1
|
Liu S, Li F, Wan F. Distance to Criticality Undergoes Critical Transition Before Epileptic Seizure Attacks. Brain Res Bull 2023:110684. [PMID: 37353038 DOI: 10.1016/j.brainresbull.2023.110684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network's distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the "criticality of the criticality" (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures.
Collapse
Affiliation(s)
- Shun Liu
- The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau; The Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau; The Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau
| | - Fali Li
- The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, the Center for Information in Bio-Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Wan
- The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau; The Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau; The Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau.
| |
Collapse
|
2
|
Fosque LJ, Alipour A, Zare M, Williams-García RV, Beggs JM, Ortiz G. Quasicriticality explains variability of human neural dynamics across life span. Front Comput Neurosci 2022; 16:1037550. [PMID: 36532868 PMCID: PMC9747757 DOI: 10.3389/fncom.2022.1037550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
Aging impacts the brain's structural and functional organization and over time leads to various disorders, such as Alzheimer's disease and cognitive impairment. The process also impacts sensory function, bringing about a general slowing in various perceptual and cognitive functions. Here, we analyze the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) resting-state magnetoencephalography (MEG) dataset-the largest aging cohort available-in light of the quasicriticality framework, a novel organizing principle for brain functionality which relates information processing and scaling properties of brain activity to brain connectivity and stimulus. Examination of the data using this framework reveals interesting correlations with age and gender of test subjects. Using simulated data as verification, our results suggest a link between changes to brain connectivity due to aging and increased dynamical fluctuations of neuronal firing rates. Our findings suggest a platform to develop biomarkers of neurological health.
Collapse
Affiliation(s)
- Leandro J. Fosque
- Department of Physics, Indiana University, Bloomington, IN, United States
| | - Abolfazl Alipour
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | | | | | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, IN, United States
| | - Gerardo Ortiz
- Department of Physics, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Gansel KS. Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding. Front Integr Neurosci 2022; 16:900715. [PMID: 36262373 PMCID: PMC9574343 DOI: 10.3389/fnint.2022.900715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Synchronization of neuronal discharges on the millisecond scale has long been recognized as a prevalent and functionally important attribute of neural activity. In this article, I review classical concepts and corresponding evidence of the mechanisms that govern the synchronization of distributed discharges in cortical networks and relate those mechanisms to their possible roles in coding and cognitive functions. To accommodate the need for a selective, directed synchronization of cells, I propose that synchronous firing of distributed neurons is a natural consequence of spike-timing-dependent plasticity (STDP) that associates cells repetitively receiving temporally coherent input: the “synchrony through synaptic plasticity” hypothesis. Neurons that are excited by a repeated sequence of synaptic inputs may learn to selectively respond to the onset of this sequence through synaptic plasticity. Multiple neurons receiving coherent input could thus actively synchronize their firing by learning to selectively respond at corresponding temporal positions. The hypothesis makes several predictions: first, the position of the cells in the network, as well as the source of their input signals, would be irrelevant as long as their input signals arrive simultaneously; second, repeating discharge patterns should get compressed until all or some part of the signals are synchronized; and third, this compression should be accompanied by a sparsening of signals. In this way, selective groups of cells could emerge that would respond to some recurring event with synchronous firing. Such a learned response pattern could further be modulated by synchronous network oscillations that provide a dynamic, flexible context for the synaptic integration of distributed signals. I conclude by suggesting experimental approaches to further test this new hypothesis.
Collapse
|
4
|
Kasai H, Ziv NE, Okazaki H, Yagishita S, Toyoizumi T. Spine dynamics in the brain, mental disorders and artificial neural networks. Nat Rev Neurosci 2021; 22:407-422. [PMID: 34050339 DOI: 10.1038/s41583-021-00467-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
In the brain, most synapses are formed on minute protrusions known as dendritic spines. Unlike their artificial intelligence counterparts, spines are not merely tuneable memory elements: they also embody algorithms that implement the brain's ability to learn from experience and cope with new challenges. Importantly, they exhibit structural dynamics that depend on activity, excitatory input and inhibitory input (synaptic plasticity or 'extrinsic' dynamics) and dynamics independent of activity ('intrinsic' dynamics), both of which are subject to neuromodulatory influences and reinforcers such as dopamine. Here we succinctly review extrinsic and intrinsic dynamics, compare these with parallels in machine learning where they exist, describe the importance of intrinsic dynamics for memory management and adaptation, and speculate on how disruption of extrinsic and intrinsic dynamics may give rise to mental disorders. Throughout, we also highlight algorithmic features of spine dynamics that may be relevant to future artificial intelligence developments.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Noam E Ziv
- Technion Faculty of Medicine and Network Biology Research Labs, Technion City, Haifa, Israel
| | - Hitoshi Okazaki
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama, Japan.,Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Ju H, Kim JZ, Beggs JM, Bassett DS. Network structure of cascading neural systems predicts stimulus propagation and recovery. J Neural Eng 2020; 17:056045. [PMID: 33036007 PMCID: PMC11191848 DOI: 10.1088/1741-2552/abbff1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Many neural systems display spontaneous, spatiotemporal patterns of neural activity that are crucial for information processing. While these cascading patterns presumably arise from the underlying network of synaptic connections between neurons, the precise contribution of the network's local and global connectivity to these patterns and information processing remains largely unknown. APPROACH Here, we demonstrate how network structure supports information processing through network dynamics in empirical and simulated spiking neurons using mathematical tools from linear systems theory, network control theory, and information theory. MAIN RESULTS In particular, we show that activity, and the information that it contains, travels through cycles in real and simulated networks. SIGNIFICANCE Broadly, our results demonstrate how cascading neural networks could contribute to cognitive faculties that require lasting activation of neuronal patterns, such as working memory or attention.
Collapse
Affiliation(s)
- Harang Ju
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jason Z Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - John M Beggs
- Department of Physics, Indiana University, Bloomington, IN 47405, United States of America
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, United States of America
| |
Collapse
|
6
|
Abstract
Epilepsy is a chronic neurological condition, following some trigger, transforming a normal brain to one that produces recurrent unprovoked seizures. In the search for the mechanisms that best explain the epileptogenic process, there is a growing body of evidence suggesting that the epilepsies are network level disorders. In this review, we briefly describe the concept of neuronal networks and highlight 2 methods used to analyse such networks. The first method, graph theory, is used to describe general characteristics of a network to facilitate comparison between normal and abnormal networks. The second, dynamic causal modelling, is useful in the analysis of the pathways of seizure spread. We concluded that the end results of the epileptogenic process are best understood as abnormalities of neuronal circuitry and not simply as molecular or cellular abnormalities. The network approach promises to generate new understanding and more targeted treatment of epilepsy.
Collapse
Affiliation(s)
- Aminu T Abdullahi
- Department of Psychiatry, Aminu Kano Teaching Hospital, Kano, Nigeria
| | | |
Collapse
|
7
|
Scarpetta S, Apicella I, Minati L, de Candia A. Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network. Phys Rev E 2018; 97:062305. [PMID: 30011436 DOI: 10.1103/physreve.97.062305] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 06/08/2023]
Abstract
Many experimental results, both in vivo and in vitro, support the idea that the brain cortex operates near a critical point and at the same time works as a reservoir of precise spatiotemporal patterns. However, the mechanism at the basis of these observations is still not clear. In this paper we introduce a model which combines both these features, showing that scale-free avalanches are the signature of a system posed near the spinodal line of a first-order transition, with many spatiotemporal patterns stored as dynamical metastable attractors. Specifically, we studied a network of leaky integrate-and-fire neurons whose connections are the result of the learning of multiple spatiotemporal dynamical patterns, each with a randomly chosen ordering of the neurons. We found that the network shows a first-order transition between a low-spiking-rate disordered state (down), and a high-rate state characterized by the emergence of collective activity and the replay of one of the stored patterns (up). The transition is characterized by hysteresis, or alternation of up and down states, depending on the lifetime of the metastable states. In both cases, critical features and neural avalanches are observed. Notably, critical phenomena occur at the edge of a discontinuous phase transition, as recently observed in a network of glow lamps.
Collapse
Affiliation(s)
- Silvia Scarpetta
- Dipartimento di Fisica "E. Caianiello," Università di Salerno, Fisciano (SA), Italy
- INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Italy
| | - Ilenia Apicella
- Dipartimento di Fisica e Astronomia "G. Galilei," Università di Padova, Italy
| | - Ludovico Minati
- Complex Systems Theory Department, Institute of Nuclear Physics Polish Academy of Sciences (IFJ-PAN), Kraków, Poland
| | - Antonio de Candia
- INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Italy
- Dipartimento di Fisica "E. Pancini," Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Napoli, Italy
| |
Collapse
|
8
|
Fagerholm ED, Dinov M, Knöpfel T, Leech R. The characteristic patterns of neuronal avalanches in mice under anesthesia and at rest: An investigation using constrained artificial neural networks. PLoS One 2018; 13:e0197893. [PMID: 29795654 PMCID: PMC5967741 DOI: 10.1371/journal.pone.0197893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/10/2018] [Indexed: 11/19/2022] Open
Abstract
Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality.
Collapse
Affiliation(s)
- Erik D. Fagerholm
- Centre for Neuroimaging Sciences, King’s College London, London, United Kingdom
| | - Martin Dinov
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, The Centre for Neuroscience, The Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Thomas Knöpfel
- Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Robert Leech
- Centre for Neuroimaging Sciences, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Yada Y, Mita T, Sanada A, Yano R, Kanzaki R, Bakkum DJ, Hierlemann A, Takahashi H. Development of neural population activity toward self-organized criticality. Neuroscience 2016; 343:55-65. [PMID: 27915209 DOI: 10.1016/j.neuroscience.2016.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Self-organized criticality (SoC), a spontaneous dynamic state established and maintained in networks of moderate complexity, is a universal characteristic of neural systems. Such systems produce cascades of spontaneous activity that are typically characterized by power-law distributions and rich, stable spatiotemporal patterns (i.e., neuronal avalanches). Since the dynamics of the critical state confer advantages in information processing within neuronal networks, it is of great interest to determine how criticality emerges during development. One possible mechanism is developmental, and includes axonal elongation during synaptogenesis and subsequent synaptic pruning in combination with the maturation of GABAergic inhibition (i.e., the integration then fragmentation process). Because experimental evidence for this mechanism remains inconclusive, we studied the developmental variation of neuronal avalanches in dissociated cortical neurons using high-density complementary metal-oxide semiconductor (CMOS) microelectrode arrays (MEAs). The spontaneous activities of nine cultures were monitored using CMOS MEAs from 4 to 30days in vitro (DIV) at single-cell spatial resolution. While cells were immature, cultures demonstrated random-like patterns of activity and an exponential avalanche size distribution; this distribution was followed by a bimodal distribution, and finally a power-law-like distribution. The bimodal distribution was associated with a large-scale avalanche with a homogeneous spatiotemporal pattern, while the subsequent power-law distribution was associated with diverse patterns. These results suggest that the SoC emerges through a two-step process: the integration process accompanying the characteristic large-scale avalanche and the fragmentation process associated with diverse middle-size avalanches.
Collapse
Affiliation(s)
- Yuichiro Yada
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Japan Society for the Promotion of Science (JSPS) Research Fellow, 5-3-1, Koji-machi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Takeshi Mita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Akihiro Sanada
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Ryuichi Yano
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Douglas J Bakkum
- Department of Biosystems Science and Engineering, ETH, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|
10
|
Ribeiro TL, Ribeiro S, Copelli M. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty. Front Neural Circuits 2016; 10:16. [PMID: 27047341 PMCID: PMC4802163 DOI: 10.3389/fncir.2016.00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.
Collapse
Affiliation(s)
- Tiago L Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health (NIMH), National Institutes of Health (NIH)Bethesda, MD, USA; Physics Department, Federal University of Pernambuco (UFPE)Recife, PE, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte (UFRN) Natal, RN, Brazil
| | - Mauro Copelli
- Physics Department, Federal University of Pernambuco (UFPE) Recife, PE, Brazil
| |
Collapse
|
11
|
Shriki O, Yellin D. Optimal Information Representation and Criticality in an Adaptive Sensory Recurrent Neuronal Network. PLoS Comput Biol 2016; 12:e1004698. [PMID: 26882372 PMCID: PMC4755578 DOI: 10.1371/journal.pcbi.1004698] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023] Open
Abstract
Recurrent connections play an important role in cortical function, yet their exact contribution to the network computation remains unknown. The principles guiding the long-term evolution of these connections are poorly understood as well. Therefore, gaining insight into their computational role and into the mechanism shaping their pattern would be of great importance. To that end, we studied the learning dynamics and emergent recurrent connectivity in a sensory network model based on a first-principle information theoretic approach. As a test case, we applied this framework to a model of a hypercolumn in the visual cortex and found that the evolved connections between orientation columns have a "Mexican hat" profile, consistent with empirical data and previous modeling work. Furthermore, we found that optimal information representation is achieved when the network operates near a critical point in its dynamics. Neuronal networks working near such a phase transition are most sensitive to their inputs and are thus optimal in terms of information representation. Nevertheless, a mild change in the pattern of interactions may cause such networks to undergo a transition into a different regime of behavior in which the network activity is dominated by its internal recurrent dynamics and does not reflect the objective input. We discuss several mechanisms by which the pattern of interactions can be driven into this supercritical regime and relate them to various neurological and neuropsychiatric phenomena.
Collapse
Affiliation(s)
- Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
- * E-mail:
| | - Dovi Yellin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Carrillo-Reid L, Lopez-Huerta VG, Garcia-Munoz M, Theiss S, Arbuthnott GW. Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks. Int J Neural Syst 2015; 25:1550026. [PMID: 26173906 DOI: 10.1142/s0129065715500264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell assembly (CA) hypothesis has been used as a conceptual framework to explain how groups of neurons form memories. CAs are defined as neuronal pools with synchronous, recurrent and sequential activity patterns. However, neuronal interactions and synaptic properties that define CAs signatures have been difficult to examine because identities and locations of assembly members are usually unknown. In order to study synaptic properties that define CAs, we used optical and electrophysiological approaches to record activity of identified neurons in mouse cortical cultures. Population analysis and graph theory techniques allowed us to find sequential patterns that represent repetitive transitions between network states. Whole cell pair recordings of neurons participating in repeated sequences demonstrated that synchrony is exhibited by groups of neurons with strong synaptic connectivity (concomitant firing) showing short-term synaptic depression (STD), whereas alternation (sequential firing) is seen in groups of neurons with weaker synaptic connections showing short-term synaptic facilitation (STF). Decreasing synaptic weights of a network promoted the generation of sequential activity patterns, whereas increasing synaptic weights restricted state transitions. Thus in simple cortical networks of real neurons, basic signatures of CAs, the properties that underlie perception and memory in Hebb's original description, are already present.
Collapse
Affiliation(s)
| | - Violeta G Lopez-Huerta
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Marianela Garcia-Munoz
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | | | - Gordon W Arbuthnott
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| |
Collapse
|
13
|
Valverde S, Ohse S, Turalska M, West BJ, Garcia-Ojalvo J. Structural determinants of criticality in biological networks. Front Physiol 2015; 6:127. [PMID: 26005422 PMCID: PMC4424853 DOI: 10.3389/fphys.2015.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/10/2015] [Indexed: 01/09/2023] Open
Abstract
Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness, and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behavior in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organization can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system toward criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality.
Collapse
Affiliation(s)
- Sergi Valverde
- ICREA-Complex Systems Lab, Universitat Pompeu FabraBarcelona, Spain
- Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu FabraBarcelona, Spain
| | - Sebastian Ohse
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-Universität FreiburgFreiburg, Germany
| | | | - Bruce J. West
- Department of Physics, Duke UniversityDurham, NC, USA
- Mathematical and Information Sciences Directorate, U.S. Army Research Office, Research Triangle ParkNC, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu FabraBarcelona, Spain
| |
Collapse
|
14
|
Dranias MR, Westover MB, Cash S, VanDongen AMJ. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts. Front Integr Neurosci 2015; 9:14. [PMID: 25755638 PMCID: PMC4337383 DOI: 10.3389/fnint.2015.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/30/2015] [Indexed: 01/17/2023] Open
Abstract
In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus. As a model approach to understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array (MEA) recordings of cultured neuronal networks were used to study whether stimulus information represented in these networks survives SNBs. When such networks are optically stimulated they encode and maintain stimulus information for as long as one second. Experiments involved recording the network response to a single stimulus and trials where two different stimuli were presented sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific information was impaired. SNBs were observed to increase the mean network firing rate, but this did not translate monotonically into increases in network entropy. It was found that the more excitable a network, the more stereotyped its response was during a network burst. These measurements speak to whether SNBs are capable of transmitting information in addition to blocking it. These results are consistent with previous reports and provide baseline predictions concerning the neural mechanisms by which IEDs might cause TCI.
Collapse
Affiliation(s)
- Mark R Dranias
- VanDongen Laboratory, Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - M Brandon Westover
- Massachusetts General Hospital Boston, MA, USA ; Harvard Medical School Boston, MA, USA
| | - Sidney Cash
- Massachusetts General Hospital Boston, MA, USA ; Harvard Medical School Boston, MA, USA
| | - Antonius M J VanDongen
- VanDongen Laboratory, Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
15
|
Williams-García RV, Moore M, Beggs JM, Ortiz G. Quasicritical brain dynamics on a nonequilibrium Widom line. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062714. [PMID: 25615136 DOI: 10.1103/physreve.90.062714] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Indexed: 06/04/2023]
Abstract
Is the brain really operating at a critical point? We study the nonequilibrium properties of a neural network which models the dynamics of the neocortex and argue for optimal quasicritical dynamics on the Widom line where the correlation length and information transmission are optimized. We simulate the network and introduce an analytical mean-field approximation, characterize the nonequilibrium phase transitions, and present a nonequilibrium phase diagram, which shows that in addition to an ordered and disordered phase, the system exhibits a "quasiperiodic" phase corresponding to synchronous activity in simulations, which may be related to the pathological synchronization associated with epilepsy.
Collapse
Affiliation(s)
| | - Mark Moore
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - John M Beggs
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - Gerardo Ortiz
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
16
|
Hayakawa T, Kaneko T, Aoyagi T. A biologically plausible learning rule for the Infomax on recurrent neural networks. Front Comput Neurosci 2014; 8:143. [PMID: 25505404 PMCID: PMC4243565 DOI: 10.3389/fncom.2014.00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022] Open
Abstract
A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons.
Collapse
Affiliation(s)
- Takashi Hayakawa
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan ; CREST, Japan Science and Technology Agency Kawaguchi, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Toshio Aoyagi
- CREST, Japan Science and Technology Agency Kawaguchi, Japan ; Department of Applied Analysis and Complex Dynamics, Graduate School of Informatics, Kyoto University Kyoto, Japan
| |
Collapse
|
17
|
Hesse J, Gross T. Self-organized criticality as a fundamental property of neural systems. Front Syst Neurosci 2014; 8:166. [PMID: 25294989 PMCID: PMC4171833 DOI: 10.3389/fnsys.2014.00166] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
The neural criticality hypothesis states that the brain may be poised in a critical state at a boundary between different types of dynamics. Theoretical and experimental studies show that critical systems often exhibit optimal computational properties, suggesting the possibility that criticality has been evolutionarily selected as a useful trait for our nervous system. Evidence for criticality has been found in cell cultures, brain slices, and anesthetized animals. Yet, inconsistent results were reported for recordings in awake animals and humans, and current results point to open questions about the exact nature and mechanism of criticality, as well as its functional role. Therefore, the criticality hypothesis has remained a controversial proposition. Here, we provide an account of the mathematical and physical foundations of criticality. In the light of this conceptual framework, we then review and discuss recent experimental studies with the aim of identifying important next steps to be taken and connections to other fields that should be explored.
Collapse
Affiliation(s)
- Janina Hesse
- Computational Neurophysiology Group, Institute for Theoretical Biology, Humboldt Universität zu Berlin Berlin, Germany ; Bernstein Center for Computational Neuroscience Berlin Berlin, Germany ; École Normale Supérieure Paris, France
| | - Thilo Gross
- Department of Engineering Mathematics, Merchant Venturers School of Engineering, University of Bristol Bristol, UK
| |
Collapse
|
18
|
Klinshov VV, Teramae JN, Nekorkin VI, Fukai T. Dense neuron clustering explains connectivity statistics in cortical microcircuits. PLoS One 2014; 9:e94292. [PMID: 24732632 PMCID: PMC3986068 DOI: 10.1371/journal.pone.0094292] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/14/2014] [Indexed: 11/17/2022] Open
Abstract
Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic connection strength, anatomical clustering, and strong correlations between clustering and connection strength. Our model predicts that cortical microcircuits contain large groups of densely connected neurons which we call clusters. We show that such a cluster contains about one fifth of all excitatory neurons of a circuit which are very densely connected with stronger than average synapses. We demonstrate that such clustering plays an important role in the network dynamics, namely, it creates bistable neural spiking in small cortical circuits. Furthermore, introducing local clustering in large-scale networks leads to the emergence of various patterns of persistent local activity in an ongoing network activity. Thus, our results may bridge a gap between anatomical structure and persistent activity observed during working memory and other cognitive processes.
Collapse
Affiliation(s)
- Vladimir V Klinshov
- Nonlinear Dynamics Department, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia; Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Saitama, Japan; Laboratory for Nonlinear Oscillatory-Wave Physics, University of Nizhni Novgorod, Nizhni Novgorod, Russia
| | - Jun-nosuke Teramae
- Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Saitama, Japan; Department of Bioinformatic Engineering, Osaka University, Suita, Osaka, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Vladimir I Nekorkin
- Nonlinear Dynamics Department, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia; Laboratory for Nonlinear Oscillatory-Wave Physics, University of Nizhni Novgorod, Nizhni Novgorod, Russia; Department of Oscillations Theory and Automatic Control, University of Nizhni Novgorod, Nizhni Novgorod, Russia
| | - Tomoki Fukai
- Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Saitama, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
19
|
Mosqueiro TS, Maia LP. Optimal channel efficiency in a sensory network. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012712. [PMID: 23944496 DOI: 10.1103/physreve.88.012712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Indexed: 06/02/2023]
Abstract
Spontaneous neural activity has been increasingly recognized as a subject of key relevance in neuroscience. It exhibits nontrivial spatiotemporal structure reflecting the organization of the underlying neural network and has proved to be closely intertwined with stimulus-induced activity patterns. As an additional contribution in this regard, we report computational studies that strongly suggest that a stimulus-free feature rules the behavior of an important psychophysical measure of the sensibility of a sensory system to a stimulus, the so-called dynamic range. Indeed in this paper we show that the entropy of the distribution of avalanche lifetimes (information efficiency, since it can be interpreted as the efficiency of the network seen as a communication channel) always accompanies the dynamic range in the benchmark model for sensory systems. Specifically, by simulating the Kinouchi-Copelli (KC) model on two broad families of model networks, we generically observed that both quantities always increase or decrease together as functions of the average branching ratio (the control parameter of the KC model) and that the information efficiency typically exhibits critical optimization jointly with the dynamic range (i.e., both quantities are optimized at the same value of that control parameter, that turns out to be the critical point of a nonequilibrium phase transition). In contrast with the practice of taking power laws to identify critical points in most studies describing measured neuronal avalanches, we rely on data collapses as more robust signatures of criticality to claim that critical optimization may happen even when the distribution of avalanche lifetimes is not a power law, as suggested by a recent experiment. Finally, we note that the entropy of the size distribution of avalanches (information capacity) does not always follow the dynamic range and the information efficiency when they are critically optimized, despite being more widely used than the latter to describe the computational capabilities of a neural network. This strongly suggests that dynamical rules allowing a proper temporal matching of the states of the interacting neurons is the key for achieving good performance in information processing, rather than increasing the number of available units.
Collapse
Affiliation(s)
- Thiago S Mosqueiro
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil.
| | | |
Collapse
|
20
|
Gunning DE, Beggs JM, Dabrowski W, Hottowy P, Kenney CJ, Sher A, Litke AM, Mathieson K. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices. J Neural Eng 2012; 10:016007. [PMID: 23234809 DOI: 10.1088/1741-2560/10/1/016007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This paper describes the design, microfabrication, electrical characterization and biological evaluation of a high-density micro-needle array. The array records from and electrically stimulates individual neurons simultaneously in acute slices of brain tissue. APPROACH Acute slices, arguably the closest in-vitro model of the brain, have a damaged surface layer. Since electrophysiological recording methods rely heavily on electrode-cell proximity, this layer significantly attenuates the signal amplitude making the use of traditional planar electrodes unsuitable. To penetrate into the tissue, bypassing the tissue surface, and to record and stimulate neural activity in the healthy interior volume of the slice, an array of 61 micro-needles was fabricated. MAIN RESULTS This device is shown to record extracellular action potentials from individual neurons in acute cortical slices with a signal to noise ratio of up to ∼15:1. Electrical stimulation of individual neurons is achieved with stimulation thresholds of 1.1-2.9 µA. SIGNIFICANCE The novelty of this system is the combination of close needle spacing (60 µm), needle heights of up to 250 µm and small (5-10 µm diameter) electrodes allowing the recording of single unit activity. The array is coupled to a custom-designed readout system forming a powerful electrophysiological tool that permits two-way electrode-cell communication with populations of neurons in acute brain slices.
Collapse
Affiliation(s)
- D E Gunning
- IOP, University of Strathclyde, Glasgow G4 0NW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Beggs JM, Timme N. Being critical of criticality in the brain. Front Physiol 2012; 3:163. [PMID: 22701101 PMCID: PMC3369250 DOI: 10.3389/fphys.2012.00163] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/07/2012] [Indexed: 11/23/2022] Open
Abstract
Relatively recent work has reported that networks of neurons can produce avalanches of activity whose sizes follow a power law distribution. This suggests that these networks may be operating near a critical point, poised between a phase where activity rapidly dies out and a phase where activity is amplified over time. The hypothesis that the electrical activity of neural networks in the brain is critical is potentially important, as many simulations suggest that information processing functions would be optimized at the critical point. This hypothesis, however, is still controversial. Here we will explain the concept of criticality and review the substantial objections to the criticality hypothesis raised by skeptics. Points and counter points are presented in dialog form.
Collapse
Affiliation(s)
- John M Beggs
- Department of Physics, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
22
|
Li X, Small M. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure. CHAOS (WOODBURY, N.Y.) 2012; 22:023104. [PMID: 22757511 DOI: 10.1063/1.3701946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.
Collapse
Affiliation(s)
- Xiumin Li
- College of Automation, Chongqing University, Chongqing 400044, China.
| | | |
Collapse
|
23
|
Abstract
Rapidly growing empirical evidence supports the hypothesis that the cortex operates near criticality. Although the confirmation of this hypothesis would mark a significant advance in fundamental understanding of cortical physiology, a natural question arises: What functional benefits are endowed to cortical circuits that operate at criticality? In this review, we first describe an introductory-level thought experiment to provide the reader with an intuitive understanding of criticality. Second, we discuss some practical approaches for investigating criticality. Finally, we review quantitative evidence that three functional properties of the cortex are optimized at criticality: 1) dynamic range, 2) information transmission, and 3) information capacity. We focus on recently reported experimental evidence and briefly discuss the theory and history of these ideas.
Collapse
Affiliation(s)
- Woodrow L. Shew
- University of Arkansas, Department of Physics, Fayetteville, AR, USA
| | - Dietmar Plenz
- National Institutes of Health, NIMH, Bethesda, MD, USA
| |
Collapse
|
24
|
Wu JJS, Shih HC, Yen CT, Shyu BC. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model. Mol Pain 2012; 8:33. [PMID: 22537828 PMCID: PMC3478175 DOI: 10.1186/1744-8069-8-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/26/2012] [Indexed: 01/04/2023] Open
Abstract
Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value). We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC). Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.
Collapse
Affiliation(s)
- José Jiun-Shian Wu
- Institute of Biomedical Science, Academia Sinica, Taipei, Republic of China
| | | | | | | |
Collapse
|
25
|
Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma. PLoS One 2011; 6:e25339. [PMID: 22003389 PMCID: PMC3189213 DOI: 10.1371/journal.pone.0025339] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/01/2011] [Indexed: 11/19/2022] Open
Abstract
Spike-timing-dependent plasticity (STDP) modifies the weight (or strength) of synaptic connections between neurons and is considered to be crucial for generating network structure. It has been observed in physiology that, in addition to spike timing, the weight update also depends on the current value of the weight. The functional implications of this feature are still largely unclear. Additive STDP gives rise to strong competition among synapses, but due to the absence of weight dependence, it requires hard boundaries to secure the stability of weight dynamics. Multiplicative STDP with linear weight dependence for depression ensures stability, but it lacks sufficiently strong competition required to obtain a clear synaptic specialization. A solution to this stability-versus-function dilemma can be found with an intermediate parametrization between additive and multiplicative STDP. Here we propose a novel solution to the dilemma, named log-STDP, whose key feature is a sublinear weight dependence for depression. Due to its specific weight dependence, this new model can produce significantly broad weight distributions with no hard upper bound, similar to those recently observed in experiments. Log-STDP induces graded competition between synapses, such that synapses receiving stronger input correlations are pushed further in the tail of (very) large weights. Strong weights are functionally important to enhance the neuronal response to synchronous spike volleys. Depending on the input configuration, multiple groups of correlated synaptic inputs exhibit either winner-share-all or winner-take-all behavior. When the configuration of input correlations changes, individual synapses quickly and robustly readapt to represent the new configuration. We also demonstrate the advantages of log-STDP for generating a stable structure of strong weights in a recurrently connected network. These properties of log-STDP are compared with those of previous models. Through long-tail weight distributions, log-STDP achieves both stable dynamics for and robust competition of synapses, which are crucial for spike-based information processing.
Collapse
|
26
|
Aberrant neuronal avalanches in cortical tissue removed from juvenile epilepsy patients. J Clin Neurophysiol 2011; 27:380-6. [PMID: 21076327 DOI: 10.1097/wnp.0b013e3181fdf8d3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Some forms of epilepsy may arise as a result of pathologic interactions among neurons. Many forms of collective activity have been identified, including waves, spirals, oscillations, synchrony, and neuronal avalanches. All these emergent activity patterns have been hypothesized to show pathologic signatures associated with epilepsy. Here, the authors used 60-channel multielectrode arrays to record neuronal avalanches in cortical tissue removed from juvenile epilepsy patients. For comparison, they also recorded activity in rat cortical slices. The authors found that some human tissue removed from epilepsy patients exhibited prolonged periods of hyperactivity not seen in rat slices. In addition, they found a positive correlation between the branching parameter, a measure of network gain, and firing rate in human slices during periods of hyperactivity. This relationship was not present in rat slices. The authors suggest that this positive correlation between the branching parameter and the firing rate is part of a positive feedback loop and may contribute to some forms of epilepsy. These results also indicate that neuronal avalanches are abnormally regulated in slices removed from pediatric epilepsy patients.
Collapse
|