1
|
Zhang Y, Yan Q, Xia H, Yang J, Zeng X, Li Z, Cai X, Zou J, Chen H. Validation of suitable reference microRNAs for qRT-PCR in Osmanthus fragrans under abiotic stress, hormone and metal ion treatments. FRONTIERS IN PLANT SCIENCE 2025; 16:1517225. [PMID: 40026390 PMCID: PMC11868269 DOI: 10.3389/fpls.2025.1517225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Introduction Sweet osmanthus (Osmanthus fragrans) is a prominent woody ornamental plant extensively utilized in horticulture, the food industry, cosmetics, and traditional Chinese medicine. MicroRNAs (miRNAs) are crucial regulators of gene regulation, playing a vital role in enabling plants to adapt to environmental fluctuations. Despite their significance, research on miRNA expression in O. fragrans under adverse stress conditions remains limited. Therefore, the selection of appropriate reference miRNAs is essential to ensure accurate miRNA expression analysis. Methods In this study, qRT-PCR technology was combined with four algorithms (i.e., delta-Ct, geNorm, NormFinder, and BestKeeper) to systematically evaluate the expression stability of 14 candidate miRNAs across eleven environmental conditions, including under abiotic stress, under hormone and metal ion treatments, during flower opening and senescence, and across various tissues. Results The results revealed that under hormone treatments, ofr-miR159b-3p, novel8, and novel3 exhibited high expression stability; under abiotic stress, ofr-miR159b-3p, novel8, ofr-miR403-3p, and novel2 demonstrated considerable stability; during metal ion treatments, novel3, ofr-miR159b-3p, novel33, novel2, and ofr-miR395e were identified as stable miRNAs; in different tissues, novel2 and ofr-miR395e were relatively stable; and during flower opening and senescence, novel33 and ofr-miR395e maintained stable expression. Discussion This study represents the first comprehensive assessment of reference miRNA stability in O. fragrans, providing a reliable framework for miRNA expression analysis under diverse conditions, including flower development and senescence, abiotic stress, hormone treatments, and metal ion treatments. These findings carry significant implications for future research into the function of miRNAs.
Collapse
Affiliation(s)
- Yingting Zhang
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
| | - Qingyu Yan
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
| | - Hui Xia
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Jie Yang
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Xiangling Zeng
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Zeqing Li
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
| | - Xuan Cai
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Jingjing Zou
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Hongguo Chen
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| |
Collapse
|
2
|
Riddell DO, Hildyard JC, Harron RC, Wells DJ, Piercy RJ. Identification of reference microRNAs in skeletal muscle of a canine model of Duchenne muscular dystrophy. Wellcome Open Res 2024; 9:362. [PMID: 39649621 PMCID: PMC11621615 DOI: 10.12688/wellcomeopenres.22481.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by mutations in the dystrophin gene. DE50-MD dogs are an animal model of DMD used as a final translational model for evaluation of promising treatments. MicroRNA (miR) expressions in the muscle of DE50-MD dogs represent potential biomarkers, but stable reference miRs must first be identified. The aim of this paper was to establish a panel of reference miRs for WT and DE50-MD dogs over a range of ages and muscle groups. Methods RNA was extracted from WT and DE50-MD dog (N=6 per genotype) vastus lateralis muscle samples collected longitudinally at 3, 6, 9, 12, 15 and 18 months of age, and from muscles collected post-mortem (N=3 per genotype; cranial tibial, semimembranosus, lateral triceps and diaphragm). 87 RNAs were quantified in a subset of 6-month-old WT and DE50-MD muscles (N=4 per genotype) using the QIAcuity miFinder panel. GeNorm, BestKeeper and Normfinder were used to identify a candidate panel of the 8 most stable small RNAs, which were then quantified in all RNA samples, alongside the commonly used reference RNA snRNA U6. Results The most stable miRs of this subset were used to normalise quantities of dystromiRs miR-1, miR-133a and miR-206, and fibromiR miR-214. MicroRNAs miR-191, let-7b, miR-125a and miR-15a were the most stable miRs tested, while snRNA U6 performed poorly. DystromiR expression, normalised to the geometric mean of the panel of reference miRs, was lower for miR-1 and miR-133a in DE50-MD compared to WT muscles, while miR-206 levels did not significantly differ between genotypes. FibromiR miR-214 was 2- to 4-fold higher in DE50-MD versus WT muscles. Conclusions A normalisation factor derived from miR-191, let-7b, miR-125a and miR-15a is suitable for normalising miR expression data from WT and DE50-MD muscle over a range of ages and muscle types.
Collapse
Affiliation(s)
- Dominique O. Riddell
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - John C.W. Hildyard
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - Rachel C.M. Harron
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - Dominic J. Wells
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| |
Collapse
|
3
|
Siguemoto JT, Motta Neri C, de Godoy Torso N, de Souza Nicoletti A, Berlofa Visacri M, Regina da Silva Correa da Ronda C, Perroud MW, Oliveira Reis L, Dos Santos LA, Durán N, Fávaro WJ, de Carvalho Pincinato E, Moriel P. Data normalization of plasma miRNA profiling from patients with COVID-19. Sci Rep 2024; 14:26791. [PMID: 39500909 PMCID: PMC11538513 DOI: 10.1038/s41598-024-75740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
When using the reverse-transcription quantitative polymerase chain reaction (RT-qPCR) technique for quantitative assessment of microRNA (miRNA) expression, normalizing data using a stable endogenous gene is essential; however, no universally adequate reference gene exists. Therefore, in this study, we aimed to determine, via the RNA-Seq technique, the most adequate endogenous normalizer for the expression assessment of plasma miRNAs in patients with coronavirus disease 2019 (COVID-19). Two massive sequencing procedures were performed (a) to identify differentially expressed miRNAs between patients with COVID-19 and healthy volunteers (n = 12), and (b) to identify differentially expressed miRNAs between patients with severe COVID-19 and those with mild COVID-19 (n = 8). The endogenous normalizer candidates were selected according to the following criteria: (1) the miRNA must have a fold regulation = 1; (2) the miRNA must have a p-value > 0.990; and (3) the miRNAs that were discovered the longest ago should be selected. Four miRNAs (hsa-miR-34a-3p, hsa-miR-194-3p, hsa-miR-17-3p, and hsa-miR-205-3p) met all criteria and were selected for validation by RT-qPCR in a cohort of 125 patients. Of these, only hsa-miR-205-3p was eligible endogenous normalizers in the context of COVID-19 because their expression was stable between the compared groups.
Collapse
Affiliation(s)
- Julia Tiemi Siguemoto
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, 13083970, Brazil
| | - Carolini Motta Neri
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, 13083970, Brazil
| | - Nadine de Godoy Torso
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas , 13083894, Brazil
| | | | | | | | | | - Leonardo Oliveira Reis
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas , 13083894, Brazil
| | | | - Nelson Durán
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas , 13083894, Brazil
| | - Wagner José Fávaro
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas , 13083894, Brazil
| | | | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, 13083970, Brazil.
| |
Collapse
|
4
|
Zhang C, Zhang L, Huang Q, Jiang S, Peng T, Wang S, Xu X. Diagnostic and screening potential of plasma exosome miR‑99b‑5p and its combination with other miRNAs for colorectal cancer. Oncol Lett 2024; 28:461. [PMID: 39119230 PMCID: PMC11307556 DOI: 10.3892/ol.2024.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/15/2024] [Indexed: 08/10/2024] Open
Abstract
Extracellular vesicles (EVs) secreted by tumor cells have been documented to hold viable biomarker potential. Therefore, the present study evaluated the potential clinical value of EV-microRNAs (miRNAs or miRs) in the plasma exosomes of patients with colorectal cancer (CRC) for the early diagnosis and screening of CRC. In total, 95 plasma samples were collected at The Third Affiliated Hospital of Guangzhou Medical University (Guangzhou, China) between 2017 and 2019. Specifically, 68 samples were from patients with CRC and 27 were from healthy control (HC) donors. High-throughput sequencing was used to detect the expression of miRNAs in the isolated plasma EVs, which was subsequently verified by reverse transcription-quantitative PCR. Receiver operating characteristic (ROC) curves were used to analyze the diagnostic potential of single and combined miRNAs for CRC. Bioinformatics analysis was employed to predict the target genes of candidate miRNAs. Compared with those in the HC group, the CRC group expressed higher levels of miR-99b-5p and miR-409-3p, especially during the early stages of CRC. Clinicopathological analysis confirmed the higher expression levels of miR-99b-5p during the early stages, as well as higher expression levels in the colon compared with those in the rectum. ROC curve analysis revealed that the area under the curve (AUC) of miR-99b-5p for the diagnosis of early CRC was 73.5% (P=0.007). The early diagnostic capability of miR-99b-5p combined with miR-409-3p for CRC was evaluated, and the AUC was found to be 74.1% (P=0.006). In addition, the AUC of the combination of miR-99b-5p, miR-409-3p and carcinoembryonic antigen was 81.2% (P<0.001), indicating that this three-parameter combination displayed higher diagnostic power compared with any single miRNA for early CRC screening. The results from the present study suggest that the expression of miR-99b-5p in plasma exosomes is significantly upregulated in CRC, which holds potential for the early diagnosis of this cancer type. Such potential can be enhanced further by combining it with other miRNAs. Therefore, the present study provides a comprehensive but preliminary insight for the viability of miR-99b-5p (alone or combined with other miRNAs) for CRC diagnosis, which requires further exploration in the future.
Collapse
Affiliation(s)
- Chang Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, Shanxi 710032, P.R. China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi'an, Shanxi 710032, P.R. China
| | - Limei Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Qiyuan Huang
- Nursing School, Guangzhou Medical University, Guangzhou, Guangdong 510030, P.R. China
| | - Siyuan Jiang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Tao Peng
- Sino-French Hoffmann Institute, Guangzhou Hoffman Institute of Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Xuehu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|
5
|
Lee SY, Jeong YW, Choe YH, Oh SJ, Miah R, Lee WJ, Lee SL, Bok EY, Yoo DS, Son YB. Identification of Reference Gene for Quantitative Gene Expression in Early-Term and Late-Term Cultured Canine Fibroblasts Derived from Ear Skin. Animals (Basel) 2024; 14:2722. [PMID: 39335311 PMCID: PMC11429031 DOI: 10.3390/ani14182722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Fibroblasts are cells that reside within the fibrous or loose connective tissues of most mammalian organs. For research purposes, fibroblasts are often subjected to long-term culture under defined conditions, during which their properties can significantly change. It is essential to understand and document these changes to obtain reliable outcomes. For the quantification of specific gene expressions, the most reliable and widely used technique is quantitative real-time polymerase chain reaction (qRT-PCR). Here, we assessed the impact of a reference gene's stability on a qRT-PCR analysis of long-term cultured canine skin fibroblasts. After successfully isolating the fibroblasts from canine skin tissues, they were cultured and evaluated for proliferation and β-galactosidase activity at different passage numbers. With extended culture, the fibroblasts showed a long doubling time and elevated β-galactosidase activity. Using three widely used algorithms, geNorm, Normfinder, and Bestkeeper, we identified HPRT1, YWHAZ, and GUSB as the most stable reference genes for both early- and late-passage fibroblasts. Conventional reference genes such as GAPDH were found to be less stable than those genes. The normalization of Vimentin by the stable genes showed statistical differences, whereas normalization by an unstable gene did not. Collectively, this study indicates that using stable reference genes is essential for accurately and reliably measuring gene expression in both early- and late-passage fibroblasts. These findings provide valuable insights into internal controls for gene expression studies and are expected to be utilized for analyzing gene expression patterns in molecular biology research.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52628, Republic of Korea
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yeon-Woo Jeong
- Department of Companion Animal and Animal Resources Science, Joongbu University, Geumsan 32713, Republic of Korea
| | - Yong-Ho Choe
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52628, Republic of Korea
| | - Seong-Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52628, Republic of Korea
| | - Rubel Miah
- Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, 300 Yonbongdong, Buk-gu, Gwangju 61186, Republic of Korea
| | - Won-Jae Lee
- Department of Obstetrics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52628, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dae-Sung Yoo
- Departement of Veterinary Epidemiology, College of Veterinary Medicine, Chonnam National University, 300 Yonbongdong, Buk-gu, Gwangju 61186, Republic of Korea
| | - Young-Bum Son
- Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, 300 Yonbongdong, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Laborda-Illanes A, Aranega-Martín L, Sánchez-Alcoholado L, Boutriq S, Plaza-Andrades I, Peralta-Linero J, Garrido Ruiz G, Pajares-Hachero B, Álvarez M, Alba E, González-González A, Queipo-Ortuño MI. Exploring the Relationship between MicroRNAs, Intratumoral Microbiota, and Breast Cancer Progression in Patients with and without Metastasis. Int J Mol Sci 2024; 25:7091. [PMID: 39000198 PMCID: PMC11241717 DOI: 10.3390/ijms25137091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer (BC) continues to pose a significant burden on global cancer-related morbidity and mortality, primarily driven by metastasis. However, the combined influence of microRNAs (miRNAs) and intratumoral microbiota on BC metastasis remains largely unexplored. In this study, we aimed to elucidate the interplay between intratumoral microbiota composition, miRNA expression profiles, and their collective influence on metastasis development in BC patients by employing 16S rRNA sequencing and qPCR methodologies. Our findings revealed an increase in the expression of miR-149-5p, miR-20b-5p, and miR-342-5p in metastatic breast cancer (Met-BC) patients. The Met-BC patients exhibited heightened microbial richness and diversity, primarily attributed to diverse pathogenic bacteria. Taxonomic analysis identified several pathogenic and pro-inflammatory species enriched in Met-BC, contrasting with non-metastatic breast cancer (NonMet-BC) patients, which displayed an enrichment in potential probiotic and anti-inflammatory species. Notably, we identified and verified a baseline prognostic signature for metastasis in BC patients, with its clinical relevance further validated by its impact on overall survival. In conclusion, the observed disparities in miRNA expression and species-level bacterial abundance suggest their involvement in BC progression. The development of a prognostic signature holds promise for metastasis risk assessment, paving the way for personalized interventions and improved clinical outcomes in BC patients.
Collapse
Affiliation(s)
- Aurora Laborda-Illanes
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Faculty of Medicine, University of Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Lucía Aranega-Martín
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Faculty of Medicine, University of Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Lidia Sánchez-Alcoholado
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Faculty of Medicine, University of Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Soukaina Boutriq
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
| | - Isaac Plaza-Andrades
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
| | - Jesús Peralta-Linero
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
| | | | - Bella Pajares-Hachero
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
| | - Martina Álvarez
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Education, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| | - Emilio Alba
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Department of Medicine, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| | - Alicia González-González
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- UGC Endocrinology and Nutrition, Regional University Hospital of Málaga, Institute of Biomedical Research of Málaga (IBIMA), Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| | - María Isabel Queipo-Ortuño
- Clinical Management Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals-IBIMA BIONAND-CIMES-UMA Platform, 29010 Málaga, Spain; (A.L.-I.); (L.A.-M.); (L.S.-A.); (S.B.); (I.P.-A.); (J.P.-L.); (B.P.-H.); (M.Á.); (E.A.)
- Department of Surgical Specialties, Biochemistry and Immunology, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
7
|
Pereira IDS, Cruz ABD, Maia MM, Carneiro FM, Gava R, Spegiorin LCJF, Brandão CC, Truzzi IGDC, Junior GMDF, de Mattos LC, Pereira-Chioccola VL, Meira-Strejevitch CS. Identification and validation of reference genes of circulating microRNAs for use as control in gestational toxoplasmosis. Mol Biochem Parasitol 2023; 256:111592. [PMID: 37666471 DOI: 10.1016/j.molbiopara.2023.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Toxoplasmosis causes serious harm to the fetus, as tachyzoite dissemination, during pregnancy in women developing the primo-infection. The microRNAs (miRNAs) are small non-coding RNAs, which have regulatory roles in cells by silencing messenger RNA. Circulating miRNA are promising biomarkers for diagnosis and prognosis of numerous diseases. The miRNAs levels are estimated by quantitative real-time PCR (qPCR), however, the relative quantification of each miRNA expression requires proper normalization methods using endogenous miRNAs as control. This study analyzed the expression of three endogenous miRNAs (miR-484, miR -423-3p and miR-26b-5p) for use as normalizers in future studies of target miRNAs for gestational toxoplasmosis (GT). A total of 32 plasma samples were used in all assays divided in 21 from women with GT and 11 from healthy women. The stability of each endogenous miRNA was evaluated by the algorithm methods RefFinder that included GeNorm, Normfinder, BestKeeper and comparative delta-CT programs. The miR-484 was the most stably gene, and equivalently expressed in GT and NC groups. These results contribute to future studies of target miRNAs in clinical samples of women with gestational toxoplasmosis.
Collapse
Affiliation(s)
- Ingrid de Siqueira Pereira
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Allecineia Bispo da Cruz
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Francieli Marinho Carneiro
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Ricardo Gava
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | | | | | | | - Vera Lucia Pereira-Chioccola
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Cristina Silva Meira-Strejevitch
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil.
| |
Collapse
|
8
|
Steffens Reinhardt L, Groen K, Zhang X, Morten BC, Wawruszak A, Avery-Kiejda KA. p53 isoform expression promotes a stemness phenotype and inhibits doxorubicin sensitivity in breast cancer. Cell Death Dis 2023; 14:509. [PMID: 37553320 PMCID: PMC10409720 DOI: 10.1038/s41419-023-06031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
In breast cancer, dysregulated TP53 expression signatures are a better predictor of chemotherapy response and survival outcomes than TP53 mutations. Our previous studies have shown that high levels of Δ40p53 are associated with worse disease-free survival and disruption of p53-induced DNA damage response in breast cancers. Here, we further investigated the in vitro and in vivo implications of Δ40p53 expression in breast cancer. We have shown that genes associated with cell differentiation are downregulated while those associated with stem cell regulation are upregulated in invasive ductal carcinomas expressing high levels of Δ40p53. In contrast to p53, endogenous ∆40p53 co-localised with the stem cell markers Sox2, Oct4, and Nanog in MCF-7 and ZR75-1 cell lines. ∆40p53 and Sox2 co-localisation was also detected in breast cancer specimens. Further, in cells expressing a high ∆40p53:p53 ratio, increased expression of stem cell markers, greater mammosphere and colony formation capacities, and downregulation of miR-145 and miR-200 (p53-target microRNAs that repress stemness) were observed compared to the control subline. In vivo, a high ∆40p53:p53 ratio led to increased tumour growth, Ki67 and Sox2 expression, and blood microvessel areas in the vehicle-treated mice. High expression of ∆40p53 also reduced tumour sensitivity to doxorubicin compared to control tumours. Enhanced therapeutic efficacy of doxorubicin was observed when transiently targeting Δ40p53 or when treating cells with OTSSP167 with concomitant chemotherapy. Taken together, high Δ40p53 levels induce tumour growth and may promote chemoresistance by inducing a stemness phenotype in breast cancer; thus, targeting Δ40p53 in tumours that have a high Δ40p53:p53 ratio could enhance the efficacy of standard-of-care therapies such as doxorubicin.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Xiajie Zhang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Brianna C Morten
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Anna Wawruszak
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.
- Hunter Medical Research Institute, New Lambton, NSW, Australia.
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
9
|
Torso NDG, Quintanilha JCF, Cursino MA, Pincinato EDC, Lima CSP, Moriel P. Data Normalization of Urine miRNA Profiling from Head and Neck Cancer Patients Treated with Cisplatin. Int J Mol Sci 2023; 24:10884. [PMID: 37446060 DOI: 10.3390/ijms241310884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The microRNA (miRNA) expression profile by qRT-PCR depends directly on the most appropriate normalization strategy adopted; however, currently there is no universally adequate reference gene. Therefore, this study aimed to determine, considering RNA-Seq results, the most adequate endogenous normalizer for use in the relative quantification of urine miRNAs from head and neck cancer patients, treated with cisplatin chemoradiotherapy. The massive sequencing was performed to identify the miRNAs differentially expressed between the group with cisplatin nephrotoxicity (n = 6) and the one without (n = 6). The candidate endogen normalizer was chosen according to four criteria: (1) the miRNA must be expressed in most samples; (2) the miRNA must have a fold change value between 0.99 and 1.01; (3) the miRNA must have a p-value ≥ 0.98; and (4) the miRNA must not be commented on by the final GeneGlobe (Qiagen, Hilden, Germany) analysis. Four miRNAs met all the criteria (hsa-miR-363-5p, hsa-miR-875-5p, hsa-miR-4302, and hsa-miR-6749-5p) and were selected for validation by qRT-PCR in a cohort of 49 patients (including the 12 sequencing participants). Only hsa-miR-875-5p was shown to be an adequate normalizer for the experimental condition under investigation, as it exhibited invariant expression between the two groups.
Collapse
Affiliation(s)
| | | | | | | | | | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083970, Brazil
| |
Collapse
|
10
|
Garrido-Palacios A, Rojas Carvajal AM, Núñez-Negrillo AM, Cortés-Martín J, Sánchez-García JC, Aguilar-Cordero MJ. MicroRNA Dysregulation in Early Breast Cancer Diagnosis: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24098270. [PMID: 37175974 PMCID: PMC10179484 DOI: 10.3390/ijms24098270] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer continues to be the leading cause of death in women worldwide. Mammography, which is the current gold standard technique used to diagnose it, presents strong limitations in early ages where breast cancer is much more aggressive and fatal. MiRNAs present in numerous body fluids might represent a new line of research in breast cancer biomarkers, especially oncomiRNAs, known to play an important role in the suppression and development of neoplasms. The aim of this systematic review and meta-analysis was to evaluate dysregulated miRNA biomarkers and their diagnostic accuracy in breast cancer. Two independent researchers reviewed the included studies according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. A protocol for this review was registered in PROSPERO with the registration number "CRD42021256338". Observational case-control-based studies analyzing concentrations of microRNAs which have been published within the last 10 years were selected, and the concentrations of miRNAs in women with breast cancer and healthy controls were analyzed. Random-effects meta-analyses of miR-155 were performed on the studies which provided enough data to calculate diagnostic odds ratios. We determined that 34 microRNAs were substantially dysregulated and could be considered biomarkers of breast cancer. Individually, miR-155 provided better diagnostic results than mammography on average. However, when several miRNAs are used to screen, forming a panel, sensitivity and specificity rates improve, and they can be associated with classic biomarkers such us CA-125 or CEA. Based on the results of our meta-analysis, miR-155 might be a promising diagnostic biomarker for this patient population.
Collapse
Affiliation(s)
- Alejandro Garrido-Palacios
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - Ana María Rojas Carvajal
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - Ana María Núñez-Negrillo
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
| | - Jonathan Cortés-Martín
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
- CTS1068, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - Juan Carlos Sánchez-García
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
- CTS1068, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - María José Aguilar-Cordero
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
| |
Collapse
|
11
|
Blödorn EB, Domingues WB, Martins AWS, Dellagostin EN, Komninou ER, Remião MH, Silveira TLR, Collares GL, Giongo JL, Vaucher RA, Campos VF. MicroRNA qPCR normalization in Nile tilapia (Oreochromis niloticus): Effects of acute cold stress on potential reference targets. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:409-423. [PMID: 37074474 DOI: 10.1007/s10695-023-01190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The Nile tilapia (Oreochromis niloticus) is one of the most important cultured fish worldwide, but tilapia culture is largely affected by low temperatures. Recent studies suggest that microRNAs (miRNAs) regulate cold tolerance traits in fish. In general, qPCR-based methods are the simplest and most accurate forms of miRNA quantification. However, qPCR data heavily depends on appropriate normalization. Therefore, the aim of the present study is to determine whether the expression of previously tested, stably expressed miRNAs are affected by acute cold stress in Nile tilapia. For this purpose, one small nuclear RNA (U6) and six candidate reference miRNAs (miR-23a, miR-25-3, Let-7a, miR-103, miR-99-5, and miR-455) were evaluated in four tissues (blood, brain, liver, and gills) under two experimental conditions (acute cold stress and control) in O. niloticus. The stability of the expression of each candidate reference miRNA was analyzed by four independent methods (the delta Ct method, geNorm, NormFinder, and BestKeeper). Further, consensual comprehensive ranking of stability was built with RefFinder. Overall, miR-103 was the most stable reference miRNA in this study, and miR-103 and Let-7a were the best combination of reference targets. Equally important, Let-7a, miR-23a, and miR-25-3 remained consistently stable across different tissues and experimental groups. Considering all variables, U6, miR-99-5, and miR-455 were the least stable candidates under acute cold stress. Most important, suitable reference miRNAs were validated in O. niloticus, facilitating further accurate miRNA quantification in this species.
Collapse
Affiliation(s)
- Eduardo B Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda W S Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo N Dellagostin
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eliza R Komninou
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mariana H Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tony L R Silveira
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Gilberto L Collares
- Agência de Desenvolvimento da Bacia da Lagoa Mirim, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Janice L Giongo
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-Organismos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo A Vaucher
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-Organismos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Guo Y, Zhou X, Gao F, Wang M, Yang Q, Li X, Liu Z, Luo A. MiR-423-5p is a novel endogenous control for the quantification of circulating miRNAs in human esophageal squamous cell carcinoma. Heliyon 2023; 9:e14515. [PMID: 37025904 PMCID: PMC10070386 DOI: 10.1016/j.heliyon.2023.e14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023] Open
Abstract
Circulating miRNA expression is most commonly measured by qRT-PCR, however, the lack of a suitable endogenous control hinders people from evaluating the accurate changes in miRNA expression levels and developing the non-invasive biomarkers. In this study, we aimed to screen the specific, highly stable endogenous control in esophageal squamous cell carcinoma (ESCC) to overcome the obstacle. We selected "housekeeping" miRNAs according to the published database and initially acquired 21 miRNAs. Subsequently, we screened these miRNAs using GSE106817 and TCGA datasets according to specific inclusion criteria and evaluated the suitability of "candidate" miRNAs. Among these miRNAs, the average abundance of miR-423-5p was relatively high in serum. Notably, miR-423-5p expression in serum showed no significant difference between ESCC patients and healthy controls (n = 188, P = 0.29). Moreover, among these miRNAs, miR-423-5p was the most stable miRNA using the NormFinder algorithms. Overall, these results indicate that miR-423-5p, as a novel and optimal endogenous control, could be used to quantify circulating miRNAs in ESCC.
Collapse
Affiliation(s)
- Yuanyuan Guo
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuantong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510655, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Supported by National Key Clinical Discipline, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510655, China
| | - Minjie Wang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Yang
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Li
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Luo
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
13
|
Zhou H, Yang X, Yu J, Xu J, Zhang R, Zhang T, Wang X, Ma J. Reference gene identification for normalisation of RT-qPCR analysis in plasma samples of the rat middle cerebral artery occlusion model. Vet Med Sci 2022; 8:2076-2085. [PMID: 35894780 PMCID: PMC9514484 DOI: 10.1002/vms3.879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE In quantitative reverse transcription-polymerase chain reaction (RT-qPCR) studies, the selection and validation of reference genes are crucial for the accurate analysis of MicroRNAs (miRNAs) expression. In this work, the optimal reference genes for RT-qPCR normalisation in plasma samples of rat middle cerebral artery occlusion (MCAO) models were identified. METHODS Six rat MCAO models were established. Blood samples were collected before modelling and approximately 16-24 h after modelling. Two commonly used reference genes (U6 and 5S) and three miRNAs (miR-24, miR-122 and miR-9a) were selected as candidate reference genes, and the expression of these genes was detected with RT-qPCR. The acquired data were analysed using geNorm, Normfinder, BestKeeper, RefFinder and comparative delta threshold cycle statistical models. RESULTS The analysed results consistently showed that miR-24 was the most stably expressed reference gene. The 'optimal combination' calculated by geNorm was miR-24, U6 and5S. The expression level of the target gene miR124 was similar when the most stable reference gene miR-24 or the 'optimal combination' was used as a reference gene. However, compared with miR24 or the 'optimal combination', the less stable reference genes influenced the fold change and the data accuracy with a large standard deviation. CONCLUSION These results confirmed the importance of selecting suitable reference genes for normalisation to obtain reliable results in RT-qPCR studies and demonstrated that the identified reference gene miR-24 or the 'optimal combination' could be used as an internal control for gene expression analysis in the rat MCAO model.
Collapse
Affiliation(s)
- Hui Zhou
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Xin Yang
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Jiayi Yu
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Jingyi Xu
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Ruiwen Zhang
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Ting Zhang
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Xijie Wang
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Jing Ma
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| |
Collapse
|
14
|
Factors influencing degradation kinetics of mRNAs and half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quantitative PCR. Sci Rep 2022; 12:7259. [PMID: 35508612 PMCID: PMC9068688 DOI: 10.1038/s41598-022-11339-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
RNAs are rapidly degraded in samples and during collection, processing and testing. In this study, we used the same method to explore the half-lives of different RNAs and the influencing factors, and compared the degradation kinetics and characteristics of different RNAs in whole blood and experimental samples. Fresh anticoagulant blood samples were incubated at room temperature for different durations, RNAs were extracted, and genes, including internal references, were amplified by real-time quantitative PCR. A linear half-life model was established according to cycle threshold (Ct) values. The effects of experimental operations on RNA degradation before and after RNA extraction were explored. Quantitative analysis of mRNA degradation in samples and during experimental processes were explored using an orthogonal experimental design. The storage duration of blood samples at room temperature had the greatest influence on RNA degradation. The half-lives of messenger RNAs (mRNAs) was 16.4 h. The half-lives of circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were 24.56 ± 5.2 h, 17.46 ± 3.0 h and 16.42 ± 4.2 h, respectively. RNA degradation occurred mainly in blood samples. The half-life of mRNAs was the shortest among the four kinds of RNAs. Quantitative experiments related to mRNAs should be completed within 2 h. The half-lives of circRNAs and lncRNAs were longer than those of the former two.
Collapse
|
15
|
Miyoshi J, Zhu Z, Luo A, Toden S, Zhou X, Izumi D, Kanda M, Takayama T, Parker IM, Wang M, Gao F, Zaidi AH, Baba H, Kodera Y, Cui Y, Wang X, Liu Z, Goel A. A microRNA-based liquid biopsy signature for the early detection of esophageal squamous cell carcinoma: a retrospective, prospective and multicenter study. Mol Cancer 2022; 21:44. [PMID: 35148754 PMCID: PMC8832722 DOI: 10.1186/s12943-022-01507-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, there is no clinically relevant non-invasive biomarker for early detection of esophageal squamous cell carcinoma (ESCC). Herein, we established and evaluated a circulating microRNA (miRNA)-based signature for the early detection of ESCC using a systematic genome-wide miRNA expression profiling analysis. METHODS We performed miRNA candidate discovery using three ESCC tissue miRNA datasets (n = 108, 238, and 216) and the candidate miRNAs were confirmed in tissue specimens (n = 64) by qRT-PCR. Using a serum training cohort (n = 408), we conducted multivariate logistic regression analysis to develop an ESCC circulating miRNA signature and the signature was subsequently validated in two independent retrospective and two prospective cohorts. RESULTS We identified eighteen initial miRNA candidates from three miRNA expression datasets (n = 108, 238, and 216) and subsequently validated their expression in ESCC tissues. We thereafter confirmed the overexpression of 8 miRNAs (miR-103, miR-106b, miR-151, miR-17, miR-181a, miR-21, miR-25, and miR-93) in serum specimens. Using a serum training cohort, we developed a circulating miRNA signature (AUC:0.83 [95%CI:0.79-0.87]) and the diagnostic performance of the miRNA signature was confirmed in two independent validation cohorts (n = 126, AUC:0.80 [95%CI:0.69-0.91]; and n = 165, AUC:0.89 [95%CI:0.83-0.94]). Finally, we demonstrated the diagnostic performance of the 8-miRNA signature in two prospective cohorts (n = 185, AUC:0.92, [95%CI:0.87-0.96]); and (n = 188, AUC:0.93, [95%CI:0.88-0.97]). Importantly, the 8-miRNA signature was superior to current clinical serological markers in discriminating early stage ESCC patients from healthy controls (p < 0.001). CONCLUSIONS We have developed a novel and robust circulating miRNA-based signature for early detection of ESCC, which was successfully validated in multiple retrospective and prospective multinational, multicenter cohorts.
Collapse
Affiliation(s)
- Jinsei Miyoshi
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Gastroenterology, Kawashima Hospital, Tokushima, Japan
| | - Zhongxu Zhu
- Department of Surgery, The Chinese University of Hong Kong. Prince of Wales Hospital, Shatin, N.T., Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Xuantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Iqbal M Parker
- Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Minjie Wang
- Department of Clinical Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Gao
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ali H Zaidi
- Esophageal and Lung Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yongping Cui
- Cancer Institute, Shenzhen Bay Laboratory, Shenzhen, China
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong. Prince of Wales Hospital, Shatin, N.T., Hong Kong, SAR, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
16
|
Liu S, Song H, Liu Z, Lu W, Zhang Q, Cheng J. Selection of References for microRNA Quantification in Japanese Flounder (Paralichthys olivaceus) Normal Tissues and Edwardsiella tarda-Infected Livers. Genes (Basel) 2022; 13:genes13020175. [PMID: 35205219 PMCID: PMC8871525 DOI: 10.3390/genes13020175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNA (miRNA) plays essential roles in post-transcriptional regulation of protein coding genes, and the quantitative real-time polymerase chain reaction (qRT-PCR) is the powerful and broadly employed tool to conduct studies of miRNA expression. Identifying appropriate references to normalize quantitative data is a prerequisite to ensure the qRT-PCR accuracy. Until now, there has been no report about miRNA reference for qRT-PCR in Japanese flounder (Paralichthys olivaceus), one important marine cultured fish along the coast of Northern Asia. In this study, combined with miRNA-Seq analysis and literature search, 10 candidates (miR-34a-5p, miR-205-5p, miR-101a-3p, miR-22-3p, miR-23a-3p, miR-210-5p, miR-30c-5p, U6, 5S rRNA, and 18S rRNA) were chosen as potential references to test their expression stability among P. olivaceus tissues, and in livers of P. olivaceus infected with Edwardsiella tarda at different time points. The expression stability of these candidates was analyzed by qRT-PCR and evaluated with Delta CT, BestKeeper, geNorm, as well as NormFinder methods, and RefFinder was employed to estimate the comprehensive ranking according to the four methods. As the result, miR-22-3p and miR-23a-3p were proved to be the suitable combination as reference miRNAs for both P. olivaceus normal tissues and livers infected with E. tarda, and they were successfully applied to normalize miR-7a and miR-221-5p expression in P. olivaceus livers in response to E. tarda infection. All these results provide valuable information for P. olivaceus miRNA quantitative expression analysis in the future.
Collapse
Affiliation(s)
- Saisai Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Haofei Song
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Zeyu Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Correspondence: ; Tel.: +86-0532-82031986
| |
Collapse
|
17
|
Veryaskina YA, Titov SE, Zhimulev IF. Reference Genes for qPCR-Based miRNA Expression Profiling in 14 Human Tissues. Med Princ Pract 2022; 31:322-332. [PMID: 35354155 PMCID: PMC9485981 DOI: 10.1159/000524283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are promising biomarkers for the diagnosis and prognosis of various diseases. Quantitative PCR is the most frequently used method of measuring expression levels of miRNA. However, the lack of validated reference genes represents the main source of potential bias in results. It is normal practice to use small nuclear RNAs as reference genes; however, they often have variable expression. Researchers tend to prefer the most stable reference genes in each experiment. The review includes reference genes for the following tissue types: gliomas, lung cancer, melanoma, gastric cancer, liver cancer, prostate cancer, breast cancer, thyroid cancer, ovarian cancer, cervical cancer, endometrial cancer, rectal cancer, blood tumors, and placental tissues.
Collapse
Affiliation(s)
- Yulia Andreevna Veryaskina
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russian Federation
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- *Yulia Andreevna Veryaskina,
| | - Sergei Evgenievich Titov
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- AO Vector-Best, Novosibirsk, Russian Federation
| | - Igor Fyodorovich Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
18
|
Gupta A, Mandal K, Singh P, Sarkar R, Majumdar SS. Declining levels of miR-382-3p at puberty trigger the onset of spermatogenesis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:192-207. [PMID: 34513304 PMCID: PMC8413679 DOI: 10.1016/j.omtn.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
A major change in the transcriptome of testicular Sertoli cells (Scs) at the onset of puberty enables them to induce robust spermatogenesis. Through comprehensive literature mining, we generated a list of genes crucial for Sc functioning and computationally predicted the microRNAs regulating them. Differential expression analysis of microRNAs in infant and pubertal rat Scs showed that miR-382-3p levels decline significantly in pubertal Scs. Interestingly, miR-382-3p was found to regulate genes like Ar and Wt1, which are crucial for functional competence of Scs. We generated a transgenic (Tg) mouse model in which pubertal decline of miR-382-3p was prevented by its overexpression in pubertal Scs. Elevated miR-382-3p restricted the functional maturation of Scs at puberty, leading to infertility. Prevention of decline in miR-382-3p expression in pubertal Scs was responsible for defective blood-testis barrier (BTB) formation, severe testicular defects, low epididymal sperm counts and loss of fertility in these mice. This provided substantial evidence that decline in levels of miR-382-3p at puberty is the essential trigger for onset of robust spermatogenesis at puberty. Hence, sustained high levels of miR-382-3p in pubertal Scs could be one of the underlying causes of idiopathic male infertility and should be considered for diagnosis and treatment of infertility.
Collapse
Affiliation(s)
- Alka Gupta
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Mandal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Parminder Singh
- Metabolic Research Laboratory, National Institute of Immunology, New Delhi, India
| | - Rajesh Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Genes and Protein Engineering Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
- Corresponding author: Subeer S. Majumdar, Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
19
|
Amirfallah A, Knutsdottir H, Arason A, Hilmarsdottir B, Johannsson OT, Agnarsson BA, Barkardottir RB, Reynisdottir I. Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways. PLoS One 2021; 16:e0260327. [PMID: 34797887 PMCID: PMC8604322 DOI: 10.1371/journal.pone.0260327] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the cancer most often diagnosed in women. MicroRNAs (MIRs) are short RNA molecules that bind mRNA resulting in their downregulation. MIR21 has been shown to be an oncomiR in most cancer types, including breast cancer. Most of the effects of miR-21 have been attributed to hsa-miR-21-5p that is transcribed from the leading strand of MIR21, but hsa-miR-21-3p (miR-21-3p), transcribed from the lagging strand, is much less studied. The aim of the study is to analyze whether expression of miR-21-3p is prognostic for breast cancer. MiR-21-3p association with survival, clinical and pathological characteristics was analyzed in a large breast cancer cohort and validated in three separate cohorts, including TCGA and METABRIC. Analytical tools were also used to infer miR-21-3p function and to identify potential target genes and functional pathways. The results showed that in the exploration cohort, high miR-21-3p levels associated with shorter survival and lymph node positivity. In the three validation cohorts, high miR-21-3p levels associated with pathological characteristics that predict worse prognosis. Specifically, in the largest validation cohort, METABRIC (n = 1174), high miR-21-3p levels associated with large tumors, a high grade, lymph node and HER2 positivity, and shorter breast-cancer-specific survival (HR = 1.38, CI 1.13–1.68). This association remained significant after adjusting for confounding factors. The genes with expression levels that correlated with miR-21-3p were enriched in particular pathways, including the epithelial-to-mesenchymal transition and proliferation. Among the most significantly downregulated targets were MAT2A and the tumor suppressive genes STARD13 and ZNF132. The results from this study emphasize that both 3p- and 5p-arms from a MIR warrant independent study. The data show that miR-21-3p overexpression in breast tumors is a marker of worse breast cancer progression and it affects genes in pathways that drive breast cancer by down-regulating tumor suppressor genes. The results suggest miR-21-3p as a potential biomarker.
Collapse
Affiliation(s)
- Arsalan Amirfallah
- Cell Biology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hildur Knutsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Adalgeir Arason
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bylgja Hilmarsdottir
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Oskar T. Johannsson
- Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bjarni A. Agnarsson
- Department of Oncology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Rosa B. Barkardottir
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Inga Reynisdottir
- Cell Biology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- * E-mail:
| |
Collapse
|
20
|
Thu HNN, Vy HTN, Thanh TNN, Giang DTN, Nhan TN, Hoang NP, Hue TN. miRNA-16 as an Internal Control in Breast Cancer Studies: A Systematic Review and Meta-Analysis. Mol Biol 2021. [DOI: 10.1134/s0026893321050137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Selection and Optimization of Reference Genes for MicroRNA Expression Normalization by qRT-PCR in Chinese Cedar ( Cryptomeria fortunei) under Multiple Stresses. Int J Mol Sci 2021; 22:ijms22147246. [PMID: 34298866 PMCID: PMC8304282 DOI: 10.3390/ijms22147246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miRNA) expression analysis is very important for investigating its functions. To date, no research on reference genes (RGs) for miRNAs in gymnosperms, including Cryptomeria fortunei, has been reported. Here, ten miRNAs (i.e., pab-miR159a, cln-miR162, cas-miR166d, pab-miR395b, ppt-miR894, cln-miR6725, novel1, novel6, novel14 and novel16) and three common RGs (U6, 5S and 18S) were selected as candidate RGs. qRT-PCR was used to analyse their expressions in C. fortunei under various experimental conditions, including multiple stresses (cold, heat, drought, salt, abscisic acid and gibberellin) and in various tissues (roots, stems, tender needles, cones and seeds). Four algorithms (delta Ct, geNorm, NormFinder and BestKeeper) were employed to assess the stability of candidate RG expression; the geometric mean and RefFinder program were used to comprehensively evaluate RG stability. According to the results, novel16, cln-miR6725, novel1 and U6 were the most stable RGs for studying C. fortunei miRNA expression. In addition, the expression of three target miRNAs (aly-miR164c-5p, aly-miR168a-5p and smo-miR396) was examined to verify that the selected RGs are suitable for miRNA expression normalisation. This study may aid further investigations of miRNA expression/function in the response of C. fortunei to abiotic stress and provides an important basis for the standardisation of miRNA expression in other gymnosperm species.
Collapse
|
22
|
Ghanbari S, Salimi A, Rahmani S, Nafissi N, Sharifi-Zarchi A, Mowla SJ. miR-361-5p as a promising qRT-PCR internal control for tumor and normal breast tissues. PLoS One 2021; 16:e0253009. [PMID: 34101749 PMCID: PMC8186776 DOI: 10.1371/journal.pone.0253009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND One of the most widely used evaluation methods in miRNA experiments is qRT-PCR. However, selecting suitable internal controls (IC) is crucial for qRT-PCR experiments. Currently, there is no consensus on the ICs for miRNA qRT-PCR experiments in breast cancer. To this end, we tried to identify the most stable (the least expression alteration) and promising miRNAs in normal and tumor breast tissues by employing TCGA miRNA-Seq data and then experimentally validated them on fresh clinical samples. METHODS A multi-component scoring system was used which takes into account multiple expression stability criteria as well as correlation with clinical characteristics. Furthermore, we extended the scoring system for more than two biological sub-groups. TCGA BRCA samples were analyzed based on two grouping criteria: Tumor & Normal samples and Tumor subtypes. The top 10 most stable miRNAs were further investigated by differential expression and survival analysis. Then, we examined the expression level of the top scored miRNA (hsa-miR-361-5p) along with two commonly used ICs hsa-miR-16-5p and U48 on 34 pairs of Primary breast tumor and their adjacent normal tissues using qRT-PCR. RESULTS According to our multi-component scoring system, hsa-miR-361-5p had the highest stability score in both grouping criteria and hsa-miR-16-5p showed significantly lower scores. Based on our qRT-PCR assay, while U48 was the most abundant IC, hsa-miR-361-5p had lower standard deviation and also was the only IC capable of detecting a significant up-regulation of hsa-miR-21-5p in breast tumor tissue. CONCLUSIONS miRNA-Seq data is a great source to discover stable ICs. Our results demonstrated that hsa-miR-361-5p is a highly stable miRNA in tumor and non-tumor breast tissue and we recommend it as a suitable reference gene for miRNA expression studies in breast cancer. Additionally, although hsa-miR-16-5p is a commonly used IC, it's not a suitable one for breast cancer studies.
Collapse
Affiliation(s)
- Sogol Ghanbari
- Molecular Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Adel Salimi
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Saeid Rahmani
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Nahid Nafissi
- Surgical Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Seyed Javad Mowla
- Molecular Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
- * E-mail:
| |
Collapse
|
23
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
24
|
Fachim HA, Loureiro CM, Siddals K, Dalton CF, Reynolds GP, Gibson JM, Chen ZB, Heald AH. Circulating microRNA changes in patients with impaired glucose regulation. Adipocyte 2020; 9:443-453. [PMID: 32752917 PMCID: PMC7469475 DOI: 10.1080/21623945.2020.1798632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We analysed if levels of four miRNAs would change after a lifestyle intervention involving dietary and exercises in prediabetes. MiRNAs previously shown to be associated with diabetes (Let-7a, Let-7e, miR-144 and miR-92a) were extracted from serum pre- and post-intervention. mRNA was extracted from fat-tissue for gene expression analyses. The intervention resulted in increased Let-7a and miR-92a. We found correlations between miRNAs and clinical variables (triglycerides, cholesterol, insulin, weight and BMI). We also found correlations between miRNAs and target genes, revealing a link between miR-92a and IGF system. A lifestyle intervention resulted in marked changes in miRNAs. The association of miRNAs with insulin and the IGF system (both receptors and binding proteins) may represent a mechanism of regulating IGFs metabolic actions.
Collapse
Affiliation(s)
- Helene A. Fachim
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Camila M. Loureiro
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Kirk Siddals
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gavin P. Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - J. Martin Gibson
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adrian H. Heald
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| |
Collapse
|
25
|
Abstract
Background Biological evidence has shown that microRNAs(miRNAs) are greatly implicated in various biological progresses involved in human diseases. The identification of miRNA-disease associations(MDAs) is beneficial to disease diagnosis as well as treatment. Due to the high costs of biological experiments, it attracts more and more attention to predict MDAs by computational approaches. Results In this work, we propose a novel model MTFMDA for miRNA-disease association prediction by matrix tri-factorization, based on the known miRNA-disease associations, two types of miRNA similarities, and two types of disease similarities. The main idea of MTFMDA is to factorize the miRNA-disease association matrix to three matrices, a feature matrix for miRNAs, a feature matrix for diseases, and a low-rank relationship matrix. Our model incorporates the Laplacian regularizers which force the feature matrices to preserve the similarities of miRNAs or diseases. A novel algorithm is proposed to solve the optimization problem. Conclusions We evaluate our model by 5-fold cross validation by using known MDAs from HMDD V2.0 and show that our model could obtain the significantly highest AUCs among all the state-of-art methods. We further validate our method by applying it on colon and breast neoplasms in two different types of experiment settings. The new identified associated miRNAs for the two diseases could be verified by two other databases including dbDEMC and HMDD V3.0, which further shows the power of our proposed method.
Collapse
Affiliation(s)
- Huiran Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xianning West 28, Xi'an, China
| | - Yin Guo
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xianning West 28, Xi'an, China
| | - Menglan Cai
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xianning West 28, Xi'an, China
| | - Limin Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xianning West 28, Xi'an, China.
| |
Collapse
|
26
|
Pamedytyte D, Leipute E, Zilaitiene B, Sarauskas V, Dauksiene D, Dauksa A, Zvirbliene A. Different stability of miRNAs and endogenous control genes in archival specimens of papillary thyroid carcinoma. Mol Med 2020; 26:100. [PMID: 33153429 PMCID: PMC7643475 DOI: 10.1186/s10020-020-00218-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most popular miRNA quantitation technique is RQ-PCR with relative gene expression method that requires an endogenous control (EC) gene for data normalization. However, there are insufficient data and selection criteria on the most suitable ECs for miRNA expression studies in many cancer types including papillary thyroid carcinoma (PTC). Therefore, in this study we evaluated the impact of chosen EC and archival formalin-fixed, paraffin-embedded (FFPE) PTC tissue age on estimated target miRNA expression. METHODS RQ-PCR was used to determine expression levels of five miRNAs (miR-146b, miR-222, miR-21, miR-221 and miR-181b) and three different endogenous controls (RNU48, let-7a, miR-16), which were used to normalize the data. In total, 400 FFPE PTC tissues were analyzed that have been stored from 1 to 15 years. RESULTS The stability of commonly used ECs RNU48 and let-7a significantly differs from the stability of target miRNA in archival FFPE PTC tissues. Moreover, these differences have a great impact on miRNA expression results when FFPE tissue samples have been stored for a different period of time. CONCLUSIONS It is important to select an ECs not only stable in the tissue of interest but also with similar stability to target miRNA, especially when working with samples of different age.
Collapse
Affiliation(s)
- Daina Pamedytyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania.
| | - Enrika Leipute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Birute Zilaitiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Valdas Sarauskas
- Department of Pathology, Lithuanian University of Health Sciences, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Dalia Dauksiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Albertas Dauksa
- Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Aurelija Zvirbliene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| |
Collapse
|
27
|
Ciszkowicz E, Porzycki P, Semik M, Kaznowska E, Tyrka M. MiR-93/miR-375: Diagnostic Potential, Aggressiveness Correlation and Common Target Genes in Prostate Cancer. Int J Mol Sci 2020; 21:E5667. [PMID: 32784653 PMCID: PMC7460886 DOI: 10.3390/ijms21165667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of miRNAs has a fundamental role in the initiation, development and progression of prostate cancer (PCa). The potential of miRNA in gene therapy and diagnostic applications is well documented. To further improve miRNAs' ability to distinguish between PCa and benign prostatic hyperplasia (BPH) patients, nine miRNA (-21, -27b, -93, -141, -205, -221, -182, -375 and let-7a) with the highest reported differentiation power were chosen and for the first time used in comparative studies of serum and prostate tissue samples. Spearman correlations and response operating characteristic (ROC) analyses were applied to assess the capability of the miRNAs present in serum to discriminate between PCa and BPH patients. The present study clearly demonstrates that miR-93 and miR-375 could be taken into consideration as single blood-based non-invasive molecules to distinguish PCa from BPH patients. We indicate that these two miRNAs have six common, PCa-related, target genes (CCND2, MAP3K2, MXI1, PAFAH1B1, YOD1, ZFYVE26) that share the molecular function of protein binding (GO:0005515 term). A high diagnostic value of the new serum derived miR-182 (AUC = 0.881, 95% confidence interval, CI = 0.816-0.946, p < 0.0001, sensitivity and specificity were 85% and 79%, respectively) is also described.
Collapse
Affiliation(s)
- Ewa Ciszkowicz
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (M.S.); (M.T.)
| | - Paweł Porzycki
- Department of Urology, Municipal Hospital in Rzeszów, 35-241 Rzeszów, Poland;
| | - Małgorzata Semik
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (M.S.); (M.T.)
| | - Ewa Kaznowska
- Faculty of Medicine, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Mirosław Tyrka
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (M.S.); (M.T.)
| |
Collapse
|
28
|
Sorop A, Iacob R, Iacob S, Constantinescu D, Chitoiu L, Fertig TE, Dinischiotu A, Chivu-Economescu M, Bacalbasa N, Savu L, Gheorghe L, Dima S, Popescu I. Plasma Small Extracellular Vesicles Derived miR-21-5p and miR-92a-3p as Potential Biomarkers for Hepatocellular Carcinoma Screening. Front Genet 2020; 11:712. [PMID: 32793278 PMCID: PMC7391066 DOI: 10.3389/fgene.2020.00712] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/11/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction Liquid biopsy using circulating microvesicles and exosomes is emerging as a new diagnostic tool that could improve hepatocellular carcinoma (HCC) early diagnosis and screening protocols. Our study aimed to investigate the utility of plasma exosomal miR-21-5p and miR-92-3p for HCC diagnosis during screening protocols. Methods The study group included 106 subjects: 48 patients diagnosed with HCC during screening, who underwent a potentially curative treatment (surgical resection or liver transplantation), 38 patients with liver cirrhosis (LC) on the waiting list for liver transplantation, and 20 healthy volunteers. The exosomes were isolated by precipitation with a reagent based on polyethylene glycol and were characterized based on morphological aspects (i.e., diameter); molecular weight; CD63, CD9, and CD81 protein markers; and exosomal miR-21-5p and miR-92a-3p expression levels. Results We first demonstrate that the exosome population isolated with the commercially available Total Exosome Isolation kit respects the same size ranging, morphological, and protein expression aspects compared to the traditional ultracentrifugation technique. The analysis of the expression profile indicates that miR-21-5p was upregulated (p = 0.017), and miR-92a-3p was downregulated (p = 0.0005) in plasma-derived exosomes from HCC subjects, independently from the patient's characteristics. AUROC for HCC diagnosis based on AFP (alpha-fetoprotein) was 0.72. By integrating AFP and the relative expression of exosomal miR-21-5p and miR-92a-3p in a logistic regression equation for HCC diagnosis, the combined AUROC of the new exosomal miR HCC score was 0.85-significantly better than serum AFP alone (p = 0.0007). Conclusion Together with serum AFP, plasma exosomal miR-21-5p and miR-92a-3p could be used as potential biomarkers for HCC diagnosis in patients with LC subjected to screening and surveillance.
Collapse
Affiliation(s)
- Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Razvan Iacob
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| | - Speranta Iacob
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| | - Diana Constantinescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Leona Chitoiu
- Ultrastructural Pathology Laboratory, Victor Babeş National Institute, Bucharest, Romania
| | - Tudor Emanuel Fertig
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Ultrastructural Pathology Laboratory, Victor Babeş National Institute, Bucharest, Romania
| | | | - Mihaela Chivu-Economescu
- Faculty of Biology, University of Bucharest, Bucharest, Romania.,Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Nicolae Bacalbasa
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Lorand Savu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,"Titu Maiorescu" University of Medicine and Pharmacy, Bucharest, Romania
| | - Liliana Gheorghe
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| | - Irinel Popescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania.,"Titu Maiorescu" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
29
|
Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:cancers12071820. [PMID: 32645898 PMCID: PMC7408914 DOI: 10.3390/cancers12071820] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022] Open
Abstract
Neoadjuvant chemotherapy (NACT) is used in locally advanced breast cancer to reduce tumour burden prior to surgical resection. However, only a subset of NACT treated patients will respond to treatment or achieve a pathologic complete response (pCR). This multicenter, prospective study (CTRIAL-IE (ICORG) 10-11 study) evaluated circulating microRNA as novel non-invasive prognostic biomarkers of NACT response in breast cancer. Selected circulating microRNAs (Let-7a, miR-21, miR-145, miR-155, miR-195) were quantified from patients undergoing standard of care NACT treatment (n = 114) from whole blood at collected at diagnosis, and the association with NACT response and clinicopathological features evaluated. NACT responders had significantly lower levels of miR-21 (p = 0.036) and miR-195 (p = 0.017), compared to non-responders. Evaluating all breast cancer cases miR-21 was found to be an independent predictor of response (OR 0.538, 95% CI 0.308–0.943, p < 0.05). Luminal cancer NACT responders were found to have significantly decreased levels of miR-145 (p = 0.033) and miR-21 (p = 0.048), compared to non-responders. This study demonstrates the prognostic ability of miR-21, miR-195 and miR-145 as circulating biomarkers stratifying breast cancer patients by NACT response, identifying patients that will derive the maximum benefit from chemotherapy.
Collapse
|
30
|
Oh JG, Lee P, Gordon RE, Sahoo S, Kho C, Jeong D. Analysis of extracellular vesicle miRNA profiles in heart failure. J Cell Mol Med 2020; 24:7214-7227. [PMID: 32485073 PMCID: PMC7339231 DOI: 10.1111/jcmm.15251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR‐676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR‐676 as a new reference control for the EV miR studies.
Collapse
Affiliation(s)
- Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald E Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
Terrinoni A, Calabrese C, Basso D, Aita A, Caporali S, Plebani M, Bernardini S. The circulating miRNAs as diagnostic and prognostic markers. Clin Chem Lab Med 2020; 57:932-953. [PMID: 30838832 DOI: 10.1515/cclm-2018-0838] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
A large portion of the human genome transcribes RNA sequences that do not code for any proteins. The first of these sequences was identified in 1993, and the best known noncoding RNAs are microRNA (miRNAs). It is now fully established that miRNAs regulate approximately 30% of the known genes that codify proteins. miRNAs are involved in several biological processes, like cell proliferation, differentiation, apoptosis and metastatization. These RNA products regulate gene expression at the post-transcriptional level, modulating or inhibiting protein expression by interacting with specific sequences of mRNAs. Mature miRNAs can be detected in blood plasma, serum and also in a wide variety of biological fluids. They can be found associated with proteins, lipids as well as enclosed in exosome vesicles. We know that circulating miRNAs (C-miRNAs) can regulate several key cellular processes in tissues different from the production site. C-miRNAs behave as endogenous mediators of RNA translation, and an extraordinary knowledge on their function has been obtained in the last years. They can be secreted in different tissue cells and associated with specific pathological conditions. Significant evidence indicates that the initiation and progression of several pathologies are "highlighted" by the presence of specific C-miRNAs, underlining their potential diagnostic relevance as clinical biomarkers. Here we review the current literature on the possible use of this new class of molecules as clinical biomarkers of diseases.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | - Cosimo Calabrese
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Basso
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Ada Aita
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Sabrina Caporali
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Plebani
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
32
|
Madadi S, Schwarzenbach H, Lorenzen J, Soleimani M. MicroRNA expression studies: challenge of selecting reliable reference controls for data normalization. Cell Mol Life Sci 2019; 76:3497-3514. [PMID: 31089747 PMCID: PMC11105490 DOI: 10.1007/s00018-019-03136-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/13/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Accurate determination of microRNA expression levels is a prerequisite in using these small non-coding RNA molecules as novel biomarkers in disease diagnosis and prognosis. Quantitative PCR is the method of choice for measuring the expression levels of microRNAs. However, a major obstacle that affects the reliability of results is the lack of validated reference controls for data normalization. Various non-coding RNAs have previously been used as reference controls, but their use may lead to variations and lack of comparability of microRNA data among the studies. Despite the growing number of studies investigating microRNA profiles to discriminate between healthy and disease stages, robust reference controls for data normalization have so far not been established. In the present article, we provide an overview of different reference controls used in various diseases, and highlight the urgent need for the identification of suitable reference controls to produce reliable data. Our analysis shows, among others, that RNU6 is not an ideal normalizer in studies using patient material from different diseases. Finally, our article tries to disclose the challenges to find a reference control which is uniformly and stably expressed across all body tissues, fluids, and diseases.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Johan Lorenzen
- Department of Nephrology, University Hospital Zürich, Zurich, Switzerland
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
33
|
Yang J, Gong Y, Cai J, Liu Q, Zhang Z. lnc-3215 Suppression Leads to Calcium Overload in Selenium Deficiency-Induced Chicken Heart Lesion via the lnc-3215-miR-1594-TNN2 Pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:1-15. [PMID: 31479920 PMCID: PMC6726916 DOI: 10.1016/j.omtn.2019.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/19/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023]
Abstract
Selenium deficiency has been proven to induce calcium disorders in the chicken heart. However, detailed regulatory mechanisms, e.g., the long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory axis, have not yet been described. Here, we point out lnc-2315, miR-1594, and Troponin T (TNNT2) based on the results of lncRNA and miRNA comparative genomics group analysis of Se-deficient chicken hearts compared with control hearts. We employed lnc-3215 and TNNT2 knockdown, miR-1594 knockdown, and overexpression models in the chicken embryos in vivo, and lnc-3215, miR-1594, and TNNT2 knockdown and overexpression models in cardiomyocytes in vitro. The dual-luciferase reporter assay and quantitative real-time PCR were used to confirm the relationships between miR-1594 and TNNT2, lnc-3215, and miR-1594 in cardiomyocytes. Our results revealed that TNNT2 suppression induced cardiac calcium overload in vivo and in vitro. miR-1594 activates cardiac calcium overload by targeting TNNT2. Moreover, we found that lnc-3215 regulates miR-1594, and thus influences the TNNT2 expression in vivo and in vitro; these conclusions were verified by gene knockdown in chicken embryos. Our present study revealed a novel regulatory model of a calcium program, which comprises lnc-3215, miR-1594, and TNNT2 in the chicken heart. Our conclusions may provide a feasible diagnostic tool for Se-deficient cardiomyocytes injury.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
34
|
Kloten V, Neumann MHD, Di Pasquale F, Sprenger-Haussels M, Shaffer JM, Schlumpberger M, Herdean A, Betsou F, Ammerlaan W, Af Hällström T, Serkkola E, Forsman T, Lianidou E, Sjöback R, Kubista M, Bender S, Lampignano R, Krahn T, Schlange T. Multicenter Evaluation of Circulating Plasma MicroRNA Extraction Technologies for the Development of Clinically Feasible Reverse Transcription Quantitative PCR and Next-Generation Sequencing Analytical Work Flows. Clin Chem 2019; 65:1132-1140. [PMID: 31235535 DOI: 10.1373/clinchem.2019.303271] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND In human body fluids, microRNA (miRNA) can be found as circulating cell-free miRNA (cfmiRNA), as well as secreted into extracellular vesicles (EVmiRNA). miRNAs are being intensively evaluated as minimally invasive liquid biopsy biomarkers in patients with cancer. The growing interest in developing clinical assays for circulating miRNA necessitates careful consideration of confounding effects of preanalytical and analytical parameters. METHODS By using reverse transcription quantitative real-time PCR and next-generation sequencing (NGS), we compared extraction efficiencies of 5 different protocols for cfmiRNA and 2 protocols for EVmiRNA isolation in a multicentric manner. The efficiency of the different extraction methods was evaluated by measuring exogenously spiked cel-miR-39 and 6 targeted miRNAs in plasma from 20 healthy individuals. RESULTS There were significant differences between the tested methods. Although column-based extraction methods were highly effective for the isolation of endogenous miRNA, phenol extraction combined with column-based miRNA purification and ultracentrifugation resulted in lower quality and quantity of isolated miRNA. Among all extraction methods, the ubiquitously expressed miR-16 was represented with high abundance when compared with other targeted miRNAs. In addition, the use of miR-16 as an endogenous control for normalization of quantification cycle values resulted in a decreased variability of column-based cfmiRNA extraction methods. Cluster analysis of normalized NGS counts clearly indicated a method-dependent bias. CONCLUSIONS The choice of plasma miRNA extraction methods affects the selection of potential miRNA marker candidates and mechanistic interpretation of results, which should be done with caution, particularly across studies using different protocols.
Collapse
Affiliation(s)
- Vera Kloten
- Bayer AG, Pharmaceutical Division, Biomarker Research, Wuppertal, Germany
| | | | | | | | | | | | | | - Fay Betsou
- Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - Wim Ammerlaan
- Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - Taija Af Hällström
- AstraZeneca, Espoo, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.,Orion Pharma, Orion Corporation, Espoo, Finland
| | | | | | | | | | - Mikael Kubista
- TATAA Biocenter AB, Gothenburg, Sweden.,Institute of Biotechnology CAS, v. v. i., Vestec, Czech Republic
| | - Sebastian Bender
- Bayer AG, Pharmaceutical Division, Translational Assay Technology, Berlin, Germany
| | - Rita Lampignano
- Bayer AG, Pharmaceutical Division, Biomarker Research, Wuppertal, Germany
| | - Thomas Krahn
- Bayer AG, Pharmaceutical Division, Biomarker Research, Wuppertal, Germany
| | - Thomas Schlange
- Bayer AG, Pharmaceutical Division, Biomarker Research, Wuppertal, Germany;
| | | |
Collapse
|
35
|
Wang F, Yang QW, Zhao WJ, Du QY, Chang ZJ. Selection of suitable candidate genes for miRNA expression normalization in Yellow River Carp (Cyprinus carpio. var). Sci Rep 2019; 9:8691. [PMID: 31213623 PMCID: PMC6581906 DOI: 10.1038/s41598-019-44982-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
Yellow River carp is widely cultivated in the world due to its economic value in aquaculture, and the faster growth of females compared to males. It is believed that microRNAs (miRNA) are involved in gonadal differentiation and development. qPCR is the most preferred method for miRNA functional analysis. Reliable reference genes for normalization in qRT-PCR are the key to ensuring the accuracy of this method. The aim of present research was to evaluate as well as identify the efficacy of reference genes for miRNA expression using qRT-PCR in Yellow River carp. Nine ncRNAs (miR-101, miR-23a, let7a, miR-26a, miR-146a, miR-451, U6, 5S, and 18S) were chosen and tested in four sample sets: (1) different tissues in adult carp, (2) different tissues in juvenile carp, (3) different early developmental stages of carp, and (4) different developmental stages of carp gonads. The stability and suitability values were calculated using NormFinder, geNorm, and BestKeeper software. The results showed that 5S was a suitable reference gene in different tissues of adult and juvenile carp. The genes 5S, 18S, and U6 were the most stable reference genes in the early developmental stages of carp. Let-7a and miR-23a were considered as the suitable reference genes in the development of gonads. All these reference genes were subsequently validated using miR-430. The results showed that genes 5S and 18S were the most suitable reference genes to normalize miRNA expression under normal growth conditions in early different developmental stages. The genes Let-7a, and miR-23a were the most suitable in different developmental stages. The present study is the first comprehensive study of the stability of miRNA reference genes in Yellow River carp, providing valuable as well as basic data for investigating more accurate miRNA expression during gonadal differentiation and development of carp.
Collapse
Affiliation(s)
- Fang Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qian-Wen Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Wen-Jie Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qi-Yan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhong-Jie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
36
|
Lagah SV, Sood TJ, Palta P, Mukesh M, Chauhan MS, Manik RS, Singh MK, Singla SK. Selection of Reference miRNAs for Relative Quantification in Buffalo ( Bubalus bubalis) Blastocysts Produced by Hand-Made Cloning and In Vitro Fertilization. Cell Reprogram 2019; 21:200-209. [PMID: 31199674 DOI: 10.1089/cell.2019.0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Very low birth rate and a high incidence of abnormalities in offspring born from cloned embryos, which have limited the application of cloning technology on a wide scale, are believed to be because of incomplete or aberrant nuclear reprogramming. MicroRNAs (miRNAs) are involved in regulating a wide range of biological processes including reprogramming and embryonic development. Selection of suitable reference miRNAs is critical for normalization of data for accurate relative quantification of miRNAs by quantitative real-time polymerase chain reaction (qRT-PCR), which is currently the most widely used technique for quantifying miRNAs. This study was aimed at identification of reference miRNAs suitable for normalization of qRT-PCR data from blastocyst-stage buffalo embryos produced by handmade cloning and in vitro fertilization (IVF). RNA isolated from cloned and IVF blastocysts was subjected to next-generation sequencing based on which, 12 highly and most consistently expressed miRNAs, which included miR-92a, miR-423, miR-151, Let-7a, miR-103a, miR-93, miR-16b, miR-25, miR-30e, miR-101, miR-127, and miR-197, were selected as candidates for identification of suitable reference miRNAs using three statistical algorithms namely geNorm, NormFinder, and BestKeeper. Based on consensus of the three algorithms, the combination of miRNAs found to be suitable as reference miRNAs were miR-127 and miR-103 for IVF blastocysts; miR-92a and miR-103 for cloned blastocysts, and miR-103, miR-423, and miR-93 across both IVF and cloned blastocysts. The data of this study can be very useful in miRNA expression analysis of blastocyst-stage cloned and IVF embryos.
Collapse
Affiliation(s)
- Swati Viviyan Lagah
- 1Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India.,2Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Tanushri Jerath Sood
- 1Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Prabhat Palta
- 1Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Manishi Mukesh
- 3ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Manmohan Singh Chauhan
- 1Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Radhey Shyam Manik
- 1Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Manoj Kumar Singh
- 1Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Suresh Kumar Singla
- 1Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
37
|
Jeon RH, Lee WJ, Son YB, Bharti D, Shivakumar SB, Lee SL, Rho GJ. PPIA, HPRT1, and YWHAZ Genes Are Suitable for Normalization of mRNA Expression in Long-Term Expanded Human Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3093545. [PMID: 31240211 PMCID: PMC6556274 DOI: 10.1155/2019/3093545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Long-term expansion of mesenchymal stem cells (MSCs) under defined culture conditions is necessary in human stem cell therapy. However, it alters the characteristics of MSCs. Since quantitative real time polymerase chain reaction (qRT-PCR) is widely used as one of the key analytical methods for comparative characterization, the validation of reference genes (RGs) for normalization under each experimental condition is important to achieve reliable qRT-PCR results. Therefore, the most stable RGs for long-term expanded bone marrow- and umbilical cord blood-derived MSCs (BM-MSCs and UCB-MSCs) under defined culture conditions for up to 20 passages were evaluated. The more apparent alterations in characteristics such as differentiation capacity, proliferation, senescence, and the expression of RGs were noted in BM-MSCs than UCB-MSCs during long-term expansion. The RG validation programs (GeNorm and NormFinder) suggested that PPIA, HPRT1, and YWHAZ were suitable for normalization in qRT-PCR regardless of MSC types and long-term culture expansion, and the traditional RGs (ACTB and GAPDH) were less stable in long-term expanded MSCs. In addition, the use of these RGs for normalization of OCT4 expression in long-term expanded BM-MSCs showed that a less stable RG (GAPDH) showed contrasting data compared to other RGs. Therefore, the use of RGs such as PPIA, HPRT1, and YWHAZ for normalization in qRT-PCR experiments is highly recommended for long-term expanded MSCs to generate accurate and reliable data.
Collapse
Affiliation(s)
- Ryoung-Hoon Jeon
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Bum Son
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dinesh Bharti
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | | | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
38
|
McAnena P, Tanriverdi K, Curran C, Gilligan K, Freedman JE, Brown JAL, Kerin MJ. Circulating microRNAs miR-331 and miR-195 differentiate local luminal a from metastatic breast cancer. BMC Cancer 2019; 19:436. [PMID: 31077182 PMCID: PMC6511137 DOI: 10.1186/s12885-019-5636-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer is the leading cause of cancer related death in women, with metastasis the principle cause of mortality. New non-invasive prognostic markers are needed for the early detection of metastasis, facilitating treatment decision optimisation. MicroRNA (miRNA) are small, non-coding RNAs regulating gene expression and involved in many cellular processes, including metastasis. As biomarkers, circulating miRNAs (in blood) hold great promise for informing diagnosis or monitoring treatment responses. METHODS Plasma extracted RNA from age matched local Luminal A (n = 4) or metastatic disease (n = 4) were profiled using Next Generation Sequencing. Selected differentially expressed miRNA were validated on a whole blood extracted miRNA cohort [distant metastatic disease (n = 22), local disease (n = 31), healthy controls (n = 21)]. Area Under the Curve (AUC) in Receiver Operating Characteristic (ROC) analyses was performed. RESULTS Of 4 miRNA targets tested (miR-181a, miR-329, miR-331, miR-195), mir-331 was significantly over-expressed in patients with metastatic disease, compared to patients with local disease (p < 0.001) or healthy controls (p < 0.001). miR-195 was significantly under-expressed in patients with metastatic disease, compared to patients with local disease (p < 0.001) or healthy controls (p = 0.043). In combination, miR-331 and miR-195 produced an AUC of 0.902, distinguishing metastatic from local breast cancer. CONCLUSIONS We identified and validated two circulating miRNAs differentiating local Luminal A breast cancers from metastatic breast cancers. Further investigation will reveal the molecular role of these miRNAs in metastasis, and determine if they are subtype specific. This work demonstrates the ability of circulating miRNA to identify metastatic disease, and potentially inform diagnosis or treatment effectiveness.
Collapse
Affiliation(s)
- Peter McAnena
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Kahraman Tanriverdi
- UMass Memorial Heart & Vascular Center, University of Massachusetts Medical School, The Albert Sherman Center, 7th Floor West, AS7-1051, 368 Plantation St, Worcester, MA, 01605-4319, USA
| | - Catherine Curran
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - K Gilligan
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jane E Freedman
- UMass Memorial Heart & Vascular Center, University of Massachusetts Medical School, The Albert Sherman Center, 7th Floor West, AS7-1051, 368 Plantation St, Worcester, MA, 01605-4319, USA
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
39
|
Buonpane C, Ares G, Benyamen B, Yuan C, Hunter CJ. Identification of suitable reference microRNA for qPCR analysis in pediatric inflammatory bowel disease. Physiol Genomics 2019; 51:169-175. [PMID: 30978148 DOI: 10.1152/physiolgenomics.00126.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pediatric inflammatory bowel disease (IBD) accounts for 10-15% of IBD and is associated with considerable morbidity for patients. Dysregulated microRNAs (miRNA, miR), small noncoding RNA molecules that modulate gene expression, have been the target of research in IBD diagnosis, surveillance, and therapy. Proper selection of reference genes, which are a prerequisite for accurate measurement of miRNA expression, is currently lacking. We hypothesize that appropriate normalization requires unique reference genes for different tissue and disease types. Through the study of 28 pediatric intestinal samples, we sought to create a protocol for selection of suitable endogenous reference genes. Candidate reference genes (miR-16, 193a, 27a, 103a, 191) were analyzed by RT-quantitative (q)PCR. Criteria used for designation of suitable reference genes were as follows: 1) ubiquitous: present in all tissue samples with quantification cycle value 15-35; 2) uniform expression: no differential expression between control and disease samples (P > 0.05); 3) stability: stability value <0.5 by NormFinder. Our results suggest the use of miR-27a/191 for Crohn's disease small bowel, none of the five candidate genes for Crohn's disease colon, and miR-16/27a for ulcerative colitis. Additionally, target miR-874 had differential expression when normalized with different reference genes. Our results demonstrate that reference gene choice for qPCR analysis has a significant effect on study results and that proper data normalization is imperative.
Collapse
Affiliation(s)
- Christie Buonpane
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Ann and Robert H. Lurie Children's Hospital of Chicago , Chicago, Illinois
| | - Guillermo Ares
- Ann and Robert H. Lurie Children's Hospital of Chicago , Chicago, Illinois.,Department of Surgery, University of Illinois at Chicago , Chicago, Illinois
| | - Beshoy Benyamen
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Ann and Robert H. Lurie Children's Hospital of Chicago , Chicago, Illinois
| | - Carrie Yuan
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Catherine J Hunter
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Ann and Robert H. Lurie Children's Hospital of Chicago , Chicago, Illinois
| |
Collapse
|
40
|
Fang R, Zhu Y, Hu L, Khadka VS, Ai J, Zou H, Ju D, Jiang B, Deng Y, Hu X. Plasma MicroRNA Pair Panels as Novel Biomarkers for Detection of Early Stage Breast Cancer. Front Physiol 2019; 9:1879. [PMID: 30670982 PMCID: PMC6331533 DOI: 10.3389/fphys.2018.01879] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction: Breast cancer is the second leading cause of cancer death among females. We sought to identify microRNA (miRNA) markers in breast cancer, and determine whether miRNA expression is predictive of early stage breast cancer. The paired panel of microRNAs is promising. Methods: Global miRNA expression profiling was performed on three pooling samples of plasma from breast cancer, benign lesion and normal, using next generation sequencing technology. Thirteen microRNAs (hsa-miR-21-3p, hsa-miR-192-5p, hsa-miR-221-3p, hsa-miR-451a, hsa-miR-574-5p, hsa-miR-1273g-3p, hsa-miR-152, hsa-miR-22-3p, hsa-miR-222-3p, hsa-miR-30a-5p, hsa-miR-30e-5p, hsa-miR-324-3p, and hsa -miR-382-5p) were subsequently validated using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) in a cohort of 53 breast cancer, 40 benign lesions and 38 normal cases. The pairwise miRNA ratios were calculated as biomarkers to classify breast cancer. Results: According to the model used to predict breast cancer from benign lesions, a panel of five miRNA pairs had high diagnostic power with an AUC of 0.942. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of this model after 10-fold cross validation were 0.881, 0.775, 0.827, and 0.756, respectively. In addition, the other panels of miRNA pairs distinguishing the breast cancer from normal and non-cancer patients had good performance. Conclusion: Certain MicroRNA pairs were identified and deemed effective in breast cancer screening, especially when distinguishing cancer from benign lesions.
Collapse
Affiliation(s)
- Rui Fang
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yong Zhu
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Hu
- Department of Anesthesiology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Vedbar Singh Khadka
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Junmei Ai
- Presence Health, Des Plaines, IL, United States
| | - Hanqing Zou
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Dianwen Ju
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Jiang
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Youping Deng
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Xiamin Hu
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
41
|
Drobna M, Szarzyńska-Zawadzka B, Daca-Roszak P, Kosmalska M, Jaksik R, Witt M, Dawidowska M. Identification of Endogenous Control miRNAs for RT-qPCR in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2018; 19:ijms19102858. [PMID: 30241379 PMCID: PMC6212946 DOI: 10.3390/ijms19102858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
Abstract
Optimal endogenous controls enable reliable normalization of microRNA (miRNA) expression in reverse-transcription quantitative PCR (RT-qPCR). This is particularly important when miRNAs are considered as candidate diagnostic or prognostic biomarkers. Universal endogenous controls are lacking, thus candidate normalizers must be evaluated individually for each experiment. Here we present a strategy that we applied to the identification of optimal control miRNAs for RT-qPCR profiling of miRNA expression in T-cell acute lymphoblastic leukemia (T-ALL) and in normal cells of T-lineage. First, using NormFinder for an iterative analysis of miRNA stability in our miRNA-seq data, we established the number of control miRNAs to be used in RT-qPCR. Then, we identified optimal control miRNAs by a comprehensive analysis of miRNA stability in miRNA-seq data and in RT-qPCR by analysis of RT-qPCR amplification efficiency and expression across a variety of T-lineage samples and T-ALL cell line culture conditions. We then showed the utility of the combination of three miRNAs as endogenous normalizers (hsa-miR-16-5p, hsa-miR-25-3p, and hsa-let-7a-5p). These miRNAs might serve as first-line candidate endogenous controls for RT-qPCR analysis of miRNAs in different types of T-lineage samples: T-ALL patient samples, T-ALL cell lines, normal immature thymocytes, and mature T-lymphocytes. The strategy we present is universal and can be transferred to other RT-qPCR experiments.
Collapse
Affiliation(s)
- Monika Drobna
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | | | | | - Maria Kosmalska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Roman Jaksik
- Department, Silesian University of Technology, 44-100 Gliwice, Poland.
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | | |
Collapse
|
42
|
Cheng H, Dong H, Feng J, Tian H, Zhang H, Xu L. miR-497 inhibited proliferation, migration and invasion of thyroid papillary carcinoma cells by negatively regulating YAP1 expression. Onco Targets Ther 2018; 11:4711-4721. [PMID: 30127619 PMCID: PMC6091470 DOI: 10.2147/ott.s164052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE This article aimed to investigate the effect of miR-497 on thyroid papillary carcinoma. MATERIALS AND METHODS miR-497 expression was analyzed using The Cancer Genome Atlas. A total of 56 papillary thyroid carcinoma patients' tumor tissues and normal tissues were collected. Nthy-ori 3-1 and K1 cells were cultured. K1 cells were also transfected. Quantitative real-time polymerase chain reaction and Western blot were used to detect miR-497 and yes-associated protein 1 (YAP1) expression. Luciferase reporter assay was performed. MTT and Transwell assay were conducted to measure cells' proliferation, migration and invasion. Immunofluorescence detection was used to detect YAP1-positive cells. RESULTS miR-497 was downregulated, while YAP1 was upregulated in thyroid papillary carcinoma tissues and K1 cells (P<0.05). Compared with the negative control group, the OD495 value and the migrating and invasive cell number were significantly lower in miR-497 mimics group and significantly higher in miR-497 inhibitor group (P<0.05). YAP1 was the target gene of miR-497. Compared with blank group, the OD495 value and the migrating and invasive cell number were significantly lower in si-YAP1 group and significantly higher in miR-497 inhibitor group (P<0.05), while no significant difference was found between si-YAP1+inhibitors group and blank group in these indicators. CONCLUSION miR-497 regulated the proliferation, migration and invasion of K1 cells by negatively regulating YAP1 expression.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Pathology, The People’s Hospital of Shouguang, Weifang 262700, China
| | - Hui Dong
- Department of Pathology, The People’s Hospital of Shouguang, Weifang 262700, China
| | - Jianlin Feng
- Department of Radiology, The People’s Hospital of Shouguang, Weifang 262700, China
| | - Hongyan Tian
- Department of Pathology, The People’s Hospital of Shouguang, Weifang 262700, China
| | - Haixia Zhang
- Department of Radiotherapy, The People’s Hospital of Shouguang, Weifang 262700, China
| | - Lina Xu
- Department of Respiratory Medicine, The People’s Hospital of Weifang, Weifang 262700, China, ,Correspondence: Lina Xu, Department of Respiratory Medicine, The People’s Hospital of Weifang, No 151, Guangwen Street, Kuiwen District, Weifang 261041, China, Tel/fax +86 1 870 668 1167, Email
| |
Collapse
|
43
|
Changes in MiRNA-5196 Expression as a Potential Biomarker of Anti-TNF-α Therapy in Rheumatoid Arthritis and Ankylosing Spondylitis Patients. Arch Immunol Ther Exp (Warsz) 2018; 66:389-397. [PMID: 29744553 PMCID: PMC6154007 DOI: 10.1007/s00005-018-0513-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
In this study, we analysed the expression level of sera circulating miRNA-5196 in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients before and after tumor necrosis factor (TNF)-α therapy as biomarkers predicting positive treatment outcome. We enrolled 10 RA patients, 13 AS patients, and 12 healthy individuals in the study. The expression of miRNA-5196 was measured by real-time polymerase chain reaction before and after anti-TNF-α therapy. Disease activity of RA patients was assessed using disease activity score 28 (DAS28), whereas ankylosing spondylitis DAS (ASDAS) was used in AS patients. MiRNA-5196 expression was significantly higher in patients with RA and AS before TNF-α therapy than in those following anti-TNF-α therapy and healthy controls. Changes in miRNA-5196 expression positively correlated with delta DAS28 or delta ASDAS, respectively, following TNF-α therapy. In contrast, changes in C-reactive protein (CRP) levels in RA and AS patients did not positively correlate with DAS28 or ASDAS changes. Receiver-operating characteristic analysis showed better diagnostic accuracy of miRNA-5196 expression both in RA (area under curve (AUC) = 0.87, p = 0.055) and AS patients (AUC = 0.90, p = 0.050) compared to CRP levels in RA (AUC = 0.75, p = 0.201) and AS patients (AUC = 0.85, p = 0.086) upon biologic therapy treatment. Finding novel biomarkers, including miRNA-5196 which allow to predict and monitor anti-TNF-α response, would be of clinical value especially during the early phase of RA or AS development.
Collapse
|
44
|
Wang X, Zhang X, Yuan J, Wu J, Deng X, Peng J, Wang S, Yang C, Ge J, Zou Y. Evaluation of the performance of serum miRNAs as normalizers in microRNA studies focused on cardiovascular disease. J Thorac Dis 2018; 10:2599-2607. [PMID: 29997921 DOI: 10.21037/jtd.2018.04.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Few study has been done to evaluate the stability and superiority of normalizers for serum microRNA (miRNA) study in cardiovascular disease. Therefore, the aim of this study is to assess the suitability of several common normalizers (miR-16, SNOU6, 5S, miR-19b, miR-24, miR-15b, let 7i) in cardiovascular disease. Methods We evaluated the stability of the seven circulating miRNAs as reference genes in the blood samples from patients with cardiovascular disease [heart failure (HF) and hypertension] and healthy people. Stability was quantified by combining BestKeeper, NormFinder and comparative delta Cq analysis. Results A total of 62 subjects were included in this study, of which 25 patients were with HF, 10 patients were with hypertension, and 27 were healthy people. The analysis from both BestKeeper and comparative delta ct analysis demonstrated that let-7i and miR-16 showed the best performance [the standard deviations (SD) in BestKeeper for let-7i and miR-16 were 0.60 and 0.72, and the mean SD in comparative delta ct analysis for let-7i and miR-16 were 1.79 and 1.82, respectively], while SNOU6 and 5S had the highest variability. In NormFinder analysis, miR-15 show best stability (ρ=0.029), followed by miR-19b (ρ=0.037), let-7i (ρ=0.064), SNOU6 (ρ=0.064), 5S (ρ=0.064), miR-16 (ρ=0.064), while miR-24 (ρ=0.075) showed worst stability. Conclusions This study pointed out that in the serum studies focused on cardiovascular disease, let-7i and miR-16 had the best performance, while SNOU6 and 5S were not suitable as reference gene. This study indicate that the selection of an optimal reference genes is important to get an accurate result in serum miRNA studies, the findings are of clinical significance to guide the further miRNA studies or tests.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Xiaoyi Zhang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Juan Peng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
45
|
Babion I, Snoek BC, van de Wiel MA, Wilting SM, Steenbergen RDM. A Strategy to Find Suitable Reference Genes for miRNA Quantitative PCR Analysis and Its Application to Cervical Specimens. J Mol Diagn 2018; 19:625-637. [PMID: 28826607 DOI: 10.1016/j.jmoldx.2017.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/11/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
miRNAs represent an emerging class of promising biomarkers for cancer diagnostics. To perform reliable miRNA expression analysis using quantitative PCR, adequate data normalization is essential to remove nonbiological, technical variations. Ideal reference genes should be biologically stable and reduce technical variability of miRNA expression analysis. Herein is a new strategy for the identification and evaluation of reference genes that can be applied for miRNA-based diagnostic tests without entailing excessive additional experiments. We analyzed the expression of 11 carefully selected candidate reference genes in different types of cervical specimens [ie, tissues, scrapes, and self-collected cervicovaginal specimens (self-samples)]. To identify the biologically most stable reference genes, three commonly used algorithms (GeNorm, NormFinder, and BestKeeper) were combined. Signal-to-noise ratios and P values between control and disease groups were calculated to validate the reduction in technical variability on expression analysis of two marker miRNAs. miR-423 was identified as a suitable reference gene for all sample types, to be used in combination with RNU24 in cervical tissues, RNU43 in scrapes, and miR-30b in self-samples. These findings demonstrate that the choice of reference genes may differ between different types of specimens, even when originating from the same anatomical source. More important, it is shown that adequate normalization increases the signal-to-noise ratio, which is not observed when normalizing to commonly used reference genes.
Collapse
Affiliation(s)
- Iris Babion
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Barbara C Snoek
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Mark A van de Wiel
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands; Department of Mathematics, VU University Amsterdam, Amsterdam, the Netherlands
| | - Saskia M Wilting
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
46
|
Zaleski M, Kobilay M, Schroeder L, Debald M, Semaan A, Hettwer K, Uhlig S, Kuhn W, Hartmann G, Holdenrieder S. Improved sensitivity for detection of breast cancer by combination of miR-34a and tumor markers CA 15-3 or CEA. Oncotarget 2018; 9:22523-22536. [PMID: 29854296 PMCID: PMC5976482 DOI: 10.18632/oncotarget.25077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs biomarkers have shown value for diagnosis and prognosis of various cancers. Combination with established tumor markers has rarely been done. Results Breast cancer patients had significantly higher serum RNA loads (AUC 0.665), lower miR-34a (AUC 0.772), higher CEA and CA 15-3 levels (AUCs 0.717 and 0.721) than healthy controls. miR-34a correlated with tumor stage and hormone receptor status. There was no significant difference between groups for all other miRNAs. Combination of miR-34a with CEA or CA 15-3 led to improved AUCs of 0.844 and 0.800, respectively. Sensitivity of miR-34a and CA 15-3 reached 56.1% at 95% specificity. When compared with benign breast diseases, combination of miR-34a (AUC 0.719) and CEA (0.623) or CA 15-3 (0.619) resulted in improved performances (0.794 and 0.741). Sensitivity of miR-34a and CA 15-3 reached 53.7% at 95% specificity. Conclusion While miR-34a provides valuable information for diagnosis and staging, combination with tumor markers CA15-3 or CEA improves the sensitivity for breast cancer detection. Patients and Methods The diagnostic relevance of the miR-21, miR-34a, miR-92a, miR-155, miR-222 and miR-let-7c was tested in sera of 103 individuals (55 breast cancer, 20 benign breast diseases, 28 healthy controls). MiRNAs were detected by quantitative rt-PCR after extraction and reverse transcription. Cel-miR-39 and miR-16 were used for normalization. Established tumor markers CEA, CA 15-3, CA 19-9 and CA 125 were measured by automatized immunoassays. Diagnostic performance was tested by areas under the curve (AUC) of receiver operating characteristic (ROC) curves and sensitivities at 90% and 95% specificity.
Collapse
Affiliation(s)
- Martin Zaleski
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Lars Schroeder
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Manuel Debald
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | | | - Karina Hettwer
- QuoData Statistics, Dresden, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| | - Steffen Uhlig
- QuoData Statistics, Dresden, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| | - Walther Kuhn
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| |
Collapse
|
47
|
Wang WW, Zhou XL, Song YJ, Yu CH, Zhu WG, Tong YS. Combination of long noncoding RNA MALAT1 and carcinoembryonic antigen for the diagnosis of malignant pleural effusion caused by lung cancer. Onco Targets Ther 2018; 11:2333-2344. [PMID: 29731641 PMCID: PMC5923246 DOI: 10.2147/ott.s157551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Long noncoding RNAs (lncRNAs) are present in body fluids, but their potential as tumor biomarkers has never been investigated in malignant pleural effusion (MPE) caused by lung cancer. The aim of this study was to assess the clinical significance of lncRNAs in pleural effusion, which could potentially serve as diagnostic and predictive markers for lung cancer-associated MPE (LC-MPE). Patients and methods RNAs from pleural effusion were extracted in 217 cases of LC-MPE and 132 cases of benign pleural effusion (BPE). Thirty-one lung cancer-associated lncRNAs were measured using quantitative real-time polymerase chain reaction (qRT-PCR). The level of carcinoembryonic antigen (CEA) was also determined. The receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were established to evaluate the sensitivity and specificity of the identified lncRNAs and other biomarkers. The correlations between baseline pleural effusion lncRNAs expression and response to chemotherapy were also analyzed. Results Three lncRNAs (MALAT1, H19, and CUDR) were found to have potential as diagnostic markers in LC-MPE. The AUCs for MALAT1, H19, CUDR, and CEA were 0.891, 0.783, 0.824, and 0.826, respectively. Using a logistic model, the combination of MALAT1 and CEA (AUC, 0.924) provided higher sensitivity and accuracy in predicting LC-MPE than CEA (AUC, 0.826) alone. Moreover, baseline MALAT1 expression in pleural fluid was inversely correlated with chemotherapy response in patients with LC-MPE. Conclusion Pleural effusion lncRNAs were effective in differentiating LC-MPE from BPE. The combination of MALAT1 and CEA was more effective for LC-MPE diagnosis.
Collapse
Affiliation(s)
- Wan-Wei Wang
- Department of Radiation Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xi-Lei Zhou
- Department of Radiation Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Ying-Jian Song
- Department of Respiratory Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Chang-Hua Yu
- Department of Radiation Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wei-Guo Zhu
- Department of Radiation Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yu-Suo Tong
- Department of Radiation Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
48
|
Inada K, Okoshi Y, Cho-Isoda Y, Ishiguro S, Suzuki H, Oki A, Tamaki Y, Shimazui T, Saito H, Hori M, Iijima T, Kojima H. Endogenous reference RNAs for microRNA quantitation in formalin-fixed, paraffin-embedded lymph node tissue. Sci Rep 2018; 8:5918. [PMID: 29651113 PMCID: PMC5897550 DOI: 10.1038/s41598-018-24338-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Lymph node metastasis is one of the most important factors for tumor dissemination. Quantifying microRNA (miRNA) expression using real-time PCR in formalin-fixed, paraffin-embedded (FFPE) lymph node can provide valuable information regarding the biological research for cancer metastasis. However, a universal endogenous reference gene has not been identified in FFPE lymph node. This study aimed to identify suitable endogenous reference genes for miRNA expression analysis in FFPE lymph node. FFPE lymph nodes were obtained from 41 metastatic cancer and from 16 non-cancerous tissues. We selected 10 miRNAs as endogenous reference gene candidates using the global mean method. The stability of candidate genes was assessed by the following four statistical tools: BestKeeper, geNorm, NormFinder, and the comparative ΔCt method. miR-103a was the most stable gene among candidate genes. However, the use of a single miR-103a was not recommended because its stability value exceeded the reference value. Thus, we combined stable genes and investigated the stability and the effect of gene normalization. The combination of miR-24, miR-103a, and let-7a was identified as one of the most stable sets of endogenous reference genes for normalization in FFPE lymph node. This study may provide a basis for miRNA expression analysis in FFPE lymph node tissue.
Collapse
Affiliation(s)
- Katsushige Inada
- Department of Hematology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan.
| | - Yasushi Okoshi
- Department of Hematology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan.,Ibaraki Clinical Education and Training Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukiko Cho-Isoda
- Department of Medical Oncology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Shingo Ishiguro
- Department of Medical Oncology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Hisashi Suzuki
- Ibaraki Clinical Education and Training Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Thoracic Surgery, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Akinori Oki
- Ibaraki Clinical Education and Training Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Obstetrics and Gynecology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Yoshio Tamaki
- Ibaraki Clinical Education and Training Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Radiation Oncology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Toru Shimazui
- Ibaraki Clinical Education and Training Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Urology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Hitoaki Saito
- Department of Pathology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Mitsuo Hori
- Department of Hematology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Tatsuo Iijima
- Department of Pathology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Hiroshi Kojima
- Ibaraki Clinical Education and Training Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Medical Oncology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| |
Collapse
|
49
|
Ling K, Jiang H, Huang X, Li Y, Lin J, Li FR. Direct chemiluminescence detection of circulating microRNAs in serum samples using a single-strand specific nuclease-distinguishing nucleic acid hybrid system. Chem Commun (Camb) 2018; 54:1909-1912. [PMID: 29393313 DOI: 10.1039/c7cc09087k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We developed a microplate-based enhanced chemiluminescence system for the direct detection of circulating miRNAs. The system exhibited a high target sensitivity and specificity, with a detection limit of 3.02 fM.
Collapse
Affiliation(s)
- Kai Ling
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.
| | | | | | | | | | | |
Collapse
|
50
|
Liu T, Zhang X, Gao S, Jing F, Yang Y, Du L, Zheng G, Li P, Li C, Wang C. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget 2018; 7:85551-85563. [PMID: 27888803 PMCID: PMC5356757 DOI: 10.18632/oncotarget.13465] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer-secreted long non-coding RNAs (lncRNAs) are emerging mediators of cancer-host cross talk. The aim of our study was to illustrate the clinical significance of the lncRNA CRNDE-h in exosomes purified from the serum of patients with colorectal cancer (CRC). The study was divided into four parts: (1) The exosome isolated methods and lncRNA detected methods which accurately and reproducibly measure CRC-related exosomal CRNDE-h in serum were optimized in preliminary pilot stage; (2) The stability of exosomal CRNDE-h was evaluated systematically; (3) The origin of exosomal CRNDE-h was explorated in vitro and in vivo; (4) The diagnostic and prognostic value of exosomal CRNDE-h for CRC were validated in 468 patients. In pilot study, our results indicated that exosomal CRNDE-h was detectable and stable in serum of CRC patients, and derived from tumor cells. Then, the increased expression of exosomal CRNDE-h was successfully validated in 148 CRC patients when compared with colorectal benign disease patients and healthy donors. Exosomal CRNDE-h level significantly correlated with CRC regional lymph node metastasis (P = 0.019) and distant metastasis (P = 0.003). Moreover, at the cut-off value of 0.020 exosomal CRNDE-h level of serum, the area under ROC curve distinguishing CRC from colorectal benign disease patients and healthy donors was 0.892, with 70.3% sensitivity and 94.4% specificity, which was superior to carcinoembryogenic antigen. In addition, high exosomal CRNDE-h level has a lower overall survival rates than that for low groups (34.6% vs. 68.2%, P < 0.001). In conclusion, detection of lncRNA CRNDE-h in exosome shed a light on utilizing exosomal CRNDE-h as a noninvasive serum-based tumor marker for diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Tong Liu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Shanyu Gao
- Department of Anorectal Surgery, Shandong Provincial Traditional Chinese Medical Hospital, Jinan, People's Republic of China
| | - Fangmiao Jing
- Oncology Center, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Lutao Du
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Peilong Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Chen Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Chuanxin Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|