1
|
Oğlin V, Orhun Ö, Quiñones-Hinojosa A, Middlebrooks EH, Çevik OM, Usseli Mİ, Güdük M, Aksoy ME, Pamir MN, Bozkurt B. Topographic anatomy of the lateral surface of the parietal lobe and its relationship with white matter tracts. Front Neuroanat 2024; 18:1458989. [PMID: 39417046 PMCID: PMC11480589 DOI: 10.3389/fnana.2024.1458989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Aim of this study was to define sulcal and gyral variations of the lateral parietal cortex and underlying white matter tracts and emphasize the importance of relationship between topographic anatomy of parietal lobe and white matter tracts underlying it in approaches to deep parietal and atrial lesions. Twenty-eight formalin-fixed cerebral hemispheres of 14 adult cadavers were used. Ten hemispheres were dissected from lateral to medial by fiber dissection and all stages were photographed. Our anatomic findings were supported by MRI tractography. Postcentral sulcus and intraparietal sulcus were continuous in most of the cadavers (71% in right, 64% in left side). Intermediate sulcus of Jensen was in bayonet shape in 86 and 50 percent of cadavers at right and left side, respectively. The range of perpendicular distance between the meeting point and interhemispheric fissure was 2.5-4.9 cm in right and 2.8-4.2 cm in left hemisphere whereas the range of distance between meeting point and the sylvian fissure was 3-6 cm and 2.5-5.6 in left and right hemispheres, respectively. When the meeting point was located more laterally, the probability of damaging the arcuate fasciculus and superior longitudinal fasciculus II during dissection was increased. We also found that the intraparietal sulcus and intermediate sulcus of Jensen were associated with the superior longitudinal fasciculus II, middle longitudinal fasciculus, inferior frontooccipital fasciculus, tapetum, and optic radiation. These variations and their relation to subcortical tracts should be considered in atrium and deep parietal lobe surgeries.
Collapse
Affiliation(s)
- Volkan Oğlin
- Neuroanatomy Laboratory, Acıbadem University School of Medicine CASE, Istanbul, Türkiye
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Türkiye
| | - Ömer Orhun
- Neuroanatomy Laboratory, Acıbadem University School of Medicine CASE, Istanbul, Türkiye
- School of Medicine, Acıbadem University, Istanbul, Türkiye
| | | | | | - Orhun Mete Çevik
- Neuroanatomy Laboratory, Acıbadem University School of Medicine CASE, Istanbul, Türkiye
- Department of Neurosurgery, Acıbadem University School of Medicine, Istanbul, Türkiye
| | - M. İmre Usseli
- Department of Neurosurgery, Acıbadem University School of Medicine, Istanbul, Türkiye
| | - Mustafa Güdük
- Department of Neurosurgery, Acıbadem University School of Medicine, Istanbul, Türkiye
| | - M. Emin Aksoy
- Neuroanatomy Laboratory, Acıbadem University School of Medicine CASE, Istanbul, Türkiye
| | - M. Necmettin Pamir
- Department of Neurosurgery, Acıbadem University School of Medicine, Istanbul, Türkiye
| | - Baran Bozkurt
- Neuroanatomy Laboratory, Acıbadem University School of Medicine CASE, Istanbul, Türkiye
- Department of Neurosurgery, Acıbadem University School of Medicine, Istanbul, Türkiye
| |
Collapse
|
2
|
Edalati M, Mahmoudzadeh M, Safaie J, Wallois F, Moghimi S. Violation of rhythmic expectancies can elicit late frontal gamma activity nested in theta oscillations. Psychophysiology 2021; 58:e13909. [PMID: 34310719 PMCID: PMC9285090 DOI: 10.1111/psyp.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Rhythm processing involves building expectations according to the hierarchical temporal structure of auditory events. Although rhythm processing has been addressed in the context of predictive coding, the properties of the oscillatory response in different cortical areas are still not clear. We explored the oscillatory properties of the neural response to rhythmic incongruence and the cross-frequency coupling between multiple frequencies to further investigate the mechanisms underlying rhythm perception. We designed an experiment to investigate the neural response to rhythmic deviations in which the tone either arrived earlier than expected or the tone in the same metrical position was omitted. These two manipulations modulate the rhythmic structure differently, with the former creating a larger violation of the general structure of the musical stimulus than the latter. Both deviations resulted in an MMN response, whereas only the rhythmic deviant resulted in a subsequent P3a. Rhythmic deviants due to the early occurrence of a tone, but not omission deviants, seemed to elicit a late high gamma response (60-80 Hz) at the end of the P3a over the left frontal region, which, interestingly, correlated with the P3a amplitude over the same region and was also nested in theta oscillations. The timing of the elicited high-frequency gamma oscillations related to rhythmic deviation suggests that it might be related to the update of the predictive neural model, corresponding to the temporal structure of the events in higher-level cortical areas.
Collapse
Affiliation(s)
- M Edalati
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Mahmoudzadeh
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| | - J Safaie
- Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - F Wallois
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| | - S Moghimi
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| |
Collapse
|
3
|
Vidal-Gran C, Sokoliuk R, Bowman H, Cruse D. Strategic and Non-Strategic Semantic Expectations Hierarchically Modulate Neural Processing. eNeuro 2020; 7:ENEURO.0229-20.2020. [PMID: 33023884 PMCID: PMC7608692 DOI: 10.1523/eneuro.0229-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 11/21/2022] Open
Abstract
Perception is facilitated by a hierarchy of expectations generated from context and prior knowledge. In auditory processing, violations of local (within-trial) expectations elicit a mismatch negativity (MMN), while violations of global (across-trial) expectations elicit a later positive component (P300). This result is taken as evidence of prediction errors ascending through the expectation hierarchy. However, in language comprehension, there is no evidence that violations of semantic expectations across local-global levels similarly elicit a sequence of hierarchical error signals, thus drawing into question the putative link between event-related potentials (ERPs) and prediction errors. We investigated the neural basis of such hierarchical expectations of semantics in a word-pair priming paradigm. By manipulating the overall proportion of related or unrelated word-pairs across the task, we created two global contexts that differentially encouraged strategic use of primes. Across two experiments, we replicated behavioral evidence of greater priming in the high validity context, reflecting strategic expectations of upcoming targets based on "global" context. In our preregistered EEG analyses, we observed a "local" prediction error ERP effect (i.e., semantic priming) ∼250 ms post-target, which, in exploratory analyses, was followed 100 ms later by a signal that interacted with the global context. However, the later effect behaved in an apredictive manner, i.e., was most extreme for fulfilled expectations, rather than violations. Our results are consistent with interpretations of early ERPs as reflections of prediction error and later ERPs as processes related to conscious access and in support of task demands.
Collapse
Affiliation(s)
- Consuelo Vidal-Gran
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Rodika Sokoliuk
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Howard Bowman
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- School of Computing, University of Kent, Canterbury, Kent CT2 7NF, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Damian Cruse
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
4
|
Diachek E, Blank I, Siegelman M, Affourtit J, Fedorenko E. The Domain-General Multiple Demand (MD) Network Does Not Support Core Aspects of Language Comprehension: A Large-Scale fMRI Investigation. J Neurosci 2020; 40:4536-4550. [PMID: 32317387 PMCID: PMC7275862 DOI: 10.1523/jneurosci.2036-19.2020] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/02/2020] [Accepted: 04/05/2020] [Indexed: 11/21/2022] Open
Abstract
Aside from the language-selective left-lateralized frontotemporal network, language comprehension sometimes recruits a domain-general bilateral frontoparietal network implicated in executive functions: the multiple demand (MD) network. However, the nature of the MD network's contributions to language comprehension remains debated. To illuminate the role of this network in language processing in humans, we conducted a large-scale fMRI investigation using data from 30 diverse word and sentence comprehension experiments (481 unique participants [female and male], 678 scanning sessions). In line with prior findings, the MD network was active during many language tasks. Moreover, similar to the language-selective network, which is robustly lateralized to the left hemisphere, these responses were stronger in the left-hemisphere MD regions. However, in contrast with the language-selective network, the MD network responded more strongly (1) to lists of unconnected words than to sentences, and (2) in paradigms with an explicit task compared with passive comprehension paradigms. Indeed, many passive comprehension tasks failed to elicit a response above the fixation baseline in the MD network, in contrast to strong responses in the language-selective network. Together, these results argue against a role for the MD network in core aspects of sentence comprehension, such as inhibiting irrelevant meanings or parses, keeping intermediate representations active in working memory, or predicting upcoming words or structures. These results align with recent evidence of relatively poor tracking of the linguistic signal by the MD regions during naturalistic comprehension, and instead suggest that the MD network's engagement during language processing reflects effort associated with extraneous task demands.SIGNIFICANCE STATEMENT Domain-general executive processes, such as working memory and cognitive control, have long been implicated in language comprehension, including in neuroimaging studies that have reported activation in domain-general multiple demand (MD) regions for linguistic manipulations. However, much prior evidence has come from paradigms where language interpretation is accompanied by extraneous tasks. Using a large fMRI dataset (30 experiments/481 participants/678 sessions), we demonstrate that MD regions are engaged during language comprehension in the presence of task demands, but not during passive reading/listening, conditions that strongly activate the frontotemporal language network. These results present a fundamental challenge to proposals whereby linguistic computations, such as inhibiting irrelevant meanings, keeping representations active in working memory, or predicting upcoming elements, draw on domain-general executive resources.
Collapse
Affiliation(s)
- Evgeniia Diachek
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| | - Idan Blank
- Department of Psychology, University of California at Los Angeles, Los Angeles, California 90095
| | - Matthew Siegelman
- Department of Psychology, Columbia University, New York, New York 10027
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
5
|
Li Y, Yang Y, Tang AC, Liu N, Wang X, Du Y, Hu W. English spoken word segmentation activates the prefrontal cortex and temporo-parietal junction in Chinese ESL learners: A functional near-infrared spectroscopy (fNIRS) study. Brain Res 2020; 1733:146693. [PMID: 32006554 DOI: 10.1016/j.brainres.2020.146693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 11/26/2022]
Abstract
A direct measure of spoken lexical processing based on neuroimaging technology would provide us useful information to understand the neural mechanisms underlying speech or auditory language processing. The neural mechanisms of spoken word segmentation for English as a second language (ESL) learners remain elusive. The present study, using functional near-infrared spectroscopy (fNIRS), addresses this issue by measuring hemodynamic responses in the temporo-parietal junction (TPJ) and the prefrontal cortex (PFC) in a word-spotting task, designed with two task conditions (easy vs. difficult). Thirty participants, divided into a high listening proficiency group (HLG) and a low listening proficiency group (LLG), were tested. Results revealed significantly less TPJ activation in the HLG than in the LLG. Further analyses supported this result by showing that activation in the TPJ was in a negative correlation with listening proficiency. This association appears to be related to the more efficient use of processing resources in a bottom-up fashion for accurate and efficient sensory representations in high proficient language learners. In contrast, cortical activation in the PFC increased with listening proficiency and was stronger in the difficult task condition than in the easy task condition, implying that recruitment of top-down cognitive control functions might play a role in word segmentation. Our results suggest that the combination of the functions mediated via bottom-up sensory input processing (demonstrated in the TPJ activation) and top-down cognitive processing (demonstrated in the PFC activation) are crucial for ESL listeners' spoken word segmentation.
Collapse
Affiliation(s)
- Yadan Li
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Yilong Yang
- Research Center for Linguistics and Applied Linguistics, Xi'an International Studies University, Xi'an, China; School of English Studies, Xi'an International Studies University, Xi'an, China; Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China.
| | - Akaysha C Tang
- The Laboratory of Neuroscience for Education, University of Hong Kong, Hong Kong, China; The Mind Research Network, Albuquerque, NM, USA
| | - Nian Liu
- Department of Modern Languages, Literatures, and Linguistics, University of Oklahoma, Norman, USA
| | - Xuewei Wang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Ying Du
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Weiping Hu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China; Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Xi'an, China.
| |
Collapse
|
6
|
Marchina S, Norton A, Kumar S, Schlaug G. The Effect of Speech Repetition Rate on Neural Activation in Healthy Adults: Implications for Treatment of Aphasia and Other Fluency Disorders. Front Hum Neurosci 2018; 12:69. [PMID: 29535619 PMCID: PMC5835070 DOI: 10.3389/fnhum.2018.00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
Functional imaging studies have provided insight into the effect of rate on production of syllables, pseudowords, and naturalistic speech, but the influence of rate on repetition of commonly-used words/phrases suitable for therapeutic use merits closer examination. Aim: To identify speech-motor regions responsive to rate and test the hypothesis that those regions would provide greater support as rates increase, we used an overt speech repetition task and functional magnetic resonance imaging (fMRI) to capture rate-modulated activation within speech-motor regions and determine whether modulations occur linearly and/or show hemispheric preference. Methods: Twelve healthy, right-handed adults participated in an fMRI task requiring overt repetition of commonly-used words/phrases at rates of 1, 2, and 3 syllables/second (syll./sec.). Results: Across all rates, bilateral activation was found both in ventral portions of primary sensorimotor cortex and middle and superior temporal regions. A repeated measures analysis of variance with pairwise comparisons revealed an overall difference between rates in temporal lobe regions of interest (ROIs) bilaterally (p < 0.001); all six comparisons reached significance (p < 0.05). Five of the six were highly significant (p < 0.008), while the left-hemisphere 2- vs. 3-syll./sec. comparison, though still significant, was less robust (p = 0.037). Temporal ROI mean beta-values increased linearly across the three rates bilaterally. Significant rate effects observed in the temporal lobes were slightly more pronounced in the right-hemisphere. No significant overall rate differences were seen in sensorimotor ROIs, nor was there a clear hemispheric effect. Conclusion: Linear effects in superior temporal ROIs suggest that sensory feedback corresponds directly to task demands. The lesser degree of significance in left-hemisphere activation at the faster, closer-to-normal rate may represent an increase in neural efficiency (and therefore, decreased demand) when the task so closely approximates a highly-practiced function. The presence of significant bilateral activation during overt repetition of words/phrases at all three rates suggests that repetition-based speech production may draw support from either or both hemispheres. This bihemispheric redundancy in regions associated with speech-motor control and their sensitivity to changes in rate may play an important role in interventions for nonfluent aphasia and other fluency disorders, particularly when right-hemisphere structures are the sole remaining pathway for production of meaningful speech.
Collapse
Affiliation(s)
- Sarah Marchina
- Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Andrea Norton
- Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Sandeep Kumar
- Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Gottfried Schlaug
- Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
7
|
Neurological evaluation of the selection stage of metaphor comprehension in individuals with and without autism spectrum disorder. Neuroscience 2017; 361:19-33. [DOI: 10.1016/j.neuroscience.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022]
|
8
|
Steady-state and dynamic network modes for perceptual expectation. Sci Rep 2017; 7:40626. [PMID: 28079163 PMCID: PMC5228187 DOI: 10.1038/srep40626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/08/2016] [Indexed: 12/05/2022] Open
Abstract
Perceptual expectation can attenuate repetition suppression, the stimulus-induced neuronal response generated by repeated stimulation, suggesting that repetition suppression is a top-down modulatory phenomenon. However, it is still unclear which high-level brain areas are involved and how they interact with low-level brain areas. Further, the temporal range over which perceptual expectation can effectively attenuate repetition suppression effects remains unclear. To elucidate the details of this top-down modulatory process, we used two short and long inter-stimulus intervals for a perceptual expectation paradigm of paired stimulation. We found that top-down modulation enhanced the response to the unexpected stimulus when repetition suppression was weak and that the effect disappeared at 1,000 ms prior to stimulus exposure. The high-level areas involved in this process included the left inferior frontal gyrus (IFG_L) and left parietal lobule (IPL_L). We also found two systems providing modulatory input to the right fusiform face area (FFA_R): one from IFG_L and the other from IPL_L. Most importantly, we identified two states of networks through which perceptual expectation modulates sensory responses: one is a dynamic state and the other is a steady state. Our results provide the first functional magnetic resonance imaging (fMRI) evidence of temporally nested networks in brain processing.
Collapse
|
9
|
Liang C, Earl B, Thompson I, Whitaker K, Cahn S, Xiang J, Fu QJ, Zhang F. Musicians Are Better than Non-musicians in Frequency Change Detection: Behavioral and Electrophysiological Evidence. Front Neurosci 2016; 10:464. [PMID: 27826221 PMCID: PMC5078501 DOI: 10.3389/fnins.2016.00464] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/27/2016] [Indexed: 11/13/2022] Open
Abstract
Objective: The objectives of this study were: (1) to determine if musicians have a better ability to detect frequency changes under quiet and noisy conditions; (2) to use the acoustic change complex (ACC), a type of electroencephalographic (EEG) response, to understand the neural substrates of musician vs. non-musician difference in frequency change detection abilities. Methods: Twenty-four young normal hearing listeners (12 musicians and 12 non-musicians) participated. All participants underwent psychoacoustic frequency detection tests with three types of stimuli: tones (base frequency at 160 Hz) containing frequency changes (Stim 1), tones containing frequency changes masked by low-level noise (Stim 2), and tones containing frequency changes masked by high-level noise (Stim 3). The EEG data were recorded using tones (base frequency at 160 and 1200 Hz, respectively) containing different magnitudes of frequency changes (0, 5, and 50% changes, respectively). The late-latency evoked potential evoked by the onset of the tones (onset LAEP or N1-P2 complex) and that evoked by the frequency change contained in the tone (the acoustic change complex or ACC or N1′-P2′ complex) were analyzed. Results: Musicians significantly outperformed non-musicians in all stimulus conditions. The ACC and onset LAEP showed similarities and differences. Increasing the magnitude of frequency change resulted in increased ACC amplitudes. ACC measures were found to be significantly different between musicians (larger P2′ amplitude) and non-musicians for the base frequency of 160 Hz but not 1200 Hz. Although the peak amplitude in the onset LAEP appeared to be larger and latency shorter in musicians than in non-musicians, the difference did not reach statistical significance. The amplitude of the onset LAEP is significantly correlated with that of the ACC for the base frequency of 160 Hz. Conclusion: The present study demonstrated that musicians do perform better than non-musicians in detecting frequency changes in quiet and noisy conditions. The ACC and onset LAEP may involve different but overlapping neural mechanisms. Significance: This is the first study using the ACC to examine music-training effects. The ACC measures provide an objective tool for documenting musical training effects on frequency detection.
Collapse
Affiliation(s)
- Chun Liang
- Department of Communication Sciences and Disorders, University of Cincinnati Cincinnati, OH, USA
| | - Brian Earl
- Department of Communication Sciences and Disorders, University of Cincinnati Cincinnati, OH, USA
| | - Ivy Thompson
- Department of Communication Sciences and Disorders, University of Cincinnati Cincinnati, OH, USA
| | - Kayla Whitaker
- Department of Communication Sciences and Disorders, University of Cincinnati Cincinnati, OH, USA
| | - Steven Cahn
- Department of Composition, Musicology, and Theory, College-Conservatory of Music, University of Cincinnati Cincinnati, OH, USA
| | - Jing Xiang
- Department of Pediatrics and Neurology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Qian-Jie Fu
- Department of Head and Neck Surgery, University of California, Los Angeles Los Angeles, CA, USA
| | - Fawen Zhang
- Department of Communication Sciences and Disorders, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
10
|
Egidi G, Caramazza A. Integration Processes Compared: Cortical Differences for Consistency Evaluation and Passive Comprehension in Local and Global Coherence. J Cogn Neurosci 2016; 28:1568-83. [PMID: 27243613 DOI: 10.1162/jocn_a_00982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This research studies the neural systems underlying two integration processes that take place during natural discourse comprehension: consistency evaluation and passive comprehension. Evaluation was operationalized with a consistency judgment task and passive comprehension with a passive listening task. Using fMRI, the experiment examined the integration of incoming sentences with more recent, local context and with more distal, global context in these two tasks. The stimuli were stories in which we manipulated the consistency of the endings with the local context and the relevance of the global context for the integration of the endings. A whole-brain analysis revealed several differences between the two tasks. Two networks previously associated with semantic processing and attention orienting showed more activation during the judgment than the passive listening task. A network previously associated with episodic memory retrieval and construction of mental scenes showed greater activity when global context was relevant, but only during the judgment task. This suggests that evaluation, more than passive listening, triggers the reinstantiation of global context and the construction of a rich mental model for the story. Finally, a network previously linked to fluent updating of a knowledge base showed greater activity for locally consistent endings than inconsistent ones, but only during passive listening, suggesting a mode of comprehension that relies on a local scope approach to language processing. Taken together, these results show that consistency evaluation and passive comprehension weigh differently on distal and local information and are implemented, in part, by different brain networks.
Collapse
|
11
|
Detection of independent functional networks during music listening using electroencephalogram and sLORETA-ICA. Neuroreport 2016; 27:455-61. [PMID: 26934285 DOI: 10.1097/wnr.0000000000000563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL. Fiber tracts of the dorsal language stream in the human brain. J Neurosurg 2015; 124:1396-405. [PMID: 26587654 DOI: 10.3171/2015.5.jns15455] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECT The aim of this study was to examine the arcuate (AF) and superior longitudinal fasciculi (SLF), which together form the dorsal language stream, using fiber dissection and diffusion imaging techniques in the human brain. METHODS Twenty-five formalin-fixed brains (50 hemispheres) and 3 adult cadaveric heads, prepared according to the Klingler method, were examined by the fiber dissection technique. The authors' findings were supported with MR tractography provided by the Human Connectome Project, WU-Minn Consortium. The frequencies of gyral distributions were calculated in segments of the AF and SLF in the cadaveric specimens. RESULTS The AF has ventral and dorsal segments, and the SLF has 3 segments: SLF I (dorsal pathway), II (middle pathway), and III (ventral pathway). The AF ventral segment connects the middle (88%; all percentages represent the area of the named structure that is connected to the tract) and posterior (100%) parts of the superior temporal gyri and the middle part (92%) of the middle temporal gyrus to the posterior part of the inferior frontal gyrus (96% in pars opercularis, 40% in pars triangularis) and the ventral premotor cortex (84%) by passing deep to the lower part of the supramarginal gyrus (100%). The AF dorsal segment connects the posterior part of the middle (100%) and inferior temporal gyri (76%) to the posterior part of the inferior frontal gyrus (96% in pars opercularis), ventral premotor cortex (72%), and posterior part of the middle frontal gyrus (56%) by passing deep to the lower part of the angular gyrus (100%). CONCLUSIONS This study depicts the distinct subdivision of the AF and SLF, based on cadaveric fiber dissection and diffusion imaging techniques, to clarify the complicated language processing pathways.
Collapse
Affiliation(s)
| | | | - Necmettin Tanriover
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Turkey
| | | |
Collapse
|
13
|
LaCroix AN, Diaz AF, Rogalsky C. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study. Front Psychol 2015; 6:1138. [PMID: 26321976 PMCID: PMC4531212 DOI: 10.3389/fpsyg.2015.01138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022] Open
Abstract
The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's Shared Syntactic Integration Resource Hypothesis (SSIRH) and Koelsch's neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET) literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music vs. speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music.
Collapse
Affiliation(s)
- Arianna N LaCroix
- Communication Neuroimaging and Neuroscience Laboratory, Department of Speech and Hearing Science, Arizona State University Tempe, AZ, USA
| | - Alvaro F Diaz
- Communication Neuroimaging and Neuroscience Laboratory, Department of Speech and Hearing Science, Arizona State University Tempe, AZ, USA
| | - Corianne Rogalsky
- Communication Neuroimaging and Neuroscience Laboratory, Department of Speech and Hearing Science, Arizona State University Tempe, AZ, USA
| |
Collapse
|
14
|
Oh A, Duerden EG, Pang EW. The role of the insula in speech and language processing. BRAIN AND LANGUAGE 2014; 135:96-103. [PMID: 25016092 PMCID: PMC4885738 DOI: 10.1016/j.bandl.2014.06.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/24/2014] [Accepted: 06/15/2014] [Indexed: 05/13/2023]
Abstract
Lesion and neuroimaging studies indicate that the insula mediates motor aspects of speech production, specifically, articulatory control. Although it has direct connections to Broca's area, the canonical speech production region, the insula is also broadly connected with other speech and language centres, and may play a role in coordinating higher-order cognitive aspects of speech and language production. The extent of the insula's involvement in speech and language processing was assessed using the Activation Likelihood Estimation (ALE) method. Meta-analyses of 42 fMRI studies with healthy adults were performed, comparing insula activation during performance of language (expressive and receptive) and speech (production and perception) tasks. Both tasks activated bilateral anterior insulae. However, speech perception tasks preferentially activated the left dorsal mid-insula, whereas expressive language tasks activated left ventral mid-insula. Results suggest distinct regions of the mid-insula play different roles in speech and language processing.
Collapse
Affiliation(s)
- Anna Oh
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada
| | - Emma G Duerden
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Elizabeth W Pang
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Neurology, Hospital for Sick Children, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Yang J, Zevin J. The impact of task demand on visual word recognition. Neuroscience 2014; 272:102-15. [PMID: 24814725 DOI: 10.1016/j.neuroscience.2014.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/29/2014] [Accepted: 04/15/2014] [Indexed: 11/17/2022]
Abstract
The left occipitotemporal cortex has been found sensitive to the hierarchy of increasingly complex features in visually presented words, from individual letters to bigrams and morphemes. However, whether this sensitivity is a stable property of the brain regions engaged by word recognition is still unclear. To address the issue, the current study investigated whether different task demands modify this sensitivity. Participants viewed real English words and stimuli with hierarchical word-likeness while performing a lexical decision task (i.e., to decide whether each presented stimulus is a real word) and a symbol detection task. General linear model and independent component analysis indicated strong activation in the fronto-parietal and temporal regions during the two tasks. Furthermore, the bilateral inferior frontal gyrus and insula showed significant interaction effects between task demand and stimulus type in the pseudoword condition. The occipitotemporal cortex showed strong main effects for task demand and stimulus type, but no sensitivity to the hierarchical word-likeness was found. These results suggest that different task demands on semantic, phonological and orthographic processes can influence the involvement of the relevant regions during visual word recognition.
Collapse
Affiliation(s)
- J Yang
- Sackler Institute of Developmental Psychobiology, Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, United States.
| | - J Zevin
- Sackler Institute of Developmental Psychobiology, Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, United States
| |
Collapse
|
16
|
Torrisi SJ, Lieberman MD, Bookheimer SY, Altshuler LL. Advancing understanding of affect labeling with dynamic causal modeling. Neuroimage 2013; 82:481-8. [PMID: 23774393 PMCID: PMC3759566 DOI: 10.1016/j.neuroimage.2013.06.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/30/2013] [Accepted: 06/06/2013] [Indexed: 11/24/2022] Open
Abstract
Mechanistic understandings of forms of incidental emotion regulation have implications for basic and translational research in the affective sciences. In this study we applied Dynamic Causal Modeling (DCM) for fMRI to a common paradigm of labeling facial affect to elucidate prefrontal to subcortical influences. Four brain regions were used to model affect labeling, including right ventrolateral prefrontal cortex (vlPFC), amygdala and Broca's area. 64 models were compared, for each of 45 healthy subjects. Family level inference split the model space to a likely driving input and Bayesian Model Selection within the winning family of 32 models revealed a strong pattern of endogenous network connectivity. Modulatory effects of labeling were most prominently observed following Bayesian Model Averaging, with the dampening influence on amygdala originating from Broca's area but much more strongly from right vlPFC. These results solidify and extend previous correlation and regression-based estimations of negative corticolimbic coupling.
Collapse
Affiliation(s)
- Salvatore J Torrisi
- Semel Institute for Neuroscience & Human Behavior, Dept. of Psychiatry, UCLA, USA.
| | | | | | | |
Collapse
|
17
|
Nardo D, Santangelo V, Macaluso E. Spatial orienting in complex audiovisual environments. Hum Brain Mapp 2013; 35:1597-614. [PMID: 23616340 DOI: 10.1002/hbm.22276] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/22/2013] [Accepted: 02/07/2013] [Indexed: 11/11/2022] Open
Abstract
Previous studies on crossmodal spatial orienting typically used simple and stereotyped stimuli in the absence of any meaningful context. This study combined computational models, behavioural measures and functional magnetic resonance imaging to investigate audiovisual spatial interactions in naturalistic settings. We created short videos portraying everyday life situations that included a lateralised visual event and a co-occurring sound, either on the same or on the opposite side of space. Subjects viewed the videos with or without eye-movements allowed (overt or covert orienting). For each video, visual and auditory saliency maps were used to index the strength of stimulus-driven signals, and eye-movements were used as a measure of the efficacy of the audiovisual events for spatial orienting. Results showed that visual salience modulated activity in higher-order visual areas, whereas auditory salience modulated activity in the superior temporal cortex. Auditory salience modulated activity also in the posterior parietal cortex, but only when audiovisual stimuli occurred on the same side of space (multisensory spatial congruence). Orienting efficacy affected activity in the visual cortex, within the same regions modulated by visual salience. These patterns of activation were comparable in overt and covert orienting conditions. Our results demonstrate that, during viewing of complex multisensory stimuli, activity in sensory areas reflects both stimulus-driven signals and their efficacy for spatial orienting; and that the posterior parietal cortex combines spatial information about the visual and the auditory modality.
Collapse
Affiliation(s)
- Davide Nardo
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | | | | |
Collapse
|
18
|
Yoo S, Chung JY, Jeon HA, Lee KM, Kim YB, Cho ZH. Dual routes for verbal repetition: articulation-based and acoustic-phonetic codes for pseudoword and word repetition, respectively. BRAIN AND LANGUAGE 2012; 122:1-10. [PMID: 22632812 DOI: 10.1016/j.bandl.2012.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 06/01/2023]
Abstract
Speech production is inextricably linked to speech perception, yet they are usually investigated in isolation. In this study, we employed a verbal-repetition task to identify the neural substrates of speech processing with two ends active simultaneously using functional MRI. Subjects verbally repeated auditory stimuli containing an ambiguous vowel sound that could be perceived as either a word or a pseudoword depending on the interpretation of the vowel. We found verbal repetition commonly activated the audition-articulation interface bilaterally at Sylvian fissures and superior temporal sulci. Contrasting word-versus-pseudoword trials revealed neural activities unique to word repetition in the left posterior middle temporal areas and activities unique to pseudoword repetition in the left inferior frontal gyrus. These findings imply that the tasks are carried out using different speech codes: an articulation-based code of pseudowords and an acoustic-phonetic code of words. It also supports the dual-stream model and imitative learning of vocabulary.
Collapse
Affiliation(s)
- Sejin Yoo
- Interdisciplinary Program in Cognitive Science, Seoul National University, Republic of Korea
| | | | | | | | | | | |
Collapse
|
19
|
Hurschler MA, Liem F, Jäncke L, Meyer M. Right and left perisylvian cortex and left inferior frontal cortex mediate sentence-level rhyme detection in spoken language as revealed by sparse fMRI. Hum Brain Mapp 2012; 34:3182-92. [PMID: 22711328 DOI: 10.1002/hbm.22134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/11/2022] Open
Abstract
In this study, we used functional magnetic resonance imaging to investigate the neural basis of auditory rhyme processing at the sentence level in healthy adults. In an explicit rhyme detection task, participants were required to decide whether the ending syllable of a metrically spoken pseudosentence rhymed or not. Participants performing this task revealed bilateral activation in posterior-superior temporal gyri with a much more extended cluster of activation in the right hemisphere. These findings suggest that the right hemisphere primarily supports suprasegmental tasks, such as the segmentation of speech into syllables; thus, our findings are in line with the "asymmetric sampling in time" model suggested by Poeppel (: Speech Commun 41:245-255). The direct contrast between rhymed and nonrhymed trials revealed a stronger BOLD response for rhymed trials in the frontal operculum and the anterior insula of the left hemisphere. Our results suggest an involvement of these frontal regions not only in articulatory rehearsal processes, but especially in the detection of a matching syllable, as well as in the execution of rhyme judgment.
Collapse
Affiliation(s)
- Martina A Hurschler
- Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland; Institute of Psychology, Neuroplasticity and Learning in the Healthy Aging Brain (HAB LAB), University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
20
|
Price CJ. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 2012; 62:816-47. [PMID: 22584224 PMCID: PMC3398395 DOI: 10.1016/j.neuroimage.2012.04.062] [Citation(s) in RCA: 1298] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 01/17/2023] Open
Abstract
The anatomy of language has been investigated with PET or fMRI for more than 20 years. Here I attempt to provide an overview of the brain areas associated with heard speech, speech production and reading. The conclusions of many hundreds of studies were considered, grouped according to the type of processing, and reported in the order that they were published. Many findings have been replicated time and time again leading to some consistent and undisputable conclusions. These are summarised in an anatomical model that indicates the location of the language areas and the most consistent functions that have been assigned to them. The implications for cognitive models of language processing are also considered. In particular, a distinction can be made between processes that are localized to specific structures (e.g. sensory and motor processing) and processes where specialisation arises in the distributed pattern of activation over many different areas that each participate in multiple functions. For example, phonological processing of heard speech is supported by the functional integration of auditory processing and articulation; and orthographic processing is supported by the functional integration of visual processing, articulation and semantics. Future studies will undoubtedly be able to improve the spatial precision with which functional regions can be dissociated but the greatest challenge will be to understand how different brain regions interact with one another in their attempts to comprehend and produce language.
Collapse
Affiliation(s)
- Cathy J Price
- Wellcome Trust Centre for Neuroimaging, UCL, London WC1N 3BG, UK.
| |
Collapse
|
21
|
Jäncke L, Langer N, Hänggi J. Diminished whole-brain but enhanced peri-sylvian connectivity in absolute pitch musicians. J Cogn Neurosci 2012; 24:1447-61. [PMID: 22524277 DOI: 10.1162/jocn_a_00227] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Several anatomical studies have identified specific anatomical features within the peri-sylvian brain system of absolute pitch (AP) musicians. In this study we used graph theoretical analysis of cortical thickness covariations (as indirect indicator of connectivity) to examine whether AP musicians differ from relative pitch musicians and nonmusicians in small-world network characteristics. We measured "local connectedness" (local clustering = γ), "global efficiency of information transfer" (path length = λ), "small-worldness" (σ = γ/λ), and "degree" centrality as measures of connectivity. Although all groups demonstrated typical small-world features, AP musicians showed significant small-world alterations. "Degree" as a measure of interconnectedness was globally significantly decreased in AP musicians. These differences let us suggest that AP musicians demonstrate diminished neural integration (less connections) among distant brain regions. In addition, AP musicians demonstrated significantly increased local connectivity in peri-sylvian language areas of which the planum temporale, planum polare, Heschl's gyrus, lateral aspect of the superior temporal gyrus, STS, pars triangularis, and pars opercularis were hub regions. All of these brain areas are known to be involved in higher-order auditory processing, working or semantic memory processes. Taken together, whereas AP musicians demonstrate decreased global interconnectedness, the local connectedness in peri-sylvian brain areas is significantly higher than for relative pitch musicians and nonmusicians.
Collapse
|
22
|
Ellis RJ, Norton AC, Overy K, Winner E, Alsop DC, Schlaug G. Differentiating maturational and training influences on fMRI activation during music processing. Neuroimage 2012; 60:1902-12. [PMID: 22348885 DOI: 10.1016/j.neuroimage.2012.01.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 10/14/2022] Open
Abstract
Two major influences on how the brain processes music are maturational development and active musical training. Previous functional neuroimaging studies investigating music processing have typically focused on either categorical differences between "musicians versus nonmusicians" or "children versus adults." In the present study, we explored a cross-sectional data set (n=84) using multiple linear regression to isolate the performance-independent effects of age (5 to 33 years) and cumulative duration of musical training (0 to 21,000 practice hours) on fMRI activation similarities and differences between melodic discrimination (MD) and rhythmic discrimination (RD). Age-related effects common to MD and RD were present in three left hemisphere regions: temporofrontal junction, ventral premotor cortex, and the inferior part of the intraparietal sulcus, regions involved in active attending to auditory rhythms, sensorimotor integration, and working memory transformations of pitch and rhythmic patterns. By contrast, training-related effects common to MD and RD were localized to the posterior portion of the left superior temporal gyrus/planum temporale, an area implicated in spectrotemporal pattern matching and auditory-motor coordinate transformations. A single cluster in right superior temporal gyrus showed significantly greater activation during MD than RD. This is the first fMRI which has distinguished maturational from training effects during music processing.
Collapse
Affiliation(s)
- Robert J Ellis
- Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Neurology, 330 Brookline Ave, Palmer 127, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sugeno M, Yamanoi T. Spatiotemporal Analysis of Brain Activity During Understanding Honorific Expressions. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2011. [DOI: 10.20965/jaciii.2011.p1211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper discusses brain activity during the understanding of sentences from the perspective of Systemic Functional Linguistics. We focus on ideational meaning (propositional meaning in an ordinary sense) and interpersonal meaning (as is typically seen in honorific expressions). The present study is an experimental exploration of the spatiotemporal pathways of neuronal activation. Japanese sentences containing and not containing honorific expressions are compared in electroencephalography experiments. In these experiments, the sentences without honorific expressions have ideationalmeaning, but those with honorific expressions have both ideational and interpersonal meanings. Through the use of the equivalent current dipole source localization method, the spatiotemporal processes of activation of the brain are analyzed. There is a single pathway during the understanding of the sentences without honorific expressions; this pathway is mainly observed in the left hemisphere. On the other hand, there are three pathways in the case of the sentences with honorific expressions, two of which are observed in the right hemisphere. The remaining pathway is the same as the aforementioned single pathway. This fact strongly suggests that the common pathway is concerned with processing ideational meaning. The other two pathways observed during understanding of the sentences with honorific expressions are considered to be related to processing interpersonal meaning.
Collapse
|
24
|
Leonard CM, Low P, Jonczak EE, Schmutz KM, Siegel LS, Beaulieu C. Brain Anatomy, Processing Speed, and Reading in School-Age Children. Dev Neuropsychol 2011; 36:828-46. [PMID: 21978008 DOI: 10.1080/87565641.2011.606398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Shafto MA, Stamatakis EA, Tam PP, Tyler LK. Word Retrieval Failures in Old Age: The Relationship between Structure and Function. J Cogn Neurosci 2010; 22:1530-40. [DOI: 10.1162/jocn.2009.21321] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
A common complaint of normal aging is the increase in word-finding failures such as tip-of-the-tongue states (TOTs). Behavioral research identifies TOTs as phonological retrieval failures, and recent findings [Shafto, M. A., Burke, D. M., Stamatakis, E. A., Tam, P., & Tyler, L. K. On the tip-of-the-tongue: Neural correlates of increased word-finding failures in normal aging. Journal of Cognitive Neuroscience, 19, 2060–2070, 2007] link age-related increases in TOTs to atrophy in left insula, a region implicated in phonological production. Here, younger and older adults performed a picture naming task in the fMRI scanner. During successful naming, left insula activity was not affected by age or gray matter integrity. Age differences only emerged during TOTs, with younger but not older adults generating a “boost” of activity during TOTs compared to successful naming. Older adults also had less activity than younger adults during TOTs compared to “don't know” responses, and across all participants, less TOT activity was affiliated with lower gray matter density. For older adults, lower levels of activity during TOTs accompanied higher TOT rates, supporting the role of an age-related neural mechanism impacting older more than younger adults. Results support a neural account of word retrieval in old age wherein, despite widespread age-related atrophy, word production processes are not universally impacted by age. However, atrophy undermines older adults' ability to modulate neural responses needed to overcome retrieval failures.
Collapse
|
26
|
Neural substrates of phonological selection for Japanese character Kanji based on fMRI investigations. Neuroimage 2010; 50:1280-91. [DOI: 10.1016/j.neuroimage.2009.12.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/20/2009] [Accepted: 12/22/2009] [Indexed: 11/17/2022] Open
|
27
|
Heim S, Eickhoff SB, Friederici AD, Amunts K. Left cytoarchitectonic area 44 supports selection in the mental lexicon during language production. Brain Struct Funct 2009; 213:441-56. [PMID: 19621242 PMCID: PMC2737115 DOI: 10.1007/s00429-009-0213-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 07/08/2009] [Indexed: 11/28/2022]
Abstract
This functional magnetic resonance imaging (fMRI) study investigated the role of Broca’s region for selecting semantic, syntactic, and phonological information during picture naming. According to psycholinguistic theory, selection is reflected in speech latency differences, e.g. during priming. Here, homogenous (priming) blocks in which German picture names had the same semantic category, syntactic gender, or initial phoneme alternated with heterogeneous (non-priming) blocks. Speech latencies revealed a negative priming effect. Speech latencies were used as regressors for the fMRI data in order to tap selection processes. In Broca’s region (BA 44), among others, fMRI data showed repetition priming, which was positive for semantic and syntactic but negative for phonological selection. The different effects in area 44 are discussed in terms of psycholinguistic theory. Overall, the activation pattern is in line with the hypothesis that area 44 generally supports selection processes during noun production at several levels of the mental lexicon.
Collapse
Affiliation(s)
- Stefan Heim
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | | | | | | |
Collapse
|
28
|
Wu X, Lu J, Chen K, Long Z, Wang X, Shu H, Li K, Liu Y, Yao L. Multiple neural networks supporting a semantic task: An fMRI study using independent component analysis. Neuroimage 2009; 45:1347-58. [DOI: 10.1016/j.neuroimage.2008.12.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/06/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022] Open
|
29
|
Heim S, Eickhoff SB, Ischebeck AK, Friederici AD, Stephan KE, Amunts K. Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum Brain Mapp 2009; 30:392-402. [PMID: 18095285 DOI: 10.1002/hbm.20512] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinct regions in the left inferior frontal gyrus (IFG) preferentially support the processing of different word-types (e.g., real words, pseudowords) and tasks (e.g., lexical decisions, phonological decisions) in visual word recognition. However, the functional connectivity underlying the task-related specialisation of regions in the left IFG is not yet well understood. In this study we investigated the neural mechanisms driving the interaction of WORD-TYPE (real word vs. pseudoword) and TASK (lexical vs. phonological decision) in Brodmann's area (BA) 45 in the left IFG using dynamic causal modelling (DCM). Four different models were compared, all of which included left BA44, left BA45, and left inferior temporal gyrus (ITG). In each model, the visual presentation of words and pseudowords is assumed to directly evoke activity in the ITG and is then thought to be subsequently propagated to BA45 and to BA44 via direct intrinsic connections. The models differed with regard to which connections were modulated by the different tasks. Both tasks were assumed to either modulate the ITG_BA45 connection (Model #1), or the BA44_BA45 connection (Model #2), or both connections in parallel (Model #3). In Model #4 lexical decisions modulated the ITG_BA45 connection, whereas phonological decisions modulated the BA44_BA45 connection. Bayesian model selection revealed a superiority of Model #1. In this model, the strength of the ITG_BA45 connection was enhanced during lexical decisions. This model is in line with the hypothesis that left BA 45 supports explicit lexical decisions during visual word recognition based on lexical access in the ITG.
Collapse
Affiliation(s)
- Stefan Heim
- Research Centre Jülich, Institute of Neuroscience and Biophysics, Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Hertrich I, Mathiak K, Lutzenberger W, Ackermann H. Time course of early audiovisual interactions during speech and nonspeech central auditory processing: a magnetoencephalography study. J Cogn Neurosci 2009; 21:259-74. [PMID: 18510440 DOI: 10.1162/jocn.2008.21019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cross-modal fusion phenomena suggest specific interactions of auditory and visual sensory information both within the speech and nonspeech domains. Using whole-head magnetoencephalography, this study recorded M50 and M100 fields evoked by ambiguous acoustic stimuli that were visually disambiguated to perceived /ta/ or /pa/ syllables. As in natural speech, visual motion onset preceded the acoustic signal by 150 msec. Control conditions included visual and acoustic nonspeech signals as well as visual-only and acoustic-only stimuli. (a) Both speech and nonspeech motion yielded a consistent attenuation of the auditory M50 field, suggesting a visually induced "preparatory baseline shift" at the level of the auditory cortex. (b) Within the temporal domain of the auditory M100 field, visual speech and nonspeech motion gave rise to different response patterns (nonspeech: M100 attenuation; visual /pa/: left-hemisphere M100 enhancement; /ta/: no effect). (c) These interactions could be further decomposed using a six-dipole model. One of these three pairs of dipoles (V270) was fitted to motion-induced activity at a latency of 270 msec after motion onset, that is, the time domain of the auditory M100 field, and could be attributed to the posterior insula. This dipole source responded to nonspeech motion and visual /pa/, but was found suppressed in the case of visual /ta/. Such a nonlinear interaction might reflect the operation of a binary distinction between the marked phonological feature "labial" versus its underspecified competitor "coronal." Thus, visual processing seems to be shaped by linguistic data structures even prior to its fusion with auditory information channel.
Collapse
|
31
|
Abstract
We investigated whether auditory deprivation and/or sign language exposure during development alters the macroscopic neuroanatomy of the human insula. Volumetric analyses were based on MRI data from 25 congenitally deaf subjects who were native users of American Sign Language (ASL), 25 hearing subjects with no knowledge of ASL, and 16 hearing subjects who grew up in deaf families and were native ASL signers. Significant variation in insula volume was associated with both hearing status and sign language experience. Compared with both hearing groups, deaf subjects exhibited a significant increase in the amount of gray matter in the left posterior insular lobule, which we hypothesize may be related to the dependence on lip-reading and articulatory-based (rather than auditory-based) representations of speech for deaf individuals. Both deaf and hearing signers exhibited an increased volume of white matter in the right insula compared with hearing nonsigners. We hypothesize that the distinct morphology of the right insula for ASL signers may arise from enhanced connectivity resulting from an increased reliance on cross-modal sensory integration in sign language compared with spoken language.
Collapse
|
32
|
Galazky I, Schütze H, Noesselt T, Hopf JM, Heinze HJ, Schoenfeld MA. Attention to somatosensory events is directly linked to the preparation for action. J Neurol Sci 2009; 279:93-8. [PMID: 19167729 DOI: 10.1016/j.jns.2008.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 12/26/2022]
Abstract
The present study investigated the neural basis of attention in the somato-sensory system. Subjects directed their attention towards their left or right hand while functional MRI data was collected during tactile stimulation of the fingers. Activations evoked by tactile stimuli when a stimulated hand was attended vs. unattended were contrasted. The tactile stimuli elicited hemodynamic responses in the contralateral primary and secondary somatosensory cortex. No attentional modulations of the BOLD-response could be observed in these regions. However, attention-related modulations were observed at more anterior locations in the ipsi- and contralateral primary motor cortex and in the supplementary motor area. This pattern of results suggests, that attention to somato-sensory events is directly linked to the motor system and the preparation for action. This mechanism appears to be in stark contrast to visual or auditory attention, which primarily serve to separate relevant from irrelevant information.
Collapse
Affiliation(s)
- Imke Galazky
- Department of Neurology, Otto-von-Guericke University Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Seghier ML, Lee HL, Schofield T, Ellis CL, Price CJ. Inter-subject variability in the use of two different neuronal networks for reading aloud familiar words. Neuroimage 2008; 42:1226-36. [PMID: 18639469 PMCID: PMC2724104 DOI: 10.1016/j.neuroimage.2008.05.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/16/2022] Open
Abstract
Cognitive models of reading predict that high frequency regular words can be read in more than one way. We investigated this hypothesis using functional MRI and covariance analysis in 43 healthy skilled readers. Our results dissociated two sets of regions that were differentially engaged across subjects who were reading the same familiar words. Some subjects showed more activation in left inferior frontal and anterior occipito-temporal regions while other subjects showed more activation in right inferior parietal and left posterior occipito-temporal regions. To explore the behavioural correlates of these systems, we measured the difference between reading speed for irregularly spelled words relative to pseudowords outside the scanner in fifteen of our subjects and correlated this measure with fMRI activation for reading familiar words. The faster the lexical reading the greater the activation in left posterior occipito-temporal and right inferior parietal regions. Conversely, the slower the lexical reading the greater the activation in left anterior occipito-temporal and left ventral inferior frontal regions. Thus, the double dissociation in irregular and pseudoword reading behaviour predicted the double dissociation in neuronal activation for reading familiar words. We discuss the implications of these results which may be important for understanding how reading is learnt in childhood or re-learnt following brain damage in adulthood.
Collapse
Affiliation(s)
- M L Seghier
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London, UK.
| | | | | | | | | |
Collapse
|
34
|
Specialisation in Broca's region for semantic, phonological, and syntactic fluency? Neuroimage 2008; 40:1362-8. [DOI: 10.1016/j.neuroimage.2008.01.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/28/2007] [Accepted: 01/08/2008] [Indexed: 11/30/2022] Open
|
35
|
Geiser E, Zaehle T, Jancke L, Meyer M. The Neural Correlate of Speech Rhythm as Evidenced by Metrical Speech Processing. J Cogn Neurosci 2008; 20:541-52. [DOI: 10.1162/jocn.2008.20029] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The present study investigates the neural correlates of rhythm processing in speech perception. German pseudosentences spoken with an exaggerated (isochronous) or a conversational (nonisochronous) rhythm were compared in an auditory functional magnetic resonance imaging experiment. The subjects had to perform either a rhythm task (explicit rhythm processing) or a prosody task (implicit rhythm processing). The study revealed bilateral activation in the supplementary motor area (SMA), extending into the cingulate gyrus, and in the insulae, extending into the right basal ganglia (neostriatum), as well as activity in the right inferior frontal gyrus (IFG) related to the performance of the rhythm task. A direct contrast between isochronous and nonisochronous sentences revealed differences in lateralization of activation for isochronous processing as a function of the explicit and implicit tasks. Explicit processing revealed activation in the right posterior superior temporal gyrus (pSTG), the right supramarginal gyrus, and the right parietal operculum. Implicit processing showed activation in the left supramarginal gyrus, the left pSTG, and the left parietal operculum. The present results indicate a function of the SMA and the insula beyond motor timing and speak for a role of these brain areas in the perception of acoustically temporal intervals. Secondly, the data speak for a specific task-related function of the right IFG in the processing of accent patterns. Finally, the data sustain the assumption that the right secondary auditory cortex is involved in the explicit perception of auditory suprasegmental cues and, moreover, that activity in the right secondary auditory cortex can be modulated by top-down processing mechanisms.
Collapse
Affiliation(s)
| | | | | | - Martin Meyer
- 1University Zurich, Switzerland
- 2University Hospital of Zurich, Switzerland
| |
Collapse
|
36
|
Longitudinal studies of semantic dementia: the relationship between structural and functional changes over time. Neuropsychologia 2008; 46:2177-88. [PMID: 18395761 DOI: 10.1016/j.neuropsychologia.2008.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 02/11/2008] [Accepted: 02/17/2008] [Indexed: 11/22/2022]
Abstract
The pattern of brain atrophy in semantic dementia and its associated cognitive effects have attracted a considerable body of research, but the nature of core impairments remains disputed. A key issue is whether the disease encompasses one neurocognitive network (semantics) or two (language and semantics). In order to address these conflicting perspectives, we conducted a longitudinal investigation of two semantic dementia patients, in which behavioural performance across a range of measures of language and semantic performance was assessed and interpreted in the context of annually acquired MRI scans. Our results indicated a core semantic impairment in early stages of the disease, associated with atrophy of the inferior, anterior temporal cortex. Linguistic impairments emerged later, and were contingent on atrophy having spread into areas widely believed to subserve core language processes (left posterior perisylvian, inferior frontal and insular cortex). We claim, therefore, that phonological, syntactic and morphological processing deficits in semantic dementia reflect damage to core language areas. Further, we propose that much of the current controversy over the nature of deficits in semantic dementia reflect a tendency in the literature to adopt a static perspective on what is a progressive disease. An approach in which the relationship between progressive neural changes and behavioural change over time is carefully mapped, offers a more constraining data-set from which to draw inferences about the relationship between language, semantics and the brain.
Collapse
|
37
|
Objective phonological and subjective perceptual characteristics of syllables modulate spatiotemporal patterns of superior temporal gyrus activity. Neuroimage 2008; 40:1888-901. [PMID: 18356082 DOI: 10.1016/j.neuroimage.2008.01.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/23/2022] Open
Abstract
Natural consonant-vowel syllables are reliably classified by most listeners as voiced or voiceless. However, our previous research [Liederman, J., Frye, R., Fisher, J.M., Greenwood, K., Alexander, R., 2005. A temporally dynamic context effect that disrupts voice onset time discrimination of rapidly successive stimuli. Psychon Bull Rev. 12, 380-386] suggests that among synthetic stimuli varying systematically in voice onset time (VOT), syllables that are classified reliably as voiceless are nonetheless perceived differently within and between listeners. This perceptual ambiguity was measured by variation in the accuracy of matching two identical stimuli presented in rapid succession. In the current experiment, we used magnetoencephalography (MEG) to examine the differential contribution of objective (i.e., VOT) and subjective (i.e., perceptual ambiguity) acoustic features on speech processing. Distributed source models estimated cortical activation within two regions of interest in the superior temporal gyrus (STG) and one in the inferior frontal gyrus. These regions were differentially modulated by VOT and perceptual ambiguity. Ambiguity strongly influenced lateralization of activation; however, the influence on lateralization was different in the anterior and middle/posterior portions of the STG. The influence of ambiguity on the relative amplitude of activity in the right and left anterior STG activity depended on VOT, whereas that of middle/posterior portions of the STG did not. These data support the idea that early cortical responses are bilaterally distributed whereas late processes are lateralized to the dominant hemisphere and support a "how/what" dual-stream auditory model. This study helps to clarify the role of the anterior STG, especially in the right hemisphere, in syllable perception. Moreover, our results demonstrate that both objective phonological and subjective perceptual characteristics of syllables independently modulate spatiotemporal patterns of cortical activation.
Collapse
|
38
|
Bles M, Jansma BM. Phonological processing of ignored distractor pictures, an fMRI investigation. BMC Neurosci 2008; 9:20. [PMID: 18267005 PMCID: PMC2259309 DOI: 10.1186/1471-2202-9-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 02/11/2008] [Indexed: 12/01/2022] Open
Abstract
Background Neuroimaging studies of attention often focus on interactions between stimulus representations and top-down selection mechanisms in visual cortex. Less is known about the neural representation of distractor stimuli beyond visual areas, and the interactions between stimuli in linguistic processing areas. In the present study, participants viewed simultaneously presented line drawings at peripheral locations, while in the MRI scanner. The names of the objects depicted in these pictures were either phonologically related (i.e. shared the same consonant-vowel onset construction), or unrelated. Attention was directed either at the linguistic properties of one of these pictures, or at the fixation point (i.e. away from the pictures). Results Phonological representations of unattended pictures could be detected in the posterior superior temporal gyrus, the inferior frontal gyrus, and the insula. Conclusion Under some circumstances, the name of ignored distractor pictures is retrieved by linguistic areas. This implies that selective attention to a specific location does not completely filter out the representations of distractor stimuli at early perceptual stages.
Collapse
Affiliation(s)
- Mart Bles
- Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, Maastricht, the Netherlands.
| | | |
Collapse
|
39
|
Auditory stimulus repetition effects on cortical hemoglobin oxygenation: a near-infrared spectroscopy investigation. Neuroreport 2008; 19:161-5. [PMID: 18185101 DOI: 10.1097/wnr.0b013e3282f4aa2a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cortical response to repeated sensory stimuli plateaus (or declines) as repetition frequencies increase beyond 2-8 Hz. This study examined the underlying changes in cortical oxygenated and deoxygenated hemoglobin associated with this phenomenon using near-infrared spectroscopy. The optical signal was measured from 11 healthy volunteers listening to noise-burst trains presented at 2, 10, and 35 Hz. In a bilateral region consistent with the posterior superior temporal gyrus there was an inverse relationship between deoxyhemoglobin concentration change and stimulus frequency: greatest at 2 Hz, intermediate at 10 Hz, and smallest at 35 Hz. These findings provide preliminary support for a relationship between the perceptual characteristics of auditory stimuli and modulation of cortical oxygenation as measured via an emerging neuromonitoring technique.
Collapse
|
40
|
Badre D, Wagner AD. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 2007; 45:2883-901. [PMID: 17675110 DOI: 10.1016/j.neuropsychologia.2007.06.015] [Citation(s) in RCA: 954] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 04/06/2007] [Accepted: 06/13/2007] [Indexed: 01/10/2023]
Abstract
Cognitive control mechanisms permit memory to be accessed strategically, and so aid in bringing knowledge to mind that is relevant to current goals and actions. In this review, we consider the contribution of left ventrolateral prefrontal cortex (VLPFC) to the cognitive control of memory. Reviewed evidence supports a two-process model of mnemonic control, supported by a double dissociation among rostral regions of left VLPFC. Specifically, anterior VLPFC (approximately BA 47; inferior frontal gyrus pars orbitalis) supports controlled access to stored conceptual representations, whereas mid-VLPFC (approximately BA 45; inferior frontal gyrus pars triangularis) supports a domain-general selection process that operates post-retrieval to resolve competition among active representations. We discuss the contribution of these control mechanisms across a range of mnemonic domains, including semantic retrieval, recollection of contextual details about past events, resolution of proactive interference in working memory, and task switching. Finally, we consider open directions for future research into left VLPFC function and the cognitive control of memory.
Collapse
Affiliation(s)
- David Badre
- Helen Wills Neuroscience Institute, 132 Barker Hall, MC3190, UC Berkeley, CA 94720-3190, USA.
| | | |
Collapse
|
41
|
Marslen-Wilson WD, Tyler LK. Morphology, language and the brain: the decompositional substrate for language comprehension. Philos Trans R Soc Lond B Biol Sci 2007; 362:823-36. [PMID: 17395577 PMCID: PMC2430000 DOI: 10.1098/rstb.2007.2091] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper outlines a neurocognitive approach to human language, focusing on inflectional morphology and grammatical function in English. Taking as a starting point the selective deficits for regular inflectional morphology of a group of non-fluent patients with left hemisphere damage, we argue for a core decompositional network linking left inferior frontal cortex with superior and middle temporal cortex, connected via the arcuate fasciculus. This network handles the processing of regularly inflected words (such as joined or treats), which are argued not to be stored as whole forms and which require morpho-phonological parsing in order to segment complex forms into stems and inflectional affixes. This parsing process operates early and automatically upon all potential inflected forms and is triggered by their surface phonological properties. The predictions of this model were confirmed in a further neuroimaging study, using event-related functional magnetic resonance imaging (fMRI), on unimpaired young adults. The salience of grammatical morphemes for the language system is highlighted by new research showing that similarly early and blind segmentation also operates for derivationally complex forms (such as darkness or rider). These findings are interpreted as evidence for a hidden decompositional substrate to human language processing and related to a functional architecture derived from non-human primate models.
Collapse
|
42
|
Abstract
Event-related functional magnetic resonance imaging signal change in Heschl's gyrus and the planum temporale was found to reflect sensory decisions about target presence. In a dichotic listening task, activation was higher for target present responses, irrespective of actual target presence. In fact, activation was highest for false alarms, that is, 'present' responses in the absence of a target stimulus, and lowest for missed targets. This shows that activity at the earliest stage of cortical auditory processing reflects subjective perceptual decisions. Whether this activation is driven by bottom-up or top-down factors remains to be investigated.
Collapse
Affiliation(s)
- Stefan Pollmann
- Department of Experimental Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | | |
Collapse
|
43
|
Chou TL, Booth JR, Bitan T, Burman DD, Bigio JD, Cone NE, Lu D, Cao F. Developmental and skill effects on the neural correlates of semantic processing to visually presented words. Hum Brain Mapp 2006; 27:915-24. [PMID: 16575838 PMCID: PMC2615534 DOI: 10.1002/hbm.20231] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/07/2005] [Indexed: 11/11/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to explore the neural correlates of semantic judgments to visual words in a group of 9- to 15-year-old children. Subjects were asked to indicate if word pairs were related in meaning. Consistent with previous findings in adults, children showed activation in bilateral inferior frontal gyri (Brodmann area [BA] 47, 45) and left middle temporal gyrus (BA 21). Words with strong semantic association elicited significantly greater activation in bilateral inferior parietal lobules (BA 40), suggesting stronger integration of highly related semantic features. By contrast, words with weak semantic association elicited greater activation in left inferior frontal gyrus (BA 45) and middle temporal gyrus (BA 21), suggesting more difficult feature search and more extensive access to semantic representations. We also examined whether age and skill explained unique variance in the patterns of activation. Increasing age was correlated with greater activation in left middle temporal gyrus (BA 21) and inferior parietal lobule (BA 40), suggesting that older children have more elaborated semantic representations and more complete semantic integration processes, respectively. Decreasing age was correlated with activation in right superior temporal gyrus (BA 22) and decreasing accuracy was correlated with activation in right middle temporal gyrus (BA 21), suggesting the engagement of ancillary systems in the right hemisphere for younger and lower-skill children.
Collapse
Affiliation(s)
- Tai-Li Chou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Baumgartner T, Valko L, Esslen M, Jäncke L. Neural correlate of spatial presence in an arousing and noninteractive virtual reality: an EEG and psychophysiology study. ACTA ACUST UNITED AC 2006; 9:30-45. [PMID: 16497116 DOI: 10.1089/cpb.2006.9.30] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using electroencephalography (EEG), psychophysiology, and psychometric measures, this is the first study which investigated the neurophysiological underpinnings of spatial presence. Spatial presence is considered a sense of being physically situated within a spatial environment portrayed by a medium (e.g., television, virtual reality). Twelve healthy children and 11 healthy adolescents were watching different virtual roller coaster scenarios. During a control session, the roller coaster cab drove through a horizontal roundabout track. The following realistic roller coaster rides consisted of spectacular ups, downs, and loops. Low-resolution brain electromagnetic tomography (LORETA) and event-related desynchronization (ERD) were used to analyze the EEG data. As expected, we found that, compared to the control condition, experiencing a virtual roller coaster ride evoked in both groups strong SP experiences, increased electrodermal reactions, and activations in parietal brain areas known to be involved in spatial navigation. In addition, brain areas that receive homeostatic afferents from somatic and visceral sensations of the body were strongly activated. Most interesting, children (as compared to adolescents) reported higher spatial presence experiences and demonstrated a different frontal activation pattern. While adolescents showed increased activation in prefrontal areas known to be involved in the control of executive functions, children demonstrated a decreased activity in these brain regions. Interestingly, recent neuroanatomical and neurophysiological studies have shown that the frontal brain continues to develop to adult status well into adolescence. Thus, the result of our study implies that the increased spatial presence experience in children may result from the not fully developed control functions of the frontal cortex.
Collapse
Affiliation(s)
- Thomas Baumgartner
- Institute for Empirical Research in Economics and Neuroeconomics, University of Zurich, Switzerland.
| | | | | | | |
Collapse
|
45
|
Sugihara G, Kaminaga T, Sugishita M. Interindividual uniformity and variety of the “Writing center”: A functional MRI study. Neuroimage 2006; 32:1837-49. [PMID: 16872841 DOI: 10.1016/j.neuroimage.2006.05.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/05/2006] [Accepted: 05/14/2006] [Indexed: 11/30/2022] Open
Abstract
Our aim is to investigate the neural substrates for writing using fMRI (twenty right-handed subjects). We assumed that common areas involved in both writing with right and left hands are crucial to the central process of writing. We employed Japanese phonograms (Kana), in which phoneme-grapheme conversion would be extremely simple. Brain activation was examined under three conditions: (1) written naming with the right hand (WR), (2) written naming with the left hand (WL), and (3) naming silently (NA). While the comparison of WR to NA (WR>NA) exhibited activation only in the left frontoparietal area, the WL>NA comparison exhibited broader activation than the WR>NA comparison, i.e., the left frontoparietal area except the motor and sensory areas and the right frontoparietal area. A conjunction analysis in SPM2 revealed common areas of activation across the WR>NA and WL>NA comparisons, which are assumed to be crucial to writing. In the group analysis, three areas were found to be activated: the posterior end of the left superior frontal gyrus, which is superior and posterior to Exner's center; the anterior part of the left superior parietal lobule; and the lower part of the anterior limb of the left supramarginal gyrus. In the single-subject analysis, whereas the first two of the above three areas were found to be crucial for writing in all individuals, an interindividual inconsistency of involvement with writing was observed in three areas: the lower part of the anterior limb of the left supramarginal gyrus (60% involved); the right frontal region (47%); and the right intraparietal sulcus (47%).
Collapse
Affiliation(s)
- Genichi Sugihara
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | |
Collapse
|
46
|
Vuust P, Roepstorff A, Wallentin M, Mouridsen K, Østergaard L. It don't mean a thing…. Neuroimage 2006; 31:832-41. [PMID: 16516496 DOI: 10.1016/j.neuroimage.2005.12.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/09/2005] [Accepted: 12/19/2005] [Indexed: 11/19/2022] Open
Abstract
Music is experienced and understood on the basis of foreground/background relationships created between actual music and the underlying meter. In contemporary styles of music so-called polyrhythmic, structures hence create tension between a counter pulse and the main pulse. This exerts a marked influence on the listener, particularly when the experience of the original meter is maintained during the counter pulse. We here demonstrate that Brodmann area 47, an area associated with higher processing of language, is activated bilaterally when musicians tap the main pulse in a polymetric context where the music emphasizes a counter meter. This suggests that the processing of metric elements of music relies on brain areas also involved in language comprehension. We propose that BA47 is involved in general neuronal processing of temporal coherence subserving both language and music.
Collapse
Affiliation(s)
- P Vuust
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Denmark.
| | | | | | | | | |
Collapse
|
47
|
Kaiser J, Leiberg S, Lutzenberger W. Let's talk together: memory traces revealed by cooperative activation in the cerebral cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 68:51-78. [PMID: 16443010 DOI: 10.1016/s0074-7742(05)68003-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Jochen Kaiser
- Institute of Medical Psychology, Johann Wolfgang Goethe-University 60528 Frankfurt am Main, Germany
| | | | | |
Collapse
|
48
|
Vigneau M, Beaucousin V, Hervé PY, Duffau H, Crivello F, Houdé O, Mazoyer B, Tzourio-Mazoyer N. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 2006; 30:1414-32. [PMID: 16413796 DOI: 10.1016/j.neuroimage.2005.11.002] [Citation(s) in RCA: 1208] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 11/28/2022] Open
Abstract
The advent of functional neuroimaging has allowed tremendous advances in our understanding of brain-language relationships, in addition to generating substantial empirical data on this subject in the form of thousands of activation peak coordinates reported in a decade of language studies. We performed a large-scale meta-analysis of this literature, aimed at defining the composition of the phonological, semantic, and sentence processing networks in the frontal, temporal, and inferior parietal regions of the left cerebral hemisphere. For each of these language components, activation peaks issued from relevant component-specific contrasts were submitted to a spatial clustering algorithm, which gathered activation peaks on the basis of their relative distance in the MNI space. From a sample of 730 activation peaks extracted from 129 scientific reports selected among 260, we isolated 30 activation clusters, defining the functional fields constituting three distributed networks of frontal and temporal areas and revealing the functional organization of the left hemisphere for language. The functional role of each activation cluster is discussed based on the nature of the tasks in which it was involved. This meta-analysis sheds light on several contemporary issues, notably on the fine-scale functional architecture of the inferior frontal gyrus for phonological and semantic processing, the evidence for an elementary audio-motor loop involved in both comprehension and production of syllables including the primary auditory areas and the motor mouth area, evidence of areas of overlap between phonological and semantic processing, in particular at the location of the selective human voice area that was the seat of partial overlap of the three language components, the evidence of a cortical area in the pars opercularis of the inferior frontal gyrus dedicated to syntactic processing and in the posterior part of the superior temporal gyrus a region selectively activated by sentence and text processing, and the hypothesis that different working memory perception-actions loops are identifiable for the different language components. These results argue for large-scale architecture networks rather than modular organization of language in the left hemisphere.
Collapse
Affiliation(s)
- M Vigneau
- Groupe d'Imagerie Neurofonctionnelle, UMR 6194, CNRS CEA Caen and Paris 5 Universities, GIP Cyceron, boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Seghier ML, Vuilleumier P. Functional neuroimaging findings on the human perception of illusory contours. Neurosci Biobehav Rev 2006; 30:595-612. [PMID: 16457887 DOI: 10.1016/j.neubiorev.2005.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 09/14/2005] [Accepted: 11/21/2005] [Indexed: 11/25/2022]
Abstract
Illusory contours (IC) have attracted a considerable interest in recent years to derive models of how sensory information is processed and integrated within the visual system. In addition to various findings from neuropsychology, neurophysiology, and psychophysics, several recent studies have used functional neuroimaging to identify the cerebral substrates underlying human perception of IC (in particular Kanizsa figures). In this paper, we review the results from more than 20 neuroimaging studies on IC perception and highlight the great diversity of findings across these studies. We then provide a detailed discussion about the localization ('where' debate) and the timing ('when' debate) of IC processing as suggested by functional neuroimaging. Cortical responses involving visual areas as early as V1/V2 and latencies as rapid as 100 ms have been reported in several studies. Particular issues concerning the role of the right hemisphere and the retinotopic encoding of IC are also discussed. These different findings are tentatively brought together to propose different hypothetical cortical mechanisms that might be responsible for the visual formation of IC. Several remaining questions on IC processing that could potentially be explored with functional neuroimaging techniques are finally emphasized.
Collapse
Affiliation(s)
- M L Seghier
- Laboratory for Neurology and Imaging of Cognition, Clinic of Neurology and Department of Neurosciences, University Medical Center of Geneva, Michel-Servet 1, Geneva 1211, Switzerland.
| | | |
Collapse
|
50
|
Heim S, Alter K, Ischebeck AK, Amunts K, Eickhoff SB, Mohlberg H, Zilles K, von Cramon DY, Friederici AD. The role of the left Brodmann's areas 44 and 45 in reading words and pseudowords. ACTA ACUST UNITED AC 2005; 25:982-93. [PMID: 16310346 DOI: 10.1016/j.cogbrainres.2005.09.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
In this functional magnetic resonance imaging (fMRI) study, we investigated the influence of two task (lexical decision, LDT; phonological decision, PDT) on activation in Broca's region (left Brodmann's areas [BA] 44 and 45) during the processing of visually presented words and pseudowords. Reaction times were longer for pseudowords than words in LDT but did not differ in PDT. By combining the fMRI data with cytoarchitectonic anatomical probability maps, we demonstrated that the left BA 44 and BA 45 were stronger activated for pseudowords than for words. Separate analyses for LDT and PDT revealed that the left BA 44 was activated in both tasks, whereas left BA 45 was only involved in LDT. The results are interpreted within a dual-route model of reading with the left BA 44 supporting grapheme-to-phoneme conversion and the left BA 45 being related to explicit lexical search.
Collapse
Affiliation(s)
- Stefan Heim
- Research Centre Jülich, Institute of Medicine, AG Brain Mapping, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|