1
|
Almonte AA, Cavic G, Neeman T, Enders A, Fahrer AM. Gut microbiome-depleting antibiotic regimens are not tolerated by all mouse strains: learn from (our) bitter experience. J Immunother Cancer 2022; 10:jitc-2022-005575. [PMID: 36323432 PMCID: PMC9639134 DOI: 10.1136/jitc-2022-005575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Why the gut microbiome is critical for the success of checkpoint inhibitor cancer therapy is a question that remains unanswered, but progress has slowed. We argue that this lack of advancement is due to an unappreciated biological detail. Here, we show that the antibiotic cocktail used in seminal publications-all of which have used the C57BL/6 mouse strain-are bitter and not tolerated by other common mouse strains (ie, BALB/c and DBA/2). We write to alert readers of this important biological limitation that must be considered when planning cancer experiments investigating the gut microbiota, to prevent the unnecessary dehydration of experimental animals, and to save our colleagues valuable experimental time and resources.
Collapse
Affiliation(s)
- Andrew A Almonte
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, Australia
| | - George Cavic
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, Australia
| | - Teresa Neeman
- Biological Data Science Institute, College of Science, Australian National University, Canberra, ACT, Australia
| | - Anselm Enders
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Aude M Fahrer
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Szepesy J, Humli V, Farkas J, Miklya I, Tímár J, Tábi T, Gáborján A, Polony G, Szirmai Á, Tamás L, Köles L, Vizi ES, Zelles T. Chronic Oral Selegiline Treatment Mitigates Age-Related Hearing Loss in BALB/c Mice. Int J Mol Sci 2021; 22:2853. [PMID: 33799684 PMCID: PMC7999597 DOI: 10.3390/ijms22062853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15-45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.
Collapse
MESH Headings
- Administration, Oral
- Aging/physiology
- Animals
- Antiparkinson Agents/administration & dosage
- Antiparkinson Agents/pharmacology
- Auditory Threshold/drug effects
- Auditory Threshold/physiology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/physiopathology
- Humans
- Male
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Protective Agents/administration & dosage
- Protective Agents/pharmacology
- Selegiline/administration & dosage
- Selegiline/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Mice
Collapse
Affiliation(s)
- Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Viktória Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - János Farkas
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Júlia Tímár
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, H-1089 Budapest, Hungary;
| | - Anita Gáborján
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gábor Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Ágnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - Elek Sylvester Vizi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| |
Collapse
|
3
|
Almonte AA, Rangarajan H, Yip D, Fahrer AM. How does the gut microbiome influence immune checkpoint blockade therapy? Immunol Cell Biol 2020; 99:361-372. [PMID: 33147357 DOI: 10.1111/imcb.12423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 11/01/2020] [Indexed: 01/11/2023]
Abstract
Immune checkpoint blockade (ICB) therapies are revolutionary cancer treatments; however, they only benefit about a third of patients. Therefore, extensive research is underway to find methods to improve their therapeutic efficacy. One avenue of study that has recently emerged is to consider the role the gut microbiome plays in therapeutic success. Several high-impact studies have repeatedly shown that the presence, composition and level of diversity of the gut flora directly impact cancer treatment outcome in both mice and patients. These studies have also highlighted the danger of using antibiotics shortly before or during cancer treatments. However, there are still several questions that need to be answered, including which bacteria promote the greatest benefit, the mechanisms by which they act and how we can use this information to influence treatment outcome. In this review, we explain how the gut microbiome was realized to be of such importance and propose hypotheses for why gut flora have such a critical impact on ICB therapeutic success. We also describe a hypothetical mechanism involving bacterial translocation out of the gut and into the tumor, whereby the bacteria act in an adjuvant capacity to facilitate an antitumor response. By highlighting key papers in the field, we hope to hasten research on the subject so as to find a means to improve the therapeutic efficacy of these ground-breaking cancer treatments.
Collapse
Affiliation(s)
- Andrew A Almonte
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Hareesha Rangarajan
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Desmond Yip
- Department of Medical Oncology, The Canberra Hospital and ANU Medical School, Australian National University, Garran, ACT, Australia
| | - Aude M Fahrer
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT, Australia
| |
Collapse
|
4
|
Babbs RK, Kelliher JC, Scotellaro JL, Luttik KP, Mulligan MK, Bryant CD. Genetic differences in the behavioral organization of binge eating, conditioned food reward, and compulsive-like eating in C57BL/6J and DBA/2J strains. Physiol Behav 2018; 197:51-66. [PMID: 30261172 DOI: 10.1016/j.physbeh.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Binge eating (BE) is a heritable symptom of eating disorders associated with anxiety, depression, malnutrition, and obesity. Genetic analysis of BE could facilitate therapeutic discovery. We used an intermittent, limited access BE paradigm involving sweetened palatable food (PF) to examine genetic differences in BE, conditioned food reward, and compulsive-like eating between C57BL/6J (B6J) and DBA/2J (D2J) inbred mouse strains. D2J mice showed a robust escalation in intake and conditioned place preference for the PF-paired side. D2J mice also showed a unique style of compulsive-like eating in the light/dark conflict test where they rapidly hoarded and consumed PF in the preferred unlit environment. BE and compulsive-like eating exhibited narrow-sense heritability estimates between 56 and 73%. To gain insight into the genetic basis, we phenotyped and genotyped a small cohort of 133 B6J × D2J-F2 mice at the peak location of three quantitative trait loci (QTL) previously identified in F2 mice for sweet taste (chromosome 4: 156 Mb), bitter taste (chromosome 6: 133 Mb) and behavioral sensitivity to drugs of abuse (chromosome 11: 50 Mb). The D2J allele on chromosome 6 was associated with greater PF intake on training days and greater compulsive-like PF intake, but only in males, suggesting that decreased bitter taste may increase BE in males. The D2J allele on chromosome 11 was associated with an increase in final PF intake and slope of escalation across days. Future studies employing larger crosses and genetic reference panels comprising B6J and D2J alleles will identify causal genes and neurobiological mechanisms.
Collapse
Affiliation(s)
- Richard K Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States
| | - Julia L Scotellaro
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States; Boston University Undergraduate Research Opportunity Program (UROP), United States
| | - Kimberly P Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States; Boston University Undergraduate Research Opportunity Program (UROP), United States
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States.
| |
Collapse
|
5
|
McCaughey SA. Characterization of mouse chorda tympani responses evoked by stimulation of anterior or posterior fungiform taste papillae. Neurosci Res 2018; 141:43-51. [PMID: 29580888 DOI: 10.1016/j.neures.2018.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/18/2018] [Accepted: 03/22/2018] [Indexed: 11/30/2022]
Abstract
Different gustatory papilla types vary in their locations on the tongue. Distinctions have often made between types, but variation within fungiform papillae has seldom been explored. Here, regional differences in fungiform papillae were investigated by flowing solutions selectively over either an anterior fungiform (AF, tongue tip) or a posterior fungiform (PF, middle third) region as taste-evoked activity was measured in the chorda tympani nerve of C57BL/6J (B6) mice. Significantly larger responses were evoked by NaCl applied to the AF than PF region, and the ENaC blocker amiloride reduced the NaCl response size only for the former. Umami synergy, based on co-presenting MSG and IMP, was larger for the AF than PF region. The regions did not differ in response size to sour chemicals, but responses to l-lysine, l-arginine, sucrose, and tetrasodium pyrophosphate were larger for the AF than PF region. Thus, fungiform papillae on the tongue tip differed from those found further back in their transduction mechanisms for salty and umami compounds. Gustatory sensitivity also showed regional variation, albeit with a complex relationship to palatability and taste quality. Overall, the data support a regional organization for the mouse tongue, with different functional zones for the anterior, middle, and posterior thirds.
Collapse
Affiliation(s)
- Stuart A McCaughey
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Medical Education, Ball State University, Muncie, IN, 47306, United States.
| |
Collapse
|
6
|
LaMagna S, Olsson K, Warshaw D, Fazilov G, Iskhakov B, Buras A, Bodnar RJ. Prior exposure to nutritive and artificial sweeteners differentially alters the magnitude and persistence of sucrose-conditioned flavor preferences in BALB/c and C57BL/6 inbred mouse strains. Nutr Neurosci 2018; 22:706-717. [PMID: 29415638 DOI: 10.1080/1028415x.2018.1436216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Murine genetic variance affects sucrose's ability to condition flavor preferences (CFP) relative to saccharin. Whereas BALB/c mice display robust sucrose- and fructose-CFP, C57BL/6 mice only display sucrose-CFP. Prior exposure to sucrose or saccharin solutions alters subsequent food choice responsiveness. The present study examined whether pre-exposure for one month to 10% sucrose or 0.2% saccharin altered subsequent sucrose-CFP in male and female BALB/c and C57BL/6 mice. Two weeks later, food-restricted mice were exposed to 10 CFP training trials with uniquely flavored 16% sucrose and 0.2% saccharin solutions. Two-bottle choice tests of the flavors mixed in saccharin followed for 4 weeks. Male mice weighed more than females across all conditions, and male BALB/c, but not C57BL mice consumed more 85 sucrose than females. No other notable sex differences were observed. BALB/c mice consumed more sucrose during pre-exposure and one-bottle training than C57BL/6 mice. Although the magnitudes of sucrose-CFP were comparable in two-bottle choice tests in water-exposed BALB/c and C57BL/6 mice, sucrose- and saccharin-exposed BALB/c mice displayed significantly greater sucrose-CFP preferences relative to C57BL/6 counterparts. These data indicate murine genetic variance in the effects of prior exposure to nutritive or non-nutritive sweeteners upon the magnitude of adult sugar-CFP.
Collapse
Affiliation(s)
- Sam LaMagna
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Kerstin Olsson
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Deena Warshaw
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Gabriela Fazilov
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Ben Iskhakov
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Agata Buras
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY , Flushing , NY , USA.,CUNY Neuroscience Collaborative, CUNY Graduate Center , New York , NY , USA
| |
Collapse
|
7
|
Tokita K, Boughter JD. Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: An electrophysiological mapping study. Neuroscience 2015; 316:151-66. [PMID: 26708748 DOI: 10.1016/j.neuroscience.2015.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022]
Abstract
The activities of 178 taste-responsive neurons were recorded extracellularly from the parabrachial nucleus (PbN) in the anesthetized C57BL/6J mouse. Taste stimuli included those representative of five basic taste qualities, sweet, salty, sour, bitter and umami. Umami synergism was represented by all sucrose-best and sweet-sensitive sodium chloride-best neurons. Mediolaterally the PbN was divided into medial, brachium conjunctivum (BC) and lateral subdivisions while rostrocaudally the PbN was divided into rostral and caudal subdivisions for mapping and reconstruction of recording sites. Neurons in the medial and BC subdivisions had a significantly greater magnitude of response to sucrose and to the mixture of monopotassium glutamate and inosine monophosphate than those found in the lateral subdivision. In contrast, neurons in the lateral subdivision possessed a more robust response to quinine hydrochloride. Rostrocaudally no difference was found in the mean magnitude of response. Analysis on the distribution pattern of neuron types classified by their best stimulus revealed that the proportion of neuron types in the medial vs. lateral and BC vs. lateral subdivisions was significantly different, with a greater amount of sucrose-best neurons found medially and within the BC, and a greater amount of sodium chloride-, citric acid- and quinine hydrochloride-best neurons found laterally. There was no significant difference in the neuron-type distribution between rostral and caudal PbN. We also assessed breadth of tuning in these neurons by calculating entropy (H) and noise-to-signal (N/S) ratio. The mean N/S ratio of all neurons (0.43) was significantly lower than that of H value (0.64). Neurons in the caudal PbN had a significantly higher H value than in the rostral PbN. In contrast, mean N/S ratios were not different both mediolaterally and rostrocaudally. These results suggest that although there is overlap in taste quality representation in the mouse PbN, taste-responsive neurons still possessed a topographic organization.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | - J D Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Rebecca Glatt A, St John SJ, Lu L, Boughter JD. Temporal and qualitative dynamics of conditioned taste aversions in C57BL/6J and DBA/2J mice self-administering LiCl. Physiol Behav 2015; 153:97-108. [PMID: 26524511 DOI: 10.1016/j.physbeh.2015.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022]
Abstract
Self-administration of LiCl solution has been shown to result in the formation of a conditioned taste aversion (CTA) that generalizes to NaCl in rats. This paradigm may have considerable ecological validity as it models CTA learning in natural settings, and also allows for the investigation of drinking microstructure as an assay of potential shifts in stimulus palatability. We used this paradigm to examine possible mouse strain differences in CTA acquisition, generalization, and extinction. In the first experiment, C57BL/6J (B6) and DBA/2J (D2) mice self-administered LiCl (or control NaCl) over a 20-minute free access acquisition period and were tested on the following day with a panel of taste solutions available in brief (5-s) trials delivered in random order. In the second experiment, mice again self-administered LiCl or NaCl (at low, 0.12 M, or high, 0.24 M concentrations) in a 20-minute session, and on the following day received a 20-minute free access period to equimolar NaCl. Strain differences were found for aspects of ingestive behavior, with B6 mice showing greater consumption of all stimuli, including water, while D2 mice lick faster, in less frequent but longer bursts. We did not, however, find evidence of a robust strain difference in taste aversion learning. Both strains demonstrated profound alterations in licking microstructure in the generalization session relative to controls. We suggest that a decrease in "lick efficiency" (the percentage of inter-lick intervals within a burst of short duration vs. longer duration) reflects avoidance behavior, and signals a shift in palatability of a stimulus following CTA.
Collapse
Affiliation(s)
- A Rebecca Glatt
- Department of Department of Anatomy & Neurobiology, University of Tennessee Health Science, USA
| | | | - Lianyi Lu
- Department of Department of Anatomy & Neurobiology, University of Tennessee Health Science, USA
| | - John D Boughter
- Department of Department of Anatomy & Neurobiology, University of Tennessee Health Science, USA.
| |
Collapse
|
9
|
Kraft TT, Huang D, Lolier M, Warshaw D, LaMagna S, Natanova E, Sclafani A, Bodnar RJ. BALB/c and SWR inbred mice differ in post-oral fructose appetition as revealed by sugar versus non-nutritive sweetener tests. Physiol Behav 2015; 153:64-9. [PMID: 26485292 DOI: 10.1016/j.physbeh.2015.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/23/2015] [Accepted: 10/16/2015] [Indexed: 11/25/2022]
Abstract
Recent studies indicate that C57BL/6J (B6) and FVB inbred mouse strains differ in post-oral fructose conditioning. This was demonstrated by their differential flavor conditioning response to intragastric fructose and their preference for fructose versus a non-nutritive sweetener. The present study extended this analysis to SWR and BALB/c inbred strains which are of interest because they both show robust flavor conditioning responses to fructose. In the first experiment, ad-libitum fed mice were given a series of 2-day, two-bottle preference tests between 8% fructose and a more preferred, but non-nutritive 0.1% sucralose +0.1% saccharin (S+S) solution (tests 1 & 4), and fructose or S+S versus water (tests 2 and 3). In test 1, SWR mice preferred S+S to fructose, and in tests 2 and 3, they preferred both sweeteners to water. In test 4, SWR mice switched their preference and consumed more fructose than S+S. In contrast, ad-libitum fed BALB/c mice strongly preferred S+S to fructose in both tests 1 and 4, although they preferred both sweeteners to water in tests 2 and 3. Food-restricted BALB/c mice also preferred the non-nutritive S+S to fructose in tests 1 and 4. The experience-induced fructose preference reversal observed in SWR, but not BALB/c mice indicates that fructose has a post-oral reinforcing effect in SWR mice as in FVB mice. Because B6 and FVB mice prefer glucose to fructose based on the post-oral actions of the two sugars, the second experiment compared the preferences of SWR and BALB/c mice for 8% glucose and fructose solutions. Ad-libitum fed and food-restricted SWR mice strongly preferred glucose to fructose. In contrast, ad-libitum fed BALB/c mice were indifferent to the sugars, perhaps because of their overall low intakes. Food-restricted BALB/c mice, however, strongly preferred glucose. These findings indicate that SWR and BALB/c mice differ in their preference response to the post-oral actions of fructose.
Collapse
Affiliation(s)
- Tamar T Kraft
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Melanie Lolier
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Deena Warshaw
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Sam LaMagna
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Anthony Sclafani
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Psychology, Brooklyn College, City University of New York, New York, NY, USA
| | - Richard J Bodnar
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Psychology, Queens College, City University of New York, New York, NY, USA.
| |
Collapse
|
10
|
Breadth of tuning in taste afferent neurons varies with stimulus strength. Nat Commun 2015; 6:8171. [PMID: 26373451 PMCID: PMC4573454 DOI: 10.1038/ncomms9171] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons (‘labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding. How taste information is encoded and transmitted from the periphery to the cortex is not well understood. Here the authors provide evidence for population-based coding of taste by demonstrating that more than half of individual geniculate ganglion neurons are broadly tuned to basic taste stimuli.
Collapse
|
11
|
Sandau MM, Goodman JR, Thomas A, Rucker JB, Rawson NE. A functional comparison of the domestic cat bitter receptors Tas2r38 and Tas2r43 with their human orthologs. BMC Neurosci 2015; 16:33. [PMID: 26037485 PMCID: PMC4453034 DOI: 10.1186/s12868-015-0170-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/07/2015] [Indexed: 01/29/2023] Open
Abstract
Background Domestic cats (felis catus) have a reputation for being rather unpredictable in their dietary choices. While their appetite for protein or savory flavors is consistent with their nutritional needs, their preference among protein-sufficient dietary options may relate to differences in the response to other flavor characteristics. Studies of domestic cat taste perception are limited, in part, due to the lack of receptor sequence information. Several studies have described the phylogenetic relationship of specific cat taste receptor sequences as compared with other carnivores. For example, domestic cats are obligate carnivores and their receptor Tas1r2, associated with the human perception of sweet, is present only as a pseudogene. Similarly, the cat perception of bitter may differ from that of other mammals due to variations in their repertoire of bitter receptor (Tas2r) genes. This report includes the first functional characterization of domestic cat taste receptors. Results We functionally expressed two uncharacterized domestic sequences Tas2r38 and Tas2r43 and deorphanized the receptors using a cellular functional assay. Statistical significance was determined using an unpaired, two-tailed t-test. The cat sequence for Tas2r38 contains 3 major amino acid residues known to confer the taster phenotype (PAI), which is associated with sensitivity to the bitter compounds PROP and PTC. However, in contrast to human TAS2R38, cat Tas2r38 is activated by PTC but not by PROP. Furthermore, like its human counterpart, cat Tas2r43 is activated by aloin and denatonium, but differs from the human TAS2R43 by insensitivity to saccharin. The responses of both cat receptors to the bitter ligands were concentration-dependent and were inhibited by the human bitter blocker probenecid. Conclusions These data demonstrate that the response profiles of the cat bitter receptors Tas2r38 and Tas2r43 are distinct from those of their orthologous human receptors. Results with cat Tas2r38 also demonstrate that additional residues beyond those classically associated with PROP sensitivity in humans influence the sensitivity to PROP and PTC. Functional studies of the human bitter receptor family are being applied to the development of food and medicinal products with more appealing flavor profiles. Our work lays the foundation for similar work applied to felines. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0170-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Anu Thomas
- Integral Molecular, Inc., Philadelphia, PA, USA.
| | | | | |
Collapse
|
12
|
Nesil T, Kanit L, Pogun S. Bitter taste and nicotine preference: evidence for sex differences in rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2014; 41:57-67. [DOI: 10.3109/00952990.2014.990091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Zhang ZQ, Shu G, Zhu XT, Wang LN, Fu Q, Hou LJ, Wang SB, Gao P, Xi QY, Zhang YL, Yu L, Lv JR, Jiang QY. Isolation and characterization of porcine circumvallate papillae cells. Acta Histochem 2014; 116:1313-22. [PMID: 25183665 DOI: 10.1016/j.acthis.2014.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 11/17/2022]
Abstract
Animal food intake is primarily controlled by appetite, which is affected by food quality, environment, and the management and status of animal health. Sensing of taste is mediated by taste receptor cells and is central to appetite. Taste receptor cells possess distinctive physiological characteristics that permit the recognition of various stimuli in foods. Thus, cultures of porcine circumvallate papillae cells provide a model for identification of the molecular and functional characteristics of taste receptor cells. In this study, we described the isolation and culture of porcine circumvallate papillae, using tissue explants and enzymatic digestion, and showed continuous viability and expression of pivotal taste marker proteins for more than 9 passages. In addition, cultured cells showed dramatic rises in intracellular calcium upon stimulation with several taste stimuli (sweet, umami, bitter, and fat). These cultures of porcine taste receptor cells provide a useful model for assessing taste preferences of pigs and may elucidate interactions between various taste stimuli.
Collapse
Affiliation(s)
- Zhi-Qi Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gang Shu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Tong Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li-Na Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiang Fu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Jie Hou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Song-Bo Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ping Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qian-Yun Xi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yong-Liang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yu
- DadHank (Chengdu) Biotech. Corp. Wenjiang Cross-strait Technology Industry Development Park, Chengdu 611130, China
| | - Ji-Rong Lv
- DadHank (Chengdu) Biotech. Corp. Wenjiang Cross-strait Technology Industry Development Park, Chengdu 611130, China
| | - Qing-Yan Jiang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, Nelson TM. Genetics of taste receptors. Curr Pharm Des 2014; 20:2669-83. [PMID: 23886383 PMCID: PMC4764331 DOI: 10.2174/13816128113199990566] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.
Collapse
|
15
|
Mennella JA, Spector AC, Reed DR, Coldwell SE. The bad taste of medicines: overview of basic research on bitter taste. Clin Ther 2013; 35:1225-46. [PMID: 23886820 DOI: 10.1016/j.clinthera.2013.06.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/29/2013] [Accepted: 06/08/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Many active pharmaceutical ingredients taste bitter and thus are aversive to children as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dose forms. OBJECTIVE This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors as well as the cascade of events that leads to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. RESULTS Medicine often tastes bitter, and because children are more bitter-sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands-in animal models through human psychophysics or with "electronic tongues"-have limitations. CONCLUSIONS Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children consume some medicines, they often are not effective in suppressing bitter tastes. Further development of psychophysical tools for children will help us better understand their sensory worlds. Multiple testing strategies will help us refine methods to assess acceptance and compliance by various pediatric populations. Research involving animal models, in which the gustatory system can be more invasively manipulated, can elucidate mechanisms, ultimately providing potential targets. These approaches, combined with new technologies and guided by findings from clinical studies, will potentially lead to effective ways to enhance drug acceptance and compliance in pediatric populations.
Collapse
Affiliation(s)
- Julie A Mennella
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA.
| | | | | | | |
Collapse
|
16
|
Tordoff MG, Ellis HT. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene. Physiol Genomics 2013; 45:834-55. [PMID: 23859941 DOI: 10.1152/physiolgenomics.00092.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The BTBR T+ tf/J (BTBR) mouse strain is indifferent to exemplars of sweet, Polycose, umami, bitter, and calcium tastes, which share in common transduction by G protein-coupled receptors (GPCRs). To investigate the genetic basis for this taste dysfunction, we screened 610 BTBR×NZW/LacJ F2 hybrids, identified a potent QTL on chromosome 17, and isolated this in a congenic strain. Mice carrying the BTBR/BTBR haplotype in the 0.8-Mb (21-gene) congenic region were indifferent to sweet, Polycose, umami, bitter, and calcium tastes. To assess the contribution of a likely causative culprit, Itpr3, the inositol triphosphate receptor 3 gene, we produced and tested Itpr3 knockout mice. These were also indifferent to GPCR-mediated taste compounds. Sequencing the BTBR form of Itpr3 revealed a unique 12 bp deletion in Exon 23 (Chr 17: 27238069; Build 37). We conclude that a spontaneous mutation of Itpr3 in a progenitor of the BTBR strain produced a heretofore unrecognized dysfunction of GPCR-mediated taste transduction.
Collapse
|
17
|
Double-dissociation of D1 and opioid receptor antagonism effects on the acquisition of sucrose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2012; 103:26-32. [PMID: 22967990 DOI: 10.1016/j.pbb.2012.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/03/2012] [Accepted: 07/31/2012] [Indexed: 11/23/2022]
Abstract
Sugar appetite is influenced by unlearned attractions to sweet taste and learned responses to sugars' taste and post-ingestive actions. In rats, sugar-conditioned flavor preferences (CFP) are attenuated by dopamine D1 (SCH23390: SCH), but not by opioid (naltrexone: NTX), receptor antagonism. Sucrose-CFP occurs in BALB/c and SWR inbred mice that differ in their suppressive effects of SCH and NTX on sucrose intake. The present study examined whether SCH and NTX altered expression of previously learned sucrose-CFP and acquisition (learning) of sucrose-CFP in these strains. In Experiment 1, food-restricted mice were trained (10 one-bottle sessions) to drink a more-preferred flavored (e.g., cherry) 16% sucrose solution (CS+/Sucrose) on odd-numbered days, and a less-preferred flavored (e.g., grape) 0.05% saccharin solution (CS-/Saccharin) on even-numbered days. Two-bottle tests with the flavors mixed in 0.2% saccharin occurred 30 min following vehicle (Veh), SCH (50-800 nmol/kg) or NTX (1-5mg/kg) assessing preference expression. CS+ preference expression in BALB/c and SWR mice following Veh were significantly reduced by SCH and NTX. In Experiment 2, separate groups of BALB/c and SWR mice received Veh, SCH (50 nmol/kg) or NTX (1mg/kg) injections 30 min prior to daily one-bottle training sessions with the CS+/Sucrose and CS-/Saccharin solutions assessing preference acquisition. Subsequent two-bottle tests with the CS+ vs. CS- solutions were conducted without injections. CS+/Sucrose training intakes were reduced by SCH in both strains and by NTX in BALB/c mice. In the initial two-bottle test, sucrose-CFP acquisition was significantly reduced in BALB NTX (54%), but not in BALB SCH (77%) groups relative to the BALB Veh group (85%). In contrast, sucrose-CFP acquisition was significantly reduced in SWR SCH (61%), but not in SWR NTX (83%) groups relative to the SWR Veh group (86%). DA D1 and opioid receptor signaling modulate acquisition and/or expression of sucrose-CFP in mice with significant strain differences observed.
Collapse
|
18
|
Gyekis JP, Dingman MA, Revitsky AR, Bryant BP, Vandenbergh DJ, Frank ME, Blizard DA. Gustatory, trigeminal, and olfactory aspects of nicotine intake in three mouse strains. Behav Genet 2012; 42:820-9. [PMID: 22618163 DOI: 10.1007/s10519-012-9546-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/05/2012] [Indexed: 12/16/2022]
Abstract
Studies of nicotine consumption in rodents often intend to investigate nicotine's post-absorptive effects, yet little is known about the pre-absorptive sensory experience of nicotine drinking, including gustatory, trigeminal, and olfactory influences. We conditioned taste aversion (CTA) to nicotine in males of 3 inbred mouse strains: C57BL/6J, DBA/2J, and 129X1/SvJ by repeatedly pairing 150 μg/ml nicotine drinking with lithium chloride injections. Generalization to a variety of bitter, sour, sweet, salty, and irritant solutions and to nicotine odor was then examined. Nicotine CTA generalized to the bitter stimulus quinine hydrochloride and the chemosensory irritant spilanthol in all strains. It also showed strain specificity, generalizing to hydrogen peroxide (an activator of TRPA1) in C57BL/6J mice and to the olfactory cue of nicotine in DBA/2J mice. These behavioral assays demonstrate that the sensory properties of nicotine are complex and include multiple gustatory, irritant, and olfactory components. How these qualities combine at the level of perception remains to be assessed, but sensory factors clearly exert an important influence on nicotine ingestion and their contribution to net intake of nicotine should not be neglected in animal or human studies.
Collapse
Affiliation(s)
- Joseph P Gyekis
- Department of Biobehavioral Health, Pennsylvania State University, 201 Research Building D, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Molecular mechanisms of salty taste in mammals are not completely understood. We use genetic approaches to study these mechanisms. Previously, we developed a high-throughput procedure to measure NaCl taste thresholds, which involves conditioning mice to avoid LiCl and then examining avoidance of NaCl solutions presented in 48-h 2-bottle preference tests. Using this procedure, we measured NaCl taste thresholds of mice from 13 genealogically divergent inbred stains: 129P3/J, A/J, BALB/cByJ, C3H/HeJ, C57BL/6ByJ, C57BL/6J, CBA/J, CE/J, DBA/2J, FVB/NJ, NZB/BlNJ, PWK/PhJ, and SJL/J. We found substantial strain variation in NaCl taste thresholds: mice from the A/J and 129P3/J strains had high thresholds (were less sensitive), whereas mice from the BALB/cByJ, C57BL/6J, C57BL/6ByJ, CE/J, DBA/2J, NZB/BINJ, and SJL/J had low thresholds (were more sensitive). NaCl taste thresholds measured in this study did not significantly correlate with NaCl preferences or amiloride sensitivity of chorda tympani nerve responses to NaCl determined in the same strains in other studies. To examine whether strain differences in NaCl taste thresholds could have been affected by variation in learning ability or sensitivity to toxic effects of LiCl, we used the same method to measure citric acid taste thresholds in 4 inbred strains with large differences in NaCl taste thresholds but similar acid sensitivity in preference tests (129P3/J, A/J, C57BL/6J, and DBA/2J). Citric acid taste thresholds were similar in these 4 strains. This suggests that our technique measures taste quality-specific thresholds that are likely to represent differences in peripheral taste responsiveness. The strain differences in NaCl taste sensitivity found in this study provide a basis for genetic analysis of this phenotype.
Collapse
Affiliation(s)
- Yutaka Ishiwatari
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
20
|
Pinhas A, Aviel M, Koen M, Gurgov S, Acosta V, Israel M, Kakuriev L, Guskova E, Fuzailov I, Touzani K, Sclafani A, Bodnar RJ. Strain differences in sucrose- and fructose-conditioned flavor preferences in mice. Physiol Behav 2012; 105:451-9. [PMID: 21945373 PMCID: PMC3225606 DOI: 10.1016/j.physbeh.2011.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/23/2022]
Abstract
Genetic factors strongly influence the intake and preference for sugar and saccharin solutions in inbred mouse strains. The present study determined if genetic variance also influences the learned preferences for flavors added to sugar solutions. Conditioned flavor preferences (CFPs) are produced in rodents by adding a flavor (CS+) to a sugar solution and a different flavor (CS-) to a saccharin solution (CS-) in one-bottle training trials; the CS+ is subsequently preferred to the CS- when both are presented in saccharin solutions in two-bottle tests. With some sugars (e.g., sucrose), flavor preferences are reinforced by both sweet taste and post-oral nutrient effects, whereas with other sugars (e.g., fructose), sweet taste is the primary reinforcer. Sucrose and fructose were used in three experiments to condition flavor preferences in one outbred (CD-1) and eight inbred strains which have "sensitive" (SWR/J, SJL/J, C57BL/10J, C57BL/6J) or "sub-sensitive" (DBA/2J, BALB/cJ, C3H/HeJ, 129P3/J) sweet taste receptors (T1R2/T1R3). Food-restricted mice of each strain were trained (1 h/day) to drink flavored 16% sucrose (CS+ 16S, Experiment 1), 16% fructose (CS+ 16F, Experiment 2) or 8% fructose+0.2% saccharin (CS+ 8F, Experiment 3) solutions on five alternate days and a differently flavored saccharin solution (0.05% or 0.2%, CS-) on the other five alternating days. The CS+ and CS- flavors were presented in 0.2% saccharin for two-bottle testing over six days. All strains preferred the CS+ 16S to CS- although there were significant strain differences in the magnitude and persistence of the sucrose preference. The strains also differed in the magnitude and persistence of preferences for the CS+ 16F and CS+ 8F flavors over the CS- with two strains failing to prefer the fructose-paired flavors. Sucrose conditioned stronger preferences than did fructose which is attributed to differences in the taste and post-oral actions of the sugars. These differential training intakes may not have influenced the sucrose-CFP because of the post-oral reinforcing actions of sucrose. Overall, sweet sensitive and sub-sensitive mice did not differ in sucrose-CFP, but unexpectedly, the sub-sensitive mice displayed stronger fructose-CFP. This may be related to differential training intakes of CS+ and CS- solutions: sweet sensitive mice consumed more CS- than CS+ during training while sub-sensitive mice consumed more CS+.
Collapse
Affiliation(s)
- Alexander Pinhas
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Michael Aviel
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Michael Koen
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Simon Gurgov
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Vanessa Acosta
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Michael Israel
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Leonid Kakuriev
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Elena Guskova
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Isabelle Fuzailov
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Khalid Touzani
- Department of Brooklyn Colleges, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Anthony Sclafani
- Department of Brooklyn Colleges, Doctoral Sub-Programs, The Graduate Center, City University of New York
- Department of Neuropsychology, Doctoral Sub-Programs, The Graduate Center, City University of New York
- Department of Cognition, Brain and Behavior, Doctoral Sub-Programs, The Graduate Center, City University of New York
| | - Richard J. Bodnar
- Department of Psychology, Queens, Doctoral Sub-Programs, The Graduate Center, City University of New York
- Department of Neuropsychology, Doctoral Sub-Programs, The Graduate Center, City University of New York
| |
Collapse
|
21
|
Abstract
Nicotine addiction is a complex process that begins with self-administration. Consequently, this process has been studied extensively using animal models. A person is usually not called "smoker" if s/he has smoked for a week or a month in a lifetime; in general, a smoker has been smoking for many years. Furthermore, a smoker has free access to cigarettes and can smoke whenever she/he wants, provided there are no social/legal restraints. Subsequently, in an animal model of tobacco addiction, it will be desirable to expose the animal to free access nicotine for 24 hours/day for many weeks, starting at different stages of development.
Collapse
Affiliation(s)
- Allan C Collins
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
22
|
Coleman J, Williams A, Phan THT, Mummalaneni S, Melone P, Ren Z, Zhou H, Mahavadi S, Murthy KS, Katsumata T, DeSimone JA, Lyall V. Strain differences in the neural, behavioral, and molecular correlates of sweet and salty taste in naive, ethanol- and sucrose-exposed P and NP rats. J Neurophysiol 2011; 106:2606-21. [PMID: 21849614 DOI: 10.1152/jn.00196.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Strain differences between naive, sucrose- and ethanol-exposed alcohol-preferring (P) and alcohol-nonpreferring (NP) rats were investigated in their consumption of ethanol, sucrose, and NaCl; chorda tympani (CT) nerve responses to sweet and salty stimuli; and gene expression in the anterior tongue of T1R3 and TRPV1/TRPV1t. Preference for 5% ethanol and 10% sucrose, CT responses to sweet stimuli, and T1R3 expression were greater in naive P rats than NP rats. The enhancement of the CT response to 0.5 M sucrose in the presence of varying ethanol concentrations (0.5-40%) in naive P rats was higher and shifted to lower ethanol concentrations than NP rats. Chronic ingestion of 5% sucrose or 5% ethanol decreased T1R3 mRNA in NP and P rats. Naive P rats also demonstrated bigger CT responses to NaCl+benzamil and greater TRPV1/TRPV1t expression. TRPV1t agonists produced biphasic effects on NaCl+benzamil CT responses, enhancing the response at low concentrations and inhibiting it at high concentrations. The concentration of a TRPV1/TRPV1t agonist (Maillard reacted peptides conjugated with galacturonic acid) that produced a maximum enhancement in the NaCl+benzamil CT response induced a decrease in NaCl intake and preference in P rats. In naive P rats and NP rats exposed to 5% ethanol in a no-choice paradigm, the biphasic TRPV1t agonist vs. NaCl+benzamil CT response profiles were higher and shifted to lower agonist concentrations than in naive NP rats. TRPV1/TRPV1t mRNA expression increased in NP rats but not in P rats exposed to 5% ethanol in a no-choice paradigm. We conclude that P and NP rats differ in T1R3 and TRPV1/TRPV1t expression and neural and behavioral responses to sweet and salty stimuli and to chronic sucrose and ethanol exposure.
Collapse
Affiliation(s)
- Jamison Coleman
- Dept. of Physiology and Biophysics, Virginia Commonwealth Univ., Richmond, VA 23219, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
B6-MSM Consomic Mouse Strains Reveal Multiple Loci for Genetic Variation in Sucrose Octaacetate Aversion. Behav Genet 2011; 41:716-23. [DOI: 10.1007/s10519-011-9464-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/05/2011] [Indexed: 11/28/2022]
|
24
|
Crabbe JC, Phillips TJ, Belknap JK. The complexity of alcohol drinking: studies in rodent genetic models. Behav Genet 2010; 40:737-50. [PMID: 20552264 DOI: 10.1007/s10519-010-9371-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/22/2010] [Indexed: 02/01/2023]
Abstract
Risk for alcohol dependence in humans has substantial genetic contributions. Successful rodent models generally attempt to address only selected features of the human diagnosis. Most such models target the phenotype of oral administration of alcohol solutions, usually consumption of or preference for an alcohol solution versus water. Data from rats and mice for more than 50 years have shown genetic influences on preference drinking and related phenotypes. This paper summarizes some key findings from that extensive literature. Much has been learned, including the genomic location and possible identity of several genes influencing preference drinking. We report new information from congenic lines confirming QTLs for drinking on mouse chromosomes 2 and 9. There are many strengths of the various phenotypic assays used to study drinking, but there are also some weaknesses. One major weakness, the lack of drinking excessively enough to become intoxicated, has recently been addressed with a new genetic animal model, mouse lines selectively bred for their high and intoxicating blood alcohol levels after a limited period of drinking in the circadian dark. We report here results from a second replicate of that selection and compare them with the first replicate.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
25
|
Miura H, Barlow LA. Taste bud regeneration and the search for taste progenitor cells. Arch Ital Biol 2010; 148:107-118. [PMID: 20830973 PMCID: PMC3545678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While the taste periphery has been studied for over a century, we are only beginning to understand how this important sensory system is maintained throughout adult life. With the advent of molecular genetics in rodent models, and the upswing in translational approaches that impact human patients, we expect the field will make significant advances in the near future.
Collapse
Affiliation(s)
- Hirohito Miura
- Dept of Oral Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Linda A. Barlow
- Dept of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora CO 80045, USA
| |
Collapse
|
26
|
Abstract
The taste of sweeteners is hedonically pleasing, suggests high caloric value in food, and contributes to increased intake. In recent years, many of the molecular mechanisms underlying the detection of sweeteners have been elucidated. Of particular note is the identification of the sweet taste receptor, the heteromeric G-protein-coupled receptor T1R2:T1R3, which responds to a vast array of chemically diverse natural and artificial sweeteners. In this chapter, we discuss some of the mechanisms underlying the detection of sweeteners by mammals, with a particular focus on the function and role of the T1R2:T1R3 receptor in these processes.
Collapse
|
27
|
Tokita K, Inoue T, Boughter JD. Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 2009; 161:475-88. [PMID: 19327389 PMCID: PMC2705209 DOI: 10.1016/j.neuroscience.2009.03.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Although the mouse is an experimental model with an increasing importance in various fields of neuroscience, the characteristics of its central gustatory pathways have not yet been well documented. Recent electrophysiological studies using the rat and hamster have revealed that taste processing in the brainstem gustatory relays is under the strong influence of inputs from forebrain gustatory structures. In the present study, we investigated the organization of afferent projections to the mouse parabrachial nucleus (PbN), which is located at a key site between the brainstem and gustatory, viscerosensory and autonomic centers in the forebrain. We made injections of the retrograde tracer fluorogold centered around the "waist" area of the PbN, whose neurons are known to be highly responsive to taste stimuli. Retrogradely labeled neurons were found in the infralimbic, dysgranular and agranular insular cortex as well as the claustrum; the bed nucleus of the stria terminalis and the substantia innominata; the central nucleus of the amygdala; the lateral and medial preoptic areas, the paraventricular, the dorsomedial, the ventromedial, the arcuate, and the lateral hypothalamic areas; the periaqueductal gray, the substantia nigra pars compacta, and the ventral tegmental area; the supratrigeminal nucleus, rostral and caudal nucleus of the solitary tract; the parvicellular intermediate and gigantocellular reticular nucleus; the caudal and interpolar divisions of the spinal trigeminal nucleus, dorsomedial spinal trigeminal nucleus, and the area postrema. Numbers of labeled neurons in the main components of the gustatory system including the insular cortex, bed nucleus of the stria terminalis, central nucleus of the amygdala, lateral hypothalamus, and rostral nucleus of the solitary tract were quantified. These results are basically consistent with those of the previous rat and hamster studies, but some species differences were found. Functional implications of these afferent inputs are discussed with an emphasis on their role in taste.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
28
|
Garcia-Bailo B, Toguri C, Eny KM, El-Sohemy A. Genetic variation in taste and its influence on food selection. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:69-80. [PMID: 18687042 DOI: 10.1089/omi.2008.0031] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract Taste perception plays a key role in determining individual food preferences and dietary habits. Individual differences in bitter, sweet, umami, sour, or salty taste perception may influence dietary habits, affecting nutritional status and nutrition-related chronic disease risk. In addition to these traditional taste modalities there is growing evidence that "fat taste" may represent a sixth modality. Several taste receptors have been identified within taste cell membranes on the surface of the tongue, and they include the T2R family of bitter taste receptors, the T1R receptors associated with sweet and umami taste perception, the ion channels PKD1L3 and PKD2L1 linked to sour taste, and the integral membrane protein CD36, which is a putative "fat taste" receptor. Additionally, epithelial sodium channels and a vanilloid receptor, TRPV1, may account for salty taste perception. Common polymorphisms in genes involved in taste perception may account for some of the interindividual differences in food preferences and dietary habits within and between populations. This variability could affect food choices and dietary habits, which may influence nutritional and health status and the risk of chronic disease. This review will summarize the present state of knowledge of the genetic variation in taste, and how such variation might influence food intake behaviors.
Collapse
Affiliation(s)
- Bibiana Garcia-Bailo
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Crabbe JC, Metten P, Rhodes JS, Yu CH, Brown LL, Phillips TJ, Finn DA. A line of mice selected for high blood ethanol concentrations shows drinking in the dark to intoxication. Biol Psychiatry 2009; 65:662-70. [PMID: 19095222 PMCID: PMC3330756 DOI: 10.1016/j.biopsych.2008.11.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 09/26/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Many animal models of alcoholism have targeted aspects of excessive alcohol intake (abuse) and dependence. In the rodent, models aimed at increasing alcohol self-administration have used genetic or environmental manipulations, or their combination. Strictly genetic manipulations (e.g., comparison of inbred strains or targeted mutants, selective breeding) have not yielded rat or mouse genotypes that will regularly and voluntarily drink alcohol to the point of intoxication. Although some behavioral manipulations (e.g., scheduling or limiting access to alcohol, adding a sweetener) will induce mice or rats to drink enough alcohol to become intoxicated, these typically require significant food or water restriction or a long time to develop. We report progress toward the development of a new genetic animal model for high levels of alcohol drinking. METHODS High Drinking in the Dark (HDID-1) mice have been selectively bred for high blood ethanol concentrations (BEC, ideally exceeding 100 mg%) resulting from the ingestion of a 20% alcohol solution. RESULTS After 11 generations of selection, more than 56% of the population now exceeds this BEC after a 4-hour drinking session in which a single bottle containing 20% ethanol is available. The dose of ethanol consumed also produced quantifiable signs of intoxication. CONCLUSIONS These mice will be useful for mechanistic studies of the biological and genetic contributions to excessive drinking.
Collapse
|
30
|
Abstract
Bitter taste in mammals is achieved by a family of approximately 30 bitter taste receptor genes. The main function of bitter taste is to protect the organism against the ingestion of, frequently bitter, toxic food metabolites. The field of taste research has advanced rapidly during the last several years. This is especially true for the G-protein-coupled-receptor-mediated taste qualities, sweet, umami, and bitter. This review summarizes current knowledge of bitter taste receptor gene expression, signal transduction, the structure-activity relationship of bitter taste receptor proteins, as well as their variability leading to a high degree of individualization of this taste quality in mammals.
Collapse
Affiliation(s)
- M Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.
| | | |
Collapse
|
31
|
Nicklaus S, Schwartz C. L’acquisition des préférences alimentaires : le cas du goût sucré. CAHIERS DE NUTRITION ET DE DIETETIQUE 2008. [DOI: 10.1016/s0007-9960(08)71556-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Belknap JK, Metten P, Beckley EH, Crabbe JC. Multivariate analyses reveal common and drug-specific genetic influences on responses to four drugs of abuse. Trends Pharmacol Sci 2008; 29:537-43. [PMID: 18774184 PMCID: PMC3100800 DOI: 10.1016/j.tips.2008.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/10/2008] [Accepted: 07/25/2008] [Indexed: 11/17/2022]
Abstract
Vulnerability to abused drugs is influenced by multiple genes unique to each drug and to risk genes for polydrug abuse. If several inbred mouse strains respond to different drugs similarly, this implies the action of a common group of genes. Simultaneous analysis of multiple responses to multiple drugs has been attempted infrequently. We performed multivariate analyses of published strain responses to four drugs. Genetic similarity in responses did not simply track pharmacological class. Withdrawal severity and preference for ethanol and diazepam were affected by many genes in common, although inversely. We focused on behavioral responses, but there is a growing archival database of physiological, pharmacological and biochemical strain traits. The genomics community is increasingly focusing on single-nucleotide polymorphism and haplotype-based gene mapping approaches, for which inbred strain data are also useful. Thus, similar analyses should be applicable to other laboratories, traits and genotypes.
Collapse
Affiliation(s)
- John K. Belknap
- Research Service, Veterans Affairs Medical Center, and Department of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239
| | - Pamela Metten
- Research Service, Veterans Affairs Medical Center, and Department of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239
| | - Ethan H. Beckley
- Research Service, Veterans Affairs Medical Center, and Department of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239
| | - John C. Crabbe
- Research Service, Veterans Affairs Medical Center, and Department of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
33
|
Glatt AR, Denton K, Boughter JD. Variation in nicotine consumption in inbred mice is not linked to orosensory ability. Chem Senses 2008; 34:27-35. [PMID: 18775876 DOI: 10.1093/chemse/bjn049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic studies of nicotine addiction in mice have utilized the oral self-administration model. However, it is unclear if strain differences in nicotine consumption are influenced by variation in bitter taste sensitivity. We measured both nicotine consumption and nicotine brief-access licking behavior in several commonly used inbred strains of mice that were previously shown to differ in nicotine consumption. A/J (A), C57BL/6J (B6), and DBA/2J (D2) mice were given a 2-bottle choice test with a single concentration of nicotine (75 microg/ml; nicotine vs. water). Mice of these strains were also tested with a range of nicotine concentrations (5-400 microg/ml) using a brief-access test, which measures orosensory response and minimizes postingestive effects. Although B6 mice consumed more 75-microg/ml nicotine than A or D2 mice in the 2-bottle test, these strains did not differ in level of aversion to nicotine when tested with the brief-access procedure. Strain differences in orosensory response to nicotine were not found; yet, differences emerged during the 2-bottle tests. This study provides evidence that variation in intake level of nicotine is likely not due to differences in taste or trigeminal sensitivity but likely due to postingestive factors.
Collapse
Affiliation(s)
- A Rebecca Glatt
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
34
|
Tordoff MG, Alarcon LK, Lawler MP. Preferences of 14 rat strains for 17 taste compounds. Physiol Behav 2008; 95:308-32. [PMID: 18639567 DOI: 10.1016/j.physbeh.2008.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Two-bottle choice tests were used to assess the taste preferences of 8 male and 8 female rats from 3 outbred strains (SD, LE, WI) and 11 inbred strains (BN, BUF, COP, DA, Dahl-S, F344, FHH, LEW, Noble, PVG, SHR). Each rat received a series of 109 48-h tests with a choice between water and a "taste solution". Four to eight concentrations of the following compounds were tested: NaCl, CaCl2, NH4Cl, KCl, MgCl2, saccharin, sucrose, ethanol, HCl, citric acid, quinine hydrochloride (QHCl), caffeine, denatonium, monosodium glutamate (MSG), Polycose, corn oil, and capsaicin. Strain differences (p<0.001) were observed in preferences for at least one concentration of all compounds tested except denatonium (p=0.0015). There were also strain differences in the following ancillary measures: fungiform papillae number, water intake, food intake, and body weight. There were sex differences in food intake and body weight but no concerted sex differences in any of the other measures, including preferences for any taste solution. This comprehensive source of information can be used to guide the choice of appropriate rat strains and taste solution concentrations for future genetic studies.
Collapse
Affiliation(s)
- Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104-3308, USA.
| | | | | |
Collapse
|
35
|
Abstract
In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity.
Collapse
|
36
|
Bachmanov AA, Beauchamp GK. Amino acid and carbohydrate preferences in C57BL/6ByJ and 129P3/J mice. Physiol Behav 2007; 93:37-43. [PMID: 17764708 PMCID: PMC2235816 DOI: 10.1016/j.physbeh.2007.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 11/16/2022]
Abstract
Compared with mice from the 129P3/J (129) inbred strain, mice from the C57BL/6ByJ (B6) inbred strain have higher consumption of several sweet-tasting amino acids and carbohydrates. To examine the relative contribution of taste and nutritive properties in these strain differences, we measured responses of B6 and 129 mice to eight sweet and non-sweet amino acids and carbohydrates in two-bottle preference tests with water. Mice from the two strains did not differ in consumption of non-sweet l-valine and l-histidine. Compared with 129 mice, B6 mice had higher consumption and lower preference thresholds for sweet amino acids l-glutamine, l-alanine and l-threonine, monosaccharides glucose and fructose, and maltooligosaccharide. These data suggest that differences in gustatory responsiveness are an important factor underlying higher consumption of some amino acids and carbohydrates by B6 mice compared with 129 mice. It is likely that in B6 mice, higher sweet taste responsiveness results in increased consumption of sweet-tasting amino acids and sugars, and higher taste responsiveness to complex carbohydrates results in increased consumption of maltooligosaccharide. However, postingestive processes also influence nutrient consumption and may be responsible for higher intake of carbohydrates compared with sweet-tasting amino acids. Results of this study set the stage for genetic analysis of differences between B6 and 129 mice in taste responsiveness and macronutrient consumption.
Collapse
|