1
|
Chia RSL, Minta K, Wu LY, Salai KHT, Chai YL, Hilal S, Venketasubramanian N, Chen CP, Chong JR, Lai MKP. Serum Brevican as a Biomarker of Cerebrovascular Disease in an Elderly Cognitively Impaired Cohort. Biomolecules 2024; 14:75. [PMID: 38254675 PMCID: PMC10813026 DOI: 10.3390/biom14010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
In the brain, the extracellular matrix (ECM) composition shapes the neuronal microenvironment and can undergo substantial changes with cerebral pathology. Brevican is integral to the formation of the ECM's neuroprotective perineuronal nets (PNNs). Decreased brevican levels were reported in vascular dementia (VaD) but not in Alzheimer's disease (AD). However, the status of brevican in clinical cohorts with high concomitance of AD pathological burden and cerebrovascular disease (CeVD) is unclear. In this study, 32 non-cognitively impaired (NCI), 97 cognitively impaired no dementia (CIND), 46 AD, and 23 VaD participants recruited from memory clinics based in Singapore underwent neuropsychological and neuroimaging assessments, together with measurements of serum brevican. Association analyses were performed between serum brevican and neuroimaging measures of CeVDs, including white matter hyperintensities (WMHs), lacunes, cortical infarcts, and cerebral microbleeds. Using an aggregated score for CeVD burden, only CIND participants showed lower brevican levels with higher CeVD compared to those with lower CeVD burden (p = 0.006). Among the CeVD subtypes assessed, only elevated WMH burden was associated with lower brevican levels (OR = 2.7; 95% CI = 1.3-5.5). Our findings suggest that brevican deficits may play a role in early cerebrovascular damage in participants at risk of developing dementia.
Collapse
Affiliation(s)
- Rachel S. L. Chia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Karolina Minta
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Future Health Technologies, Singapore–ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Liu-Yun Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Kaung H. T. Salai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
- Departments of Epidemiology and Radiology & Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Christopher P. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Joyce R. Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| | - Mitchell K. P. Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore 117600, Singapore
| |
Collapse
|
2
|
Minta K, Brinkmalm G, Portelius E, Johansson P, Svensson J, Kettunen P, Wallin A, Zetterberg H, Blennow K, Andreasson U. Brevican and Neurocan Peptides as Potential Cerebrospinal Fluid Biomarkers for Differentiation Between Vascular Dementia and Alzheimer's Disease. J Alzheimers Dis 2021; 79:729-741. [PMID: 33337373 DOI: 10.3233/jad-201039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Brevican and neurocan are central nervous system-specific extracellular matrix proteoglycans. They are degraded by extracellular enzymes, such as metalloproteinases. However, their degradation profile is largely unexplored in cerebrospinal fluid (CSF). OBJECTIVE The study aim was to quantify proteolytic peptides derived from brevican and neurocan in human CSF of patients with Alzheimer's disease (AD) and vascular dementia (VaD) compared with controls. METHODS The first cohort consisted of 75 individuals including 25 patients with AD, 7 with mild cognitive impairment (MCI) diagnosed with AD upon follow-up, 10 patients with VaD or MCI diagnosed with VaD upon follow-up, and 33 healthy controls and cognitively stable MCI patients. In the second cohort, 31 individuals were included (5 AD patients, 14 VaD patients and 12 healthy controls). Twenty proteolytic peptides derived from brevican (n = 9) and neurocan (n = 11) were quantified using high-resolution parallel reaction monitoring mass spectrometry. RESULTS In the first cohort, the majority of CSF concentrations of brevican and neurocan peptides were significantly decreased inVaDas compared withADpatients (AUC = 0.83.0.93, p≤0.05) and as compared with the control group (AUC = 0.79.0.87, p ≤ 0.05). In the second cohort, CSF concentrations of two brevican peptides (B87, B156) were significantly decreased in VaD compared with AD (AUC = 0.86.0.91, p ≤ 0.05) and to controls (AUC = 0.80.0.82, p ≤ 0.05), while other brevican and neurocan peptides showed a clear trend to be decreased in VaD compared with AD (AUC = 0.64.80, p > 0.05). No peptides differed between AD and controls. CONCLUSION Brevican and neurocan peptides are potential diagnostic biomarkers for VaD, with ability to separate VaD from AD.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Per Johansson
- Department of Clinical Sciences Helsingborg, Lund University, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Endocrinology, Skaraborg Central Hospital, Skövde, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
3
|
Inhibition of Autophagy Flux Promotes Secretion of Chondroitin Sulfate Proteoglycans in Primary Rat Astrocytes. Mol Neurobiol 2021; 58:6077-6091. [PMID: 34449046 DOI: 10.1007/s12035-021-02533-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Following spinal cord injury (SCI), reactive astrocytes in the glial scar produce high levels of chondroitin sulfate proteoglycans (CSPGs), which are known to inhibit axonal regeneration. Transforming growth factor beta (TGFβ) is a well-known factor that induces the production of CSPGs, and in this study, we report a novel mechanism underlying TGFβ's effects on CSPG secretion in primary rat astrocytes. We observed increased TGFβ-induced secretion of the CSPGs neurocan and brevican, and this occurred simultaneously with inhibition of autophagy flux. In addition, we show that neurocan and brevican levels are further increased when TGFβ is administered in the presence of an autophagy inhibitor, Bafilomycin-A1, while they are reduced when cells are treated with a concentration of rapamycin that is not sufficient to induce autophagy. These findings suggest that TGFβ mediates its effects on CSPG secretion through autophagy pathways. They also represent a potential new approach to reduce CSPG secretion in vivo by targeting autophagy pathways, which could improve axonal regeneration after SCI.
Collapse
|
4
|
Strackeljan L, Baczynska E, Cangalaya C, Baidoe-Ansah D, Wlodarczyk J, Kaushik R, Dityatev A. Microglia Depletion-Induced Remodeling of Extracellular Matrix and Excitatory Synapses in the Hippocampus of Adult Mice. Cells 2021; 10:1862. [PMID: 34440631 PMCID: PMC8393852 DOI: 10.3390/cells10081862] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role in synaptogenesis and the regulation of synaptic functions in the central nervous system. Recent studies revealed that in addition to dopaminergic and serotoninergic neuromodulatory systems, microglia also contribute to the regulation of ECM remodeling. In the present work, we investigated the physiological role of microglia in the remodeling of perineuronal nets (PNNs), predominantly associated with parvalbumin-immunopositive (PV+) interneurons, and the perisynaptic ECM around pyramidal neurons in the hippocampus. Adult mice were treated with PLX3397 (pexidartinib), as the inhibitor of colony-stimulating factor 1 receptor (CSF1-R), to deplete microglia. Then, confocal analysis of the ECM and synapses was performed. Although the elimination of microglia did not alter the overall number or intensity of PNNs in the CA1 region of the hippocampus, it decreased the size of PNN holes and elevated the expression of the surrounding ECM. In the neuropil area in the CA1 str. radiatum, the depletion of microglia increased the expression of perisynaptic ECM proteoglycan brevican, which was accompanied by the elevated expression of presynaptic marker vGluT1 and the increased density of dendritic spines. Thus, microglia regulate the homeostasis of pre- and postsynaptic excitatory terminals and the surrounding perisynaptic ECM as well as the fine structure of PNNs enveloping perisomatic-predominantly GABAergic-synapses.
Collapse
Affiliation(s)
- Luisa Strackeljan
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (L.S.); (C.C.); (D.B.-A.)
| | - Ewa Baczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; (E.B.); (J.W.)
| | - Carla Cangalaya
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (L.S.); (C.C.); (D.B.-A.)
- Institut für Biochemie und Zellbiologie, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, 39120 Magdeburg, Germany
| | - David Baidoe-Ansah
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (L.S.); (C.C.); (D.B.-A.)
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland; (E.B.); (J.W.)
| | - Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (L.S.); (C.C.); (D.B.-A.)
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (L.S.); (C.C.); (D.B.-A.)
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
5
|
Fontanil T, Mohamedi Y, Espina-Casado J, Obaya ÁJ, Cobo T, Cal S. Hyalectanase Activities by the ADAMTS Metalloproteases. Int J Mol Sci 2021; 22:ijms22062988. [PMID: 33804223 PMCID: PMC8000579 DOI: 10.3390/ijms22062988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The hyalectan family is composed of the proteoglycans aggrecan, versican, brevican and neurocan. Hyalectans, also known as lecticans, are components of the extracellular matrix of different tissues and play essential roles in key biological processes including skeletal development, and they are related to the correct maintenance of the vascular and central nervous system. For instance, hyalectans participate in the organization of structures such as perineural nets and in the regulation of neurite outgrowth or brain recovery following a traumatic injury. The ADAMTS (A Disintegrin and Metalloprotease domains, with thrombospondin motifs) family consists of 19 secreted metalloproteases. These enzymes also perform important roles in the structural organization and function of the extracellular matrix through interactions with other matrix components or as a consequence of their catalytic activity. In this regard, some of their preferred substrates are the hyalectans. In fact, ADAMTSs cleave hyalectans not only as a mechanism for clearance or turnover of proteoglycans but also to generate bioactive fragments which display specific functions. In this article we review some of the physiological and pathological effects derived from cleavages of hyalectans mediated by ADAMTSs.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
| | - Jorge Espina-Casado
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Álvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| |
Collapse
|
6
|
Minta K, Brinkmalm G, Thelin EP, Al Nimer F, Piehl F, Tullberg M, Jeppsson A, Portelius E, Zetterberg H, Blennow K, Andreasson U. Cerebrospinal fluid brevican and neurocan fragment patterns in human traumatic brain injury. Clin Chim Acta 2020; 512:74-83. [PMID: 33275942 DOI: 10.1016/j.cca.2020.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Altered levels of two extracellular matrix (ECM) proteoglycans, brevican and neurocan, have been found in brain injury models; however, their proteolytic processing in traumatic brain injury (TBI) remains unexplored. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) is a possible contributor to ECM remodelling following TBI. The aims of this study were to evaluate proteolytic brevican/neurocan patterns and ADAMTS-like activity in cerebrospinal fluid (CSF) in the context of TBI. MATERIALS AND METHODS Forty-two acute TBI patients and 37 idiopathic normal pressure hydrocephalus (iNPH) patients were included in the analysis of tryptic brevican and neurocan peptides in CSF using parallel reaction monitoring mass spectrometry. Twenty-nine TBI and 36 iNPH patients were analysed for ADAMTS-like activity in CSF using a quenched fluorescent substrate. RESULTS The majority of CSF concentrations of brevican peptides significantly decreased in TBI patients compared with the iNPH group (p ≤ 0.002), while ADAMTS-like activity increased (p < 0.0001). Two C-terminal brevican peptides strongly correlated with unfavourable outcome of TBI patients (rho = 0.85-0.93, p ≤ 0.001). CONCLUSIONS The decreased CSF concentrations of brevican peptides in TBI are associated with their increased degradation by ADAMTS enzymes. Furthermore, the N- and C-terminal parts of brevican are differentially regulated following TBI and may serve as outcome markers.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Tullberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Anna Jeppsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
7
|
Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, Taloma SE, Barron JJ, Molofsky AB, Kheirbek MA, Molofsky AV. Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity. Cell 2020; 182:388-403.e15. [PMID: 32615087 DOI: 10.1016/j.cell.2020.05.050] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation.
Collapse
Affiliation(s)
- Phi T Nguyen
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Leah C Dorman
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Pan
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ilia D Vainchtein
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rafael T Han
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hiromi Nakao-Inoue
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sunrae E Taloma
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jerika J Barron
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Anna V Molofsky
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Jonesco DS, Karsdal MA, Henriksen K. The CNS-specific proteoglycan, brevican, and its ADAMTS4-cleaved fragment show differential serological levels in Alzheimer's disease, other types of dementia and non-demented controls: A cross-sectional study. PLoS One 2020; 15:e0234632. [PMID: 32559242 PMCID: PMC7304580 DOI: 10.1371/journal.pone.0234632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023] Open
Abstract
Evidence indicate that the brain-specific protein, brevican, is proteolytically cleaved during neurodegeneration, hence positioning fragments of brevican as potential blood biomarkers of neurodegenerative diseases, such as dementia. We aimed to develop two assays capable of detecting the brevican N-terminal (N-Brev) and the ADAMTS4-generated fragment (Brev-A), cleaved at Ser401, in serum and to perform a preliminary assessment of their diagnostic potential in dementias. Monoclonal antibodies against N-Brev and Brev-A were used to develop two ELISAs detecting each epitope. A comparison of brevican fragments in serum from individuals with AD (n = 28), other dementia (OD) (n = 41), and non-dementia-related memory complaints (NDCs) (n = 48) was conducted. Anti-N-Brev and anti-Brev-A antibodies selectively recognized their targets and dilution and spike recoveries were within limits of ±20%. Intra- and inter-assay CVs were below limits of 10% and 15%, respectively. For the N-Brev biomarker, serum from patients with OD showed significantly lower levels than those with AD (p = 0.05) and NDCs (p < 0.01). The opposite pattern was evident for Brev-A: serum levels in patients with OD were significantly higher than for AD (p = 0.04) and NDCs (p = 0.01). For both N-Brev and Brev-A, levels did not differ between AD and NDCs. The ratio of N-Brev/Brev-A resulted in increased significant differences between OD and AD (p < 0.01) and between OD and NDCs (p < 0.0001). The ratio discriminated between NDCs and OD (AUC: 0.75, 95% CI: 0.65-0.85, p < 0.0001) and between OD and AD (AUC: 0.72, 95% CI: 0.59-0.85, p < 0.01). In conclusion, we developed the first assays detecting the N-terminal of brevican as well as an ADAMTS4-cleaved fragment of brevican in blood. Differential levels of N-Brev and Brev-A between AD and OD allow for these biomarkers to possibly distinguish between different forms of dementias.
Collapse
Affiliation(s)
| | | | - Kim Henriksen
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
9
|
Mitlöhner J, Kaushik R, Niekisch H, Blondiaux A, Gee CE, Happel MFK, Gundelfinger E, Dityatev A, Frischknecht R, Seidenbecher C. Dopamine Receptor Activation Modulates the Integrity of the Perisynaptic Extracellular Matrix at Excitatory Synapses. Cells 2020; 9:cells9020260. [PMID: 31972963 PMCID: PMC7073179 DOI: 10.3390/cells9020260] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
In the brain, Hebbian-type and homeostatic forms of plasticity are affected by neuromodulators like dopamine (DA). Modifications of the perisynaptic extracellular matrix (ECM), which control the functions and mobility of synaptic receptors as well as the diffusion of transmitters and neuromodulators in the extracellular space, are crucial for the manifestation of plasticity. Mechanistic links between synaptic activation and ECM modifications are largely unknown. Here, we report that neuromodulation via D1-type DA receptors can induce targeted ECM proteolysis specifically at excitatory synapses of rat cortical neurons via proteases ADAMTS-4 and -5. We showed that receptor activation induces increased proteolysis of brevican (BC) and aggrecan, two major constituents of the adult ECM both in vivo and in vitro. ADAMTS immunoreactivity was detected near synapses, and shRNA-mediated knockdown reduced BC cleavage. We have outlined a molecular scenario of how synaptic activity and neuromodulation are linked to ECM rearrangements via increased cAMP levels, NMDA receptor activation, and intracellular calcium signaling.
Collapse
Affiliation(s)
- Jessica Mitlöhner
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases (DZNE), Molecular Neuroplasticity Group, 39120 Magdeburg, Germany;
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Hartmut Niekisch
- Leibniz Institute for Neurobiology (LIN), Department of Systems Physiology of Learning, 39118 Magdeburg, Germany; (H.N.); (M.F.K.H.)
| | - Armand Blondiaux
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
| | - Christine E. Gee
- Center for Molecular Neurobiology Hamburg (ZMNH), Institute for Synaptic Physiology, 20251 Hamburg, Germany;
| | - Max F. K. Happel
- Leibniz Institute for Neurobiology (LIN), Department of Systems Physiology of Learning, 39118 Magdeburg, Germany; (H.N.); (M.F.K.H.)
| | - Eckart Gundelfinger
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Otto-von-Guericke University, Medical Faculty, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Molecular Neuroplasticity Group, 39120 Magdeburg, Germany;
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Otto-von-Guericke University, Medical Faculty, 39120 Magdeburg, Germany
- Correspondence: (A.D.); (R.F.); (C.S.); Tel.: +49-391 67-24526 (A.D.); +49-9131 85-28051 (R.F.); +49-391-6263-92401 (C.S.)
| | - Renato Frischknecht
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Correspondence: (A.D.); (R.F.); (C.S.); Tel.: +49-391 67-24526 (A.D.); +49-9131 85-28051 (R.F.); +49-391-6263-92401 (C.S.)
| | - Constanze Seidenbecher
- Leibniz Institute for Neurobiology (LIN), Department of Neurochemistry and Molecular Biology, 39118 Magdeburg, Germany; (J.M.); (A.B.); (E.G.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Otto-von-Guericke University, Medical Faculty, 39120 Magdeburg, Germany
- Correspondence: (A.D.); (R.F.); (C.S.); Tel.: +49-391 67-24526 (A.D.); +49-9131 85-28051 (R.F.); +49-391-6263-92401 (C.S.)
| |
Collapse
|
10
|
Trivedi A, Noble-Haeusslein LJ, Levine JM, Santucci AD, Reeves TM, Phillips LL. Matrix metalloproteinase signals following neurotrauma are right on cue. Cell Mol Life Sci 2019; 76:3141-3156. [PMID: 31168660 PMCID: PMC11105352 DOI: 10.1007/s00018-019-03176-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Neurotrauma, a term referencing both traumatic brain and spinal cord injuries, is unique to neurodegeneration in that onset is clearly defined. From the perspective of matrix metalloproteinases (MMPs), there is opportunity to define their temporal participation in injury and recovery beginning at the level of the synapse. Here we examine the diverse roles of MMPs in the context of targeted insults (optic nerve lesion and hippocampal and olfactory bulb deafferentation), and clinically relevant focal models of traumatic brain and spinal cord injuries. Time-specific MMP postinjury signaling is critical to synaptic recovery after focal axonal injuries; members of the MMP family exhibit a signature temporal profile corresponding to axonal degeneration and regrowth, where they direct postinjury reorganization and synaptic stabilization. In both traumatic brain and spinal cord injuries, MMPs mediate early secondary pathogenesis including disruption of the blood-brain barrier, creating an environment that may be hostile to recovery. They are also critical players in wound healing including angiogenesis and the formation of an inhibitory glial scar. Experimental strategies to reduce their activity in the acute phase result in long-term neurological recovery after neurotrauma and have led to the first clinical trial in spinal cord injured pet dogs.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA.
| | - Linda J Noble-Haeusslein
- Departments of Psychology, College of Liberal Arts, and Neurology, the Dell Medical School, University of Texas, Austin, TX, 78712, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alison D Santucci
- Department of Neuroscience, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
11
|
Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness. Trends Neurosci 2019; 42:293-306. [PMID: 30795846 DOI: 10.1016/j.tins.2019.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Over a billion people worldwide are affected by vitamin D deficiency. Although vitamin D deficiency is associated with impaired cognition, the mechanisms mediating this link are poorly understood. The extracellular matrix (ECM) has now emerged as an important participant of synaptic plasticity and a new hypothesis is that vitamin D may interact with aggregates of the ECM, perineuronal nets (PNNs), to regulate brain plasticity. Dysregulation of PNNs caused by vitamin D deficiency may contribute to the presentation of cognitive deficits. Understanding the molecular mechanisms underpinning the role of vitamin D in brain plasticity and cognition could help identify ways to treat cognitive symptoms in schizophrenia and other neuropsychiatric conditions.
Collapse
|
12
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
13
|
Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics. Neural Plast 2018. [PMID: 29531525 PMCID: PMC5817213 DOI: 10.1155/2018/5735789] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The perineuronal net (PNN) represents a lattice-like structure that is prominently expressed along the soma and proximal dendrites of parvalbumin- (PV-) positive interneurons in varied brain regions including the cortex and hippocampus. It is thus apposed to sites at which PV neurons receive synaptic input. Emerging evidence suggests that changes in PNN integrity may affect glutamatergic input to PV interneurons, a population that is critical for the expression of synchronous neuronal population discharges that occur with gamma oscillations and sharp-wave ripples. The present review is focused on the composition of PNNs, posttranslation modulation of PNN components by sulfation and proteolysis, PNN alterations in disease, and potential effects of PNN remodeling on neuronal plasticity at the single-cell and population level.
Collapse
|
14
|
Wohl SG, Jorstad NL, Levine EM, Reh TA. Müller glial microRNAs are required for the maintenance of glial homeostasis and retinal architecture. Nat Commun 2017; 8:1603. [PMID: 29150673 PMCID: PMC5693933 DOI: 10.1038/s41467-017-01624-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/02/2017] [Indexed: 01/21/2023] Open
Abstract
To better understand the roles of microRNAs in glial function, we used a conditional deletion of Dicer1 (Dicer-CKOMG) in retinal Müller glia (MG). Dicer1 deletion from the MG leads to an abnormal migration of the cells as early as 1 month after the deletion. By 6 months after Dicer1 deletion, the MG form large aggregations and severely disrupt normal retinal architecture and function. The most highly upregulated gene in the Dicer-CKOMG MG is the proteoglycan Brevican (Bcan) and overexpression of Bcan results in similar aggregations of the MG in wild-type retina. One potential microRNA that regulates Bcan is miR-9, and overexpression of miR-9 can partly rescue the effects of Dicer1 deletion on the MG phenotype. We also find that MG from retinitis pigmentosa patients display an increase in Brevican immunoreactivity at sites of MG aggregation, linking the retinal remodeling that occurs in chronic disease with microRNAs.
Collapse
Affiliation(s)
- Stefanie G Wohl
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA
| | - Nikolas L Jorstad
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA.
| |
Collapse
|
15
|
Pruvost M, Lépine M, Leonetti C, Etard O, Naveau M, Agin V, Docagne F, Maubert E, Ali C, Emery E, Vivien D. ADAMTS-4 in oligodendrocytes contributes to myelination with an impact on motor function. Glia 2017; 65:1961-1975. [PMID: 28850711 DOI: 10.1002/glia.23207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/06/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
Abstract
Myelination is a late developmental process regulated by a set of inhibitory and stimulatory factors, including extracellular matrix components. Accordingly, chondroitin sulfate proteoglycans (CSPGs) act as negative regulators of myelination processes. A disintegrin and metalloproteinase with thrombospondin motifs type 4 (ADAMTS-4) is an extracellular protease capable of degrading CSPGs. Although exogenous ADAMTS-4 has been proven to be beneficial in several models of central nervous system (CNS) injuries, the physiological functions of endogenous ADAMTS-4 remain poorly understood. We first used Adamts4/LacZ reporter mice to reveal that ADAMTS-4 is strongly expressed in the CNS, especially in the white matter, with a cellular profile restricted to mature oligodendrocytes. Interestingly, we evidenced an abnormal myelination in Adamts4-/- mice, characterized by a higher diameter of myelinated axons with a shifting g-ratio. Accordingly, lack of ADAMTS-4 is accompanied by motor deficits and disturbed nervous electrical activity. In conclusion, we demonstrate that ADAMTS-4 is a new marker of mature oligodendrocytes contributing to the myelination processes and thus to the control of motor capacities.
Collapse
Affiliation(s)
- Mathilde Pruvost
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Matthieu Lépine
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Camille Leonetti
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Olivier Etard
- CHU de Caen, Laboratoire des Explorations Fonctionnelles du Système Nerveux, Avenue de la côte de Nacre, Caen F-14000, France.,Normandie Univ, UNICAEN, ISTS, 14000 Caen, France
| | - Mikaël Naveau
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France.,UMS 3408 Support Cyceron, CNR, Universite de Caen Normandie, CHU de Caen, GIP CYCERON, Caen, France
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Fabian Docagne
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Eric Maubert
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Carine Ali
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Evelyne Emery
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France.,Department of neurosurgery, CHU de Caen, Avenue de la côte de Nacre, Caen F-14000, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France.,Department of clinical research, CHU de Caen, Avenue de la côte de Nacre, Caen F-14000, France
| |
Collapse
|
16
|
Gurses MS, Ural MN, Gulec MA, Akyol O, Akyol S. Pathophysiological Function of ADAMTS Enzymes on Molecular Mechanism of Alzheimer's Disease. Aging Dis 2016; 7:479-90. [PMID: 27493839 PMCID: PMC4963191 DOI: 10.14336/ad.2016.0111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is an environment that has various enzymes attended in regeneration and restoration processes which is very important to sustain physiological and biological functions of central nervous system (CNS). One of the participating enzyme systems in ECM turnover is matrix metalloproteinases. A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS) is a unique family of ECM proteases found in mammals. Components of this family may be distinguished from the ADAM (A Disintegrin and Metalloproteinase) family based on the multiple copies of thrombospondin 1-like repeats. The considerable role of the ADAMTS in the CNS continues to develop. Evidences indicate that ADAMTS play an important role in neuroplasticity as well as nervous system pathologies such as Alzheimer's disease (AD). It is hopeful and possible that ADAMTS family members may be utilized to develop therapies for CNS pathologies, ischemic injuries, neurodegenerative and neurological diseases. To understand and provide definitive data on ADAMTS to improve structural and functional recovery in CNS injury and diseases, this review aimed to enlighten the subject extensively to reach certain information on metalloproteinases and related molecules/enzymes. It will be interesting to examine how ADAMTS expression and action would affect the initiation/progression of above-mentioned clinical situations, especially AD.
Collapse
Affiliation(s)
- Murat Serdar Gurses
- Department of Forensic Medicine, School of Medicine, Uludag University, Bursa, Turkey
| | - Mustafa Numan Ural
- Department of Forensic Medicine, School of Medicine, Uludag University, Bursa, Turkey
| | - Mehmet Akif Gulec
- Department of Medical Biochemistry, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Omer Akyol
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sumeyya Akyol
- Department of Medical Biology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| |
Collapse
|
17
|
Kim SY, Porter BE, Friedman A, Kaufer D. A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy. J Neurosci Res 2016; 94:794-803. [PMID: 27265805 DOI: 10.1002/jnr.23758] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 01/04/2023]
Abstract
Head trauma and vascular injuries are known risk factors for acquired epilepsy. The sequence of events that lead from the initial injury to the development of epilepsy involves complex plastic changes and circuit rewiring. In-depth, comprehensive understanding of the epileptogenic process is critical for the identification of disease-modifying targets. Here we review the complex interactions of cellular and extracellular components that may promote epileptogenesis, with an emphasis on the role of astrocytes. Emerging evidence demonstrates that astrocytes promptly respond to brain damage and play a critical role in the development of postinjury epilepsy. Astrocytes have been shown to regulate extracellular matrix (ECM) remodeling, which can affect plasticity and stability of synapses and, in turn, contribute to the epileptogenic process. From these separate lines of evidence, we present a hypothesis suggesting a possible role for astrocyte-regulated remodeling of ECM and perineuronal nets, a specialized ECM structure around fast-spiking inhibitory interneurons, in the development and progression of posttraumatic epilepsies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Brenda E Porter
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California.,Canadian Institute for Advanced Research Program in Child and Brain Development, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice. Neural Plast 2015; 2016:2828536. [PMID: 26819763 PMCID: PMC4706924 DOI: 10.1155/2016/2828536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022] Open
Abstract
The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis.
Collapse
|
19
|
Valenzuela JC, Heise C, Franken G, Singh J, Schweitzer B, Seidenbecher CI, Frischknecht R. Hyaluronan-based extracellular matrix under conditions of homeostatic plasticity. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130606. [PMID: 25225099 PMCID: PMC4173291 DOI: 10.1098/rstb.2013.0606] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuronal networks are balanced by mechanisms of homeostatic plasticity, which adjusts synaptic strength via molecular and morphological changes in the pre- and post-synapse. Here, we wondered whether the hyaluronic acid-based extracellular matrix (ECM) of the brain is involved in mechanisms of homeostatic plasticity. We hypothesized that the ECM, being rich in chondroitin sulfate proteoglycans such as brevican, which are suggested to stabilize synapses by their inhibitory effect on structural plasticity, must be remodelled to allow for structural and molecular changes during conditions of homeostatic plasticity. We found a high abundance of cleaved brevican fragments throughout the hippocampus and cortex and in neuronal cultures, with the strongest labelling in perineuronal nets on parvalbumin-positive interneurons. Using an antibody specific for a brevican fragment cleaved by the matrix metalloprotease ADAMTS4, we identified the enzyme as the main brevican-processing protease. Interestingly, we found ADAMTS4 largely associated with synapses. After inducing homeostatic plasticity in neuronal cell cultures by prolonged network inactivation, we found increased brevican processing at inhibitory as well as excitatory synapses, which is in line with the ADAMTS4 subcellular localization. Thus, the ECM is remodelled in conditions of homeostatic plasticity, which may liberate synapses to allow for a higher degree of structural plasticity.
Collapse
Affiliation(s)
- Juan Carlos Valenzuela
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Christopher Heise
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Gilbert Franken
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Jeet Singh
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Barbara Schweitzer
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Germany
| | - Renato Frischknecht
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Germany
| |
Collapse
|
20
|
Abdul-Muneer PM, Pfister BJ, Haorah J, Chandra N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol Neurobiol 2015; 53:6106-6123. [PMID: 26541883 DOI: 10.1007/s12035-015-9520-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Studies revealed that the pathogenesis of TBI involves upregulation of MMPs. MMPs form a large family of closely related zinc-dependent endopeptidases, which are primarily responsible for the dynamic remodulation of the extracellular matrix (ECM). Thus, they are involved in several normal physiological processes like growth, development, and wound healing. During pathophysiological conditions, MMPs proteolytically degrade various components of ECM and tight junction (TJ) proteins of BBB and cause BBB disruption. Impairment of BBB causes leakiness of the blood from circulation to brain parenchyma that leads to microhemorrhage and edema. Further, MMPs dysregulate various normal physiological processes like angiogenesis and neurogenesis, and also they participate in the inflammatory and apoptotic cascades by inducing or regulating the specific mediators and their receptors. In this review, we explore the roles of MMPs in various physiological/pathophysiological processes associated with neurological complications, with special emphasis on TBI.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
21
|
Gottschall PE, Howell MD. ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol 2015; 44-46:70-6. [PMID: 25622912 PMCID: PMC5068130 DOI: 10.1016/j.matbio.2015.01.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/21/2022]
Abstract
The components of the adult extracellular matrix in the central nervous system form a lattice-like structure that is deposited as perineuronal nets, around axon initial segments and as synapse-associated matrix. An abundant component of this matrix is the lecticans, chondroitin sulfate-bearing proteoglycans that are the major substrate for several members of the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) family. Since lecticans are key regulators of neural plasticity, ADAMTS cleavage of lecticans would likely also contribute to neuroplasticity. Indeed, many studies have examined the neuroplastic contribution of the ADAMTSs to damage and recovery after injury and in central nervous system disease. Much of this data supports a role for the ADAMTSs in recovery and repair following spinal cord injury by stimulating axonal outgrowth after degradation of a glial scar and improving synaptic plasticity following seizure-induced neural damage in the brain. The action of the ADAMTSs in chronic diseases of the central nervous system appears to be more complex and less well-defined. Increasing evidence indicates that lecticans participate in synaptic plasticity in neurodegenerative disease states. It will be interesting to examine how ADAMTS expression and action would affect the progression of these diseases.
Collapse
Affiliation(s)
- Paul E Gottschall
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
22
|
Levy C, Brooks JM, Chen J, Su J, Fox MA. Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex. J Comp Neurol 2014; 523:629-48. [PMID: 25349050 DOI: 10.1002/cne.23701] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022]
Abstract
Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain and that this glycoprotein-rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assemblies of these extracellular matrix glycoproteins are perineuronal nets, specialized lattice-like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans, a family of chondroitin sulfate proteoglycans that includes aggrecan, brevican, neurocan, and versican. These lattice-like structures emerge late in postnatal brain development, coinciding with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of the extracellular proteases that are responsible for their cleavage and turnover. A subset of a large family of extracellular proteases (called a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of two aggrecan-degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in the hippocampus and neocortex. Here, we show that both lectican-degrading metalloproteases are present in these brain regions and that each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by parvalbumin-expressing interneurons during synaptogenesis, whereas Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development.
Collapse
Affiliation(s)
- C Levy
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, 24016; Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| | | | | | | | | |
Collapse
|
23
|
Phillips LL, Chan JL, Doperalski AE, Reeves TM. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury. Neural Regen Res 2014; 9:362-76. [PMID: 25206824 PMCID: PMC4146196 DOI: 10.4103/1673-5374.128237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/18/2022] Open
Abstract
Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity.
Collapse
Affiliation(s)
- Linda L Phillips
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Julie L Chan
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Adele E Doperalski
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
24
|
Bitanihirwe BKY, Woo TUW. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev 2014; 45:85-99. [PMID: 24709070 DOI: 10.1016/j.neubiorev.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a complex brain disorder associated with deficits in synaptic connectivity. The insidious onset of this illness during late adolescence and early adulthood has been reported to be dependent on several key processes of brain development including synaptic refinement, myelination and the physiological maturation of inhibitory neural networks. Interestingly, these events coincide with the appearance of perineuronal nets (PNNs), reticular structures composed of components of the extracellular matrix that coat a variety of cells in the mammalian brain. Until recently, the functions of the PNN had remained enigmatic, but are now considered to be important in development of the central nervous system, neuronal protection and synaptic plasticity, all elements which have been associated with schizophrenia. Here, we review the emerging evidence linking PNNs to schizophrenia. Future studies aimed at further elucidating the functions of PNNs will provide new insights into the pathophysiology of schizophrenia leading to the identification of novel therapeutic targets with the potential to restore normal synaptic integrity in the brain of patients afflicted by this illness.
Collapse
Affiliation(s)
| | - Tsung-Ung W Woo
- Program in Cellular Neuropathology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
25
|
Frischknecht R, Chang KJ, Rasband MN, Seidenbecher CI. Neural ECM molecules in axonal and synaptic homeostatic plasticity. PROGRESS IN BRAIN RESEARCH 2014; 214:81-100. [PMID: 25410354 DOI: 10.1016/b978-0-444-63486-3.00004-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural circuits can express different forms of plasticity. So far, Hebbian synaptic plasticity was considered the most important plastic phenomenon, but over the last decade, homeostatic mechanisms gained more interest because they can explain how a neuronal network maintains stable baseline function despite multiple plastic challenges, like developmental plasticity, learning, or lesion. Such destabilizing influences can be counterbalanced by the mechanisms of homeostatic plasticity, which restore the stability of neuronal circuits. Synaptic scaling is a mechanism in which neurons can detect changes in their own firing rates through a set of molecular sensors that then regulate receptor trafficking to scale the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms allow local changes in synaptic activation to generate local synaptic adaptations and network-wide changes in activity, which lead to adjustments in the balance between excitation and inhibition. The molecular pathways underlying these forms of homeostatic plasticity are currently under intense investigation, and it becomes clear that the extracellular matrix (ECM) of the brain, which surrounds individual neurons and integrates them into the tissue, is an important element in these processes. As a highly dynamic structure, which can be remodeled and degraded in an activity-dependent manner and in concerted action of neurons and glial cells, it can on one hand promote structural and functional plasticity and on the other hand stabilize neural microcircuits. This chapter highlights the composition of brain ECM with particular emphasis on perisynaptic and axonal matrix formations and its involvement in plastic and adaptive processes of the central nervous system.
Collapse
Affiliation(s)
- Renato Frischknecht
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Germany
| | - Kae-Jiun Chang
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Constanze I Seidenbecher
- Center for Behavioral Brain Sciences (CBBS) Magdeburg, Germany; Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
26
|
Perederiy JV, Westbrook GL. Structural plasticity in the dentate gyrus- revisiting a classic injury model. Front Neural Circuits 2013; 7:17. [PMID: 23423628 PMCID: PMC3575076 DOI: 10.3389/fncir.2013.00017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/27/2013] [Indexed: 12/12/2022] Open
Abstract
The adult brain is in a continuous state of remodeling. This is nowhere more true than in the dentate gyrus, where competing forces such as neurodegeneration and neurogenesis dynamically modify neuronal connectivity, and can occur simultaneously. This plasticity of the adult nervous system is particularly important in the context of traumatic brain injury or deafferentation. In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the main extrahippocampal input to the dentate gyrus. Early studies revealed that in response to deafferentation, axons of remaining fiber systems and dendrites of mature granule cells undergo lamina-specific changes, providing one of the first examples of structural plasticity in the adult brain. Given the increasing role of adult-generated new neurons in the function of the dentate gyrus, we also compare the response of newborn and mature granule cells following lesioning of the perforant path. These studies provide insights not only to plasticity in the dentate gyrus, but also to the response of neural circuits to brain injury.
Collapse
Affiliation(s)
- Julia V Perederiy
- Vollum Institute, Oregon Health and Science University Portland, OR, USA
| | | |
Collapse
|
27
|
Howell MD, Torres-Collado AX, Iruela-Arispe ML, Gottschall PE. Selective decline of synaptic protein levels in the frontal cortex of female mice deficient in the extracellular metalloproteinase ADAMTS1. PLoS One 2012; 7:e47226. [PMID: 23071766 PMCID: PMC3469530 DOI: 10.1371/journal.pone.0047226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/12/2012] [Indexed: 11/24/2022] Open
Abstract
The chondroitin sulfate-bearing proteoglycans, also known as lecticans, are a major component of the extracellular matrix (ECM) in the central nervous system and regulate neural plasticity. Growing evidence indicates that endogenous, extracellular metalloproteinases that cleave lecticans mediate neural plasticity by altering the structure of ECM aggregates. The bulk of this in vivo data examined the matrix metalloproteinases, but another metalloproteinase family that cleaves lecticans, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), modulates structural plasticity in vitro, although few in vivo studies have tested this concept. Thus, the purpose of this study was to examine the neurological phenotype of a mouse deficient in ADAMTS1. Adamts1 mRNA was absent in the ADAMTS1 null mouse frontal cortex, but there was no change in the abundance or proteolytic processing of the prominent lecticans brevican and versican V2. However, there was a marked increase in the perinatal lectican neurocan in juvenile ADAMTS1 null female frontal cortex. More prominently, there were declines in synaptic protein levels in the ADAMTS1 null female, but not male, frontal cortex beginning at postnatal day 28. These synaptic marker declines did not affect learning or memory in the adult female ADAMTS1 null mice when tested with the radial-arm water maze. These results indicate that in vivo Adamts1 knockout leads to sexual dimorphism in frontal cortex synaptic protein levels. Since changes in lectican abundance and proteolytic processing did not accompany the synaptic protein declines, ADAMTS1 may play a nonproteolytic role in regulating neural plasticity.
Collapse
Affiliation(s)
- Matthew D. Howell
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
| | - Antoni X. Torres-Collado
- University of California, Los Angeles, Department of Molecular, Cell, and Developmental Biology, Los Angeles, California, United States of America
| | - M. Luisa Iruela-Arispe
- University of California, Los Angeles, Department of Molecular, Cell, and Developmental Biology, Los Angeles, California, United States of America
| | - Paul E. Gottschall
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Howell MD, Gottschall PE. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience 2012; 217:6-18. [PMID: 22626649 DOI: 10.1016/j.neuroscience.2012.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/18/2023]
Abstract
The extracellular matrix (ECM) in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, ECM aggregate in brain, the chondroitin sulfate (CS)-bearing proteoglycans (PGs) known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the CS chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity-including changes in neurite outgrowth and dendritic spine remodeling-and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the PG core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity.
Collapse
Affiliation(s)
- M D Howell
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR 72205, USA
| | | |
Collapse
|
29
|
Warren KM, Reeves TM, Phillips LL. MT5-MMP, ADAM-10, and N-cadherin act in concert to facilitate synapse reorganization after traumatic brain injury. J Neurotrauma 2012; 29:1922-40. [PMID: 22489706 DOI: 10.1089/neu.2012.2383] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) influence synaptic recovery following traumatic brain injury (TBI). Membrane type 5-matrix metalloproteinase (MT5-MMP) and a distintegrin and metalloproteinase-10 (ADAM-10) are membrane-bound MMPs that cleave N-cadherin, a protein critical to synapse stabilization. This study examined protein and mRNA expression of MT5-MMP, ADAM-10, and N-cadherin after TBI, contrasting adaptive and maladaptive synaptogenesis. The effect of MMP inhibition on MT5-MMP, ADAM-10, and N-cadherin was assessed during maladaptive plasticity and correlated with synaptic function. Rats were subjected to adaptive unilateral entorhinal cortical lesion (UEC) or maladaptive fluid percussion TBI+bilateral entorhinal cortical lesion (TBI+BEC). Hippocampal MT5-MMP and ADAM-10 protein was significantly elevated 2 and 7 days post-injury. At 15 days after UEC, each MMP returned to control level, while TBI+BEC ADAM-10 remained elevated. At 2 and 7 days, N-cadherin protein was below control. By the 15-day synapse stabilization phase, UEC N-cadherin rose above control, a shift not seen for TBI+BEC. At 7 days, increased TBI+BEC ADAM-10 transcript correlated with protein elevation. UEC ADAM-10 mRNA did not change, and no differences in MT5-MMP or N-cadherin mRNA were detected. Confocal imaging showed MT5-MMP, ADAM-10, and N-cadherin localization within reactive astrocytes. MMP inhibition attenuated ADAM-10 protein 15 days after TBI+BEC and increased N-cadherin. This inhibition partially restored long-term potentiation induction, but did not affect paired-pulse facilitation. Our results confirm time- and injury-dependent expression of MT5-MMP, ADAM-10, and N-cadherin during reactive synaptogenesis. Persistent ADAM-10 expression was correlated with attenuated N-cadherin level and reduced functional recovery. MMP inhibition shifted ADAM-10 and N-cadherin toward adaptive expression and improved synaptic function.
Collapse
Affiliation(s)
- Kelly M Warren
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | | |
Collapse
|
30
|
Altered synaptic marker abundance in the hippocampal stratum oriens of Ts65Dn mice is associated with exuberant expression of versican. ASN Neuro 2012; 4:AN20110037. [PMID: 22225533 PMCID: PMC3275338 DOI: 10.1042/an20110037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DS (Down syndrome), resulting from trisomy of chromosome 21, is the most common cause of genetic mental retardation; however, the molecular mechanisms underlying the cognitive deficits are poorly understood. Growing data indicate that changes in abundance or type of CSPGs (chondroitin sulfate proteoglycans) in the ECM (extracellular matrix) can influence synaptic structure and plasticity. The purpose of this study was to identify changes in synaptic structure in the hippocampus in a model of DS, the Ts65Dn mouse, and to determine the relationship to proteoglycan abundance and/or cleavage and cognitive disability. We measured synaptic proteins by ELISA and changes in lectican expression and processing in the hippocampus of young and old Ts65Dn mice and LMCs (littermate controls). In young (5 months old) Ts65Dn hippocampal extracts, we found a significant increase in the postsynaptic protein PSD-95 (postsynaptic density 95) compared with LMCs. In aged (20 months old) Ts65Dn hippocampus, this increase was localized to hippocampal stratum oriens extracts compared with LMCs. Aged Ts65Dn mice exhibited impaired hippocampal-dependent spatial learning and memory in the RAWM (radial-arm water maze) and a marked increase in levels of the lectican versican V2 in stratum oriens that correlated with the number of errors made in the final RAWM block. Ts65Dn stratum oriens PNNs (perineuronal nets), an extension of the ECM enveloping mostly inhibitory interneurons, were dispersed over a larger area compared with LMC mice. Taken together, these data suggest a possible association with alterations in the ECM and inhibitory neurotransmission in the Ts65Dn hippocampus which could contribute to cognitive deficits.
Collapse
|
31
|
Dow DJ, Huxley-Jones J, Hall JM, Francks C, Maycox PR, Kew JNC, Gloger IS, Mehta NAL, Kelly FM, Muglia P, Breen G, Jugurnauth S, Pederoso I, St Clair D, Rujescu D, Barnes MR. ADAMTSL3 as a candidate gene for schizophrenia: gene sequencing and ultra-high density association analysis by imputation. Schizophr Res 2011; 127:28-34. [PMID: 21239144 DOI: 10.1016/j.schres.2010.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/29/2010] [Accepted: 12/11/2010] [Indexed: 11/30/2022]
Abstract
We previously reported an association with a putative functional variant in the ADAMTSL3 gene, just below genome-wide significance in a genome-wide association study of schizophrenia. As variants impacting the function of ADAMTSL3 (a disintegrin-like and metalloprotease domain with thrombospondin type I motifs-like-3) could illuminate a novel disease mechanism and a potentially specific target, we have used complementary approaches to further evaluate the association. We imputed genotypes and performed high density association analysis using data from the HapMap and 1000 genomes projects. To review all variants that could potentially cause the association, and to identify additional possible pathogenic rare variants, we sequenced ADAMTSL3 in 92 schizophrenics. A total of 71 ADAMTSL3 variants were identified by sequencing, many were also seen in the 1000 genomes data, but 26 were novel. None of the variants identified by re-sequencing was in strong linkage disequilibrium (LD) with the associated markers. Imputation analysis refined association between ADAMTSL3 and schizophrenia, and highlighted additional common variants with similar levels of association. We evaluated the functional consequences of all variants identified by sequencing, or showing direct or imputed association. The strongest evidence for function remained with the originally associated variant, rs950169, suggesting that this variant may be causal of the association. Rare variants were also identified with possible functional impact. Our study confirms ADAMTSL3 as a candidate for further investigation in schizophrenia, using the variants identified here. The utility of imputation analysis is demonstrated, and we recommend wider use of this method to re-evaluate the existing canon of suggestive schizophrenia associations.
Collapse
Affiliation(s)
- David J Dow
- Molecular Discovery Research, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, CM19 5AW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J Neurosci 2010; 30:15337-57. [PMID: 21084591 DOI: 10.1523/jneurosci.3467-10.2010] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the metzincin family of metalloproteinases have long been considered merely degradative enzymes for extracellular matrix molecules. Recently, however, there has been growing appreciation for these proteinases and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs), as fine modulators of nervous system physiology and pathology. Present all along the phylogenetic tree, in all neural cell types, from the nucleus to the synapse and in the extracellular space, metalloproteinases exhibit a complex spatiotemporal profile of expression in the nervous parenchyma and at the neurovascular interface. The irreversibility of their proteolytic activity on numerous biofactors (e.g., growth factors, cytokines, receptors, DNA repair enzymes, matrix proteins) is ideally suited to sustain structural changes that are involved in physiological or postlesion remodeling of neural networks, learning consolidation or impairment, neurodegenerative and neuroinflammatory processes, or progression of malignant gliomas. The present review provides a state of the art overview of the involvement of the metzincin/TIMP system in these processes and the prospects of new therapeutic strategies based on the control of metalloproteinase activity.
Collapse
|
33
|
Nagaraja AK, Middlebrook BS, Rajanahally S, Myers M, Li Q, Matzuk MM, Pangas SA. Defective gonadotropin-dependent ovarian folliculogenesis and granulosa cell gene expression in inhibin-deficient mice. Endocrinology 2010; 151:4994-5006. [PMID: 20739397 PMCID: PMC2946151 DOI: 10.1210/en.2010-0428] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inhibin-α knockout (Inha-/-) female mice develop sex cord-stromal ovarian cancer with complete penetrance and previous studies demonstrate that the pituitary gonadotropins (FSH and LH) are influential modifiers of granulosa cell tumor development and progression in inhibin-deficient females. Recent studies have demonstrated that Inha-/- ovarian follicles develop precociously to the early antral stage in prepubertal mice without any increase in serum FSH. These studies suggest that in the absence of inhibins, granulosa cells differentiate abnormally and thus at sexual maturity may undergo an abnormal response to gonadotropin signaling contributing to tumor development. To test this hypothesis, we stimulated immature wild-type and Inha-/- female mice with gonadotropin analogs prior to tumor formation and subsequently examined gonadotropin-induced ovarian follicle development as well as preovulatory and human chorionic gonadotropin-induced gene expression changes in granulosa cells. We find that at 3 wk of age, inhibin-deficient ovaries do not show further antral development or undergo cumulus expansion. In addition, there are widespread alterations in the transcriptome of gonadotropin-treated Inha-/- granulosa cells, with significant changes in genes involved in extracellular matrix and cell-cell communication. These data indicate the gonadotropins initiate an improper program of cell differentiation prior to tumor formation in the absence of inhibins.
Collapse
Affiliation(s)
- Ankur K Nagaraja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Panel of synaptic protein ELISAs for evaluating neurological phenotype. Exp Brain Res 2010; 201:885-93. [PMID: 20169337 DOI: 10.1007/s00221-010-2182-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to develop ELISAs for key neural proteins, three synaptic and one glial, that exist in different intracellular compartments, which would be used as a measure of synaptic phenotype. These assays would be valuable to neurologically phenotype transgenic mouse models of human disease and also human disease itself using minimal amounts of post-mortem tissue. We showed that supernatant from crude brain tissue homogenates extracted in RIPA buffer containing 0.1% SDS bind to synaptophysin, synaptosome-associated protein of 25 kDa (SNAP-25), post-synaptic density-95 (PSD-95), and glial fibrillary acidic protein (GFAP) antibody pairs with high affinity and selectivity. Overall, RIPA + 0.1% SDS were more efficient than RIPA + 2% SDS or a buffer containing only 1% Triton-X-100. Diluting the brain extracts resulted in dose-dependent binding to the antibody pairs for each neural protein, with EC50s that varied from 8.6 microg protein for PSD-95 to 0.23 microg for GFAP. The assays were used to measure synaptic marker protein levels at various times during mouse development and GFAP in a model of disease accompanied by neuroinflammation. Comparison of ELISAs with Western blots by measuring marker levels in brain extract from developing mice showed a greater relative difference in values derived from ELISA. These ELISAs should be valuable to phenotype the synapse in neurological disease and their rodent models.
Collapse
|
35
|
Ajmo JM, Bailey LA, Howell MD, Cortez LK, Pennypacker KR, Mehta HN, Morgan D, Gordon MN, Gottschall PE. Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw. J Neurochem 2010; 113:784-95. [PMID: 20180882 DOI: 10.1111/j.1471-4159.2010.06647.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aggregation of amyloid-beta (Abeta) in the forebrain of Alzheimer's disease (AD) subjects may disturb the molecular organization of the extracellular microenvironment that modulates neural and synaptic plasticity. Proteoglycans are major components of this extracellular environment. To test the hypothesis that Abeta, or another amyloid precursor protein (APP) dependent mechanism modifies the accumulation and/or turnover of extracellular proteoglycans, we examined whether the expression and processing of brevican, an abundant extracellular, chondroitin sulfate (CS)-bearing proteoglycan, were altered in brains of Abeta-depositing transgenic mice (APPsw - APP gene bearing the Swedish mutation) as a model of AD. The molecular size of CS chains attached to brevican was smaller in hippocampal tissue from APPsw mice bearing Abeta deposits compared to non-transgenic mice, likely because of changes in the CS chains. Also, the abundance of the major proteolytic fragment of brevican was markedly diminished in extracts from several telencephalic regions of APPsw mice compared to non-transgenic mice, yet these immunoreactive fragments appeared to accumulate adjacent to the plaque edge. These results suggest that Abeta or APP exert inhibitory effects on proteolytic cleavage mechanisms responsible for synthesis and turnover of proteoglycans. As proteoglycans stabilize synaptic structure and inhibit molecular plasticity, defective brevican processing observed in Abeta-bearing mice and potentially end-stage human AD, may contribute to deficient neural plasticity.
Collapse
Affiliation(s)
- Joanne M Ajmo
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Denmark DL, Buck KJ. Molecular analyses and identification of promising candidate genes for loci on mouse chromosome 1 affecting alcohol physical dependence and associated withdrawal. GENES BRAIN AND BEHAVIOR 2008; 7:599-608. [PMID: 18363851 DOI: 10.1111/j.1601-183x.2008.00396.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently mapped quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal severity following chronic and acute alcohol exposure (Alcdp1/Alcw1) to a 1.1-Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2-23.3. Here, we provide a detailed analysis of the genes within this interval and show that it contains 40 coding genes, 17 of which show validated genotype-dependent transcript expression and/or non-synonymous coding sequence variation that may underlie the influence of Alcdp1/Alcw1 on ethanol dependence and associated withdrawal. These high priority candidates are involved in diverse cellular functions including intracellular trafficking, oxidative homeostasis, mitochondrial respiration, and extracellular matrix dynamics, and indicate both established and novel aspects of the neurobiological response to ethanol. This work represents a substantial advancement toward identification of the gene(s) that underlies the phenotypic effects of Alcdp1/Alcw1. Additionally, a multitude of QTLs for a variety of complex traits, including diverse behavioral responses to ethanol, have been mapped in the vicinity of Alcdp1/Alcw1, and as many as four QTLs on human chromosome 1q have been implicated in human mapping studies for alcoholism and associated endophenotypes. Thus, our results will be primary to further efforts to identify genes involved in a wide variety of behavioral responses to alcohol and may directly facilitate progress in human alcoholism genetics.
Collapse
Affiliation(s)
- D L Denmark
- Department of Behavioral Neuroscience, Neuroscience Graduate Program, and Portland Alcohol Research Center, Veterans Affairs Medical Center and Oregon Health and Science University, Portland, OR, USA.
| | | |
Collapse
|
37
|
Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 2008; 130:635-53. [PMID: 18696101 DOI: 10.1007/s00418-008-0485-9] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2008] [Indexed: 12/13/2022]
Abstract
The basic concept, that specialized extracellular matrices rich in hyaluronan, chondroitin sulfate proteoglycans (aggrecan, versican, neurocan, brevican, phosphacan), link proteins and tenascins (Tn-R, Tn-C) can regulate cellular migration and axonal growth and thus, actively participate in the development and maturation of the nervous system, has in recent years gained rapidly expanding experimental support. The swift assembly and remodeling of these matrices have been associated with axonal guidance functions in the periphery and with the structural stabilization of myelinated fiber tracts and synaptic contacts in the maturating central nervous system. Particular interest has been focused on the putative role of chondroitin sulfate proteoglycans in suppressing central nervous system regeneration after lesions. The axon growth inhibitory properties of several of these chondroitin sulfate proteoglycans in vitro, and the partial recovery of structural plasticity in lesioned animals treated with chondroitin sulfate degrading enzymes in vivo have significantly contributed to the increased awareness of this long time neglected structure.
Collapse
|
38
|
Schäfer R, Dehn D, Burbach GJ, Deller T. Differential regulation of chondroitin sulfate proteoglycan mRNAs in the denervated rat fascia dentata after unilateral entorhinal cortex lesion. Neurosci Lett 2008; 439:61-5. [PMID: 18511192 DOI: 10.1016/j.neulet.2008.04.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 11/25/2022]
Abstract
Following brain trauma, chondroitin sulphate proteoglycans (CSPGs) are enriched at injury sites and in denervated areas. At injury sites, CSPGs are regarded as inhibitors of axonal regeneration because of their growth inhibitory properties. In areas of denervation their role is less clear, since they are enriched in zones of sprouting, i.e. zones of axonal growth. To identify CSPGs expressed in a denervated brain area and to quantify changes in their mRNA expression, neurocan, brevican, NG2, phosphacan and aggrecan mRNA were analyzed in the rat fascia dentata following entorhinal denervation. Laser microdissection was combined with quantitative RT-PCR to measure mRNA changes specifically within the denervated portion of the molecular layer (1h, 6h, 10h, 12h, 1d, 2d, 3d, 4d, 7d and 14d post-lesion). Changes in glial fibrillary protein mRNA were measured at the same time points and used as lesion control. This approach revealed a differential regulation of CSPG mRNAs in the denervated zone: neurocan, brevican and NG2 mRNA were upregulated with a maximum around 2 days post-lesion. In contrast, aggrecan mRNA levels reached a maximum 7 days post-lesion and phosphacan mRNA levels were not significantly altered. Taken together, our data reveal a temporal pattern in CSPG mRNA expression in the denervated fascia dentata. This suggests specific biological functions for CSPGs during the denervation-induced reorganization process: whereas the early increase in CSPGs in the denervated zone could influence the pattern of sprouting, the late increase of aggrecan mRNA suggests a different role during the late phase of reorganization.
Collapse
Affiliation(s)
- Ruth Schäfer
- Institute of Clinical Neuroanatomy, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
39
|
Abstract
Microglial activation and behavioral abnormalities occur before neuronal loss in experimental murine prion disease; the behavioral changes coincide with a reduction in synaptic plasticity. Because synaptic plasticity depends on an intact perineuronal net (PN), a specialized extracellular matrix that surrounds parvalbumin (PV)-positive GABAergic (gamma-aminobutyric acid [GABA]) inhibitory interneurons, we investigated the temporal relationships between microglial activation and loss of PN and PV-positive neurons in ME7 murine prion disease. Anesthetized C57Bl/6J mice received bilateral intracerebral microinjections of ME7-infected or normal brain homogenate into the dorsal hippocampus. Microglial activation, PrP accumulation, the number of PV-positive interneurons, and Wisteria floribunda agglutinin-positive neurons (i.e. those with an intact PN) were assessed in the ventral CA1 and subiculum at 4, 8, 12, 16, and 20 weeks postinjection. Hippocampal areas and total neuron numbers in the ventral CA1 and subiculum were also determined. Loss of PN coincided with early microglial activation and with a reduction in synaptic plasticity. No significant loss of PV-positive interneurons was observed. Our findings suggest that the substrate of the earliest synaptic and behavioral abnormalities in murine prion disease may be inflammatory microglia-mediated degradation of the PN.
Collapse
|
40
|
Leonardo CC, Eakin AK, Ajmo JM, Gottschall PE. Versican and brevican are expressed with distinct pathology in neonatal hypoxic-ischemic injury. J Neurosci Res 2008; 86:1106-14. [DOI: 10.1002/jnr.21553] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Deller T, Del Turco D, Rappert A, Bechmann I. Structural reorganization of the dentate gyrus following entorhinal denervation: species differences between rat and mouse. PROGRESS IN BRAIN RESEARCH 2008; 163:501-28. [PMID: 17765735 DOI: 10.1016/s0079-6123(07)63027-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deafferentation of the dentate gyrus by unilateral entorhinal cortex lesion or unilateral perforant pathway transection is a classical model to study the response of the central nervous system (CNS) to denervation. This model has been extensively characterized in the rat to clarify mechanisms underlying denervation-induced gliosis, transneuronal degeneration of denervated neurons, and collateral sprouting of surviving axons. As a result, candidate molecules have been identified which could regulate these changes, but a causal link between these molecules and the postlesional changes has not yet been demonstrated. To this end, mutant mice are currently studied by many groups. A tacit assumption is that data from the rat can be generalized to the mouse, and fundamental species differences in hippocampal architecture and the fiber systems involved in sprouting are often ignored. In this review, we will (1) provide an overview of some of the basics and technical aspects of the entorhinal denervation model, (2) identify anatomical species differences between rats and mice and will point out their relevance for the axonal reorganization process, (3) describe glial and local inflammatory changes, (4) consider transneuronal changes of denervated dentate neurons and the potential role of reactive glia in this context, and (5) summarize the differences in the reorganization of the dentate gyrus between the two species. Finally, we will discuss the use of the entorhinal denervation model in mutant mice.
Collapse
Affiliation(s)
- Thomas Deller
- Institute of Clinical Neuroanatomy, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
42
|
Ajmo JM, Eakin AK, Hamel MG, Gottschall PE. Discordant localization of WFA reactivity and brevican/ADAMTS-derived fragment in rodent brain. BMC Neurosci 2008; 9:14. [PMID: 18221525 PMCID: PMC2263047 DOI: 10.1186/1471-2202-9-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 01/25/2008] [Indexed: 12/25/2022] Open
Abstract
Background Proteoglycan (PG) in the extracellular matrix (ECM) of the central nervous system (CNS) may act as a barrier for neurite elongation in a growth tract, and regulate other characteristics collectively defined as structural neural plasticity. Proteolytic cleavage of PGs appears to alter the environment to one favoring plasticity and growth. Brevican belongs to the lectican family of aggregating, chondroitin sulfate (CS)-bearing PGs, and it modulates neurite outgrowth and synaptogenesis. Several ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) are glutamyl-endopeptidases that proteolytically cleave brevican. The purpose of this study was to localize regions of adult CNS that contain a proteolytic-derived fragment of brevican which bears the ADAMTS-cleaved neoepitope sequence. These regions were compared to areas of Wisteria floribunda agglutin (WFA) reactivity, a common reagent used to detect "perineuronal nets" (PNNs) of intact matrix and a marker which is thought to label regions of relative neural stability. Results WFA reactivity was found primarily as PNNs, whereas brevican and the ADAMTS-cleaved fragment of brevican were more broadly distributed in neuropil, and in particular regions localized to PNNs. One example is hippocampus where the ADAMTS-cleaved brevican fragment is found surrounding pyramidal neurons, in neuropil of stratum oriens/radiatum and the lacunosum moleculare. The fragment was less abundant in the molecular layer of the dentate gyrus. Mostly PNNs of scattered interneurons along the pyramidal layer were identified by WFA. In lateral thalamus, the reticular thalamic nucleus stained abundantly with WFA whereas ventral posterior nuclei were markedly immunopositive for ADAMTS-cleaved brevican. Using Western blotting techniques, no common species were reactive for brevican and WFA. Conclusion In general, a marked discordance was observed in the regional localization between WFA and brevican or the ADAMTS-derived N-terminal fragment of brevican. Functionally, this difference may correspond to regions with varied prevalence for neural stability/plasticity.
Collapse
Affiliation(s)
- Joanne M Ajmo
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida USA.
| | | | | | | |
Collapse
|
43
|
Hamel MG, Ajmo JM, Leonardo CC, Zuo F, Sandy JD, Gottschall PE. Multimodal signaling by the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) promotes neurite extension. Exp Neurol 2007; 210:428-40. [PMID: 18178186 DOI: 10.1016/j.expneurol.2007.11.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/01/2007] [Accepted: 11/16/2007] [Indexed: 01/03/2023]
Abstract
Aggregating proteoglycans (PG) bearing chondroitin sulfate (CS) side chains associate with hyaluronan and various secreted proteins to form a complex of extracellular matrix (ECM) that inhibits neural plasticity in the central nervous system (CNS). Chondroitinase treatment depletes PGs of their CS side chains and enhances neurite extension. Increasing evidence from in vivo models indicates that proteolytic cleavage of the PG core protein by members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of glutamyl-endopeptidases also promotes neural plasticity. The purpose of this study was to determine whether proteolytic action of the ADAMTSs influences neurite outgrowth in cultured neurons. Transfection of primary rat neurons with ADAMTS4 cDNA induced longer neurites, whether the neurons were grown on a monolayer of astrocytes that secrete inhibitory PGs or on laminin/poly-L-lysine substrate alone. Similar results were found when neurons were transfected with a construct encoding a proteolytically inactive, point mutant of ADAMTS4. Addition of recombinant ADAMTS4 or ADAMTS5 protein to immature neuronal cultures also enhanced neurite extension in a dose-dependent manner, an effect demonstrated to be dependent on the activation of MAP ERK1/2 kinase. These results suggest that ADAMTS4 enhances neurite outgrowth via a mechanism that does not require proteolysis but is dependent on activation of the MAP kinase cascade. Thus a model to illustrate multimodal ADAMTS activity would entail proteolysis of CS-bearing PGs to create a loosened matrix environment more favorable for neurite outgrowth, and enhanced neurite outgrowth directly stimulated by ADAMTS signaling at the cell surface.
Collapse
Affiliation(s)
- Michelle G Hamel
- University of South Florida College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612-4799, USA
| | | | | | | | | | | |
Collapse
|
44
|
Pizzi MA, Crowe MJ. Matrix metalloproteinases and proteoglycans in axonal regeneration. Exp Neurol 2006; 204:496-511. [PMID: 17254568 DOI: 10.1016/j.expneurol.2006.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 12/13/2022]
Abstract
After an injury to the adult mammalian central nervous system (CNS), a variety of growth-inhibitory molecules are upregulated. A glial scar forms at the site of injury and is composed of numerous molecular substances, including chondroitin sulfate proteoglycans (CSPGs). These proteoglycans inhibit axonal growth in vitro and in vivo. Matrix metalloproteinases (MMPs) can degrade the core protein of some CSPGs as well as other growth-inhibitory molecules such as Nogo and tenascin-C. MMPs have been shown to facilitate axonal regeneration in the adult mammalian peripheral nervous system (PNS). This review will focus on the various roles of proteoglycans and MMPs within the injured nervous system. First, we will present a general background on the injured central nervous system and explore the roles that proteoglycans play in the injured PNS and CNS. Second, we will discuss the various functions of MMPs within the injured PNS and CNS. Special attention will be paid to the possibility of how MMPs might modify the growth-inhibitory extracellular environment of the injured adult mammalian spinal cord and facilitate axonal regeneration in the CNS.
Collapse
Affiliation(s)
- Michael A Pizzi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Zablocki VAMC, 5000 West National Avenue, Milwaukee, WI 53295, USA
| | | |
Collapse
|
45
|
Falo MC, Fillmore HL, Reeves TM, Phillips LL. Matrix metalloproteinase-3 expression profile differentiates adaptive and maladaptive synaptic plasticity induced by traumatic brain injury. J Neurosci Res 2006; 84:768-81. [PMID: 16862547 DOI: 10.1002/jnr.20986] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interaction between extracellular matrix (ECM) and regulatory matrix metalloproteinases (MMPs) is important in establishing and maintaining synaptic connectivity. By using fluid percussion traumatic brain injury (TBI) and combined TBI and bilateral entorhinal cortical lesion (TBI + BEC), we previously demonstrated that hippocampal stromelysin-1 (MMP-3) expression and activity increased during synaptic plasticity. We now report a temporal analysis of MMP-3 protein and mRNA response to TBI during both degenerative (2 day) and regenerative (7, 15 day) phases of reactive synaptogenesis. MMP-3 expression during successful synaptic reorganization (following unilateral entorhinal cortical lesion; UEC) was compared with MMP-3 expression when normal synaptogenesis fails (after combined TBI + BEC insult). Increased expression of MMP-3 protein and message was observed in both models at 2 days postinjury, and immuohistochemical (IHC) colocalization suggested that reactive astrocytes contribute to that increase. By 7 days postinjury, model differences in MMP-3 were observed. UEC MMP-3 mRNA was equivalent to control, and MMP-3 protein was reduced within the deafferented region. In contrast, enzyme mRNA remained elevated in the maladaptive TBI + BEC model, accompanied by persistent cellular labeling of MMP-3 protein. At 15 days survival, MMP-3 mRNA was normalized in each model, but enzyme protein remained higher than paired controls. When TBI + BEC recovery was enhanced by the N-methyl-D-aspartate antagonist MK-801, 7-day MMP-3 mRNA was significantly reduced. Similarly, MMP inhibition with FN-439 reduced the persistent spatial learning deficits associated with TBI + BEC insult. These results suggest that MMP-3 might differentially affect the sequential phases of reactive synaptogenesis and exhibit an altered pattern when recovery is perturbed.
Collapse
Affiliation(s)
- M C Falo
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, 23298, USA
| | | | | | | |
Collapse
|
46
|
Viapiano MS, Matthews RT. From barriers to bridges: chondroitin sulfate proteoglycans in neuropathology. Trends Mol Med 2006; 12:488-96. [PMID: 16962376 DOI: 10.1016/j.molmed.2006.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 07/19/2006] [Accepted: 08/24/2006] [Indexed: 01/08/2023]
Abstract
Emerging studies have revealed new roles for the neural extracellular matrix in neuropathologies. The structure of this matrix is unusual and uniquely enriched in chondroitin sulfate proteoglycans, particularly those of the lectican family. Historically, lecticans have attracted considerable interest in the normal and injured brain for their prominent roles as inhibitors of cellular motility, neurite extension and synaptic plasticity. However, these molecules are structurally heterogeneous, have distinct expression patterns and mediate unique interactions, suggesting that they might have other functions in addition to their traditional role as chemorepulsants. Here, we review recent work demonstrating unique modifications and structural microheterogeneity of the lecticans in the diseased CNS, which might relate to novel roles of these molecules in neuropathologies.
Collapse
Affiliation(s)
- Mariano S Viapiano
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|