions, lipids at high titers (>50 g/L) and therefore provide large amounts of fatty acyl-CoAs or fatty acids as precursors. Very recently, taking advantage of such features, over 8 g/L of C16-C18 fatty alcohols have been produced in Rhodosporidium toruloides. In this review we summarize the different metabolic engineering strategies, hosts and cultivation conditions used to date. We also point out some future trends and challenges for the microbial production of fatty alcohols.
Collapse
|
35
|
Maxson T, Mitchell DA. Targeted Treatment for Bacterial Infections: Prospects for Pathogen-Specific Antibiotics Coupled with Rapid Diagnostics. Tetrahedron 2016; 72:3609-3624. [PMID: 27429480 PMCID: PMC4941824 DOI: 10.1016/j.tet.2015.09.069] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antibiotics are a cornerstone of modern medicine and have significantly reduced the burden of infectious diseases. However, commonly used broad-spectrum antibiotics can cause major collateral damage to the human microbiome, causing complications ranging from antibiotic-associated colitis to the rapid spread of resistance. Employing narrower spectrum antibiotics targeting specific pathogens may alleviate this predicament as well as provide additional tools to expand an antibiotic repertoire threatened by the inevitability of resistance. Improvements in clinical diagnosis will be required to effectively utilize pathogen-specific antibiotics and new molecular diagnostics are poised to fulfill this need. Here we review recent trends and the future prospects of deploying narrower spectrum antibiotics coupled with rapid diagnostics. Further, we discuss the theoretical advantages and limitations of this emerging approach to controlling bacterial infectious diseases.
Collapse
Affiliation(s)
- Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
36
|
Microarray Analysis to Monitor Bacterial Cell Wall Homeostasis. Methods Mol Biol 2016. [PMID: 27311662 DOI: 10.1007/978-1-4939-3676-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Transcriptomics, the genome-wide analysis of gene transcription, has become an important tool for characterizing and understanding the signal transduction networks operating in bacteria. Here we describe a protocol for quantifying and interpreting changes in the transcriptome of Streptomyces coelicolor that take place in response to treatment with three antibiotics active against different stages of peptidoglycan biosynthesis. The results defined the transcriptional responses associated with cell envelope homeostasis including a generalized response to all three antibiotics involving activation of transcription of the cell envelope stress sigma factor σ(E), together with elements of the stringent response, and of the heat, osmotic, and oxidative stress regulons. Many antibiotic-specific transcriptional changes were identified, representing cellular processes potentially important for tolerance to each antibiotic. The principles behind the protocol are transferable to the study of cell envelope homeostatic mechanisms probed using alternative chemical/environmental insults or in other bacterial strains.
Collapse
|
37
|
Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria. Appl Environ Microbiol 2016; 82:3622-3630. [PMID: 27084007 DOI: 10.1128/aem.00547-16] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/26/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Milk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-β-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intact N-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 released N-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-released N-glycans supported the rapid growth of Bifidobacterium longum subsp. infantis (B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth of Bifidobacterium animalis subsp. lactis (B. lactis), a species which does not. Conversely, B. infantis ATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed that B. infantis consumed 73% of neutral and 92% of sialylated N-glycans, while B. lactis degraded only 11% of neutral and virtually no (<1%) sialylated N-glycans. These results provide mechanistic support that N-linked glycoproteins from milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, released N-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety of N-glycans released from bovine milk glycoproteins suggests that they may serve as novel prebiotic substrates with selective properties similar to those of human milk oligosaccharides. IMPORTANCE It has been previously shown that glycoproteins serve as growth substrates for bifidobacteria. However, which part of a glycoprotein (glycans or polypeptides) is responsible for this function was not known. In this study, we used a novel enzyme to cleave conjugated N-glycans from milk glycoproteins and tested their consumption by various bifidobacteria. The results showed that the glycans selectively stimulated the growth of B. infantis, which is a key infant gut microbe. The selectivity of consumption of individual N-glycans was determined using advanced mass spectrometry (nano-liquid chromatography chip-quadrupole time of flight mass spectrometry [nano-LC-Chip-Q-TOF MS]) to reveal that B. infantis can consume the range of glycan structures released from whey protein concentrate.
Collapse
|
38
|
Dall'Agnol RF, Plotegher F, Souza RC, Mendes IC, Dos Reis Junior FB, Béna G, Moulin L, Hungria M. Paraburkholderia nodosa is the main N2-fixing species trapped by promiscuous common bean (Phaseolus vulgaris L.) in the Brazilian 'Cerradão'. FEMS Microbiol Ecol 2016; 92:fiw108. [PMID: 27199345 DOI: 10.1093/femsec/fiw108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/14/2022] Open
Abstract
The bacterial genus Burkholderia comprises species occupying several habitats, including a group of symbionts of leguminous plants-also called beta-rhizobia-that has been recently ascribed to the new genus Paraburkholderia We used common bean (Phaseolus vulgaris L.) plants to trap rhizobia from an undisturbed soil of the Brazilian Cerrado under the vegetation type 'Cerradão'. Genetic characterization started with the analyses of 181 isolates by BOX-PCR, where the majority revealed unique profiles, indicating high inter- and intra-species diversity. Restriction fragment length polymorphism-PCR of the 16S rRNA of representative strains of the BOX-PCR groups indicated two main clusters, and gene-sequencing analysis identified the minority (27%) as Rhizobium and the majority (73%) as Paraburkholderia Phylogenetic analyses of the 16S rRNA and housekeeping (recA and gyrB) genes positioned all strains of the second cluster in the species P. nodosa, and the phylogeny of a symbiotic gene-nodC-was in agreement with the conserved genes. All isolates were stable vis-à-vis nodulating common bean, but, in general, with a low capacity for fixing N2, although some effective strains were identified. The predominance of P. nodosa might be associated with the edaphic properties of the Cerrado biome, and might represent an important role in terms of maintenance of the ecosystem, which is characterized by acid soils with high saturation of aluminum and low N2 content.
Collapse
Affiliation(s)
- Rebeca F Dall'Agnol
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 231, 86001-970, Londrina, PR, Brazil Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, PR, Brazil
| | - Fábio Plotegher
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 231, 86001-970, Londrina, PR, Brazil
| | - Renata C Souza
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 231, 86001-970, Londrina, PR, Brazil Department of Microbiology, Universidade Federal do Paraná, C.P. 19031, 81531-990, Curitiba, PR, Brazil
| | - Iêda C Mendes
- Department of Soil Microbiology, Embrapa Cerrados, C.P. 08223, 73301-970, Planaltina, DF, Brazil
| | - Fábio B Dos Reis Junior
- Department of Soil Microbiology, Embrapa Cerrados, C.P. 08223, 73301-970, Planaltina, DF, Brazil
| | - Gilles Béna
- IRD, Cirad, University of Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Lionel Moulin
- IRD, Cirad, University of Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Mariangela Hungria
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 231, 86001-970, Londrina, PR, Brazil Department of Microbiology, Universidade Federal do Paraná, C.P. 19031, 81531-990, Curitiba, PR, Brazil
| |
Collapse
|
39
|
Shi Y, Niu Q, Yu X, Jia X, Wang J, Lin D, Jin Y. Assessment of the function ofSUB6in the pathogenic dermatophyteTrichophyton mentagrophytes. Med Mycol 2015; 54:59-71. [DOI: 10.1093/mmy/myv071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 02/02/2023] Open
|