1
|
Perveen A, Sheheryar S, Ahmad F, Mustafa G, Moura AA, Campos FAP, Domont GB, Nishan U, Ullah R, Ibrahim MA, Nogueira FCS, Shah M. Integrative physiological, biochemical, and proteomic analysis of the leaves of two cotton genotypes under heat stress. PLoS One 2025; 20:e0316630. [PMID: 39787180 PMCID: PMC11717266 DOI: 10.1371/journal.pone.0316630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes. In this study, we explored the proteomic changes underscoring the heat stress tolerance in the leaves of two locally developed cotton genotypes, i.e., heat tolerant (GH-Hamaliya Htol) and heat susceptible (CIM-789 Hsus), guided by morpho-physiological and biochemical analysis. These genotypes were sown at two different temperatures, control (35°C) and stress (45°C), in a glasshouse, in a randomized complete block design (RCBD) in three replications. At the flowering stage, a label-free quantitative shotgun proteomics of cotton leaves revealed the differential expression of 701 and 1270 proteins in the tolerant and susceptible genotypes compared to the control, respectively. Physiological and biochemical analysis showed that the heat-tolerant genotype responded uniquely to stress by maintaining the net photosynthetic rate (Pn) (25.2-17.5 μmolCO2m-2S-1), chlorophyll (8.5-7.8mg/g FW), and proline contents (4.9-7.4 μmole/g) compared to control, supported by the upregulation of many proteins involved in several pathways, including photosynthesis, oxidoreductase activity, response to stresses, translation, transporter activities, as well as protein and carbohydrate metabolic processes. In contrast, the distinctive pattern of protein downregulation involved in stress response, oxidoreductase activity, and carbohydrate metabolism was observed in susceptible plants. To the best of our knowledge, this is the first proteomic study on cotton leaves that has identified more than 8000 proteins with an array of differentially expressed proteins responsive to the heat treatment that could serve as potential markers in the breeding programs after further experimentation.
Collapse
Affiliation(s)
- Asia Perveen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sheheryar Sheheryar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Fiaz Ahmad
- Physiology/Chemistry Section, Central Cotton Research Institute, Multan, Pakistan
| | - Ghazala Mustafa
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Francisco A. P. Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Gilberto B. Domont
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Umar Nishan
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, PR China
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fábio C. S. Nogueira
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
2
|
Mukherjee S, Roy S, Corpas FJ. Aquaporins: a vital nexus in H 2O 2-gasotransmitter signaling. TRENDS IN PLANT SCIENCE 2024; 29:681-693. [PMID: 38199830 DOI: 10.1016/j.tplants.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Land plants have evolved with a complex mechanism of water uptake facilitated by the activity of aquaporins under normal and challenging environments. However, we lack a clear understanding of its interactions with reactive oxygen species, particularly hydrogen peroxide (H2O2) and the gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S), under oxidative stress. Here, we assess the crosstalk of aquaporin function, H2O2 homeostasis, and NO-H2S signaling in plants and provide a computational prediction of cysteine-based oxidative post-translational modifications (oxiPTMs) in plant aquaporins. We propose that aquaporin activity could be regulated by three major oxiPTMs, S-nitrosation, S-sulfenylation, and persulfidation, mediated by NO, H2O2, and H2S, respectively. Therefore, aquaporins might be key players in the gasotransmitter-mediated long-distance oxidative stress signals in plant cells.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, India
| | - Suchismita Roy
- Department of Cell and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in Plants, Estación Experimental del Zaidín (Spanish National Research Council), Granada, Spain.
| |
Collapse
|
3
|
Jacob F, Hamid R, Ghorbanzadeh Z, Valsalan R, Ajinath LS, Mathew D. Genome-wide identification, characterization, and expression analysis of MIPS family genes in legume species. BMC Genomics 2024; 25:95. [PMID: 38262915 PMCID: PMC10804463 DOI: 10.1186/s12864-023-09937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.
Collapse
Affiliation(s)
- Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ravisankar Valsalan
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Lavale Shivaji Ajinath
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Deepu Mathew
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India.
| |
Collapse
|
4
|
Safdar T, Tahir MHN, Ali Z, Ur Rahman MH. Exploring the role of HaTIPs genes in enhancing drought tolerance in sunflower. Mol Biol Rep 2023; 50:8349-8359. [PMID: 37606830 DOI: 10.1007/s11033-023-08679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/14/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Activity of plant aquaporins (AQPs) is extremely sensitive to environmental variables such as temperature, drought, atmospheric vapor pressure deficit, cell water status and also appears to be closely associated with the expression of plant tolerance to various stresses. The spatial and temporal expression patterns of genes of Tonoplast Intrinsic Proteins (TIPs) in various crops indicate the complex and diverse regulation of these proteins and are important in understanding their key role in plant growth, development and stress responses. METHODS AND RESULTS Based on phylogenetic analysis, six distinct HaTIPs were selected for studying their spatial and temporal expression in sunflower (Helianthus annuus). In this study semi quantitative polymerase chain reaction (semi q-PCR) and real time polymerase chain reaction (q-PCR) analysis were used to study the spatial and temporal expression of HaTIPs in sunflower. The results indicated that all of HaTIPs showed differential expression specific to both the tissues and the accessions. Moreover, the expression of all HaTIPs was higher in cross compared to the parents. Results of semi q-PCR and real time PCR indicated an upregulation of expression of HaTIP-RB7 and HaTIP7 in drought tolerant entries at 12 h of 20% polyethylene glycol (PEG) treatment compared to 0 h. CONCLUSION Hence these genes can be utilized as potential target in improving water use efficiency and for further genetic manipulation for the development of drought tolerant sunflower. This study may further contribute to our better understanding regarding the precise role of HaTIPs through their spatial and temporal expression analysis and their application in sunflower drought stress responses.
Collapse
Affiliation(s)
- Tania Safdar
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan, Pakistan.
| | - Muhammad Hammad Nadeem Tahir
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib Ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef, University of Agriculture, Multan, Pakistan
- Institute of crop science and resource conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Papadopoulou A, Ainalidou A, Mellidou I, Karamanoli K. Metabolome and transcriptome reprogramming underlying tomato drought resistance triggered by a Pseudomonas strain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108080. [PMID: 37812990 DOI: 10.1016/j.plaphy.2023.108080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Although amelioration of drought stress by Plant Growth Promoting Rhizobacteria (PGPR) is a well-documented phenomenon, the combined molecular and metabolic mechanisms governing this process remain unclear. In these lines, the present study aimed to provide new insights in the underlying drought attenuating mechanisms of tomato plants inoculated with a PGP Pseudomonas putida strain, by using a combination of metabolomic and transcriptomic approaches. Following Differentially Expressed Gene analysis, it became evident that inoculation resulted in a less disturbed plant transcriptome upon drought stress. Untargeted metabolomics highlighted the differential metabolite accumulation upon inoculation, as well as the less metabolic reprograming and the lower accumulation of stress-related metabolites for inoculated stressed plants. These findings were in line with morpho-physiological evidence of drought stress mitigation in the inoculated plants. The redox state modulation, the more efficient nitrogen assimilation, as well as the differential changes in amino acid metabolism, and the induction of the phenylpropanoid biosynthesis pathway, were the main drought-attenuating mechanisms in the SAESo11-inoculated plants. Shifts in pathways related to hormonal signaling were also evident upon inoculation at a transcript level and in conjunction with carbon metabolism regulation, possibly contributed to a drought-attenuation preconditioning. The identified signatory molecules of SAESo11-mediated priming against drought included aspartate, myo-inositol, glutamate, along with key genes related to trehalose, tryptophan and cysteine synthesis. Taken together, SAESo11-inoculation provides systemic effects encompassing both metabolic and regulatory functions, supporting both seedling growth and drought stress amelioration.
Collapse
Affiliation(s)
- Anastasia Papadopoulou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aggeliki Ainalidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER, Thermi, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
6
|
Raza Q, Rashid MAR, Waqas M, Ali Z, Rana IA, Khan SH, Khan IA, Atif RM. Genomic diversity of aquaporins across genus Oryza provides a rich genetic resource for development of climate resilient rice cultivars. BMC PLANT BIOLOGY 2023; 23:172. [PMID: 37003962 PMCID: PMC10064747 DOI: 10.1186/s12870-023-04151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Plant aquaporins are critical genetic players performing multiple biological functions, especially climate resilience and water-use efficiency. Their genomic diversity across genus Oryza is yet to be explored. RESULTS This study identified 369 aquaporin-encoding genes from 11 cultivated and wild rice species and further categorized these into four major subfamilies, among which small basic intrinsic proteins are speculated to be ancestral to all land plant aquaporins. Evolutionarily conserved motifs in peptides of aquaporins participate in transmembrane transport of materials and their relatively complex gene structures provide an evolutionary playground for regulation of genome structure and transcription. Duplication and evolution analyses revealed higher genetic conservation among Oryza aquaporins and strong purifying selections are assisting in conserving the climate resilience associated functions. Promoter analysis highlighted enrichment of gene upstream regions with cis-acting regulatory elements involved in diverse biological processes, whereas miRNA target site prediction analysis unveiled substantial involvement of osa-miR2102-3p, osa-miR2927 and osa-miR5075 in post-transcriptional regulation of gene expression patterns. Moreover, expression patterns of japonica aquaporins were significantly perturbed in response to different treatment levels of six phytohormones and four abiotic stresses, suggesting their multifarious roles in plants survival under stressed environments. Furthermore, superior haplotypes of seven conserved orthologous aquaporins for higher thousand-grain weight are reported from a gold mine of 3,010 sequenced rice pangenomes. CONCLUSIONS This study unveils the complete genomic atlas of aquaporins across genus Oryza and provides a comprehensive genetic resource for genomics-assisted development of climate-resilient rice cultivars.
Collapse
Affiliation(s)
- Qasim Raza
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Khan
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rana Muhammad Atif
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan.
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
7
|
Dande R, Sankararamakrishnan R. dbAQP-SNP: a database of missense single-nucleotide polymorphisms in human aquaporins. Database (Oxford) 2023; 2023:7076688. [PMID: 36913438 PMCID: PMC10010469 DOI: 10.1093/database/baad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Aquaporins and aquaglyceroporins belong to the superfamily of major intrinsic proteins (MIPs), and they transport water and other neutral solutes such as glycerol. These channel proteins are involved in vital physiological processes and are implicated in several human diseases. Experimentally determined structures of MIPs from diverse organisms reveal a unique hour-glass fold with six transmembrane helices and two half-helices. MIP channels have two constrictions formed by Asn-Pro-Ala (NPA) motifs and aromatic/arginine selectivity filters (Ar/R SFs). Several reports have found associations among single-nucleotide polymorphisms (SNPs) in human aquaporins (AQPs) with diseases in specific populations. In this study, we have compiled 2798 SNPs that give rise to missense mutations in 13 human AQPs. To understand the nature of missense substitutions, we have systematically analyzed the pattern of substitutions. We found several examples in which substitutions could be considered as non-conservative that include small to big or hydrophobic to charged residues. We also analyzed these substitutions in the context of structure. We have identified SNPs that occur in NPA motifs or Ar/R SFs, and they will most certainly disrupt the structure and/or transport properties of human AQPs. We found 22 examples in which missense SNP substitutions that are mostly non-conservative in nature have given rise to pathogenic conditions as found in the Online Mendelian Inheritance in Man database. It is most likely that not all missense SNPs in human AQPs will result in diseases. However, understanding the effect of missense SNPs on the structure and function of human AQPs is important. In this direction, we have developed a database dbAQP-SNP that contains information about all 2798 SNPs. This database has several features and search options that can help the user to find SNPs in specific positions of human AQPs including the functionally and/or structurally important regions. dbAQP-SNP (http://bioinfo.iitk.ac.in/dbAQP-SNP) is freely available to the academic community. Database URL http://bioinfo.iitk.ac.in/dbAQP-SNP.
Collapse
Affiliation(s)
- Rachana Dande
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
8
|
Yaghobi M, Heidari P. Genome-Wide Analysis of Aquaporin Gene Family in Triticum turgidum and Its Expression Profile in Response to Salt Stress. Genes (Basel) 2023; 14:genes14010202. [PMID: 36672943 PMCID: PMC9859376 DOI: 10.3390/genes14010202] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
During the response of plants to water stresses, aquaporin (AQP) plays a prominent role in membrane water transport based on the received upstream signals. Due to the importance of the AQP gene family, studies have been conducted that investigate the function and regulatory system of these genes. However, many of their molecular aspects are still unknown. This study aims to carry out a genome-wide investigation of the AQP gene family in Triticum turgidum using bioinformatics tools and to investigate the expression patterns of some members in response to salt stress. Our results show that there are 80 TtAQP genes in T. turgidum, which are classified into four main groups based on phylogenetic analysis. Several duplications were observed between the members of the TtAQP gene family, and high diversity in response to post-translational modifications was observed between TtAQP family members. The expression pattern of TtAQP genes disclosed that these genes are primarily upregulated in response to salt stress. Additionally, the qPCR data revealed that TtAQPs are more induced in delayed responses to salinity stress. Overall, our findings illustrate that TtAQP members are diverse in terms of their structure, regulatory systems, and expression levels.
Collapse
|
9
|
Wu L, Chang Y, Wang L, Wang S, Wu J. The aquaporin gene PvXIP1;2 conferring drought resistance identified by GWAS at seedling stage in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:485-500. [PMID: 34698878 DOI: 10.1007/s00122-021-03978-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
A whole-genome resequencing-derived SNP dataset used for genome-wide association analysis revealed 12 loci significantly associated with drought stress based on survival rate after drought stress at seedling stage. We further confirmed the drought-related function of an aquaporin gene (PvXIP1;2) located at Locus_10. A variety of adverse conditions, including drought stress, severely affect common bean production. Molecular breeding for drought resistance has been proposed as an effective and practical way to improve the drought resistance of common bean. A genome-wide association analysis was conducted to identify drought-related loci based on survival rates at the seedling stage using a natural population consisting of 400 common bean accessions and 3,832,340 SNPs. The coefficient of variation ranged from 40.90 to 56.22% for survival rates in three independent experiments. A total of 12 associated loci containing 89 significant SNPs were identified for survival rates at the seedling stage. Four loci overlapped in the region of the QTLs reported to be associated with drought resistance. According to the expression profiles, gene annotations and references of the functions of homologous genes in Arabidopsis, 39 genes were considered potential candidate genes selected from 199 genes annotated within all associated loci. A stable locus (Locus_10) was identified on chromosome 11, which contained LEA, aquaporin, and proline-rich protein genes. We further confirmed the drought-related function of an aquaporin (PvXIP1;2) located at Locus_10 by expression pattern analysis, phenotypic analysis of PvXIP1;2-overexpressing Arabidopsis and Agrobacterium rhizogenes-mediated hairy root transformation systems, indicating that the association results can facilitate the efficient identification of genes related to drought resistance. These loci and their candidate genes provide a foundation for crop improvement via breeding for drought resistance in common bean.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Identification of Aquaporin Gene Family in Response to Natural Cold Stress in Ligustrum × vicaryi Rehd. FORESTS 2022. [DOI: 10.3390/f13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants are susceptible to a variety of abiotic stresses during the growing period, among which low temperature is one of the more frequent stress factors. Maintaining water balance under cold stress is a difficult and critical challenge for plants. Studies have shown that aquaporins located on the cytomembrane play an important role in controlling water homeostasis under cold stress, and are involved in the tolerance mechanism of plant cells to cold stress. In addition, the aquaporin gene family is closely related to the cold resistance of plants. As a major greening tree species in urban landscaping, Ligustrum× vicaryi Rehd. is more likely to be harmed by low temperature after a harsh winter and a spring with fluctuating temperatures. Screening the target aquaporin genes of Ligustrum × vicaryi responding to cold resistance under natural cold stress will provide a scientific theoretical basis for cold resistance breeding of Ligustrum × vicaryi. In this study, the genome-wide identification of the aquaporin gene family was performed at four different overwintering periods in September, November, January and April, and finally, 58 candidate Ligustrum × vicaryi aquaporin (LvAQP) genes were identified. The phylogenetic analysis revealed four subfamilies of the LvAQP gene family: 32 PIPs, 11 TIPs, 11 NIPs and 4 SIPs. The number of genes in PIPs subfamily was more than that in other plants. Through the analysis of aquaporin genes related to cold stress in other plants and LvAQP gene expression patterns identified 20 LvAQP genes in response to cold stress, and most of them belonged to the PIPs subfamily. The significantly upregulated LvAQP gene was Cluster-9981.114831, and the significantly downregulated LvAQP genes were Cluster-9981.112839, Cluster-9981.107281, and Cluster-9981.112777. These genes might play a key role in responding to cold tolerance in the natural low-temperature growth stage of Ligustrum × vicaryi.
Collapse
|
11
|
Cheng G, Wang M, Zhang L, Wei H, Wang H, Lu J, Yu S. Overexpression of a Cotton Aquaporin Gene GhTIP1;1-like Confers Cold Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23031361. [PMID: 35163287 PMCID: PMC8836057 DOI: 10.3390/ijms23031361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Cold stress can significantly affect the development, yield, and quality of crops and restrict the geographical distribution and growing seasons of plants. Aquaporins are the main channels for water transport in plant cells. Abiotic stresses such as cold and drought dehydrate cells by changing the water potential. In this study, we cloned a gene GhTIP1;1-like encodes tonoplast aquaporin from the transcriptome database of cotton seedlings after cold stress. Expression analysis showed that GhTIP1;1-like not only responds to cold stress but was also induced by heat, drought and salt stress. Subcellular localization showed that the protein was anchored to the vacuole membrane. Promoter deletion analysis revealed that a MYC motif within the promoter region of GhTIP1;1-like were the core cis-elements in response to low temperature. Virus-induced gene silencing (VIGS) and histochemical staining indicate that GhTIP1;1-like plays a positive role in plant cold tolerance. Overexpression of GhTIP1;1-like in Arabidopsis delayed the senescence process and enhanced the cold tolerance of transgenic plants. Compared with the wild type, the soluble protein concentration and peroxidase activity of the transgenic lines under cold stress were higher, while the malondialdehyde content was lower. In addition, the expression levels of cold-responsive genes were significantly increased in transgenic plants under cold stress. Our results indicate that GhTIP1;1-like could respond to different abiotic stresses and be positively involved in regulating the cold tolerance of cotton.
Collapse
Affiliation(s)
- Gongmin Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China;
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Mengdi Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China;
- School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Longyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; (G.C.); (L.Z.); (H.W.); (H.W.); (J.L.)
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: ; Tel.: +86-188-0372-9718
| |
Collapse
|
12
|
Melton AE, Beck J, Galla SJ, Jenkins J, Handley L, Kim M, Grimwood J, Schmutz J, Richardson BA, Serpe M, Novak S, Buerki S. A draft genome provides hypotheses on drought tolerance in a keystone plant species in Western North America threatened by climate change. Ecol Evol 2021; 11:15417-15429. [PMID: 34765187 PMCID: PMC8571618 DOI: 10.1002/ece3.8245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Climate change presents distinct ecological and physiological challenges to plants as extreme climate events become more common. Understanding how species have adapted to drought, especially ecologically important nonmodel organisms, will be crucial to elucidate potential biological pathways for drought adaptation and inform conservation strategies. To aid in genome-to-phenome research, a draft genome was assembled for a diploid individual of Artemisia tridentata subsp. tridentata, a threatened keystone shrub in western North America. While this taxon has few genetic resources available and genetic/genomics work has proven difficult due to genetic heterozygosity in the past, a draft genome was successfully assembled. Aquaporin (AQP) genes and their promoter sequences were mined from the draft genome to predict mechanisms regulating gene expression and generate hypotheses on key genes underpinning drought response. Fifty-one AQP genes were fully assembled within the draft genome. Promoter and phylogenetic analyses revealed putative duplicates of A. tridentata subsp. tridentata AQPs which have experienced differentiation in promoter elements, potentially supporting novel biological pathways. Comparison with nondrought-tolerant congener supports enrichments of AQP genes in this taxon during adaptation to drought stress. Differentiation of promoter elements revealed that paralogues of some genes have evolved to function in different pathways, highlighting these genes as potential candidates for future research and providing critical hypotheses for future genome-to-phenome work.
Collapse
Affiliation(s)
- Anthony E. Melton
- Department of Biological SciencesBoise State UniversityBoiseIdahoUSA
| | - James Beck
- Department of ComputingBoise State UniversityBoiseIdahoUSA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Lori Handley
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Min Kim
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Jane Grimwood
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Jeremy Schmutz
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | | | - Marcelo Serpe
- Department of Biological SciencesBoise State UniversityBoiseIdahoUSA
| | - Stephen Novak
- Department of Biological SciencesBoise State UniversityBoiseIdahoUSA
| | - Sven Buerki
- Department of Biological SciencesBoise State UniversityBoiseIdahoUSA
| |
Collapse
|
13
|
Zhu Y, Wang Q, Guo W, Gao Z, Wang Y, Xu Y, Liu Y, Ma Z, Yan F, Li J. Screening and identification of salt-tolerance genes in Sophora alopecuroides and functional verification of SaAQP. PLANTA 2021; 254:77. [PMID: 34535825 DOI: 10.1007/s00425-021-03726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Overexpression of SaAQP can improve the salt tolerance of transgenic soybean hairy roots and A. thaliana. Salt stress severely affects crop yield and food security. There is a need to improve the salt tolerance of crops, but the discovery and utilization of salt-tolerance genes remains limited. Owing to its strong stress tolerance, Sophora alopecuroides is ideal for the identification of salt-tolerance genes. Therefore, we aimed to screen and identify the salt-tolerance genes in S. alopecuroides. With a yeast expression library of seedlings, salt-tolerant genes were screened using a salt-containing medium to simulate salt stress. By combining salt-treatment screening and transcriptome sequencing, 11 candidate genes related to salt tolerance were identified, including genes for peroxidase, inositol methyltransferase, aquaporin, cysteine synthase, pectinesterase, and WRKY. The expression dynamics of candidate genes were analyzed after salt treatment of S. alopecuroides, and salt tolerance was verified in yeast BY4743. The candidate genes participated in the salt-stress response in S. alopecuroides, and their overexpression significantly improved the salt tolerance of yeast. Salt tolerance mediated by SaAQP was further verified in soybean hairy roots and Arabidopsis thaliana, and it was found that SaAQP might enhance the salt tolerance of A. thaliana by participating in a reactive oxygen species scavenging mechanism. This result provides new genetic resources in plant breeding for salt resistance.
Collapse
Affiliation(s)
- Youcheng Zhu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Wenyun Guo
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Ziwei Gao
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Ying Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Yang Xu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Yajing Liu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Zhipeng Ma
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Fan Yan
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Jingwen Li
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| |
Collapse
|
14
|
Venisse JS, Õunapuu-Pikas E, Dupont M, Gousset-Dupont A, Saadaoui M, Faize M, Chen S, Chen S, Petel G, Fumanal B, Roeckel-Drevet P, Sellin A, Label P. Genome-Wide Identification, Structure Characterization, and Expression Pattern Profiling of the Aquaporin Gene Family in Betula pendula. Int J Mol Sci 2021; 22:7269. [PMID: 34298887 PMCID: PMC8304918 DOI: 10.3390/ijms22147269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/12/2023] Open
Abstract
Aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life. They play key roles in the flux of water and many solutes across the membranes. The AQP diversity, protein features, and biological functions of silver birch are still unknown. A genome analysis of Betula pendula identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). The BpeAQP gene structure is conserved within each subfamily, with exon numbers ranging from one to five. The predictions of the aromatic/arginine selectivity filter (ar/R), Froger's positions, specificity-determining positions, and 2D and 3D biochemical properties indicate noticeable transport specificities to various non-aqueous substrates between members and/or subfamilies. Nevertheless, overall, the BpePIPs display mostly hydrophilic ar/R selective filter and lining-pore residues, whereas the BpeTIP, BpeNIP, BpeSIP, and BpeXIP subfamilies mostly contain hydrophobic permeation signatures. Transcriptional expression analyses indicate that 23 BpeAQP genes are transcribed, including five organ-related expressions. Surprisingly, no significant transcriptional expression is monitored in leaves in response to cold stress (6 °C), although interesting trends can be distinguished and will be discussed, notably in relation to the plasticity of this pioneer species, B. pendula. The current study presents the first detailed genome-wide analysis of the AQP gene family in a Betulaceae species, and our results lay a foundation for a better understanding of the specific functions of the BpeAQP genes in the responses of the silver birch trees to cold stress.
Collapse
Affiliation(s)
- Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Eele Õunapuu-Pikas
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Maxime Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Aurélie Gousset-Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
- National Institute of Agronomy of Tunisia (INAT), Crop Improvement Laboratory, INRAT, Tunis CP 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Gilles Petel
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Boris Fumanal
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| |
Collapse
|
15
|
Ovrutska I. Aquaporins in regulation of plant protective responses to drought. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.03.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasmolemma permeability is an integral indicator of the functional state of plant cells under stress. Aquaporins (AQPs), specialized transmembrane proteins that form water channels and play an important role in the adaptation of plants to adverse conditions and, in particular, to lack or excess of water, are involved in the formation of the response to drought. The main function of AQPs is to facilitate the movement of water across cell membranes and maintain aqueous cell homeostasis. Under stressful conditions, there is both an increase and decrease in the expression of individual aquaporin genes. Analysis of the data revealed differences in the expression of AQPs genes in stable and sensitive plant genotypes. It turned out that aquaporins in different stress-resistant varieties of the same species also respond differently to drought. The review provides brief information on the history of the discovery of aquaporins, the structure and function of these proteins, summarizes the latest information on the role of aquaporins in the regulation of metabolism and the response of plants to stressors, with particular emphasis on aquaporins in drought protection. The discovery and study of AQPs expands the possibilities of using genetic engineering methods for the selection of new plant species, in particular, more resistant to drought and salinization of the soil, as well as to increase their productivity. The use of aquaporins in biotechnology to improve drought resistance of various species has many prospects.
Collapse
|
16
|
Xu F, Chen Q, Huang L, Luo M. Advances about the Roles of Membranes in Cotton Fiber Development. MEMBRANES 2021; 11:membranes11070471. [PMID: 34202386 PMCID: PMC8307351 DOI: 10.3390/membranes11070471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Cotton fiber is an extremely elongated single cell derived from the ovule epidermis and is an ideal model for studying cell development. The plasma membrane is tremendously expanded and accompanied by the coordination of various physiological and biochemical activities on the membrane, one of the three major systems of a eukaryotic cell. This review compiles the recent progress and advances for the roles of the membrane in cotton fiber development: the functions of membrane lipids, especially the fatty acids, sphingolipids, and phytosterols; membrane channels, including aquaporins, the ATP-binding cassette (ABC) transporters, vacuolar invertase, and plasmodesmata; and the regulation mechanism of membrane proteins, such as membrane binding enzymes, annexins, and receptor-like kinases.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Qian Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| | - Li Huang
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Ming Luo
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
- Correspondence:
| |
Collapse
|
17
|
Ahmed S, Kouser S, Asgher M, Gandhi SG. Plant aquaporins: A frontward to make crop plants drought resistant. PHYSIOLOGIA PLANTARUM 2021; 172:1089-1105. [PMID: 33826759 DOI: 10.1111/ppl.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/10/2021] [Accepted: 04/03/2021] [Indexed: 05/25/2023]
Abstract
Drought stress alters gene expression and causes cellular damage in crop plants. Drought inhibits photosynthesis by reducing the content and the activity of the photosynthetic carbon reduction cycle, ultimately decreasing the crop yield. The role of aquaporins (AQP) in improving the growth and adaptation of crop plants under drought stress is of importance. AQP form channels and control water transport in and out of the cells and are associated with drought tolerance mechanisms. The current review addresses: (1) the evolution of AQPs in plants, (2) the classification of plant AQPs, (3) the role of AQPs in drought alleviation in crop plants, and (4) the phytohormone crosstalk with AQPs in crops exposed to drought stress.
Collapse
Affiliation(s)
- Sajad Ahmed
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Shaista Kouser
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sumit G Gandhi
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Guo A, Hao J, Su Y, Li B, Zhao N, Zhu M, Huang Y, Tian B, Shi G, Hua J. Two Aquaporin Genes, GhPIP2;7 and GhTIP2;1, Positively Regulate the Tolerance of Upland Cotton to Salt and Osmotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:780486. [PMID: 35222450 PMCID: PMC8873789 DOI: 10.3389/fpls.2021.780486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/20/2021] [Indexed: 05/14/2023]
Abstract
Aquaporins (AQPs) facilitate the transport of water and small molecules across intrinsic membranes and play a critical role in abiotic stresses. In this study, 111, 54, and 56 candidate AQP genes were identified in Gossypium hirsutum (AD1), Gossypium arboreum (A2), and Gossypium raimondii (D5), respectively, and were further classified into five subfamilies, namely, plasma intrinsic protein (PIP), tonoplast intrinsic protein (TIP), nodulin 26-like intrinsic protein (NIP), small basic intrinsic protein (SIP), and uncategorized X intrinsic protein (XIP). Transcriptome analysis and quantitative real-time PCR (qRT-PCR) revealed some high-expression GhPIPs and GhTIPs (PIP and TIP genes in G. hirsutum, respectively) in drought and salt stresses. GhPIP2;7-silenced plants decreased in the chlorophyll content, superoxide dismutase (SOD) activity, and peroxidase (POD) activity comparing the mock control (empty-vector) under 400 mM NaCl treatment, which indicated a positive regulatory role of GhPIP2;7 in salt tolerance of cotton. The GhTIP2;1-silenced cotton plants were more sensitive to osmotic stress. GhTIP2;1-overexpressed plants exhibited less accumulation of H2O2 and malondialdehyde but higher proline content under osmotic stress. In summary, our study elucidates the positive regulatory roles of two GhAQPs (GhPIP2;7 and GhTIP2;1) in salt and osmotic stress responses, respectively, and provides a new gene resource for future research.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jianfeng Hao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Meng Zhu
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Gongyao Shi,
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua,
| |
Collapse
|
19
|
Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM, Srivastava PK. Fascinating impact of silicon and silicon transporters in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110885. [PMID: 32650140 DOI: 10.1016/j.ecoenv.2020.110885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
Silicon (Si) is a metalloid which is gaining worldwide attention of plant scientists due to its ameliorating impact on plants' growth and development. The beneficial response of Si is observed predominantly under numerous abiotic and biotic stress conditions. However, under favorable conditions, most of the plant can grow without it. Therefore, Si has yet not been fully accepted as essential element rather it is being considered as quasi-essential for plants' growth. Si is also known to enhance resilience in plants by reducing the plant's stress. Besides its second most abundance on the earth crust, most of the soils lack plant available form of Si i.e. silicic acid. In this regard, understanding the role of Si in plant metabolism, its uptake from roots and transport to aerial tissues along with its ionomics and proteomics under different circumstances is of great concern. Plants have evolved a well-optimized Si-transport system including various transporter proteins like Low silicon1 (Lsi1), Low silicon2 (Lsi2), Low silicon3 (Lsi3) and Low silicon6 (Lsi6) at specific sub-cellular locations along with the expression profiling that creates precisely coordinated network among these transporters, which also facilitate uptake and accumulation of Si. Though, an ample amount of information is available pertinent to the solute specificity, active sites, transcriptional and post-transcriptional regulation of these transporter genes. Similarly, the information regarding transporters involved in Si accumulation in different organelles is also available particularly in silica cells occurred in poales. But in this review, we have attempted to compile studies related to plants vis à vis Si, its role in abiotic and biotic stress, its uptake in various parts of plants via different types of Si-transporters, expression pattern, localization and the solute specificity. Besides these, this review will also provide the compiled knowledge about the genetic variation among crop plants vis à vis enhanced Si uptake and related benefits.
Collapse
Affiliation(s)
- Shweta Gaur
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Institute of Engineering and Technology, Dr. Shakuntla Misra National Rehabilitation University, Mohaan Road, Lucknow, U.P, 226017, India.
| | - Dharmendra Kumar
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India
| | - Devendra Kumar Chauhan
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Prabhat Kumar Srivastava
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Department of Botany, KS Saket PG College, Ayodhya U.P, 224123., India.
| |
Collapse
|
20
|
Li G, Chen T, Zhang Z, Li B, Tian S. Roles of Aquaporins in Plant-Pathogen Interaction. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1134. [PMID: 32882951 PMCID: PMC7569825 DOI: 10.3390/plants9091134] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
Aquaporins (AQPs) are a class of small, membrane channel proteins present in a wide range of organisms. In addition to water, AQPs can facilitate the efficient and selective flux of various small solutes involved in numerous essential processes across membranes. A growing body of evidence now shows that AQPs are important regulators of plant-pathogen interaction, which ultimately lead to either plant immunity or pathogen pathogenicity. In plants, AQPs can mediate H2O2 transport across plasma membranes (PMs) and contribute to the activation of plant defenses by inducing pathogen-associated molecular pattern (PAMP)-triggered immunity and systemic acquired resistance (SAR), followed by downstream defense reactions. This involves the activation of conserved mitogen-activated protein kinase (MAPK) signaling cascades, the production of callose, the activation of NPR1 and PR genes, as well as the opening and closing of stomata. On the other hand, pathogens utilize aquaporins to mediate reactive oxygen species (ROS) signaling and regulate their normal growth, development, secondary or specialized metabolite production and pathogenicity. This review focuses on the roles of AQPs in plant immunity, pathogenicity, and communications during plant-pathogen interaction.
Collapse
Affiliation(s)
- Guangjin Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Ahmed J, Mercx S, Boutry M, Chaumont F. Evolutionary and Predictive Functional Insights into the Aquaporin Gene Family in the Allotetraploid Plant Nicotiana tabacum. Int J Mol Sci 2020; 21:E4743. [PMID: 32635213 PMCID: PMC7370101 DOI: 10.3390/ijms21134743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the membrane diffusion of water and other small solutes. Nicotiana tabacum is an important model plant, and its allotetraploid genome has recently been released, providing us with the opportunity to analyze the AQP gene family and its evolution. A total of 88 full-length AQP genes were identified in the N. tabacum genome, and the encoding proteins were assigned into five subfamilies: 34 plasma membrane intrinsic proteins (PIPs); 27 tonoplast intrinsic proteins (TIPs); 20 nodulin26-like intrinsic proteins (NIPs); 3 small basic intrinsic proteins (SIPs); 4 uncharacterized X intrinsic proteins (XIPs), including two splice variants. We also analyzed the genomes of two N. tabacum ancestors, Nicotiana tomentosiformis and Nicotiana sylvestris, and identified 49 AQP genes in each species. Functional prediction, based on the substrate specificity-determining positions (SDPs), revealed significant differences in substrate specificity among the AQP subfamilies. Analysis of the organ-specific AQP expression levels in the N. tabacum plant and RNA-seq data of N. tabacum bright yellow-2 suspension cells indicated that many AQPs are simultaneously expressed, but differentially, according to the organs or the cells. Altogether, these data constitute an important resource for future investigations of the molecular, evolutionary, and physiological functions of AQPs in N. tabacum.
Collapse
Affiliation(s)
| | | | | | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium; (J.A.); (S.M.); (M.B.)
| |
Collapse
|
22
|
The Tonoplast Intrinsic Protein Gene KvTIP3 is Responsive to Different Abiotic Stresses in Kosteletzkya virginica. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2895795. [PMID: 31998785 PMCID: PMC6970491 DOI: 10.1155/2020/2895795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 11/21/2022]
Abstract
In higher plants, aquaporin proteins (AQPs) play important roles in the uptake of water across cell membranes. However, their functions in halophytes are still largely unknown. In this work, we isolated, cloned, and identified KvTIP3, a tonoplast intrinsic protein gene from Kosteletzkya virginica. Bioinformatic analyses demonstrated that KvTIP3 encoded a tonoplast protein with the common properties of AQPs. Further multiple sequence alignment and phylogenetic analyses showed that KvTIP3 shared 65%–82% homology with other AQPs from Arabidopsis, cotton, polar, and cocoa. Quantitative real-time PCR (qPCR) analyses revealed that KvTIP3 was ubiquitously expressed in various tissues such as leaves, stems, and roots, with a predominant expression in roots. In addition, KvTIP3 transcript was strongly induced by NaCl, low temperature, and ABA in K. virginica. Our findings suggest that KvTIP3 encodes a new AQP possibly involved in multiple abiotic stress responses in K. virginica, and KvTIP3 could be used as a potential candidate gene for the improvement of plants resistant to various abiotic stresses.
Collapse
|
23
|
Hussain A, Tanveer R, Mustafa G, Farooq M, Amin I, Mansoor S. Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics 2020; 112:263-275. [DOI: 10.1016/j.ygeno.2019.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022]
|
24
|
Ishibashi K, Tanaka Y, Morishita Y. Perspectives on the evolution of aquaporin superfamily. VITAMINS AND HORMONES 2020; 112:1-27. [DOI: 10.1016/bs.vh.2019.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, de Oliveira Silva RL, Kido EA, Barbosa Amorim LL, Ortega JM, Benko-Iseppon AM. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2019; 20:368-395. [PMID: 30387391 DOI: 10.2174/1389203720666181102095910] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.
Collapse
Affiliation(s)
- João P Bezerra-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - José R C Ferreira-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Manassés D da Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flavia F Aburjaile
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Tetsu Sakamoto
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Roberta L de Oliveira Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Ederson A Kido
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Lidiane L Barbosa Amorim
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Oeiras, Avenida Projetada, s/n, 64.500-000, Oeiras, Piauí, Brazil
| | - José M Ortega
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Ana M Benko-Iseppon
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| |
Collapse
|
26
|
Bestetti S, Galli M, Sorrentino I, Pinton P, Rimessi A, Sitia R, Medraño-Fernandez I. Human aquaporin-11 guarantees efficient transport of H 2O 2 across the endoplasmic reticulum membrane. Redox Biol 2019; 28:101326. [PMID: 31546170 PMCID: PMC6812059 DOI: 10.1016/j.redox.2019.101326] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 01/09/2023] Open
Abstract
Hydrogen peroxide (H2O2) is an essential second intracellular messenger. To reach its targets in the cytosol, H2O2 must cross a membrane, a feat that requires aquaporins (AQP) endowed with ‘peroxiporin’ activity (AQP3, AQP8, AQP9). Here, we exploit different organelle-targeted H2O2-sensitive probes to show that also AQP11 efficiently conduits H2O2. Unlike other peroxiporins, AQP11 is localized in the endoplasmic reticulum (ER), accumulating partly in mitochondrial-associated ER membranes (MAM). Its downregulation severely perturbs the flux of H2O2 through the ER, but not through the mitochondrial or plasma membranes. These properties make AQP11 a potential regulator of ER redox homeostasis and signaling. AQP11 is an endoplasmic reticulum (ER)-resident peroxiporin. AQP11 allows H2O2 fluxes across the ER membrane. Its levels impact ER redox homeostasis.
Collapse
Affiliation(s)
- Stefano Bestetti
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Mauro Galli
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Ilaria Sorrentino
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Roberto Sitia
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132, Milan, Italy.
| | - Iria Medraño-Fernandez
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132, Milan, Italy.
| |
Collapse
|
27
|
Qian W, Yang X, Li J, Luo R, Yan X, Pang Q. Genome-wide characterization and expression analysis of aquaporins in salt cress ( Eutrema salsugineum). PeerJ 2019; 7:e7664. [PMID: 31565576 PMCID: PMC6745184 DOI: 10.7717/peerj.7664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Aquaporins (AQPs) serve as water channel proteins and belong to major intrinsic proteins (MIPs) family, functioning in rapidly and selectively transporting water and other small solutes across biological membranes. Importantly, AQPs have been shown to play a critical role in abiotic stress response pathways of plants. As a species closely related to Arabidopsis thaliana, Eutrema salsugineum has been proposed as a model for studying salt resistance in plants. Here we surveyed 35 full-length AQP genes in E. salsugineum, which could be grouped into four subfamilies including 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), nine NOD-like intrinsic proteins (NIPs), and three small basic intrinsic proteins (SIPs) by phylogenetic analysis. EsAQPs were comprised of 237-323 amino acids, with a theoretical molecular weight (MW) of 24.31-31.80 kDa and an isoelectric point (pI) value of 4.73-10.49. Functional prediction based on the NPA motif, aromatic/arginine (ar/R) selectivity filter, Froger's position and specificity-determining position suggested quite differences in substrate specificities of EsAQPs. EsAQPs exhibited global expressions in all organs as shown by gene expression profiles and should be play important roles in response to salt, cold and drought stresses. This study provides comprehensive bioinformation on AQPs in E. salsugineum, which would be helpful for gene function analysis for further studies.
Collapse
Affiliation(s)
- Weiguo Qian
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiaomin Yang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Jiawen Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Rui Luo
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| |
Collapse
|
28
|
Zhu YX, Yang L, Liu N, Yang J, Zhou XK, Xia YC, He Y, He YQ, Gong HJ, Ma DF, Yin JL. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber. BMC PLANT BIOLOGY 2019; 19:345. [PMID: 31390991 PMCID: PMC6686268 DOI: 10.1186/s12870-019-1953-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 07/31/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Aquaporin (AQP) proteins comprise a group of membrane intrinsic proteins (MIPs) that are responsible for transporting water and other small molecules, which is crucial for plant survival under stress conditions including salt stress. Despite the vital role of AQPs, little is known about them in cucumber (Cucumis sativus L.). RESULTS In this study, we identified 39 aquaporin-encoding genes in cucumber that were separated by phylogenetic analysis into five sub-families (PIP, TIP, NIP, SIP, and XIP). Their substrate specificity was then assessed based on key amino acid residues such as the aromatic/Arginine (ar/R) selectivity filter, Froger's positions, and specificity-determining positions. The putative cis-regulatory motifs available in the promoter region of each AQP gene were analyzed and results revealed that their promoter regions contain many abiotic related cis-regulatory elements. Furthermore, analysis of previously released RNA-seq data revealed tissue- and treatment-specific expression patterns of cucumber AQP genes (CsAQPs). Three aquaporins (CsTIP1;1, CsPIP2;4, and CsPIP1;2) were the most transcript abundance genes, with CsTIP1;1 showing the highest expression levels among all aquaporins. Subcellular localization analysis in Nicotiana benthamiana epidermal cells revealed the diverse and broad array of sub-cellular localizations of CsAQPs. We then performed RNA-seq to identify the expression pattern of CsAQPs under salt stress and found a general decreased expression level of root CsAQPs. Moreover, qRT-PCR revealed rapid changes in the expression levels of CsAQPs in response to diverse abiotic stresses including salt, polyethylene glycol (PEG)-6000, heat, and chilling stresses. Additionally, transient expression of AQPs in N. benthamiana increased leaf water loss rate, suggesting their potential roles in the regulation of plant water status under stress conditions. CONCLUSIONS Our results indicated that CsAQPs play important roles in response to salt stress. The genome-wide identification and primary function characterization of cucumber aquaporins provides insight to elucidate the complexity of the AQP gene family and their biological functions in cucumber.
Collapse
Affiliation(s)
- Yong-Xing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Lei Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Ning Liu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Jie Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Xiao-Kang Zhou
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yu-Chen Xia
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yang He
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yi-Qin He
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Hai-Jun Gong
- College of Horticulture, Northwest A and F University, Yangling, 712100 Shaanxi China
| | - Dong-Fang Ma
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Jun-Liang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| |
Collapse
|
29
|
Li W, Zhang D, Zhu G, Mi X, Guo W. Combining genome-wide and transcriptome-wide analyses reveal the evolutionary conservation and functional diversity of aquaporins in cotton. BMC Genomics 2019; 20:538. [PMID: 31262248 PMCID: PMC6604486 DOI: 10.1186/s12864-019-5928-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aquaporins (AQPs) are integral membrane proteins from a larger family of major intrinsic proteins (MIPs) and function in a huge variety of processes such as water transport, plant growth and stress response. The availability of the whole-genome data of different cotton species allows us to study systematic evolution and function of cotton AQPs on a genome-wide level. RESULTS Here, a total of 53, 58, 113 and 111 AQP genes were identified in G. arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. A comprehensive analysis of cotton AQPs, involved in exon/intron structure, functional domains, phylogenetic relationships and gene duplications, divided these AQPs into five subfamilies (PIP, NIP, SIP, TIP and XIP). Comparative genome analysis among 30 species from algae to angiosperm as well as common tandem duplication events in 24 well-studied plants further revealed the evolutionary conservation of AQP family in the organism kingdom. Combining transcriptome analysis and Quantitative Real-time PCR (qRT-PCR) verification, most AQPs exhibited tissue-specific expression patterns both in G. raimondii and G. hirsutum. Meanwhile, a bias of time to peak expression of several AQPs was also detected after treating G. davidsonii and G. hirsutum with 200 mM NaCl. It is interesting that both PIP1;4 h/i/j and PIP2;2a/e showed the highly conserved tandem structure, but differentially contributed to tissue development and stress response in different cotton species. CONCLUSIONS These results demonstrated that cotton AQPs were structural conservation while experienced the functional differentiation during the process of evolution and domestication. This study will further broaden our insights into the evolution and functional elucidation of AQP gene family in cotton.
Collapse
Affiliation(s)
- Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xinyue Mi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
30
|
Bienert MD, Muries B, Crappe D, Chaumont F, Bienert GP. Overexpression of X Intrinsic Protein 1;1 in Nicotiana tabacum and Arabidopsis reduces boron allocation to shoot sink tissues. PLANT DIRECT 2019; 3:e00143. [PMID: 31245781 PMCID: PMC6549384 DOI: 10.1002/pld3.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
Major Intrinsic Proteins (MIP) are a family of channels facilitating the diffusion of water and/or small solutes across cellular membranes. X Intrinsic Proteins (XIP) form the least characterized MIP subfamily in vascular plants. XIPs are mostly impermeable to water but facilitate the diffusion of hydrogen peroxide, urea and boric acid when expressed in heterologous expression systems. However, their transport capabilities in planta and their impact on plant physiology are still unknown. Here, we demonstrated that overexpression of NtXIP1;1 in Nicotiana tabacum by the En2pPMA4 or the 35S CaMV promoter and in Arabidopsis, which does not contain any XIP gene, by the 35S CaMV promoter, resulted in boron (B)-deficiency symptoms such as death of the shoot apical meristem, infertile flowers, and puckered leaves. Leaf B concentrations in symptomatic tissues and B xylem sap concentrations were lower in the overexpressors than in control plants. Importantly, expression of NtXIP1;1 under the control of the AtNIP5;1 promoter complemented the B deficiency phenotype of the Atnip5;1 knockout mutant, defining its ability to act as a boric acid channel in planta. Protein quantification analysis revealed that NtXIP1;1 was predominantly expressed in young B-demanding tissues and induced under B-deficient conditions. Our results strongly suggest that NtXIP1;1 plays a role in B homeostasis and its tissue-specific expression critically contributes to the distribution of B within tobacco.
Collapse
Affiliation(s)
- Manuela Desiree Bienert
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Beatriz Muries
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Delphine Crappe
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Gerd Patrick Bienert
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| |
Collapse
|
31
|
Singh RK, Shweta S, Muthamilarasan M, Rani R, Prasad M. Study on aquaporins of Setaria italica suggests the involvement of SiPIP3;1 and SiSIP1;1 in abiotic stress response. Funct Integr Genomics 2019; 19:587-596. [PMID: 30759293 DOI: 10.1007/s10142-018-00653-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
Abstract
Aquaporins are versatile proteins involved in several biological as well as molecular functions, and they have been extensively studied in various plant systems. Increasing evidences indicate their role in biotic and abiotic stresses, and therefore, studying these proteins in a naturally stress-tolerant crop would provide further insights into the roles of this important protein family. Given this, the present study was performed in foxtail millet (Setaria italica), a model plant for studying biofuel, stress tolerance, and C4 photosynthetic traits. The study identified 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), and 3 small basic intrinsic proteins (SIPs) in foxtail millet. The identified proteins and their corresponding genes were characterized using in silico approaches such as chromosomal localization, analysis of gene and protein properties, phylogenetic analysis, promoter analysis, and RNA-seq-derived expression profiling. The candidate genes identified through these analyses were studied for their expression in response to abiotic stresses (dehydration, salinity, and heat) as well as hormone treatments (abscisic acid, methyl jasmonate, and salicylic acid) in two contrasting cultivars of foxtail millet. The study showed that SiPIP3;1 and SiSIP1;1 were differentially expressed in both the cultivars in response to stress and hormone treatments. Overexpression of these genes in a heterologous yeast system also demonstrated that the transgenic cells were able to tolerate dehydration as well as salt stress which suggests the involvement of these proteins in the tolerance mechanism. Overall, the present study provides insights into structure and organization of the aquaporin gene family in foxtail millet and highlights the potential candidate genes for further functional characterizations.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shweta Shweta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Rekha Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
32
|
Feng ZJ, Liu N, Zhang GW, Niu FG, Xu SC, Gong YM. Investigation of the AQP Family in Soybean and the Promoter Activity of TIP2;6 in Heat Stress and Hormone Responses. Int J Mol Sci 2019; 20:E262. [PMID: 30634702 PMCID: PMC6359280 DOI: 10.3390/ijms20020262] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Aquaporins (AQPs) are one diverse family of membrane channel proteins that play crucial regulatory roles in plant stress physiology. However, the heat stress responsiveness of AQP genes in soybean remains poorly understood. In this study, 75 non-redundant AQP encoding genes were identified in soybean. Multiple sequence alignments showed that all GmAQP proteins possessed the conserved regions, which contained 6 trans-membrane domains (TM1 to TM6). Different GmAQP members consisted of distinct Asn-Pro-Ala (NPA) motifs, aromatic/arginine (ar/R) selectivity filters and Froger's positions (FPs). Phylogenetic analyses distinguished five sub-families within these GmAQPs: 24 GmPIPs, 24 GmTIPs, 17 GmNIPs, 8 GmSIPs, and 2 GmXIPs. Promoter cis-acting elements analyses revealed that distinct number and composition of heat stress and hormone responsive elements existed in different promoter regions of GmAQPs. QRT-PCR assays demonstrated that 12 candidate GmAQPs with relatively extensive expression in various tissues or high expression levels in root or leaf exhibited different expression changes under heat stress and hormone cues (abscisic acid (ABA), l-aminocyclopropane-l-carboxylic acid (ACC), salicylic acid (SA) and methyl jasmonate (MeJA)). Furthermore, the promoter activity of one previously functionally unknown AQP gene-GmTIP2;6 was investigated in transgenic Arabidopsis plants. The beta-glucuronidase (GUS) activity driven by the promoter of GmTIP2;6 was strongly induced in the heat- and ACC-treated transgenic plants and tended to be accumulated in the hypocotyls, vascular bundles, and leaf trichomes. These results will contribute to uncovering the potential functions and molecular mechanisms of soybean GmAQPs in mediating heat stress and hormone signal responses.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Gu-Wen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Fu-Ge Niu
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Sheng-Chun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ya-Ming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
33
|
Wang R, Wang M, Chen K, Wang S, Mur LAJ, Guo S. Exploring the Roles of Aquaporins in Plant⁻Microbe Interactions. Cells 2018; 7:E267. [PMID: 30545006 PMCID: PMC6316839 DOI: 10.3390/cells7120267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are membrane channel proteins regulating the flux of water and other various small solutes across membranes. Significant progress has been made in understanding the roles of AQPs in plants' physiological processes, and now their activities in various plant⁻microbe interactions are receiving more attention. This review summarizes the various roles of different AQPs during interactions with microbes which have positive and negative consequences on the host plants. In positive plant⁻microbe interactions involving rhizobia, arbuscular mycorrhizae (AM), and plant growth-promoting rhizobacteria (PGPR), AQPs play important roles in nitrogen fixation, nutrient transport, improving water status, and increasing abiotic stress tolerance. For negative interactions resulting in pathogenesis, AQPs help plants resist infections by preventing pathogen ingress by influencing stomata opening and influencing defensive signaling pathways, especially through regulating systemic acquired resistance. Interactions with bacterial or viral pathogens can be directly perturbed through direct interaction of AQPs with harpins or replicase. However, whilst these observations indicate the importance of AQPs, further work is needed to develop a fuller mechanistic understanding of their functions.
Collapse
Affiliation(s)
- Ruirui Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Kehao Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Shiyu Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
34
|
Pawłowicz I, Masajada K. Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants. Gene 2018; 687:166-172. [PMID: 30445023 DOI: 10.1016/j.gene.2018.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Plant aquaporins constitute a large family of proteins involved in facilitating the transport of water and small neutral molecules across biological membranes. In higher plants they are divided into several sub-families, depending on membrane-type localization and permeability to specific solutes. They are abundantly expressed in the majority of plant organs and tissues, and play a function in primary biological processes. Many studies revealed the significant role of aquaporins in acquiring abiotic stresses' tolerance. This review focuses on aquaporins belonging to PIPs sub-family that are permeable to water and/or carbon dioxide. Isoforms transporting water are involved in hydraulic conductance regulation in the leaves and roots, whereas those transporting carbon dioxide control stomatal and mesophyll conductance in the leaves. Changes in PIP aquaporins abundance/activity in stress conditions allow to maintain the water balance and photosynthesis adjustment. Broad analyses showed that tight control between water and carbon dioxide supplementation mediated by aquaporins influences plant productivity, especially in stress conditions. Involvement of aquaporins in adaptation strategies to dehydrative stresses in different plant species are discussed in this review.
Collapse
Affiliation(s)
- Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland.
| | - Katarzyna Masajada
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| |
Collapse
|
35
|
The Expanding Role of Vesicles Containing Aquaporins. Cells 2018; 7:cells7100179. [PMID: 30360436 PMCID: PMC6210599 DOI: 10.3390/cells7100179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022] Open
Abstract
In animals and plants, membrane vesicles containing proteins have been defined as key for biological systems involving different processes such as trafficking or intercellular communication. Docking and fusion of vesicles to the plasma membrane occur in living cells in response to different stimuli, such as environmental changes or hormones, and therefore play an important role in cell homeostasis as vehicles for certain proteins or other substances. Because aquaporins enhance the water permeability of membranes, their role as proteins immersed in vesicles formed of natural membranes is a recent topic of study. They regulate numerous physiological processes and could hence serve new biotechnological purposes. Thus, in this review, we have explored the physiological implications of the trafficking of aquaporins, the mechanisms that control their transit, and the proteins that coregulate the migration. In addition, the importance of exosomes containing aquaporins in the cell-to-cell communication processes in animals and plants have been analyzed, together with their potential uses in biomedicine or biotechnology. The properties of aquaporins make them suitable for use as biomarkers of different aquaporin-related diseases when they are included in exosomes. Finally, the fact that these proteins could be immersed in biomimetic membranes opens future perspectives for new biotechnological applications.
Collapse
|
36
|
Ding L, Lu Z, Gao L, Guo S, Shen Q. Is Nitrogen a Key Determinant of Water Transport and Photosynthesis in Higher Plants Upon Drought Stress? FRONTIERS IN PLANT SCIENCE 2018; 9:1143. [PMID: 30186291 PMCID: PMC6113670 DOI: 10.3389/fpls.2018.01143] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/17/2018] [Indexed: 05/19/2023]
Abstract
Drought stress is a major global issue limiting agricultural productivity. Plants respond to drought stress through a series of physiological, cellular, and molecular changes for survival. The regulation of water transport and photosynthesis play crucial roles in improving plants' drought tolerance. Nitrogen (N, ammonium and nitrate) is an essential macronutrient for plants, and it can affect many aspects of plant growth and metabolic pathways, including water relations and photosynthesis. This review focuses on how drought stress affects water transport and photosynthesis, including the regulation of hydraulic conductance, aquaporin expression, and photosynthesis. It also discusses the cross talk between N, water transport, and drought stress in higher plants.
Collapse
Affiliation(s)
- Lei Ding
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Limin Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Cooperativity in Plant Plasma Membrane Intrinsic Proteins (PIPs): Mechanism of Increased Water Transport in Maize PIP1 Channels in Hetero-tetramers. Sci Rep 2018; 8:12055. [PMID: 30104609 PMCID: PMC6089885 DOI: 10.1038/s41598-018-30257-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/10/2018] [Indexed: 11/08/2022] Open
Abstract
Plant aquaporins (AQPs) play vital roles in several physiological processes. Plasma membrane intrinsic proteins (PIPs) belong to the subfamily of plant AQPs. They are further subdivided into two closely related subgroups PIP1s and PIP2s. While PIP2 members are efficient water channels, PIP1s from some plant species have been shown to be functionally inactive. Aquaporins form tetramers under physiological conditions. PIP2s can enhance the water transport of PIP1s when they form hetero-tetramers. However, the role of monomer-monomer interface and the significance of specific residues in enhancing the water permeation of PIP1s have not been investigated at atomic level. We have performed all-atom molecular dynamics (MD) simulations of homo-tetramers and four different hetero-tetramers containing ZmPIP1;2 and ZmPIP2;5 from Zea mays. ZmPIP1;2 in a tetramer assembly will have two interfaces, one formed by transmembrane segments TM4 and TM5 and the other formed by TM1 and TM2. We have analyzed channel radius profiles, water transport and potential of mean force profiles of ZmPIP1;2 monomers. Results of MD simulations clearly revealed the influence of TM4-TM5 interface in modulating the water transport of ZmPIP1;2. MD simulations indicate the importance of I93 residue from the TM2 segment of ZmPIP2;5 for the increased water transport in ZmPIP1;2.
Collapse
|
38
|
Vajpai M, Mukherjee M, Sankararamakrishnan R. Cooperativity in Plant Plasma Membrane Intrinsic Proteins (PIPs): Mechanism of Increased Water Transport in Maize PIP1 Channels in Hetero-tetramers. Sci Rep 2018; 8:12055. [PMID: 30104609 DOI: 10.1101/239780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/10/2018] [Indexed: 05/26/2023] Open
Abstract
Plant aquaporins (AQPs) play vital roles in several physiological processes. Plasma membrane intrinsic proteins (PIPs) belong to the subfamily of plant AQPs. They are further subdivided into two closely related subgroups PIP1s and PIP2s. While PIP2 members are efficient water channels, PIP1s from some plant species have been shown to be functionally inactive. Aquaporins form tetramers under physiological conditions. PIP2s can enhance the water transport of PIP1s when they form hetero-tetramers. However, the role of monomer-monomer interface and the significance of specific residues in enhancing the water permeation of PIP1s have not been investigated at atomic level. We have performed all-atom molecular dynamics (MD) simulations of homo-tetramers and four different hetero-tetramers containing ZmPIP1;2 and ZmPIP2;5 from Zea mays. ZmPIP1;2 in a tetramer assembly will have two interfaces, one formed by transmembrane segments TM4 and TM5 and the other formed by TM1 and TM2. We have analyzed channel radius profiles, water transport and potential of mean force profiles of ZmPIP1;2 monomers. Results of MD simulations clearly revealed the influence of TM4-TM5 interface in modulating the water transport of ZmPIP1;2. MD simulations indicate the importance of I93 residue from the TM2 segment of ZmPIP2;5 for the increased water transport in ZmPIP1;2.
Collapse
Affiliation(s)
- Manu Vajpai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Mishtu Mukherjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | |
Collapse
|
39
|
Tan X, Xu H, Khan S, Equiza MA, Lee SH, Vaziriyeganeh M, Zwiazek JJ. Plant water transport and aquaporins in oxygen-deprived environments. JOURNAL OF PLANT PHYSIOLOGY 2018; 227:20-30. [PMID: 29779706 DOI: 10.1016/j.jplph.2018.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Oxygen deprivation commonly affects plants exposed to flooding and soil compaction. The resulting root hypoxia has an immediate effect on plant water relations and upsets water balance. Hypoxia inhibits root water transport and triggers stomatal closure. The processes contributing to the inhibition of root hydraulic conductivity and conductance (hydraulic conductivity of the whole root system) are complex and involve changes in root morphology and the functions of aquaporins. Aquaporins (AQPs) comprise a group of membrane intrinsic proteins that are responsible for the transport of water, as well as some small neutral solutes and ions. They respond to a wide range of environmental stresses including O2 deprivation, but the underlying functional mechanisms are still elusive. The aquaporin-mediated water transport is affected by the acidification of the cytoplasm and depletion of ATP that is required for aquaporin phosphorylation and membrane functions. Cytoplasmic pH, phosphorylation, and intracellular Ca2+ concentration directly control AQP gating, all of which are related to O2 deprivation. This review addresses the structural determinants that are essential for pore conformational changes in AQPs, to highlight the underlying mechanisms triggered by O2 deprivation stress. Gene expression of AQPs is modified in hypoxic plants, which may constitute an important, yet little explored, mechanism of hypoxia tolerance. In addition to water transport, AQPs may contribute to hypoxia tolerance by transporting O2, H2O2, and lactic acid. Responses of plants to O2 deprivation, and especially those that contribute to maintenance of water transport, are highly complex and entail the signals originating in roots and shoots that lead to and follow the stomatal closure. These complex responses may involve ethylene, abscisic acid, and possibly other hormonal factors and signaling molecules in ways that remain to be elucidated.
Collapse
Affiliation(s)
- Xiangfeng Tan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Hao Xu
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, V0H 1Z0, Canada
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Maria A Equiza
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Seong H Lee
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Maryamsadat Vaziriyeganeh
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada.
| |
Collapse
|
40
|
Feng ZJ, Xu SC, Liu N, Zhang GW, Hu QZ, Xu ZS, Gong YM. Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Gene 2018; 646:64-73. [DOI: 10.1016/j.gene.2017.12.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 11/26/2022]
|
41
|
Genome-Wide Analysis of Gene and microRNA Expression in Diploid and Autotetraploid Paulownia fortunei (Seem) Hemsl. under Drought Stress by Transcriptome, microRNA, and Degradome Sequencing. FORESTS 2018. [DOI: 10.3390/f9020088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, Chaumont F. Plant and Mammal Aquaporins: Same but Different. Int J Mol Sci 2018; 19:E521. [PMID: 29419811 PMCID: PMC5855743 DOI: 10.3390/ijms19020521] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) constitute an ancient and diverse protein family present in all living organisms, indicating a common ancient ancestor. However, during evolution, these organisms appear and evolve differently, leading to different cell organizations and physiological processes. Amongst the eukaryotes, an important distinction between plants and animals is evident, the most conspicuous difference being that plants are sessile organisms facing ever-changing environmental conditions. In addition, plants are mostly autotrophic, being able to synthesize carbohydrates molecules from the carbon dioxide in the air during the process of photosynthesis, using sunlight as an energy source. It is therefore interesting to analyze how, in these different contexts specific to both kingdoms of life, AQP function and regulation evolved. This review aims at highlighting similarities and differences between plant and mammal AQPs. Emphasis is given to the comparison of isoform numbers, their substrate selectivity, the regulation of the subcellular localization, and the channel activity.
Collapse
Affiliation(s)
- Timothée Laloux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Bruna Junqueira
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Laurie C Maistriaux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Jahed Ahmed
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Agnieszka Jurkiewicz
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| |
Collapse
|
43
|
Kapilan R, Vaziri M, Zwiazek JJ. Regulation of aquaporins in plants under stress. Biol Res 2018; 51:4. [PMID: 29338771 PMCID: PMC5769316 DOI: 10.1186/s40659-018-0152-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/11/2018] [Indexed: 01/16/2023] Open
Abstract
Aquaporins (AQP) are channel proteins belonging to the Major Intrinsic Protein (MIP) superfamily that play an important role in plant water relations. The main role of aquaporins in plants is transport of water and other small neutral molecules across cellular biological membranes. AQPs have remarkable features to provide an efficient and often, specific water flow and enable them to transport water into and out of the cells along the water potential gradient. Plant AQPs are classified into five main subfamilies including the plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26 like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and X intrinsic proteins (XIPs). AQPs are localized in the cell membranes and are found in all living cells. However, most of the AQPs that have been described in plants are localized to the tonoplast and plasma membranes. Regulation of AQP activity and gene expression, are also considered as a part of the adaptation mechanisms to stress conditions and rely on complex processes and signaling pathways as well as complex transcriptional, translational and posttranscriptional factors. Gating of AQPs through different mechanisms, such as phosphorylation, tetramerization, pH, cations, reactive oxygen species, phytohormones and other chemical agents, may play a key role in plant responses to environmental stresses by maintaining the uptake and movement of water in the plant body.
Collapse
Affiliation(s)
| | - Maryam Vaziri
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants. Int J Biol Macromol 2017; 107:2630-2642. [PMID: 29080824 DOI: 10.1016/j.ijbiomac.2017.10.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023]
Abstract
Major intrinsic proteins (MIPs), commonly known as aquaporins, transport water and non-polar small solutes. Comparing the 3D models and the primary selectivity-related motifs (two Asn-Pro-Ala (NPA) regions, the aromatic/arginine (ar/R) selectivity filter, and Froger's positions (FPs)) of all plant MIPs that have been experimentally proven to transport arsenic (As) and antimony (Sb), some substrate-specific signature sequences (SSSS) or specificity determining sites (SDPs) have been predicted. These SSSS or SDPs were determined in 543 MIPs found in the genomes of 12 crop plants; the As and Sb transporters were predicted to be distributed in noduline-26 like intrinsic proteins (NIPs), and every plant had one or several As and Sb transporter NIPs. Phylogenetic grouping of the NIP subfamily based on the ar/R selectivity filter and FPs were linked to As and Sb transport. We further determined the group-wise substrate selectivity profiles of the NIPs in the 12 crop plants. In addition to two NPA regions, the ar/R filter, and FPs, certain amino acids especially in the pore line, loop D, and termini contribute to the functional distinctiveness of the NIP groups. Expression analysis of transcripts in different organs indicated that most of the As and Sb transporter NIPs were expressed in roots.
Collapse
|
45
|
Zhang D, Huang Y, Kumar M, Wan Q, Xu Z, Shao H, Pandey GK. Heterologous expression of GmSIP1;3 from soybean in tobacco showed and growth retardation and tolerance to hydrogen peroxide. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:210-218. [PMID: 28818377 DOI: 10.1016/j.plantsci.2017.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Aquaporins (AQPs) are transmembrane protein channels that are members of Major Intrinsic Proteins (MIP) superfamily. AQPs play important roles in plant reproduction, cell elongation, osmoregulation, influence leaf physiology and are responsive to drought and salt tolerance. Small intrinsic proteins (SIPs)belongs to one of the groups of AQPs, which are mainly localized to endoplasmic reticulum(ER). While this group of aquaporin is being well studied in Arabidopsis, grape and other plant species, not much is known about the molecular regulatory mechanisms driven by ER-type AQPs in Glycine Max. In this study, the function of GmSIP1;3 is studied in detail by using both yeast and plant systems. GmSIP1;3 showed a ubiquitous expression pattern in all different tissues in Glycine Max. Heterologous expression of GmSIP1;3 in Nicotiana tabacum conferred a short root phenotype,growth retardation at seedling stage and significant tolerance to oxidative stress (H2O2) both in yeast and plant systems. Auxin (IAA) content significantly increased in transgenic plants compared with that of wild type, however, the abscisic acid (ABA) content was significantly reduced. Subcellular localization and colocalization analyses showed GmSIP1;3 localized to ER plasma membrane. On the basis of these observations, we postulate that GmSIP1;3 is involved in oxidative stress pathways.
Collapse
Affiliation(s)
- Dayong Zhang
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China.
| | - Yihong Huang
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China
| | - Manoj Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Qun Wan
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China
| | - Zhaolong Xu
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China
| | - Hongbo Shao
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng City, 224002, China.
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
46
|
Sutka M, Amodeo G, Ozu M. Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives. Biophys Rev 2017; 9:545-562. [PMID: 28871493 DOI: 10.1007/s12551-017-0313-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Aquaporins (AQPs) can be revisited from a distinct and complementary perspective: the outcome from analyzing them from both plant and animal studies. (1) The approach in the study. Diversity found in both kingdoms contrasts with the limited number of crystal structures determined within each group. While the structure of almost half of mammal AQPs was resolved, only a few were resolved in plants. Strikingly, the animal structures resolved are mainly derived from the AQP2-lineage, due to their important roles in water homeostasis regulation in humans. The difference could be attributed to the approach: relevance in animal research is emphasized on pathology and in consequence drug screening that can lead to potential inhibitors, enhancers and/or regulators. By contrast, studies on plants have been mainly focused on the physiological role that AQPs play in growth, development and stress tolerance. (2) The transport capacity. Besides the well-described AQPs with high water transport capacity, large amount of evidence confirms that certain plant AQPs can carry a large list of small solutes. So far, animal AQP list is more restricted. In both kingdoms, there is a great amount of evidence on gas transport, although there is still an unsolved controversy around gas translocation as well as the role of the central pore of the tetramer. (3) More roles than expected. We found it remarkable that the view of AQPs as specific channels has evolved first toward simple transporters to molecules that can experience conformational changes triggered by biochemical and/or mechanical signals, turning them also into signaling components and/or behave as osmosensor molecules.
Collapse
Affiliation(s)
- Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. J Appl Genet 2017; 58:421-435. [PMID: 28779288 PMCID: PMC5655603 DOI: 10.1007/s13353-017-0403-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/27/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Festuca arundinacea and F. pratensis are the models in forage grasses to recognize the molecular basis of drought, salt and frost tolerance, respectively. Transcription profiles of plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) aquaporin genes were obtained for leaves of Festuca species treated with different abiotic stimuli. F. arundinacea plants were exposed to drought and salt stress, whereas F. pratensis plants were cold-hardened. Changes in genes expression measured with use of real time qRT-PCR method were compared between two genotypes characterized with a significantly different level of each stress tolerance. Under drought the transcript level of PIP1;2 and TIP1;1 aquaporin decreased in both analyzed F. arundinacea genotypes, whereas for PIP2;1 only in a high drought tolerant plant. A salt treatment caused a reduction of PIP1;2 transcript level in a high salt tolerant genotype and an increase of TIP1;1 transcript abundance in both F. arundinacea genotypes, but it did not influence the expression of PIP2;1 aquaporin. During cold-hardening a decrease of PIP1;2, PIP2;1, and TIP1;1 aquaporin transcripts was observed, both in high and low frost tolerant genotypes. The obtained results revealed that the selected genotypes responded in a different way to abiotic stresses application. A reduced level of PIP1;2 transcript in F. arundinacea low drought tolerant genotype corresponded with a faster water loss and a lowering of photosynthesis efficiency and gas exchange during drought conditions. In F. pratensis, cold acclimation was associated with a lower level of aquaporin transcripts in both high and low frost tolerant genotypes. This is the first report on aquaporin transcriptional profiling under abiotic stress condition in forage grasses.
Collapse
|
48
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
49
|
Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 2017; 7:46137. [PMID: 28447607 PMCID: PMC5406838 DOI: 10.1038/srep46137] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.
Collapse
|
50
|
Ampah-Korsah H, Sonntag Y, Engfors A, Kirscht A, Kjellbom P, Johanson U. Single amino acid substitutions in the selectivity filter render NbXIP1;1α aquaporin water permeable. BMC PLANT BIOLOGY 2017; 17:61. [PMID: 28279171 PMCID: PMC5345251 DOI: 10.1186/s12870-017-1009-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/28/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Aquaporins (AQPs) are integral membrane proteins that facilitate transport of water and/or other small neutral solutes across membranes in all forms of life. The X Intrinsic Proteins (XIPs) are the most recently recognized and the least characterized aquaporin subfamily in higher plants. XIP1s have been shown to be impermeable to water but permeable to boric acid, glycerol, hydrogen peroxide and urea. However, uncertainty regarding the determinants for selectivity and lack of an activity that is easy to quantify have hindered functional investigations. In an effort to resolve these issues, we set out to introduce water permeability in Nicotiana benthamiana XIP1;1α (NbXIP1;1α), by exchanging amino acid residues of predicted alternative aromatic/arginine (ar/R) selectivity filters of NbXIP1;1α for residues constituting the water permeable ar/R selectivity filter of AtTIP2;1. RESULTS Here, we present functional results regarding the amino acid substitutions in the putative filters as well as deletions in loops C and D of NbXIP1;1α. In addition, homology models were created based on the high resolution X-ray structure of AtTIP2;1 to rationalize the functional properties of wild-type and mutant NbXIP1;1α. Our results favour Thr 246 rather than Val 242 as the residue at the helix 5 position in the ar/R filter of NbXIP1;1α and indicate that the pore is not occluded by the loops when heterologously expressed in Pichia pastoris. Moreover, our results show that a single amino acid substitution in helix 1 (L79G) or in helix 2 (I102H) is sufficient to render NbXIP1;1α water permeable. Most of the functional results can be rationalized from the models based on a combination of aperture and hydrophobicity of the ar/R filter. CONCLUSION The water permeable NbXIP1;1α mutants imply that the heterologously expressed proteins are correctly folded and offer means to explore the structural and functional properties of NbXIP1;1α. Our results support that Thr 246 is part of the ar/R filter. Furthermore, we suggest that a salt bridge to an acidic residue in helix 1, conserved among the XIPs in clade B, directs the orientation of the arginine in the ar/R selectivity filter and provides a novel approach to tune the selectivity of AQPs.
Collapse
Affiliation(s)
- Henry Ampah-Korsah
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Yonathan Sonntag
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Angelica Engfors
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Andreas Kirscht
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Per Kjellbom
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Urban Johanson
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|