1
|
Micalizzi L, Knopik VS. Maternal smoking during pregnancy and offspring executive function: What do we know and what are the next steps? Dev Psychopathol 2018; 30:1333-1354. [PMID: 29144227 PMCID: PMC6028309 DOI: 10.1017/s0954579417001687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Children exposed to maternal smoking during pregnancy (MSDP) exhibit difficulties in executive function (EF) from infancy through adolescence. Due to the developmental significance of EF as a predictor of adaptive functioning throughout the life span, the MSDP-EF relation has clear public health implications. In this paper, we provide a comprehensive review of the literature on the relationship between MSDP and offspring EF across development; consider brain-based assessments, animal models, and genetically informed studies in an effort to elucidate plausible pathways of effects; discuss implications for prevention and intervention; and make calls to action for future research.
Collapse
Affiliation(s)
- Lauren Micalizzi
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital
- Department of Psychiatry and Human Behavior, The Warren Alpert School of Medicine, Brown University
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University
| | - Valerie S. Knopik
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital
- Department of Psychiatry and Human Behavior, The Warren Alpert School of Medicine, Brown University
- Department of Human Development and Family Studies, Purdue University
| |
Collapse
|
2
|
Markos S, Failla MD, Ritter AC, Dixon CE, Conley YP, Ricker JH, Arenth PM, Juengst SB, Wagner AK. Genetic Variation in the Vesicular Monoamine Transporter: Preliminary Associations With Cognitive Outcomes After Severe Traumatic Brain Injury. J Head Trauma Rehabil 2018; 32:E24-E34. [PMID: 26828714 PMCID: PMC4967045 DOI: 10.1097/htr.0000000000000224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) frequently results in impaired cognition, a function that can be modulated by monoaminergic signaling. Genetic variation among monoaminergic genes may affect post-TBI cognitive performance. The vesicular monoamine transporter-2 (VMAT2) gene may be a novel source of genetic variation important for cognitive outcomes post-TBI given VMAT2's role in monoaminergic neurotransmission. OBJECTIVE To evaluate associations between VMAT2 variability and cognitive outcomes post-TBI. METHODS We evaluated 136 white adults with severe TBI for variation in VMAT2 using a tagging single nucleotide polymorphism (tSNP) approach (rs363223, rs363226, rs363251, and rs363341). We show genetic variation interacts with assessed cognitive impairment (cognitive composite [Comp-Cog] T-scores) to influence functional cognition (functional independence measure cognitive [FIM-Cog] subscale] 6 and 12 months postinjury. RESULTS Multivariate analyses at 6 months postinjury showed rs363226 genotype was associated with Comp-Cog (P = .040) and interacted with Comp-Cog to influence functional cognition (P < .001). G-homozygotes had the largest cognitive impairment, and their cognitive impairment had the greatest adverse effect on functional cognition. DISCUSSION We provide the first evidence that genetic variation within VMAT2 is associated with cognitive outcomes after TBI. Further work is needed to validate this finding and elucidate mechanisms by which genetic variation affects monoaminergic signaling, mediating differences in cognitive outcomes.
Collapse
Affiliation(s)
- Steven Markos
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh PA
| | - Michelle D. Failla
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh PA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| | - Anne C Ritter
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh PA
| | - C. Edward Dixon
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh PA
- Center for Neuroscience, University of Pittsburgh
- Pittsburgh VA Healthcare System
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh
| | - Yvette P. Conley
- Department of Human Genetics, University of Pittsburgh, School of Public Health, Pittsburgh, PA
- Health Promotion & Development, University of Pittsburgh, School of Nursing, Pittsburgh, PA
| | - Joseph H Ricker
- Department of Rehabilitation Medicine, New York University, School of Medicine, New York, NY
| | - Patricia M. Arenth
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh PA
| | - Shannon B. Juengst
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh PA
| | - Amy K. Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh PA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience, University of Pittsburgh
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
3
|
López-Caneda E, Rodríguez Holguín S, Correas Á, Carbia C, González-Villar A, Maestú F, Cadaveira F. Binge drinking affects brain oscillations linked to motor inhibition and execution. J Psychopharmacol 2017; 31:873-882. [PMID: 28168896 DOI: 10.1177/0269881116689258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Neurofunctional studies have shown that binge drinking patterns of alcohol consumption during adolescence and youth are associated with anomalies in brain functioning. Recent evidence suggests that event-related oscillations may be an appropriate index of neurofunctional damage associated with alcoholism. However, there is no study to date that has evaluated the effects of binge drinking on oscillatory brain responses related to task performance. The purpose of the present study was to examine brain oscillations linked to motor inhibition and execution in young binge drinkers (BDs) compared with age-matched controls. METHODS Electroencephalographic activity was recorded from 64 electrodes while 72 university students (36 controls and 36 BDs) performed a visual Go/NoGo task. Event-related oscillations along with the Go-P3 and NoGo-P3 event-related potential components were analysed. RESULTS While no significant differences between groups were observed regarding event-related potentials, event-related oscillation analysis showed that BDs displayed a lower oscillatory response than controls in delta and theta frequency ranges during Go and NoGo conditions. CONCLUSIONS Findings are congruent with event-related oscillation studies showing reduced delta and/or theta oscillations in alcoholics during Go/NoGo tasks. Thus, BDs appear to show disruptions in neural oscillations linked to motor inhibition and execution similar to those observed in alcohol-dependent subjects. Finally, these results are the first to evidence that oscillatory brain activity may be a sensitive indicator of underlying brain anomalies in young BDs, which could complement standard event-related potential measures.
Collapse
Affiliation(s)
| | - Socorro Rodríguez Holguín
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| | - Ángeles Correas
- 3 Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology, Madrid, Spain
| | - Carina Carbia
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| | - Alberto González-Villar
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| | - Fernando Maestú
- 3 Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology, Madrid, Spain
| | - Fernando Cadaveira
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| |
Collapse
|
4
|
Richards JS, Vásquez AA, van Rooij D, van der Meer D, Franke B, Hoekstra PJ, Heslenfeld DJ, Oosterlaan J, Faraone SV, Hartman CA, Buitelaar JK. Testing differential susceptibility: Plasticity genes, the social environment, and their interplay in adolescent response inhibition. World J Biol Psychiatry 2017; 18:308-321. [PMID: 27170266 PMCID: PMC5435559 DOI: 10.3109/15622975.2016.1173724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Impaired inhibitory control is a key feature of attention-deficit/hyperactivity disorder (ADHD). We investigated gene-environment interaction (GxE) as a possible contributing factor to response inhibition variation in context of the differential susceptibility theory. This states individuals carrying plasticity gene variants will be more disadvantaged in negative, but more advantaged in positive environments. METHODS Behavioural and neural measures of response inhibition were assessed during a Stop-signal task in participants with (N = 197) and without (N = 295) ADHD, from N = 278 families (age M = 17.18, SD =3.65). We examined GxE between candidate plasticity genes (DAT1, 5-HTT, DRD4) and social environments (maternal expressed emotion, peer affiliation). RESULTS A DRD4 × Positive peer affiliation interaction was found on the right fusiform gyrus (rFG) activation during successful inhibition. Further, 5-HTT short allele carriers showed increased rFG activation during failed inhibitions. Maternal warmth and positive peer affiliation were positively associated with right inferior frontal cortex activation during successful inhibition. Deviant peer affiliation was positively related to the error rate. CONCLUSIONS While a pattern of differential genetic susceptibility was found, more clarity on the role of the FG during response inhibition is warranted before firm conclusions can be made. Positive and negative social environments were related to inhibitory control. This extends previous research emphasizing adverse environments.
Collapse
Affiliation(s)
- Jennifer S. Richards
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Alejandro Arias Vásquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Dennis van der Meer
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Pieter J. Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, The Netherlands
| | - Dirk J. Heslenfeld
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Stephen V. Faraone
- SUNY Upstate Medical University Center, Departments of Psychiatry and of Neuroscience and Physiology, Syracuse, USA and the K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Catharina A. Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, The Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Abstract
When individuals are exposed to stressful environmental challenges, the response varies widely in one or more of three components: psychology, behavior and physiology. This variability among individuals can be defined as temperament. In recent years, an increasing large body of evidence suggests that the dimensions of temperament, as well as personality, psychological disorders and behavioral traits, are influenced by genetic factors, and much of the variation appears to involve variation in genes or gene polymorphisms in the hypothalamic-pituitary-adrenocortical (HPA) axis and the behavior-controlling neurotransmitter networks. Here, we review our current understanding of the probabilistic impact of a number of candidate gene polymorphisms that control temperament, psychological disorders and behavioral traits in animals and human, including the gene polymorphisms related to corticotrophin-releasing hormone (CRH) production and adrenal cortisol production involved in the HPA axis, and a large number of gene polymorphisms in the dopaminergic and serotonergic neurotransmitter networks. It will very likely to assist in diagnosis and treatment of human relevant disorders, and provide useful contributions to our understanding of evolution, welfare and conservation, for animals in the wild and in production systems. Additionally, investigations of gene-gene and gene-environment complex interactions in humans and animals need further clear illustration.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- a College of Animal Science and Technology, Southwest University , Chong Qing , PR China.,b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| | - Graeme B Martin
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia.,c Nuffield Department of Obstetrics and Gynecology , University of Oxford , Oxford , UK
| | - Dominique Blache
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| |
Collapse
|
6
|
Zhang T, Wang C, Tan F, Mou D, Zheng L, Chen A. Different relationships between central dopamine system and sub-processes of inhibition: Spontaneous eye blink rate relates with N2 but not P3 in a Go/Nogo task. Brain Cogn 2016; 105:95-103. [DOI: 10.1016/j.bandc.2016.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
|
7
|
Chmielewski WX, Beste C. Perceptual conflict during sensorimotor integration processes - a neurophysiological study in response inhibition. Sci Rep 2016; 6:26289. [PMID: 27222225 PMCID: PMC4879540 DOI: 10.1038/srep26289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/28/2016] [Indexed: 11/27/2022] Open
Abstract
A multitude of sensory inputs needs to be processed during sensorimotor integration. A crucial factor for detecting relevant information is its complexity, since information content can be conflicting at a perceptual level. This may be central to executive control processes, such as response inhibition. This EEG study aims to investigate the system neurophysiological mechanisms behind effects of perceptual conflict on response inhibition. We systematically modulated perceptual conflict by integrating a Global-local task with a Go/Nogo paradigm. The results show that conflicting perceptual information, in comparison to non-conflicting perceptual information, impairs response inhibition performance. This effect was evident regardless of whether the relevant information for response inhibition is displayed on the global, or local perceptual level. The neurophysiological data suggests that early perceptual/ attentional processing stages do not underlie these modulations. Rather, processes at the response selection level (P3), play a role in changed response inhibition performance. This conflict-related impairment of inhibitory processes is associated with activation differences in (inferior) parietal areas (BA7 and BA40) and not as commonly found in the medial prefrontal areas. This suggests that various functional neuroanatomical structures may mediate response inhibition and that the functional neuroanatomical structures involved depend on the complexity of sensory integration processes.
Collapse
Affiliation(s)
- Witold X Chmielewski
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| |
Collapse
|
8
|
Associations between temperament and gene polymorphisms in the brain dopaminergic system and the adrenal gland of sheep. Physiol Behav 2015; 153:19-27. [PMID: 26498700 DOI: 10.1016/j.physbeh.2015.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022]
Abstract
Sheep of calm or nervous temperament differ in their physiological (cortisol secretion) and behavioural (motor activity) responses to stressors, perhaps due to variation in genes that regulate glucocorticoid synthesis or brain dopamine activity. Using ewes that had been selected over 20 generations for nervous (n=58) or calm (n=59) temperament, we confirmed the presence of a polymorphism in a gene specifically involved in cortisol production (CYP17), and identified polymorphisms in three genes specifically associated with personality and behavioural traits: dopamine receptors 2 and 4 (DRD2, DRD4), and monoamine oxidase A (MAOA). The calm and nervous lines differed in their frequencies of CYP17 SNP628 (single nucleotide A-G mutation at position 628) and DRD2 SNP939 (single nucleotide T-C mutation at position 939), but not for other SNPs detected in DRD2 or MAOA. In a second experiment, we then genotyped a large, non-selected flock of ewes for DRD2 SNP939 and CYP17 SNP628. Responses to the 'arena' and 'isolation box' challenges were associated with the DRD2 SNP939 genotype and the response to ACTH challenge was associated with the CYP17 SNP628 genotype. We conclude that, for sheep, a combination of the DRD2 SNP939 C allele and the CYP17 SNP628 A/A genotype could be used as a genetic marker for nervous temperament, and that a combination of DRD2 SNP939 T/T and CYP17 SNP628 G/G could be used as a genetic marker for calm temperament.
Collapse
|
9
|
Villalba K, Devieux JG, Rosenberg R, Cadet JL. DRD2 and DRD4 genes related to cognitive deficits in HIV-infected adults who abuse alcohol. Behav Brain Funct 2015; 11:25. [PMID: 26307064 PMCID: PMC4549947 DOI: 10.1186/s12993-015-0072-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background HIV-infected individuals continue to
experience neurocognitive deterioration despite virologically successful treatments. The causes of neurocognitive impairment are still unclear. However, several factors have been suggested including the role of genetics. There is evidence suggesting that neurocognitive impairment is heritable and individual differences in cognition are strongly driven by genetic variations. The contribution of genetic variants affecting the metabolism and activity of dopamine may influence these individual differences. Methods The present study explored the relationship between two candidate genes (DRD4 and DRD2) and neurocognitive performance in HIV-infected adults. A total of 267 HIV-infected adults were genotyped for polymorphisms, DRD4 48 bp-variable number tandem repeat (VNTR), DRD2 rs6277 and ANKK1 rs1800497. The Short Category (SCT), Color Trail (CTT) and Rey-Osterrieth Complex Figure Tests (ROCT) were used to measure executive function and memory. Results Results showed significant associations with the SNP rs6277 and impaired executive function (odds ratio = 3.3, 95 % CI 1.2–2.6; p = 0.004) and cognitive flexibility (odds ratio = 1.6, 95 % CI 2.0–5.7; p = 0.001). The results were further stratified by race and sex and significant results were seen in males (odds ratio = 3.5, 95 % CI 1.5–5.5; p = 0.008) and in African Americans (odds ratio = 3.1, 95 % CI 2.3–3.5; p = 0.01). Also, DRD4 VNTR 7-allele was significantly associated with executive dysfunction. Conclusion The study shows that genetically determined differences in the SNP rs6277 DRD2 gene and DRD4 48 bp VNTR may be risk factors for deficits in executive function and cognitive flexibility.
Collapse
Affiliation(s)
- Karina Villalba
- Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, Biscayne Bay Campus, 3000 N.E, 151 Street ACI #260, North Miami, FL, 33181, USA.
| | - Jessy G Devieux
- Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, Biscayne Bay Campus, 3000 N.E, 151 Street ACI #260, North Miami, FL, 33181, USA
| | - Rhonda Rosenberg
- Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, Biscayne Bay Campus, 3000 N.E, 151 Street ACI #260, North Miami, FL, 33181, USA
| | - Jean Lud Cadet
- NIDA Intramural Program, Molecular Neuropsychiatry Research Branch, Baltimore, MD, USA
| |
Collapse
|
10
|
A Hierarchical Factor Model of Executive Functions in Adolescents: Evidence of Gene-Environment Interplay. J Int Neuropsychol Soc 2015; 21:62-73. [PMID: 25499600 PMCID: PMC4468042 DOI: 10.1017/s1355617714001039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Executive functions (EF) are a complex set of neurodevelopmental, higher-ordered processes that are especially salient during adolescence. Disruptions to these processes are predictive of psychiatric problems in later adolescence and adulthood. The objectives of the current study were to characterize the latent structure of EF using bifactor analysis and to investigate the independent and interactive effects of genes and environments on EF during adolescence. Using a representative young adolescent sample, we tested the interaction of a polymorphism in the serotonin transporter gene (5-HTTLPR) and parental supervision for EF through hierarchical linear regression. To account for the possibility of a hierarchical factor structure for EF, a bifactor analysis was conducted on the eight subtests of the Delis-Kaplan Executive Functions System (D-KEFS). The bifactor analysis revealed the presence of a general EF construct and three EF subdomains (i.e., conceptual flexibility, inhibition, and fluency). A significant 5-HTTLPR by parental supervision interaction was found for conceptual flexibility, but not for general EF, fluency or inhibition. Specifically, youth with the L/L genotype had significantly lower conceptual flexibility scores compared to youth with S/S or S/L genotypes given low levels of parental supervision. Our findings indicate that adolescents with the L/L genotype were especially vulnerable to poor parental supervision on EF. This vulnerability may be amenable to preventive interventions.
Collapse
|
11
|
Dopamine receptor D4 (DRD4) gene modulates the influence of informational masking on speech recognition. Neuropsychologia 2014; 67:121-31. [PMID: 25497692 DOI: 10.1016/j.neuropsychologia.2014.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 12/30/2022]
Abstract
Listeners vary substantially in their ability to recognize speech in noisy environments. Here we examined the role of genetic variation on individual differences in speech recognition in various noise backgrounds. Background noise typically varies in the levels of energetic masking (EM) and informational masking (IM) imposed on target speech. Relative to EM, release from IM is hypothesized to place greater demand on executive function to selectively attend to target speech while ignoring competing noises. Recent evidence suggests that the long allele variant in exon III of the DRD4 gene, primarily expressed in the prefrontal cortex, may be associated with enhanced selective attention to goal-relevant high-priority information even in the face of interference. We investigated the extent to which this polymorphism is associated with speech recognition in IM and EM conditions. In an unscreened adult sample (Experiment 1) and a larger screened replication sample (Experiment 2), we demonstrate that individuals with the DRD4 long variant show better recognition performance in noise conditions involving significant IM, but not in EM conditions. In Experiment 2, we also obtained neuropsychological measures to assess the underlying mechanisms. Mediation analysis revealed that this listening condition-specific advantage was mediated by enhanced executive attention/working memory capacity in individuals with the long allele variant. These findings suggest that DRD4 may contribute specifically to individual differences in speech recognition ability in noise conditions that place demands on executive function.
Collapse
|
12
|
ABT-724 alleviated hyperactivity and spatial learning impairment in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neurosci Lett 2014; 580:142-6. [DOI: 10.1016/j.neulet.2014.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/03/2014] [Accepted: 08/04/2014] [Indexed: 11/21/2022]
|
13
|
Mulligan RC, Kristjansson SD, Reiersen AM, Parra AS, Anokhin AP. Neural correlates of inhibitory control and functional genetic variation in the dopamine D4 receptor gene. Neuropsychologia 2014; 62:306-18. [PMID: 25107677 DOI: 10.1016/j.neuropsychologia.2014.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND The dopamine D4 receptor gene (DRD4) has been implicated in psychiatric disorders in which deficits of self-regulation are a prominent feature (e.g., attention-deficit hyperactivity disorder and substance use disorders) and in dopamine D4 receptor insensitivity within prefrontal regions of the brain. Our hypothesis was that carriers of 7-repeats in the Variable Number of Tandem Repeats (VNTR) of DRD4 (7R+) would recruit prefrontal brain regions involved in successful inhibitory control to a lesser degree than non-carriers (7R-) and demonstrate less inhibitory control as confirmed by observation of locally reduced blood oxygenation level dependent (BOLD) % signal change and lower accuracy while performing "No-Go" trials of a Go/No-Go task. METHODS Participants (age=18, n=62, 33 females) were recruited from the general population of the St. Louis, Missouri region. Participants provided a blood or saliva sample for genotyping, completed drug and alcohol-related questionnaires and IQ testing, and performed a Go/No-Go task inside of a 3T fMRI scanner. RESULTS Go/No-Go task performance did not significantly differ between 7R+ and 7R- groups. Contrast of brain activity during correct "No-Go" trials with a non-target letter baseline revealed significant BOLD activation in a network of brain regions previously implicated in inhibitory control including bilateral dorsolateral prefrontal, inferior frontal, middle frontal, medial prefrontal, subcortical, parietal/temporal, and occipital/cerebellar brain regions. Mean BOLD % signal change during "No-Go" trials was significantly modulated by DRD4 genotype, with 7R+ showing a lower hemodynamic response than 7R- in right anterior prefrontal cortex/inferior frontal gyrus, left premotor cortex, and right occipital/cerebellar areas. Follow-up analyses suggested that 7-repeat status accounted for approximately 5-6% of the variance in the BOLD response during "No-Go" trials. DISCUSSION The DRD4 7-repeat allele may alter dopaminergic function in brain regions involved in inhibitory control. When individuals must inhibit a prepotent motor response, presence of this allele may account for 5-6% of the variance in BOLD signal in brain regions critically associated with inhibitory control, but its influence may be associated with a greater effect on brain than on behavior in 18-year-olds from the general population.
Collapse
Affiliation(s)
- Richard C Mulligan
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| | - Sean D Kristjansson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Pason Systems Corporation, Calgary, Alberta, Canada
| | - Angela M Reiersen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andres S Parra
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrey P Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Interaction Effects of the COMT and DRD4 Genes with Anxiety-Related Traits on Selective Attention. SPANISH JOURNAL OF PSYCHOLOGY 2014; 17:E44. [DOI: 10.1017/sjp.2014.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe study investigated whether the DRD4 and COMT genes can modify relations between trait anxiety and selective attention. Two hundreds and sixty-six subjects performed a visual search task in which they had to find words looking through a sheet with rows of letters. After finishing the first sheet the subject was presented the second one, this time with an instruction to perform the task as quickly and accurate as possible. To study top-down attention, the number of correctly identified words (accuracy) and the time for completion of each trial were analyzed. To study bottom-up attention, the letters ‘o’ and ‘n’ were written in green, whilst the others were in black, and subjects were asked whether they had noticed that 2–3 minutes after the task completion. Genotypes for the COMT Val158Met and DRD4 VNTR-48 polymorphisms and TCI Harm Avoidance and MMPI Depression scales’ scores were obtained as well. High anxious individuals showed a more pronounced increase in accuracy in the second trial and more profound processing of irrelevant stimuli (colored letters). There was a significant interaction effect of DRD4 and Harm avoidance on the accuracy dynamics F(1, 210), = 7.65, p = .006, η2 = .04. Among DRD4 long allele carriers, high anxious subjects significantly improved accuracy (p = .013) and tended to slow speed, while those with lower Harm avoidance demonstrated the opposite trend. These effects were more robust in less educated individuals. It was concluded that the DRD4 polymorphism may modify the influence of trait anxiety on the speed-accuracy tradeoff.
Collapse
|
15
|
van Velzen LS, Vriend C, de Wit SJ, van den Heuvel OA. Response inhibition and interference control in obsessive-compulsive spectrum disorders. Front Hum Neurosci 2014; 8:419. [PMID: 24966828 PMCID: PMC4052433 DOI: 10.3389/fnhum.2014.00419] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/24/2014] [Indexed: 12/30/2022] Open
Abstract
Over the past 20 years, motor response inhibition and interference control have received considerable scientific effort and attention, due to their important role in behavior and the development of neuropsychiatric disorders. Results of neuroimaging studies indicate that motor response inhibition and interference control are dependent on cortical–striatal–thalamic–cortical (CSTC) circuits. Structural and functional abnormalities within the CSTC circuits have been reported for many neuropsychiatric disorders, including obsessive–compulsive disorder (OCD) and related disorders, such as attention-deficit hyperactivity disorder, Tourette’s syndrome, and trichotillomania. These disorders also share impairments in motor response inhibition and interference control, which may underlie some of their behavioral and cognitive symptoms. Results of task-related neuroimaging studies on inhibitory functions in these disorders show that impaired task performance is related to altered recruitment of the CSTC circuits. Previous research has shown that inhibitory performance is dependent upon dopamine, noradrenaline, and serotonin signaling, neurotransmitters that have been implicated in the pathophysiology of these disorders. In this narrative review, we discuss the common and disorder-specific pathophysiological mechanisms of inhibition-related dysfunction in OCD and related disorders.
Collapse
Affiliation(s)
- Laura S van Velzen
- GGZ InGeest , Amsterdam , Netherlands ; Neuroscience Campus Amsterdam (NCA) , Amsterdam , Netherlands
| | - Chris Vriend
- GGZ InGeest , Amsterdam , Netherlands ; Neuroscience Campus Amsterdam (NCA) , Amsterdam , Netherlands ; Department of Psychiatry, VU University Medical Center , Amsterdam , Netherlands ; Department of Anatomy and Neurosciences, VU University Medical Center , Amsterdam , Netherlands
| | - Stella J de Wit
- GGZ InGeest , Amsterdam , Netherlands ; Neuroscience Campus Amsterdam (NCA) , Amsterdam , Netherlands ; Department of Psychiatry, VU University Medical Center , Amsterdam , Netherlands
| | - Odile A van den Heuvel
- Neuroscience Campus Amsterdam (NCA) , Amsterdam , Netherlands ; Department of Psychiatry, VU University Medical Center , Amsterdam , Netherlands ; Department of Anatomy and Neurosciences, VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|
16
|
Maras Atabay M, Safi Oz Z, Kurtman E. The association between dopamine receptor (DRD4) gene polymorphisms and second language learning style and behavioral variability in undergraduate students in Turkey. Mol Biol Rep 2014; 41:5215-20. [PMID: 24825354 DOI: 10.1007/s11033-014-3389-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
The dopamine D4 receptor gene (DRD4) encodes a receptor for dopamine, a chemical messenger used in the brain. One variant of the DRD4 gene, the 7R allele, is believed to be associated with attention deficit hyperactivity disorder (ADHD). The aim of this study was to investigate the relationships between repeat polymorphisms in dopamine DRD4 and second language learning styles such as visual (seeing), tactile (touching), auditory (hearing), kinesthetic (moving) and group/individual learning styles, as well as the relationships among DRD4 gene polymorphisms and ADHD in undergraduate students. A total of 227 students between the ages of 17-21 years were evaluated using the Wender Utah rating scale and DSM-IV diagnostic criteria for ADHD. Additionally, Reid's perceptual learning style questionnaire for second language learning style was applied. In addition, these students were evaluated for social distress factors using the list of Threatening Events (TLE); having had no TLE, having had just one TLE or having had two or more TLEs within the previous 6 months before the interview. For DRD4 gene polymorphisms, DNA was extracted from whole blood using the standard phenol/chloroform method and genotyped using polymerase chain reaction. Second language learners with the DRD4.7+ repeats showed kinaesthetic and auditory learning styles, while students with DRD4.7-repeats showed visual, tactile and group learning, and also preferred the more visual learning styles [Formula: see text]. We also demonstrated that the DRD4 polymorphism significantly affected the risk effect conferred by an increasing level of exposure to TLE.
Collapse
Affiliation(s)
- Meltem Maras Atabay
- Department of Biology Education, Bulent Ecevit University, Zonguldak, Turkey
| | | | | |
Collapse
|
17
|
Maitra S, Sarkar K, Ghosh P, Karmakar A, Bhattacharjee A, Sinha S, Mukhopadhyay K. Potential contribution of dopaminergic gene variants in ADHD core traits and co-morbidity: a study on eastern Indian probands. Cell Mol Neurobiol 2014; 34:549-64. [PMID: 24585059 DOI: 10.1007/s10571-014-0038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Association of dopaminergic genes, mainly receptors and transporters, with Attention Deficit Hyperactivity Disorder (ADHD) has been investigated throughout the world due to the importance of dopamine (DA) in various physiological functions including attention, cognition and motor activity, traits. However, till date, etiology of ADHD remains unknown. We explored association of functional variants in the DA receptor 2 (rs1799732 and rs6278), receptor 4 (exon 3 VNTR and rs914655), and transporter (rs28363170 and rs3836790) with hyperactivity, cognitive deficit, and co-morbid disorders in eastern Indian probands. Diagnostic and Statistical Manual for Mental Disorders-IV was followed for recruitment of nuclear families with ADHD probands (N = 160) and ethnically matched controls (N = 160). Cognitive deficit and hyperactive traits were measured using Conner's parents/teachers rating scale. Peripheral blood was collected after obtaining informed written consent and used for genomic DNA isolation. Genetic polymorphisms were analyzed by PCR-based methods followed by population- as well as family-based statistical analyses. Association between genotypes and cognitive/hyperactivity traits and co-morbidities was analyzed by the Multifactor dimensionality reduction (MDR) software. Case-control analysis showed statistically significant difference for rs6278 and rs28363170 (P = 0.004 and 1.332e-007 respectively) while family-based analysis exhibited preferential paternal transmission of rs28363170 '9R' allele (P = 0.04). MDR analyses revealed independent effects of rs1799732, rs6278, rs914655, and rs3836790 in ADHD. Significant independent effects of different sites on cognitive/hyperactivity traits and co-morbid disorders were also noticed. It can be summarized from the present investigation that these gene variants may influence cognitive/hyperactive traits, thereby affecting the disease etiology and associated co-morbid features.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot I-24, Sec.-J, E.M. Bypass, Kolkata, 700107, India
| | | | | | | | | | | | | |
Collapse
|
18
|
The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacol Biochem Behav 2013; 123:45-54. [PMID: 23978501 DOI: 10.1016/j.pbb.2013.08.007] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/28/2013] [Accepted: 08/14/2013] [Indexed: 12/11/2022]
Abstract
Executive function is a collection of cognitive processes essential for higher order mental function. Processes involved in executive function include, but are not limited to, working memory, attention, cognitive flexibility, and impulse control. These complex behaviors are largely mediated by prefrontal cortical function but are modulated by dopaminergic, noradrenergic, serotonergic, and cholinergic input. The ability of these neurotransmitter systems to modulate executive function allows for adaptation in cognitive behavior in response to changes in the environment. Because of the important role these neurotransmitter systems play in regulating executive function, changes in these systems can also have a grave impact on executive function. In addition, polymorphisms in genes associated with these neurotransmitters are associated with phenotypic differences in executive function. Understanding how these naturally occurring polymorphisms contribute to different executive function phenotypes will advance basic knowledge of cognition and potentially further understanding and treatment of mental illness that involve changes in executive function. In this review, we will examine the influence of dopamine, norepinephrine, serotonin, and acetylcholine on the following measures of executive function: attention, cognitive flexibility, and impulse control. We will also review the effects of polymorphisms in genes associated with these neurotransmitter systems on these measures of executive function.
Collapse
|
19
|
Amengual JL, Marco-Pallarés J, Richter L, Oung S, Schweikard A, Mohammadi B, Rodríguez-Fornells A, Münte TF. Tracking post-error adaptation in the motor system by transcranial magnetic stimulation. Neuroscience 2013; 250:342-51. [PMID: 23876325 DOI: 10.1016/j.neuroscience.2013.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 11/15/2022]
Abstract
The commission of an error triggers cognitive control processes dedicated to error correction and prevention. Post-error adjustments leading to response slowing following an error ("post-error slowing"; PES) might be driven by changes in excitability of the motor regions and the corticospinal tract (CST). The time-course of such excitability modulations of the CST leading to PES is largely unknown. To track these presumed excitability changes after an error, single pulse transcranial magnetic stimulation (TMS) was applied to the motor cortex ipsilateral to the responding hand, while participants were performing an Eriksen flanker task. A robotic arm with a movement compensation system was used to maintain the TMS coil in the correct position during the experiment. Magnetic pulses were delivered over the primary motor cortex ipsilateral to the active hand at different intervals (150, 300, 450 ms) after correct and erroneous responses, and the motor-evoked potentials (MEP) of the first dorsal interosseous muscle (FDI) contralateral to the stimulated hemisphere were recorded. MEP amplitude was increased 450 ms after the error. Two additional experiments showed that this increase was neither associated to the correction of the erroneous responses nor to the characteristics of the motor command. To the extent to which the excitability of the motor cortex ipsi- and contralateral to the response hand are inversely related, these results suggest a decrease in the excitability of the active motor cortex after an erroneous response. This modulation of the activity of the CST serves to prevent further premature and erroneous responses. At a more general level, the study shows the power of the TMS technique for the exploration of the temporal evolution of post-error adjustments within the motor system.
Collapse
Affiliation(s)
- J L Amengual
- Department of Basic Psychology, University of Barcelona, 08035 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Volkow ND, Tomasi D, Wang GJ, Telang F, Fowler JS, Goldstein RZ, Klein N, Wong C, Swanson JM, Shumay E. Association between dopamine D4 receptor polymorphism and age related changes in brain glucose metabolism. PLoS One 2013; 8:e63492. [PMID: 23717434 PMCID: PMC3661541 DOI: 10.1371/journal.pone.0063492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/03/2013] [Indexed: 12/25/2022] Open
Abstract
Aging is associated with reductions in brain glucose metabolism in some cortical and subcortical regions, but the rate of decrease varies significantly between individuals, likely reflecting genetic and environmental factors and their interactions. Here we test the hypothesis that the variant of the dopamine receptor D4 (DRD4) gene (VNTR in exon 3), which has been associated with novelty seeking and sensitivity to environmental stimuli (negative and positive) including the beneficial effects of physical activity on longevity, influence the effects of aging on the human brain. We used positron emission tomography (PET) and [(18)F]fluoro-D-glucose ((18)FDG) to measure brain glucose metabolism (marker of brain function) under baseline conditions (no stimulation) in 82 healthy individuals (age range 22-55 years). We determined their DRD4 genotype and found an interaction with age: individuals who did not carry the 7-repeat allele (7R-, n = 53) had a significant (p<0.0001) negative association between age and relative glucose metabolism (normalized to whole brain glucose metabolism) in frontal (r = -0.52), temporal (r = -0.51) and striatal regions (r = -0.47, p<0.001); such that older individuals had lower metabolism than younger ones. In contrast, for carriers of the 7R allele (7R+ n = 29), these correlations with age were not significant and they only showed a positive association with cerebellar glucose metabolism (r = +0.55; p = 0.002). Regression slopes of regional brain glucose metabolism with age differed significantly between the 7R+ and 7R- groups in cerebellum, inferior temporal cortex and striatum. These results provide evidence that the DRD4 genotype might modulate the associations between regional brain glucose metabolism and age and that the carriers of the 7R allele appear to be less sensitive to the effects of age on brain glucose metabolism.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Smith HJ, Kryski KR, Sheikh HI, Singh SM, Hayden EP. The role of parenting and dopamine D4 receptor gene polymorphisms in children's inhibitory control. Dev Sci 2013; 16:515-30. [PMID: 23786470 DOI: 10.1111/desc.12046] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/12/2012] [Indexed: 01/15/2023]
Abstract
Temperamental effortful control has important implications for children's development. Although genetic factors and parenting may influence effortful control, few studies have examined interplay between the two in predicting its development. The current study investigated associations between parenting and a facet of children's effortful control, inhibitory control (IC), and whether these associations were moderated by whether children had a 7-repeat variant of the DRD4 exon III VNTR. A community sample of 409 3-year-olds completed behavioural tasks to assess IC, and observational measures of parenting were also collected. Negative parenting was associated with lower child IC. The association between children's IC and positive parenting was moderated by children's DRD4 7-repeat status, such that children with at least one 7-repeat allele displayed lower IC than children without this allele when positive parenting was lower. These effects appeared to be primarily influenced by parent support and engagement. Results extend recent findings suggesting that some genetic polymorphisms may increase vulnerability to contextual influences.
Collapse
Affiliation(s)
- Heather J Smith
- Department of Psychology, University of Western, Ontario, Canada.
| | | | | | | | | |
Collapse
|
22
|
Filbey FM, Claus ED, Morgan M, Forester GR, Hutchison K. Dopaminergic genes modulate response inhibition in alcohol abusing adults. Addict Biol 2012; 17:1046-56. [PMID: 21554498 DOI: 10.1111/j.1369-1600.2011.00328.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Compulsion in alcohol use disorders (AUD) has been attributed to impairment in response inhibition. Because genes that regulate dopamine (DA) have been implicated not only for risk for AUD but also for impulsivity based on behavioral studies, we set out to examine the underlying neural mechanisms associated with these effects. We collected functional magnetic resonance imaging images on 53 heavy drinking but otherwise healthy adults while performing the Go/NoGo task. We predicted that genetic variants previously reported in the literature to be associated with substance abuse, specifically the DRD2 rs1799732 and DRD4 VNTR, will modulate neural processes underlying response inhibition. Our results showed differential neural response for the DRD4 VNTR during successful inhibition in the inferior frontal gyrus (IFG) (cluster-corrected P<0.05, z=1.9). Similarly, DRD2 rs1799732 groups were significantly different in the precuneus and cingulate gyrus during successful response inhibition (cluster-corrected P<0.05, z=1.9). These findings provide further evidence for the role of DAergic genes in modulating neural response in areas that underlie response inhibition and self-monitoring processes. Variants within these genes appear to influence processes related to impulsive behavior, which may increase one's risk for alcohol abuse and dependence.
Collapse
Affiliation(s)
- Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas, Dallas, Dallas, TX, USA.
| | | | | | | | | |
Collapse
|
23
|
Smith HJ, Sheikh HI, Dyson MW, Olino TM, Laptook RS, Durbin CE, Hayden EP, Singh SM, Klein DN. Parenting and Child DRD4 Genotype Interact to Predict Children's Early Emerging Effortful Control. Child Dev 2012; 83:1932-44. [PMID: 22862680 DOI: 10.1111/j.1467-8624.2012.01818.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effortful control (EC), or the trait-like capacity to regulate dominant responses, has important implications for children's development. Although genetic factors and parenting likely influence EC, few studies have examined whether they interact to predict its development. This study examined whether the DRD4 exon III variable number tandem repeat polymorphism moderated the relation between parenting and children's EC. Three hundred and eighty-two 3-year-olds and primary caregivers completed behavioral tasks assessing children's EC and parenting. Children's DRD4 genotypes moderated the relation between parenting and EC: Children with at least one 7-repeat allele displayed lower EC in the context of negative parenting than children without this allele. These findings suggest opportunities for modifying early risk for low EC.
Collapse
|
24
|
Gong P, Zhang H, Chi W, Ge W, Zhang K, Zheng A, Gao X, Zhang F. An association study on the polymorphisms of dopaminergic genes with working memory in a healthy Chinese Han population. Cell Mol Neurobiol 2012; 32:1011-9. [PMID: 22362150 DOI: 10.1007/s10571-012-9817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/08/2012] [Indexed: 01/07/2023]
Abstract
Working memory (WM) is a highly heritable cognitive trait that is involved in many higher-level cognitive functions. In the past few years, much evidence has indicated that the reduction of dopamine activity in human brain can impair the WM system of the neuropsychiatric disorders. In this study, we hypothesized that some genes in the dopamine system were involved in the individual difference of the cognitive ability in healthy population. To confirm this hypothesis, a population-based study was performed to examine the effects of COMT, DAT (1), DRD (1), DRD (2), DRD (3), and DRD (4) on WM spans. Our results indicated there were significant associations of TaqIA and TaqIB in DRD (2) with digital WM span, respectively (χ(2) = 9.460, p = 0.009; χ(2) = 6.845, p = 0.033). On the other hand, we found a significant interaction between Ser9Gly in DRD (3) and TaqIA of DRD (2) on digital WM span (F = 3.207, p = 0.013). COMT, DAT (1) , DRD (1), and DRD (4), however, had no significant effects on digital and spatial WM spans (χ(2)<3.84, p > 0.05). These preliminary results further indicated that certain functional variants in dopamine system, such as TaqIA and TaqIB of DRD (2), were possibly involved in difference of WM in a healthy population.
Collapse
Affiliation(s)
- Pingyuan Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Northwest University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Krämer UM, Solbakk AK, Funderud I, Løvstad M, Endestad T, Knight RT. The role of the lateral prefrontal cortex in inhibitory motor control. Cortex 2012; 49:837-49. [PMID: 22699024 DOI: 10.1016/j.cortex.2012.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/20/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
Research on inhibitory motor control has implicated several prefrontal as well as subcortical and parietal regions in response inhibition. Whether prefrontal regions are critical for inhibition, attention or task-set representation is still under debate. We investigated the influence of the lateral prefrontal cortex (PFC) in a response inhibition task by using cognitive electrophysiology in prefrontal lesion patients. Patients and age- and education-matched controls performed in a visual Stop-signal task featuring lateralized stimuli, designed to challenge either the intact or lesioned hemisphere. Participants also underwent a purely behavioral Go/Nogo task, which included a manipulation of inhibition difficulty (blocks with 50 vs. 80% go-trials) and a Change-signal task that required switching to an alternative response. Patients and controls did not differ in their inhibitory speed (stop-signal and change-signal reaction time, SSRT and CSRT), but patients made more errors in the Go/Nogo task and showed more variable performance. The behavioral data stress the role of the PFC in maintaining inhibitory control but not in actual inhibition. These results support a dissociation between action cancellation and PFC-dependent action restraint. Laplacian transformed event-related potentials (ERPs) revealed reduced parietal activity in PFC patients in response to the stop-signals, and increased frontal activity over the intact hemisphere. This electrophysiological finding supports altered PFC-dependent visual processing of the stop-signal in parietal areas and compensatory activity in the intact frontal cortex. No group differences were found in the mu and beta decrease as measures of response preparation and inhibition at electrodes over sensorimotor cortex. Taken together, the data provide evidence for a central role of the lateral PFC in attentional control in the context of response inhibition.
Collapse
Affiliation(s)
- Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Altink ME, Rommelse NNJ, Slaats-Willemse DIE, Vásquez AA, Franke B, Buschgens CJM, Fliers EA, Faraone SV, Sergeant JA, Oosterlaan J, Buitelaar JK. The dopamine receptor D4 7-repeat allele influences neurocognitive functioning, but this effect is moderated by age and ADHD status: an exploratory study. World J Biol Psychiatry 2012; 13:293-305. [PMID: 22111665 DOI: 10.3109/15622975.2011.595822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Evidence suggests the involvement of the dopamine D4 receptor gene (DRD4) in the pathogenesis of ADHD, but the exact mechanism is not well understood. Earlier reports on the effects of DRD4 polymorphisms on neurocognitive and neuroimaging measures are inconsistent. This study investigated the functional consequences of the 7-repeat allele of DRD4 on neurocognitive endophenotypes of ADHD in the Dutch subsample of the International Multicenter ADHD Genetics study. METHODS Participants were 350 children (5-11.5 years) and adolescents (11.6-19 years) with ADHD and their 195 non-affected siblings. An overall measure of neuropsychological functioning was derived by principal component analysis from five neurocognitive and five motor tasks. The effects of DRD4 and age were examined using Linear Mixed Model analyses. RESULTS The analyses were stratified for affected and non-affected participants after finding a significant three-way interaction between ADHD status, age and the 7-repeat allele. Apart from a main effect of age, a significant interaction effect of age and DRD4 was found in non-affected but not in affected participants, with non-affected adolescent carriers of the 7-repeat allele showing worse neuropsychological performance. In addition, carrying the 7-repeat allele of DRD4 was related to a significantly worse performance on verbal working memory in non-affected siblings, independent of age. CONCLUSIONS These results might indicate that the effect of the DRD4 7-repeat allele on neuropsychological functioning is dependent on age and ADHD status.
Collapse
Affiliation(s)
- Marieke E Altink
- Department of Psychiatry, Radboud University Nijmegen Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee TW, Yu YWY, Hong CJ, Tsai SJ, Wu HC, Chen TJ. The influence of dopamine receptor d4 polymorphism on resting EEG in healthy young females. Open Neuroimag J 2012; 6:19-25. [PMID: 22448208 PMCID: PMC3308261 DOI: 10.2174/1874440001206010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/22/2011] [Accepted: 01/24/2012] [Indexed: 01/15/2023] Open
Abstract
The polymorphism of variable number of tandem repeat (VNTR) in dopamine receptor D4 (DRD4) gene exon III has been linked to various neuro-psychiatric conditions with disinhibition/impulsivity as one of the core features. This study examined the modulatory effects of long-allele variant of DRD4 VNTR on the regional neural activity as well as inter-regional neural interactions in a young female population. Blood sample and resting state eyes-closed EEG signals were collected in 233 healthy females, stratified into two groups by polymerase chain reaction: long-allele carriers (>4- repeat) and non-carriers (<=4-repeat/<=4-repeat). The values of mean power of 18 electrodes and mutual information of 38 channel pairs across theta, alpha, and beta frequencies were analyzed. Our connectivity analysis was based on information theory, which combined Morlet wavelet transform and mutual information calculation. Between-group differences of regional power and connectivity strength were quantified by independent t-test, while between-group differences in global trends were examined by non-parametric analyses. We noticed that DRD4 VNTR long-allele was associated with decreased global connectivity strength (from non-parametric analysis), especially over bi-frontal, biparietal and right fronto-parietal and right fronto-temporal connections (from independent t-tests). The between-group differences in regional power were not robust. Our findings fit with the networks of response inhibition, providing evidence bridging DRD4 long-allele and disinhibition/impulsivity in neuropsychiatric disorders. We suggest future DRD4 studies of imaging genetics incorporate connectivity analysis to unveil its impact on cerebral network.
Collapse
Affiliation(s)
- Tien-Wen Lee
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | | | | | | | | | | |
Collapse
|
28
|
Sweitzer MM, Halder I, Flory JD, Craig AE, Gianaros PJ, Ferrell RE, Manuck SB. Polymorphic variation in the dopamine D4 receptor predicts delay discounting as a function of childhood socioeconomic status: evidence for differential susceptibility. Soc Cogn Affect Neurosci 2012; 8:499-508. [PMID: 22345368 DOI: 10.1093/scan/nss020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Inconsistent or null findings among studies associating behaviors on the externalizing spectrum--addictions, impulsivity, risk-taking, novelty-seeking traits--with presence of the 7-repeat allele of a common length polymorphism in the gene encoding the dopamine D4 receptor (DRD4) may stem from individuals' variable exposures to prominent environmental moderators (gene × environment interaction). Here, we report that relative preference for immediate, smaller rewards over larger rewards delayed in time (delay discounting), a behavioral endophenotype of impulsive decision-making, varied by interaction of DRD4 genotype with childhood socioeconomic status (SES) among 546 mid-life community volunteers. Independent of age, sex, adulthood SES and IQ, participants who were both raised in families of distinctly low SES (low parental education and occupational grade) and carried the DRD4 7-repeat allele discounted future rewards more steeply than like-reared counterparts of alternate DRD4 genotype. In the absence of childhood socioeconomic disadvantage, however, participants carrying the 7-repeat allele discounted future rewards less steeply. This bidirectional association of DRD4 genotype with temporal discounting, conditioned by participants' early life circumstances, accords with a recently proposed developmental model of gene × environment interaction ('differential susceptibility') that posits genetically modulated sensitivity to both adverse and salubrious environmental influences.
Collapse
Affiliation(s)
- Maggie M Sweitzer
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Barnes JJM, Dean AJ, Nandam LS, O'Connell RG, Bellgrove MA. The molecular genetics of executive function: role of monoamine system genes. Biol Psychiatry 2011; 69:e127-43. [PMID: 21397212 DOI: 10.1016/j.biopsych.2010.12.040] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/25/2010] [Accepted: 12/17/2010] [Indexed: 12/20/2022]
Abstract
Executive control processes, such as sustained attention, response inhibition, and error monitoring, allow humans to guide behavior in appropriate, flexible, and adaptive ways. The consequences of executive dysfunction for humans can be dramatic, as exemplified by the large range of both neurologic and neuropsychiatric disorders in which such deficits negatively affect outcome and quality of life. Much evidence suggests that many clinical disorders marked by executive deficits are highly heritable and that individual differences in quantitative measures of executive function are strongly driven by genetic differences. Accordingly, intense research effort has recently been directed toward mapping the genetic architecture of executive control processes in both clinical (e.g., attention-deficit/hyperactivity disorder) and nonclinical populations. Here we review the extant literature on the molecular genetic correlates of three exemplar but dissociable executive functions: sustained attention, response inhibition, and error processing. Our review focuses on monoaminergic gene variants given the strong body of evidence from cognitive neuroscience and pharmacology implicating dopamine, noradrenaline, and serotonin as neuromodulators of executive function. Associations between DNA variants of the dopamine beta hydroxylase gene and measures of sustained attention accord well with cognitive-neuroanatomical models of sustained attention. Equally, functional variants of the dopamine D2 receptor gene are reliably associated with performance monitoring, error processing, and reinforcement learning. Emerging evidence suggests that variants of the dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4) show promise for explaining significant variance in individual differences in both behavioral and neural measures of inhibitory control.
Collapse
Affiliation(s)
- Jessica J M Barnes
- Queensland Brain Institute and School of Psychology, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
30
|
Psychopathological aspects of dopaminergic gene polymorphisms in adolescence and young adulthood. Neurosci Biobehav Rev 2011; 35:1665-86. [PMID: 21527290 DOI: 10.1016/j.neubiorev.2011.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 04/08/2011] [Accepted: 04/10/2011] [Indexed: 02/01/2023]
Abstract
Dopamine hypotheses of several psychiatric disorders are based upon the clinical benefits of drugs affecting dopamine transporter or receptors, and have prompted intensive candidate gene research within the dopaminergic system during the last two decades. The aim of this review is to survey the most important findings concerning dopaminergic gene polymorphisms in attention deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), obsessive compulsive disorder, and substance abuse. Also, genetic findings of related phenotypes, such as inattention, impulsivity, aggressive behavior, and novelty seeking personality trait are presented, because recent studies have applied quantitative trait measures using questionnaires, symptom scales, or other objective endophenotypes. Unfortunately, genetic variants with minor effects are problematic to detect in these complex inheritance disorders, often leading to contradictory results. The most consistent association findings relate to ADHD and the dopamine transporter and the dopamine D4 receptor genes. Meta-analyses also support the association between substance abuse and the D2 receptor gene. The dopamine catabolizing enzyme genes, such as monoamine oxidase (MAO) A and catechol-O-methyltransferase (COMT) genes, have been linked to aggressive behaviors.
Collapse
|
31
|
Electrophysiological markers of genetic risk for attention deficit hyperactivity disorder. Expert Rev Mol Med 2011; 13:e9. [PMID: 21426626 DOI: 10.1017/s1462399411001797] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder with complex genetic aetiology. The identification of candidate intermediate phenotypes may facilitate the detection of susceptibility genes and neurobiological mechanisms underlying the disorder. Electroencephalography (EEG) is an ideal neuroscientific approach, providing a direct measurement of neural activity that demonstrates reliability, developmental stability and high heritability. This systematic review evaluates the utility of a subset of electrophysiological measures as potential intermediate phenotypes for ADHD: quantitative EEG indices of arousal and intraindividual variability, and functional investigations of attention, inhibition and performance monitoring using the event-related potential (ERP) technique. Each measure demonstrates consistent and meaningful associations with ADHD, a degree of genetic overlap with ADHD and potential links to specific genetic variants. Investigations of the genetic and environmental contributions to EEG/ERP and shared genetic overlap with ADHD might enhance molecular genetic studies and provide novel insights into aetiology. Such research will aid in the precise characterisation of the clinical deficits seen in ADHD and guide the development of novel intervention and prevention strategies for those at risk.
Collapse
|
32
|
Diamond A. Biological and social influences on cognitive control processes dependent on prefrontal cortex. PROGRESS IN BRAIN RESEARCH 2011; 189:319-39. [PMID: 21489397 DOI: 10.1016/b978-0-444-53884-0.00032-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cognitive control functions ("executive functions" [EFs] such as attentional control, self-regulation, working memory, and inhibition) that depend on prefrontal cortex (PFC) are critical for success in school and in life. Many children begin school lacking needed EF skills. Disturbances in EFs occur in many mental health disorders, such as ADHD and depression. This chapter addresses modulation of EFs by biology (genes and neurochemistry) and the environment (including school programs) with implications for clinical disorders and for education. Unusual properties of the prefrontal dopamine system contribute to PFC's vulnerability to environmental and genetic variations that have little effect elsewhere. EFs depend on a late-maturing brain region (PFC), yet they can be improved even in infants and preschoolers, without specialists or fancy equipment. Research shows that activities often squeezed out of school curricula (play, physical education, and the arts) rather than detracting from academic achievement help improve EFs and enhance academic outcomes. Such practices may also head off problems before they lead to diagnoses of EF impairments, including ADHD. Many issues are not simply education issues or health issues; they are both.
Collapse
Affiliation(s)
- Adele Diamond
- Department of Psychiatry, University of British Columbia and Children’s Hospital, Vancouver, BC, Canada.
| |
Collapse
|