1
|
Hao H, Ren X, Ma Z, Chen Z, Yang K, Wang Q, Liu S. Comprehensive analysis of the differential expression of mRNAs, lncRNAs, and miRNAs in Zi goose testis with high and low sperm mobility. Poult Sci 2024; 103:103895. [PMID: 38917609 PMCID: PMC11255893 DOI: 10.1016/j.psj.2024.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Sperm mobility (SM) is an objective index for measuring sperm motility; however, the mechanisms underlying its regulation in geese remain unclear. The present study sought to elucidate the genetic mechanism underlying SM traits in Zi geese (Anser cygnoides L.). To this end, three successive experiments were performed. In Experiment I, SM was determined in 40 ganders; the 3 ganders with the highest mobility and three with the lowest mobility were assigned to the high and low sperm mobility rank (SMR) groups, respectively. In Experiment II, the differences in fertility between the two SMR groups were assessed within two breeding flocks comprising the selected six ganders from Experiment I and 30 females (each flock had 3 ganders and 15 females). In Experiment III, the testes of the 6 ganders were harvested for histological observation and whole-transcriptome sequencing. Results revealed better fertility, well-developed seminiferous tubules, and abundant mature sperm in the high-SMR-flock compared to those of the low-SMR-flock (89 vs. 81%) (P < 0.05). Differential expression (DE) analysis identified 76 mRNAs, 344 lncRNAs, and 17 miRNAs between the SMR groups, with LOC106049708, XPNPEP3, GNB3, ADCY8, PRKAG3, oha-miR-182-5p, and ocu-miR-10b-5p identified as key mRNAs and miRNAs contributing to SM. Enrichment analysis implicated these DE RNAs in pathways related to ATP binding, cell metabolism, apelin signaling, Wnt signaling, and Adherens junctions. Additionally, competing endogenous RNA (ceRNA) networks comprising 9 DE mRNAs, 17 DE miRNAs, and 169 DE lncRNAs were constructed. Two ceRNA network pathways (LOC106049708-oha-miR-182-5p-MSTRG.2479.6 and PRKAG3-ocu-miR-10b-5p-MSTRG.9047.14) were identified as key regulators of SM in geese. These findings offer crucial insights into the identification of key genes and ceRNA pathways influencing sperm mobility in geese.
Collapse
Affiliation(s)
- Hongrun Hao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, Daqing 163319, PR China
| | - Xiaofang Ren
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, Daqing 163319, PR China
| | - Zhigang Ma
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Qiqihar 161000, PR China
| | - Zhifeng Chen
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Qiqihar 161000, PR China
| | - Kun Yang
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Qiqihar 161000, PR China
| | - Qiuju Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, Daqing 163319, PR China
| | - Shengjun Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, Daqing 163319, PR China.
| |
Collapse
|
2
|
Kumar D, Ramkumar MK, Dutta B, Kumar A, Pandey R, Jain PK, Gaikwad K, Mishra DC, Chaturvedi KK, Rai A, Solanke AU, Sevanthi AM. Integration of miRNA dynamics and drought tolerant QTLs in rice reveals the role of miR2919 in drought stress response. BMC Genomics 2023; 24:526. [PMID: 37674140 PMCID: PMC10481553 DOI: 10.1186/s12864-023-09609-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023] Open
Abstract
To combat drought stress in rice, a major threat to global food security, three major quantitative trait loci for 'yield under drought stress' (qDTYs) were successfully exploited in the last decade. However, their molecular basis still remains unknown. To understand the role of secondary regulation by miRNA in drought stress response and their relation, if any, with the three qDTYs, the miRNA dynamics under drought stress was studied at booting stage in two drought tolerant (Sahbaghi Dhan and Vandana) and one drought sensitive (IR 20) cultivars. In total, 53 known and 40 novel differentially expressed (DE) miRNAs were identified. The primary drought responsive miRNAs were Osa-MIR2919, Osa-MIR3979, Osa-MIR159f, Osa-MIR156k, Osa-MIR528, Osa-MIR530, Osa-MIR2091, Osa-MIR531a, Osa-MIR531b as well as three novel ones. Sixty-one target genes that corresponded to 11 known and 4 novel DE miRNAs were found to be co-localized with the three qDTYs, out of the 1746 target genes identified. We could validate miRNA-mRNA expression under drought for nine known and three novel miRNAs in eight different rice genotypes showing varying degree of tolerance. From our study, Osa-MIR2919, Osa-MIR3979, Osa-MIR528, Osa-MIR2091-5p and Chr01_11911S14Astr and their target genes LOC_Os01g72000, LOC_Os01g66890, LOC_Os01g57990, LOC_Os01g56780, LOC_Os01g72834, LOC_Os01g61880 and LOC_Os01g72780 were identified as the most promising candidates for drought tolerance at booting stage. Of these, Osa-MIR2919 with 19 target genes in the qDTYs is being reported for the first time. It acts as a negative regulator of drought stress tolerance by modulating the cytokinin and brassinosteroid signalling pathway.
Collapse
Affiliation(s)
- Deepesh Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, Indian Agricultural Research Institute, Pusa Campus New Delhi, New Delhi, 110012, India
| | - M K Ramkumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Bipratip Dutta
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, Indian Agricultural Research Institute, Pusa Campus New Delhi, New Delhi, 110012, India
| | - Ajay Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Rakesh Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep Kumar Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Dwijesh C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - K K Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | | | | |
Collapse
|
3
|
Kaur S, Seem K, Kumar S, Kaundal R, Mohapatra T. Comparative Genome-Wide Analysis of MicroRNAs and Their Target Genes in Roots of Contrasting Indica Rice Cultivars under Reproductive-Stage Drought. Genes (Basel) 2023; 14:1390. [PMID: 37510295 PMCID: PMC10379292 DOI: 10.3390/genes14071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Recurrent occurrence of drought stress in varying intensity has become a common phenomenon in the present era of global climate change, which not only causes severe yield losses but also challenges the cultivation of rice. This raises serious concerns for sustainable food production and global food security. The root of a plant is primarily responsible to perceive drought stress and acquire sufficient water for the survival/optimal growth of the plant under extreme climatic conditions. Earlier studies reported the involvement/important roles of microRNAs (miRNAs) in plants' responses to environmental/abiotic stresses. A number (738) of miRNAs is known to be expressed in different tissues under varying environmental conditions in rice, but our understanding of the role, mode of action, and target genes of the miRNAs are still elusive. Using contrasting rice [IR-64 (reproductive-stage drought sensitive) and N-22 (drought-tolerant)] cultivars, imposed with terminal (reproductive-stage) drought stress, we demonstrate differential expression of 270 known and 91 novel miRNAs in roots of the contrasting rice cultivars in response to the stress. Among the known miRNAs, osamiR812, osamiR166, osamiR156, osamiR167, and osamiR396 were the most differentially expressed miRNAs between the rice cultivars. In the root of N-22, 18 known and 12 novel miRNAs were observed to be exclusively expressed, while only two known (zero novels) miRNAs were exclusively expressed in the roots of IR-64. The majority of the target gene(s) of the miRNAs were drought-responsive transcription factors playing important roles in flower, grain development, auxin signaling, root development, and phytohormone-crosstalk. The novel miRNAs identified in this study may serve as good candidates for the genetic improvement of rice for terminal drought stress towards developing climate-smart rice for sustainable food production.
Collapse
Affiliation(s)
- Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
4
|
Ye S, Ding W, Bai W, Lu J, Zhou L, Ma X, Zhu Q. Application of a novel strong promoter from Chinese fir ( Cunninghamia lanceolate) in the CRISPR/Cas mediated genome editing of its protoplasts and transgenesis of rice and poplar. FRONTIERS IN PLANT SCIENCE 2023; 14:1179394. [PMID: 37152166 PMCID: PMC10157052 DOI: 10.3389/fpls.2023.1179394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
Novel constitutive promoters are essential for plant biotechnology. Although in angiosperms, a number of promoters were applied in monocots or dicots genetic engineering, only a few promoters were used in gymnosperm. Here we identified two strong promoters (Cula11 and Cula08) from Chinese fir (C. lanceolate) by screening the transcriptomic data and preliminary promoter activity assays in tobacco. By using the newly established Chinese fir protoplast transient expression technology that enables in vivo molecular biology studies in its homologous system, we compared the activities of Cula11 and Cula08 with that of the commonly used promoters in genetic engineering of monocots or dicots, such as CaM35S, CmYLCV, and ZmUbi, and our results revealed that Cula11 and Cula08 promoters have stronger activities in Chinese fir protoplasts. Furthermore, the vector containing Cas gene driven by Cula11 promoter and sgRNA driven by the newly isolated CulaU6b polyIII promoters were introduced into Chinese fir protoplasts, and CRISPR/Cas mediated gene knock-out event was successfully achieved. More importantly, compared with the commonly used promoters in the genetic engineering in angiosperms, Cula11 promoter has much stronger activity than CaM35S promoter in transgenic poplar, and ZmUbi promoter in transgenic rice, respectively, indicating its potential application in poplar and rice genetic engineering. Overall, the novel putative constitutive gene promoters reported here will have great potential application in gymnosperm and angiosperm biotechnology, and the transient gene expression system established here will serve as a useful tool for the molecular and genetic analyses of Chinese fir genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang Zhu
- *Correspondence: Xiangqing Ma, ; Qiang Zhu,
| |
Collapse
|
5
|
Further Mining and Characterization of miRNA Resource in Chinese Fir (Cunninghamia lanceolata). Genes (Basel) 2022; 13:genes13112137. [DOI: 10.3390/genes13112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we aimed to expand the current miRNA data bank of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) regarding its potential value for further genetic and genomic use in this species. High-throughput small RNA sequencing successfully captured 140 miRNAs from a Chinese fir selfing family harboring vigor and depressed progeny. Strikingly, 75.7% (n = 106) of these miRNAs have not been documented previously, and most (n = 105) of them belong to the novel set with 6858 putative target genes. The new datasets were then integrated with the previous information to gain insight into miRNA genetic architecture in Chinese fir. Collectively, a relatively high proportion (62%, n = 110) of novel miRNAs were found. Furthermore, we identified one MIR536 family that has not been previously documented in this species and four overlapped miRNA families (MIR159, MIR164, MIR171_1, and MIR396) from new datasets. Regarding the stability, we calculated the secondary structure free energy and found a relatively low R2 value (R2 < 0.22) between low minimal folding free energy (MFE) of pre-miRNAs and MFE of its corresponding mature miRNAs in most datasets. When in view of the conservation aspect, the phylogenetic trees showed that MIR536 and MIR159 sequences were highly conserved in gymnosperms.
Collapse
|
6
|
Chakraborty T, Payne H, Mosher RA. Expansion and contraction of small RNA and methylation machinery throughout plant evolution. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102260. [PMID: 35849937 DOI: 10.1016/j.pbi.2022.102260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The revolution in sequencing has created a wealth of plant genomes that can be mined to understand the evolution of biological complexity. Complexity is often driven by gene duplication, which allows paralogs to specialize in an activity of the ancestral gene or acquire novel functions. Angiosperms encode a variety of gene silencing pathways that share related machinery for small RNA biosynthesis and function. Recent phylogenetic analysis of these gene families plots the expansion, specialization, and occasional contraction of this core machinery. This analysis reveals the ancient origin of RNA-directed DNA Methylation in early land plants, or possibly their algal ancestors, as well as ongoing duplications that evolve novel small RNA pathways.
Collapse
Affiliation(s)
- Tania Chakraborty
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| | - Hayden Payne
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA.
| |
Collapse
|
7
|
Zhao W, Meng X, Xu J, Liu Z, Hu Y, Li B, Chen J, Cao B. Integrated mRNA and Small RNA Sequencing Reveals microRNAs Associated With Xylem Development in Dalbergia odorifera. Front Genet 2022; 13:883422. [PMID: 35547261 PMCID: PMC9081728 DOI: 10.3389/fgene.2022.883422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dalbergia odorifera is a rare and precious rosewood specie, whose wood is a very high-quality material for valuable furniture and carving crafts. However, limited information is available about the process of wood formation in D. odorifera. To determine genes that might be closely associated with the xylem differentiation process, we analyzed the differentially expressed genes (DEGs) and microRNAs (miRNAs) from specific xylem tissues of D. odorifera by RNA sequencing (RNA-seq) and small RNA sequencing (small RNA-seq). In total, we obtained 134,221,955 clean reads from RNA-seq and 90,940,761 clean reads from small RNA-seq. By comparing the transition zone (Dotz) and sapwood (Dosw) samples, a total of 395 DEGs were identified. Further analysis revealed that DEGs encoded for WRKY transcription factors (eight genes), lignin synthesis (PER47, COMT, CCR2), cell wall composition (UXS2), gibberellin synthesis (KAO2, GA20OX1), jasmonic acid synthesis (OPR2, CYP74A), and synthesis of flavonoids (PAL2) and terpenoids (CYP71A1). Subsequently, a preliminary analysis by small RNA-seq showed that the expressions of 14 miRNAs (such as miR168a-5p, miR167f-5p, miR167h-5p, miR167e, miR390a, miR156g, novel_52, and novel_9) were significantly different between Dotz and Dosw. Further analysis revealed that the target genes of these differentially expressed miRNAs were enriched in the GO terms "amino acid binding," "cellulase activity," and "DNA beta-glucosyltransferase activity". Further, KEGG pathway annotation showed significant enrichment in "fatty acid elongation" and "biosynthesis of unsaturated fatty acids". These processes might be participating in the xylem differentiation of D. odorifera. Next, expression correlation analysis showed that nine differentially expressed miRNAs were significantly negatively associated with 21 target genes, which encoded for proteins such as pyrH, SPL6, SPL12, GCS1, and ARF8. Overall, this is the first study on miRNAs and their potential functions in the xylem development of D. odorifera, which provides a stepping stone for a detailed functional investigation of D. odorifera miRNAs.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiangxu Meng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jiahong Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Zijia Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yangyang Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Bingyu Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Bing Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
8
|
Identification and Validation of Reliable Reference Genes for Gene Expression Studies in Koelreuteria paniculata. Genes (Basel) 2022; 13:genes13050714. [PMID: 35627099 PMCID: PMC9141280 DOI: 10.3390/genes13050714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
RT-qPCR is considered a rapid and reliable technique for analyzing gene expression. This technique is commonly used to analyze the expression of various genes at diverse transcriptional levels in different samples. However, few studies have characterized ornamental Koelreuteria species for reliable reference genes. In this study, eight reference genes were evaluated as controls in RT-qPCR with SYBR green to quantify gene expression in different Koelreuteria paniculata samples. All selected reference genes showed a broad range of Ct values in all samples, which was supportive of their variable expression. Our results showed significant variation in the stable expression of K. paniculata genes. Sample data, analyzed using geNorm, NormFinder, and BestKeeper, showed that phospholipase (PLA2) and β-actin (ACT) were the most suitable and statistically reliable reference genes, whereas ribosomal protein L13 (RPL13) and elongation factor 1-α (EF1α) were less stable and unsuitable for use as internal controls. To compare gene expression levels, two or more reference genes should be used for data normalization. Thus, the stability and expression of both PLA2 and ACT were believed to provide better normalization and quantification of the transcript levels for gene expression studies in K. paniculata.
Collapse
|
9
|
Zhang Z, Wang H, Wu J, Jin Y, Xiao S, Li T, Liu X, Zhang H, Zhang Z, Su J, Liu J, Wang X, Gao Y, Ma X, Gu L. Comprehensive Transcriptome Analysis of Stem-Differentiating Xylem Upon Compression Stress in Cunninghamia Lanceolata. Front Genet 2022; 13:843269. [PMID: 35309135 PMCID: PMC8927042 DOI: 10.3389/fgene.2022.843269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
Compression wood (CW) in gymnosperm brings great difficulties to wood industry using wood as raw materials since CW presents special wood structure and have different physical and chemical properties from those of normal wood (NW). Chinese fir (Cunninghamia lanceolata) is widely distributed in China. However, global transcriptome profiling of coding and long non-coding RNA in response to compression stress has not been reported in the gymnosperm species. In this study, we revealed that CW in Chinese fir exhibited distinct morphology and cytology properties compared with those of NW, including high lignin content, thick and round tracheid cells. Furthermore, we combined both PacBio long-read SMRT sequencing (Iso-Seq) and Illumina short-read RNA-Seq to reveal the transcriptome in stem-differentiating xylem (SDX) under different time points (2, 26, and 74 h) upon compression stress in NW, CW, and OW (opposite wood), respectively. Iso-Seq was successfully assembled into 41,253 de-novo full-length transcriptome reference (average length 2,245 bp). Moreover, there were striking differences in expression upon compression stress, which were involved 13 and 7 key enzyme genes in the lignin and cellulose synthesis, respectively. Especially, we revealed 11 secondary growth-related transcription factors show differential expression under compression stress, which was further validated by qRT-PCR. Finally, the correlation between 6,533 differentially expressed coding genes and 372 differentially expressed long non-coding RNAs (lncRNAs) indicates that these lncRNAs may affect cell wall biogenesis and xyloglucan metabolism. In conclusion, our results provided comprehensive cytology properties and full-length transcriptome profiling of wood species upon compression stress. Especially we explored candidate genes, including both coding and long non-coding genes, and provided a theoretical basis for further research on the formation mechanism of CW in gymnosperm Chinese fir.
Collapse
Affiliation(s)
- Zekun Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yandong Jin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengwu Xiao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuqinq Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingzao Liu
- Taining State-owned Forest Farm, Taining, China
| | | | - Yubang Gao
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Xiangqing Ma, ; Yubang Gao, ; Lianfeng Gu,
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Xiangqing Ma, ; Yubang Gao, ; Lianfeng Gu,
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Xiangqing Ma, ; Yubang Gao, ; Lianfeng Gu,
| |
Collapse
|
10
|
Xu H, Chen B, Zhao Y, Guo Y, Liu G, Li R, Zeisler-Diehl VV, Chen Y, He X, Schreiber L, Lin J. Non-Coding RNA Analyses of Seasonal Cambium Activity in Populus tomentosa. Cells 2022; 11:640. [PMID: 35203291 PMCID: PMC8869787 DOI: 10.3390/cells11040640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNA, known as long non-coding RNA (lncRNA), circular RNA (circRNA) and microRNA (miRNA), are taking part in the multiple developmental processes in plants. However, the roles of which played during the cambium activity periodicity of woody plants remain poorly understood. Here, lncRNA/circRNA-miRNA-mRNA regulatory networks of the cambium activity periodicity in Populus tomentosa was constructed, combined with morphologic observation and transcriptome profiling. Light microscopy and Periodic Acid Schiff (PAS) staining revealed that cell walls were much thicker and number of cell layers was increased during the active-dormant stage, accompanied by abundant change of polysaccharides. The novel lncRNAs and circRNAs were investigated, and we found that 2037 lncRNAs and 299 circRNAs were differentially expression during the vascular cambium period, respectively. Moreover, 1046 genes were identified as a target gene of 2037 novel lncRNAs, and 89 of which were the miRNA precursors or targets. By aligning miRNA precursors to the 7655 lncRNAs, 21 lncRNAs were identified as precursors tof 19 known miRNAs. Furthermore, the target mRNA of lncRNA/circRNA-miRNA network mainly participated in phytohormone, cell wall alteration and chlorophyll metabolism were analyzed by GO enrichment and KEGG pathway. Especially, circRNA33 and circRNA190 taking part in the phytohormone signal pathway were down-regulated during the active-dormant transition. Xyloglucan endotransglucosylase/hydrolase protein 24-like and UDP-glycosyltransferase 85A1 involved in the cell wall modification were the targets of lncRNA MSTRG.11198.1 and MSTRG.1050.1. Notably, circRNA103 and MSTRG.10851.1 regulate the cambium periodicity may interact with the miR482. These results give a new light into activity-dormancy regulation, associated with transcriptional dynamics and non-coding RNA networks of potential targets identification.
Collapse
Affiliation(s)
- Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (H.X.); (Y.C.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
- College of Life Sciences, Peking University, Beijing 100871, China;
| | - Bo Chen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yayu Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Guijun Liu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China;
| | - Ruili Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
| | - Viktoria V. Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.V.Z.-D.); (L.S.)
| | - Yanmei Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (H.X.); (Y.C.)
| | - Xinqiang He
- College of Life Sciences, Peking University, Beijing 100871, China;
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.V.Z.-D.); (L.S.)
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Fang L, Wang Y. MicroRNAs in Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:686831. [PMID: 34531880 PMCID: PMC8438446 DOI: 10.3389/fpls.2021.686831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21-nucleotides) non-coding RNAs found in plant and animals. MiRNAs function as critical post-transcriptional regulators of gene expression by binding to complementary sequences in their target mRNAs, leading to mRNA destabilization and translational inhibition. Plant miRNAs have some distinct characteristics compared to their animal counterparts, including greater evolutionary conservation and unique miRNA processing methods. The lifecycle of a plant begins with embryogenesis and progresses through seed germination, vegetative growth, reproductive growth, flowering and fruiting, and finally senescence and death. MiRNAs participate in the transformation of plant growth and development and directly monitor progression of these processes and the expression of certain morphological characteristics by regulating transcription factor genes involved in cell growth and differentiation. In woody plants, a large and rapidly increasing number of miRNAs have been identified, but their biological functions are largely unknown. In this review, we summarize the progress of miRNA research in woody plants to date. In particular, we discuss the potential roles of these miRNAs in growth, development, and biotic and abiotic stresses responses in woody plants.
Collapse
Affiliation(s)
- Lisha Fang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
12
|
Wang R, Reng M, Tian S, Liu C, Cheng H, Liu Y, Zhang H, Saqib M, Wei H, Wei Z. Transcriptome-wide identification and characterization of microRNAs in diverse phases of wood formation in Populus trichocarpa. G3 (BETHESDA, MD.) 2021; 11:jkab195. [PMID: 34849817 PMCID: PMC8633455 DOI: 10.1093/g3journal/jkab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/29/2021] [Indexed: 01/15/2023]
Abstract
We applied miRNA expression profiling method to Populus trichocarpa stems of the three developmental stages, primary stem (PS), transitional stem (TS), and secondary stem (SS), to investigate miRNA species and their regulation on lignocellulosic synthesis and related processes. We obtained 892, 872, and 882 known miRNAs and 1727, 1723, and 1597 novel miRNAs, from PS, TS, and SS, respectively. Comparisons of these miRNA species among different developmental stages led to the identification of 114, 306, and 152 differentially expressed miRNAs (DE-miRNAs), which had 921, 2639, and 2042 candidate target genes (CTGs) in the three respective stages of the same order. Correlation analysis revealed 47, 439, and 71 DE-miRNA-CTG pairs of high negative correlation in PS, TS, and SS, respectively. Through biological process analysis, we finally identified 34, 6, and 76 miRNA-CTG pairs from PS, TS, and SS, respectively, and the miRNA target genes in these pairs regulate or participate lignocellulosic biosynthesis-related biological processes: cell division and differentiation, cell wall modification, secondary cell wall biosynthesis, lignification, and programmed cell death processes. This is the first report on an integrated analysis of genome-wide mRNA and miRNA profilings during multiple phases of poplar stem development. Our analysis results imply that individual miRNAs modulate secondary growth and lignocellulosic biosynthesis through regulating transcription factors and lignocellulosic biosynthetic pathway genes, resulting in more dynamic promotion, suppression, or regulatory circuits. This study advanced our understanding of many individual miRNAs and their essential, diversified roles in the dynamic regulation of secondary growth in woody tree species.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - Mengxuan Reng
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Shuanghui Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - Cong Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - He Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Hairong Wei
- College of Forest Resource and Environmental Science, Michigan Technological University, Houghton MI49931, USA
| | - Zhigang Wei
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
13
|
Perdiguero P, Rodrigues AS, Chaves I, Costa B, Alves A, de María N, Vélez MD, Díaz-Sala C, Cervera MT, Miguel CM. Comprehensive analysis of the isomiRome in the vegetative organs of the conifer Pinus pinaster under contrasting water availability. PLANT, CELL & ENVIRONMENT 2021; 44:706-728. [PMID: 33314160 DOI: 10.1111/pce.13976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
An increasing number of microRNAs (miRNAs) and miRNA-related sequences produced during miRNA biogenesis, comprising the isomiRome, have been recently highlighted in different species as critical mediators of environmental stress responses. Conifers have some of the largest known genomes but an extensive characterization of the isomiRome from any conifer species has been lacking. We provide here a comprehensive overview of the Pinus pinaster isomiRome expressed in roots, stem and needles under well-watered and drought conditions. From the 13,441 unique small RNA sequences identified, 2,980 were annotated as canonical miRNAs or miRNA* and the remaining were classified as isomiRNA or miRNA-like sequences. A survey of their expression patterns highlighted roots as the most responsive organ under drought, where specific sequences of which a 24-nt novel miRNA stood out, were strongly down-regulated. Given the putative roles of the miRNA-targeted transcripts validated specifically in root tissues, some of the miRNAs, conserved and novel, are shortlisted as potential regulators of drought response. These results provide a valuable resource for comparative studies between gymnosperms and angiosperms. Furthermore, it evidences high transferability of the isomiRome between pine species being a useful basis for further molecular regulation and physiological studies, and especially those focused on adaptation to drought conditions.
Collapse
Affiliation(s)
- Pedro Perdiguero
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Andreia Santos Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruno Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Alves
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Célia Maria Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Yu N, Yang JC, Yin GT, Li RS, Zou WT. Genome-wide characterization of the SPL gene family involved in the age development of Jatropha curcas. BMC Genomics 2020; 21:368. [PMID: 32434522 PMCID: PMC7238634 DOI: 10.1186/s12864-020-06776-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND SPL (SQUAMOSA-promoter binding protein-like) proteins form a large family of plant-specific transcription factors that play essential roles in various aspects of plant growth and development. They are potentially important candidates for genetic improvement of agronomic traits. However, there were limited information about the SPL genes in Jatropha curcas, an important biofuel plant. RESULTS In Jatropha, 15 JcSPL genes were identified. Phylogenetic analysis revealed that most of the JcSPLs were closely related to SPLs from woody plant rather than herbaceous plant and distantly related to monocotyledon SPLs. Gene structure, conserved motif and repetitive sequence analysis indicated diverse and specific functions of some JcSPL genes. By combination of target prediction and degradome sequencing analysis, 10 of the 15 JcSPLs were shown to be targets of JcmiR156. Quantitative PCR analysis showed diversified spatial-temporal expression patterns of JcSPLs. It is interesting that the expression levels of JcSPL3 were the highest in all tissues examined in 7- or 10-year-old plants and exhibited increasing trend with plant age, suggesting its important role in the regulation of age development in Jatropha. Overexpression of JcSPL3 in Arabidopsis resulted in earlier flowering time, shorter silique length and reduced biomass of roots. CONCLUSIONS Through comprehensive and systematic analysis of phylogenetic relationships, conserved motifs, gene structures, chromosomal locations, repetitive sequence and expression patterns, 15 JcSPL genes were identified in Jatropha and characterized in great detail. These results provide deep insight into the evolutionary origin and biological significance of plant SPLs and lay the foundation for further functional characterization of JcSPLs with the purpose of genetic improvement in Jatropha.
Collapse
Affiliation(s)
- Niu Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China.
| | - Jin-Chang Yang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China
| | - Guang-Tian Yin
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China
| | - Rong-Sheng Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China
| | - Wen-Tao Zou
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China
| |
Collapse
|
15
|
Zhao T, Tao X, Li M, Gao M, Chen J, Zhou N, Mei G, Fang L, Ding L, Zhou B, Zhang T, Guan X. Role of phasiRNAs from two distinct phasing frames of GhMYB2 loci in cis- gene regulation in the cotton genome. BMC PLANT BIOLOGY 2020; 20:219. [PMID: 32414380 PMCID: PMC7227086 DOI: 10.1186/s12870-020-02430-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/05/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Phased small interfering RNA (phasiRNA) is primarily derived from the 22-nt miRNA targeting loci. GhMYB2, a gene with potential roles in cotton fiber cell fate determination, is a target gene of miR828 and miR858 in the generation of phasiRNAs. RESULTS In the presented work, through the evaluation of phasing scores and phasiRNA distribution pattern, we found that phasiRNAs from GhMYB2 were derived from the 3' cleavage fragments of 22-nt miR828 and 21-nt miR858 respectively. These two miRNA targeting sites initiated two phasing frames on transcripts of one locus. By means of RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE), we further demonstrated that phasiRNAs derived from the two phasing frames played a role in cis-regulation of GhMYB2. The phasiRNAs derived from GhMYB2 were expressed in the somatic tissues, especially in anther and hypocotyl. We further employed our previous small RNA sequencing data as well as the degradome data of cotton fiber bearing ovules, anthers, hypocotyls and embryogenic calli tissues published in public databases, to validate the expression, phasing pattern and functions of phasiRNAs. CONCLUSIONS The presenting research provide insights of the molecular mechanism of phasiRNAs in regulation of GhMYB2 loci.
Collapse
Affiliation(s)
- Ting Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Xiaoyuan Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Menglin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Mengtao Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Jiedan Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Na Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Gaofu Mei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Lei Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Linyun Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Tianzhen Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Xueying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
16
|
Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 2020; 15:e0230958. [PMID: 32294092 PMCID: PMC7159242 DOI: 10.1371/journal.pone.0230958] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sachin Ashruba Gharat
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ravichandra Tagirasa
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Sushant Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
17
|
Yu L, Zhou L, Liu W, Huang P, Jiang R, Tang Z, Cheng P, Zeng J. Identification of drought resistant miRNA in Macleaya cordata by high-throughput sequencing. Arch Biochem Biophys 2020; 684:108300. [PMID: 32057760 DOI: 10.1016/j.abb.2020.108300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 02/08/2020] [Indexed: 12/18/2022]
Abstract
Drought is one of the most serious factors affecting crop yields in the world. Macleaya cordata (Willd.) is a draught-tolerant medicinal plant that has been proposed as a pioneer crop to be cultivated in arid areas. However, the exact molecular mechanisms through which M. cordata responds to draught stress remain elusive. In recent years, microRNA (miRNAs) in plants have been associated with stress response. Based on these findings, the current study aimed to shed light on the potential regulatory roles of miRNAs in the draught tolerance of M. cordata by employing high-throughput RNA sequencing and degradation sequencing. Six M. cordata plants were randomly divided into two equal experiment groups, including one draught group and one control group. High-throughput sequencing of the M. cordata samples led to the identification of 895 miRNAs, of which 18 showed significantly different expression levels between the two groups. PsRobot analysis and degradation sequencing predicted the differential miRNAs to target 59 and 36 genes, respectively. Functional analysis showed that 38 of the predicted genes could be implicated in the modulation of stress response. Four miRNAs and eight target genes were selected for quantitative real-time polymerase chain reaction (qRT-PCR) validation. The expression trend of each miRNA analyzed by qRT-PCR was consistent with that determined by sequencing, and was negatively correlated with those of its target genes. The results of our current study supported the involvement of miRNAs in the draught tolerance of M. cordata and could pave the way for further investigation into the related regulatory mechanisms.
Collapse
Affiliation(s)
- Linlan Yu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Li Zhou
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Center of Analytic Service, Hunan Agriculture University, 410208, Changsha, China.
| | - Peng Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Ruolan Jiang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | | | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
18
|
Nakamura M, Köhler C, Hennig L. Tissue-specific transposon-associated small RNAs in the gymnosperm tree, Norway spruce. BMC Genomics 2019; 20:997. [PMID: 31856707 PMCID: PMC6923980 DOI: 10.1186/s12864-019-6385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are regulatory molecules impacting on gene expression and transposon activity. MicroRNAs (miRNAs) are responsible for tissue-specific and environmentally-induced gene repression. Short interfering RNAs (siRNA) are constitutively involved in transposon silencing across different type of tissues. The male gametophyte in angiosperms has a unique set of sRNAs compared to vegetative tissues, including phased siRNAs from intergenic or genic regions, or epigenetically activated siRNAs. This is contrasted by a lack of knowledge about the sRNA profile of the male gametophyte of gymnosperms. RESULTS Here, we isolated mature pollen from male cones of Norway spruce and investigated its sRNA profiles. While 21-nt sRNAs is the major size class of sRNAs in needles, in pollen 21-nt and 24-nt sRNAs are the most abundant size classes. Although the 24-nt sRNAs were exclusively derived from TEs in pollen, both 21-nt and 24-nt sRNAs were associated with TEs. We also investigated sRNAs from somatic embryonic callus, which has been reported to contain 24-nt sRNAs. Our data show that the 24-nt sRNA profiles are tissue-specific and differ between pollen and cell culture. CONCLUSION Our data reveal that gymnosperm pollen, like angiosperm pollen, has a unique sRNA profile, differing from vegetative leaf tissue. Thus, our results reveal that angiosperm and gymnosperm pollen produce new size classes not present in vegetative tissues; while in angiosperm pollen 21-nt sRNAs are generated, in the gymnosperm Norway spruce 24-nt sRNAs are generated. The tissue-specific production of distinct TE-derived sRNAs in angiosperms and gymnosperms provides insights into the diversification process of sRNAs in TE silencing pathways between the two groups of seed plants.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
19
|
Singh K, Dardick C, Kumar Kundu J. RNAi-Mediated Resistance Against Viruses in Perennial Fruit Plants. PLANTS 2019; 8:plants8100359. [PMID: 31546695 PMCID: PMC6843808 DOI: 10.3390/plants8100359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/02/2022]
Abstract
Small RNAs (sRNAs) are 20–30-nucleotide-long, regulatory, noncoding RNAs that induce silencing of target genes at the transcriptional and posttranscriptional levels. They are key components for cellular functions during plant development, hormone signaling, and stress responses. Generated from the cleavage of double-stranded RNAs (dsRNAs) or RNAs with hairpin structures by Dicer-like proteins (DCLs), they are loaded onto Argonaute (AGO) protein complexes to induce gene silencing of their complementary targets by promoting messenger RNA (mRNA) cleavage or degradation, translation inhibition, DNA methylation, and/or histone modifications. This mechanism of regulating RNA activity, collectively referred to as RNA interference (RNAi), which is an evolutionarily conserved process in eukaryotes. Plant RNAi pathways play a fundamental role in plant immunity against viruses and have been exploited via genetic engineering to control disease. Plant viruses of RNA origin that contain double-stranded RNA are targeted by the RNA-silencing machinery to produce virus-derived small RNAs (vsRNAs). Some vsRNAs serve as an effector to repress host immunity by capturing host RNAi pathways. High-throughput sequencing (HTS) strategies have been used to identify endogenous sRNA profiles, the “sRNAome”, and analyze expression in various perennial plants. Therefore, the review examines the current knowledge of sRNAs in perennial plants and fruits, describes the development and implementation of RNA interference (RNAi) in providing resistance against economically important viruses, and explores sRNA targets that are important in regulating a variety of biological processes.
Collapse
Affiliation(s)
- Khushwant Singh
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague 161 06, Czech Republic.
| | - Chris Dardick
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA.
| | - Jiban Kumar Kundu
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague 161 06, Czech Republic.
| |
Collapse
|
20
|
Rodrigues AS, Chaves I, Costa BV, Lin YC, Lopes S, Milhinhos A, Van de Peer Y, Miguel CM. Small RNA profiling in Pinus pinaster reveals the transcriptome of developing seeds and highlights differences between zygotic and somatic embryos. Sci Rep 2019; 9:11327. [PMID: 31383905 PMCID: PMC6683148 DOI: 10.1038/s41598-019-47789-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of seed development by small non-coding RNAs (sRNAs) is an important mechanism controlling a crucial phase of the life cycle of seed plants. In this work, sRNAs from seed tissues (zygotic embryos and megagametophytes) and from somatic embryos of Pinus pinaster were analysed to identify putative regulators of seed/embryo development in conifers. In total, sixteen sRNA libraries covering several developmental stages were sequenced. We show that embryos and megagametophytes express a large population of 21-nt sRNAs and that substantial amounts of 24-nt sRNAs were also detected, especially in somatic embryos. A total of 215 conserved miRNAs, one third of which are conifer-specific, and 212 high-confidence novel miRNAs were annotated. MIR159, MIR171 and MIR394 families were found in embryos, but were greatly reduced in megagametophytes. Other families, like MIR397 and MIR408, predominated in somatic embryos and megagametophytes, suggesting their expression in somatic embryos is associated with in vitro conditions. Analysis of the predicted miRNA targets suggests that miRNA functions are relevant in several processes including transporter activity at the cotyledon-forming stage, and sulfur metabolism across several developmental stages. An important resource for studying conifer embryogenesis is made available here, which may also provide insightful clues for improving clonal propagation via somatic embryogenesis.
Collapse
Affiliation(s)
- Andreia S Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Bruno Vasques Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol 9, Lisboa, 1000-029, Portugal
| | - Yao-Cheng Lin
- Biotechnology Center in Southern Taiwan and Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Susana Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Ana Milhinhos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Célia M Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
21
|
Wang Y, Peng M, Wang W, Chen Y, He Z, Cao J, Lin Z, Yang Z, Gong M, Yin Y. Verification of miRNAs in ginseng decoction by high-throughput sequencing and quantitative real-time PCR. Heliyon 2019; 5:e01418. [PMID: 30984884 PMCID: PMC6446053 DOI: 10.1016/j.heliyon.2019.e01418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Panax ginseng C. A. Meyer is a precious traditional Chinese medicine that has been clinically used for over thousands of years. In general, ginseng needs to be prepared to ginseng decoction before taking it. MicroRNAs are a class of small (18–24 nt), single-stranded molecules that regulate gene expression at the post-transcriptional level. Considering that ginseng miRNAs may be bioactive compounds, we used Illumina high-throughput sequencing and quantitative real-time PCR (qRT-PCR) to validate the existence of miRNAs in fresh ginseng decoction which have been boiled at high temperature. Our previous studies have demonstrated that there are several miRNAs in fresh ginseng. The roots of fresh Panax ginseng were prepared according to routine methods, from which miRNAs were extracted and sequenced. A total of 43 miRNAs were identified from water decoction by Illumina high-throughput sequencing, belonging to 71 miRNA families. The target genes of these miRNAs were predicted by sequencing, and were annotated by GO, KEGG and Nr databases. The functions of these target genes mainly included plant hormone signal transduction, transcription regulation, macromolecular metabolism and auxin signaling. Nine highly expressed miRNAs (miR159, miR167, miR396, miR166, miR168, miR156, miR165, miR162 and miR394) were verified by qRT-PCR, and the results of Illumina high-throughput sequencing and qRT-PCR were consistent. Results from this study indicate that miRNAs remained stable in P. ginseng after high-temperature boiling. Additionally, Illumina high-throughput sequencing was superior in the acquisition of higher amount of small RNAs.
Collapse
Affiliation(s)
- Yingfang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangzhou 510006, china
- Corresponding author.
| | - Mengyuan Peng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjuan Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanlin Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhihua He
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingjing Cao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiyun Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zemin Yang
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengjuan Gong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongqin Yin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
22
|
Awasthi JP, Chandra T, Mishra S, Parmar S, Shaw BP, Nilawe PD, Chauhan NK, Sahoo S, Panda SK. Identification and characterization of drought responsive miRNAs in a drought tolerant upland rice cultivar KMJ 1-12-3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:62-74. [PMID: 30738218 DOI: 10.1016/j.plaphy.2019.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Shortfall of rain that creates drought like situation in non-irrigated agriculture system often limits rice production, necessitating introduction of drought tolerance trait into the cultivar of interest. The mechanism governing drought tolerance is, however, largely unknown, particularly the involvement of miRNAs, the master regulators of biochemical events. In this regard, response study on a drought tolerant rice variety KMJ 1-12-3 to 20% PEG (osmolality- 315 mOsm/kg) as drought stress revealed significant changes in abundance of several conserved miRNAs targeting transcription factors like homeodomain-leucine zipper, MADS box family protein, C2H2 zinc finger protein and Myb, well known for their importance in drought tolerance in plants. The response study also revealed significant PEG-induced decrease in abundance of the miRNAs targeting cyclin A, cyclin-dependent kinase, guanine nucleotide exchange factor, GTPase-activating protein, 1-aminocyclopropane-1-carboxylic acid oxidase and indole-3-acetic beta-glucosyl transferase indicating miRNA-regulated role of the cell cycle regulators, G-protein signalling and the plant hormones ethylene and IAA in drought tolerance in plants. The study confirmed the existence of four novel miRNAs, including osa-miR12470, osa-miR12471, osa-miR12472 and osa-miR12473, and the targets of three of them could be successfully validated. The PEG-induced decrease in abundance of the novel miRNAs osa-miR12470 and osa-miR12473 targeting RNA dependent RNA polymerase and equilibrative nucleoside transporter, respectively suggested an overall increase in both degradation and synthesis of nucleic acids in plants challenged with drought stress. The drought-responsive miRNAs identified in the study may be proved useful in introducing the trait in the rice cultivars of choice by manipulation of their cellular abundance.
Collapse
Affiliation(s)
- Jay Prakash Awasthi
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| | - Tilak Chandra
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Sagarika Mishra
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Shaifaly Parmar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Birendra Prasad Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Pravin Daulat Nilawe
- Thermo Fisher Scientific India Pvt. Ltd, 403/404 B-Wing, Delphi, Hiranandani Business Park, Powai, Mumbai, 400076, India.
| | - Neeraj Kumar Chauhan
- Thermo Fisher Scientific India Pvt. Ltd, 403/404 B-Wing, Delphi, Hiranandani Business Park, Powai, Mumbai, 400076, India.
| | - Smita Sahoo
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| | - Sanjib Kumar Panda
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
23
|
Gao C, Fu Q, Yang N, Song L, Tan F, Zhu J, Li C. Identification and expression profiling analysis of microRNAs in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:333-345. [PMID: 30648624 DOI: 10.1016/j.fsi.2019.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) play vital regulatory roles in various biological processes, including in immune responses. Nile tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify immune-related miRNAs of O. niloticus, 4 libraries from liver during S. agalactiae infection (0 h, 5 h, 50 h, and 7 d) were sequenced by high-throughput sequencing technology in tilapia. We obtained 10,703,531, 11,507,163, 11,180,179 and 13,408,414 clean reads per library, respectively. In our results, a total of 482 miRNAs were identified through bioinformatic analysis, including 220 conserved miRNAs and 262 putative novel miRNAs. Moreover, 21 (4.36%), 50 (10.37%), and 46 (9.54%) miRNAs were significantly differentially expressed at 5 h, 50 h and 7 d, respectively. In addition, 6939 target genes regulated by these differentially expressed miRNAs were predicted, and their functional annotations were predicted by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, which revealed that a majority of differentially expressed miRNAs were involved in apoptotic process, metabolic process, and immune responses. Finally, Real-time quantitative PCR experiments were performed for 7 miRNAs by stem-loop RT-PCR, and a general agreement was confirmed between the sequencing and RT-qPCR data. To our understanding, this is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in liver related to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions, and genetic resources for molecular assistant selection for disease resistant breeding program.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi, 530021, China.
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
24
|
Galdino JH, Eguiluz M, Guzman F, Margis R. Novel and Conserved miRNAs Among Brazilian Pine and Other Gymnosperms. Front Genet 2019; 10:222. [PMID: 30984236 PMCID: PMC6448024 DOI: 10.3389/fgene.2019.00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
The knowledge about plant miRNAs has increased exponentially, with thousands of miRNAs been reported in different plant taxa using high throughput sequencing technologies and bioinformatic tools. Nevertheless, several groups of plants remain unexplored, and the gap of knowledge about conifer miRNAs is considerable. There is no sequence or functional information available on miRNAs in Araucariaceae. This group is represented in Brazil by only one species, Araucaria angustifolia, an endangered species known as Brazilian pine. In the present study, Brazilian pine has its transcriptome explored with respect to small RNAs, representing the first description in a member of the Araucariaceae family. The screening for conserved miRNAs in Brazilian pine revealed 115 sequences of 30 miRNA families. A total of 106 precursors sequences were predicted. Forty one comprised conserved miRNAs from 16 families, whereas 65 were annotated as novel miRNAs. The comparison of Brazilian pine precursors with sRNA libraries of other five conifer species indicates that 9 out 65 novel miRNAs are conserved among gymnosperms, while 56 seems to be specific for Brazilian pine or restricted to Araucariaceae family. Analysis comparing novel Brazilian pine miRNAs precursors and Araucaria cunninghamii RNA-seq data identified seven orthologs between both species. Mature miRNA identified by bioinformatics predictions were validated using stem-loop RT-qPCR assays. The expression pattern of conserved and novel miRNAs was analyzed in five different tissues of 3-month-old Araucaria seedlings. The present study provides insights about the nature and composition of miRNAs in an Araucariaceae species, with valuable information on miRNAs diversity and conservation in this taxon.
Collapse
Affiliation(s)
- José Henrique Galdino
- Programa de Pós-graduação e Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Maria Eguiluz
- Programa de Pós-graduação e Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Frank Guzman
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Rogerio Margis
- Programa de Pós-graduação e Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
25
|
Zhu X, Jiu S, Li X, Zhang K, Wang M, Wang C, Fang J. In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages. Genes Genomics 2018; 40:801-817. [PMID: 30047108 DOI: 10.1007/s13258-018-0679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Small interfering RNAs (siRNAs) are effectors of regulatory pathways underlying plant development, metabolism, and stress- and nutrient-signaling regulatory networks. The endogenous siRNAs are generally not conserved between plants; consequently, it is necessary and important to identify and characterize siRNAs from various plants. To address the nature and functions of siRNAs, and understand the biological roles of the huge siRNA population in grapevine (Vitis vinifera L.). The high-throughput sequencing technology was used to identify a large set of putative endogenous siRNAs from six grapevine tissues/organs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to classify the target genes of siRNA. In total, 520,519 candidate siRNAs were identified and their expression profiles exhibited typical temporal characters during grapevine development. In addition, we identified two grapevine trans-acting siRNA (TAS) gene homologs (VvTAS3 and VvTAS4) and the derived trans-acting siRNAs (tasiRNAs) that could target grapevine auxin response factor (ARF) and myeloblastosis (MYB) genes. Furthermore, the GO and KEGG analysis of target genes showed that most of them covered a broad range of functional categories, especially involving in disease-resistance process. The large-scale and completely genome-wide level identification and characterization of grapevine endogenous siRNAs from the diverse tissues by high throughput technology revealed the nature and functions of siRNAs in grapevine.
Collapse
Affiliation(s)
- Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Songtao Jiu
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Kekun Zhang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Mengqi Wang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Weigang 1 hao, Nanjing, 210095, China.
| |
Collapse
|
26
|
Neller KCM, Klenov A, Guzman JC, Hudak KA. Integration of the Pokeweed miRNA and mRNA Transcriptomes Reveals Targeting of Jasmonic Acid-Responsive Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:589. [PMID: 29774043 PMCID: PMC5944317 DOI: 10.3389/fpls.2018.00589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The American pokeweed plant, Phytolacca americana, displays broad-spectrum resistance to plant viruses and is a heavy metal hyperaccumulator. However, little is known about the regulation of biotic and abiotic stress responses in this non-model plant. To investigate the control of miRNAs in gene expression, we sequenced the small RNA transcriptome of pokeweed treated with jasmonic acid (JA), a hormone that mediates pathogen defense and stress tolerance. We predicted 145 miRNAs responsive to JA, most of which were unique to pokeweed. These miRNAs were low in abundance and condition-specific, with discrete expression change. Integration of paired mRNA-Seq expression data enabled us to identify correlated, novel JA-responsive targets that mediate hormone biosynthesis, signal transduction, and pathogen defense. The expression of approximately half the pairs was positively correlated, an uncommon finding that we functionally validated by mRNA cleavage. Importantly, we report that a pokeweed-specific miRNA targets the transcript of OPR3, novel evidence that a miRNA regulates a JA biosynthesis enzyme. This first large-scale small RNA study of a Phytolaccaceae family member shows that miRNA-mediated control is a significant component of the JA response, associated with widespread changes in expression of genes required for stress adaptation.
Collapse
Affiliation(s)
| | | | - Juan C. Guzman
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
| | | |
Collapse
|
27
|
Abstract
The halophyte tamarisk (Tamarix) is extremely salt tolerant, making it an ideal material for salt tolerance-related studies. Although many salt-responsive genes of Tamarix were identified in previous studies, there are no reports on the role of post-transcriptional regulation in its salt tolerance. We constructed six small RNA libraries of Tamarix chinensis roots with NaCl treatments. High-throughput sequencing of the six libraries was performed and microRNA expression profiles were constructed. We investigated salt-responsive microRNAs to uncover the microRNA-mediated genes regulation. From these analyses, 251 conserved and 18 novel microRNA were identified from all small RNAs. From 191 differentially expressed microRNAs, 74 co-expressed microRNAs were identified as salt-responsive candidate microRNAs. The most enriched GO (gene ontology) terms for the 157 genes targeted by differentially expressed microRNAs suggested that transcriptions factors were highly active. Two hub microRNAs (miR414, miR5658), which connected by several target genes into an organic microRNA regulatory network, appeared to be the key regulators of post-transcriptional salt-stress responses. As the first survey on the tamarisk small RNAome, this study improves the understanding of tamarisk salt-tolerance mechanisms and will contribute to the molecular-assisted resistance breeding.
Collapse
|
28
|
Yang X, Wang HL, Liang HW, Liang L, Wen DY, Zhang R, Chen G, Wei DM. Clinical significance of microRNA-449a in hepatocellular carcinoma with microarray data mining together with initial bioinformatics analysis. Exp Ther Med 2018; 15:3247-3258. [PMID: 29545842 PMCID: PMC5841030 DOI: 10.3892/etm.2018.5836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has demonstrated that microRNA (miR)-449a expression is reduced in various types of tumors and that it serves as a tumor suppressor. However, the molecular mechanism of miR-449a in hepatocellular carcinoma (HCC) has not been thoroughly elucidated and is disputed. Therefore, the aim of the present work was to systematically review the current literature and to utilize the public Gene Expression Omnibus database to determine the role of miR-449a and its significance in HCC. A total of eight original papers and seven microarrays were included in the present study. Based on the evidence, miR-449a was reduced in HCC. miR-449a is likely involved in various signaling pathways and is targeted to multiple mRNA as part of its function in HCC. In addition, a preliminary bioinformatic analysis was conducted for miR-449a to investigate the novel potential pathways that miR-449a may participate in regarding HCC.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Han-Lin Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Dong-Yue Wen
- Department of Ultrasonography, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
29
|
Liu Y, El-Kassaby YA. Landscape of Fluid Sets of Hairpin-Derived 21-/24-nt-Long Small RNAs at Seed Set Uncovers Special Epigenetic Features in Picea glauca. Genome Biol Evol 2017; 9:82-92. [PMID: 28082604 PMCID: PMC5381586 DOI: 10.1093/gbe/evw283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Conifers’ exceptionally large genome (20–30 Gb) is scattered with 60% retrotransposon (RT) components and we have little knowledge on their origin and evolutionary implications. RTs may impede the expression of flanking genes and provide sources of the formation of novel small RNA (sRNAs) populations to constrain events of transposon (TE) proliferation/transposition. Here we show a declining expression of 24-nt-long sRNAs and low expression levels of their key processing gene, pgRTL2 (RNASE THREE LIKE 2) at seed set in Picea glauca. The sRNAs in 24-nt size class are significantly less enriched in type and read number than 21-nt sRNAs and have not been documented in other species. The architecture of MIR loci generating highly expressed 24-/21-nt sRNAs is featured by long terminal repeat—retrotransposons (LTR-RTs) in families of Ty3/Gypsy and Ty1/Copia elements. This implies that the production of sRNAs may be predominantly originated from TE fragments on chromosomes. Furthermore, a large proportion of highly expressed 24-nt sRNAs does not have predictable targets against unique genes in Picea, suggestive of their potential pathway in DNA methylation modifications on, for instance, TEs. Additionally, the classification of computationally predicted sRNAs suggests that 24-nt sRNA targets may bear particular functions in metabolic processes while 21-nt sRNAs target genes involved in many different biological processes. This study, therefore, directs our attention to a possible extrapolation that lacking of 24-nt sRNAs at the late conifer seed developmental phase may result in less constraints in TE activities, thus contributing to the massive expansion of genome size.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
de Felippes FF, Marchais A, Sarazin A, Oberlin S, Voinnet O. A single miR390 targeting event is sufficient for triggering TAS3-tasiRNA biogenesis in Arabidopsis. Nucleic Acids Res 2017; 45:5539-5554. [PMID: 28334969 PMCID: PMC5435969 DOI: 10.1093/nar/gkx119] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/16/2017] [Indexed: 01/19/2023] Open
Abstract
In plants, tasiRNAs form a class of endogenous secondary siRNAs produced through the action of RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6) upon microRNA-mediated cleavage of non-coding TAS RNAs. In Arabidopsis thaliana, TAS1, TAS2 and TAS4 tasiRNA production proceeds via a single cleavage event mediated by 22nt-long or/and asymmetric miRNAs in an ARGONAUTE-1 (AGO1)-dependent manner. By contrast, tasiRNA production from TAS3 seems to follow the so-called ‘two-hit’ process, where dual targeting of TAS3, specifically mediated by the 21nt-long, symmetric miR390, initiates AGO7-dependent tasiRNA production. Interestingly, features for TAS3 tasiRNA production differ in other plant species and we show here that such features also enable TAS3 tasiRNA biogenesis in Arabidopsis, and that a single miR390 targeting event is, in fact, sufficient for this process, suggesting that the ‘one-hit’ model underpins all the necessary rudiments of secondary siRNA biogenesis from plant TAS transcripts. Further results suggest that the two-hit configuration likely enhances the fidelity of tasiRNA production and, hence, the accuracy of downstream gene regulation. Finally, we show that a ‘non-cleavable one-hit’ process allows tasiRNA production from both TAS1 and TAS3 transcripts, indicating that RDR6 recruitment does not require miRNA cleavage, nor does the recruitment, as we further show, of SUPRRESSOR-OF-GENE-SILENCING-3, indispensable for tasiRNA generation.
Collapse
Affiliation(s)
- Felipe Fenselau de Felippes
- Department of Biology, Chair of RNA biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zürich CH-8092, Switzerland
| | - Antonin Marchais
- Department of Biology, Chair of RNA biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zürich CH-8092, Switzerland
| | - Alexis Sarazin
- Department of Biology, Chair of RNA biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zürich CH-8092, Switzerland
| | - Stefan Oberlin
- Department of Biology, Chair of RNA biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zürich CH-8092, Switzerland
| | - Olivier Voinnet
- Department of Biology, Chair of RNA biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zürich CH-8092, Switzerland
| |
Collapse
|
31
|
Yakovlev IA, Fossdal CG. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce. Front Physiol 2017; 8:674. [PMID: 28943851 PMCID: PMC5596105 DOI: 10.3389/fphys.2017.00674] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21–22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21–22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic regulation, which in turn could provide a feedback process leading to the formation of epigenetic marks. We suggest that TIR, NBS and LRR domain containing proteins could fulfill more general functions for signal transduction from external environmental stimuli and conversion them into molecular response. Fine-tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation in Norway spruce.
Collapse
|
32
|
Zhang H, Yin L, Wang H, Wang G, Ma X, Li M, Wu H, Fu Q, Zhang Y, Yi H. Genome-wide identification of Hami melon miRNAs with putative roles during fruit development. PLoS One 2017; 12:e0180600. [PMID: 28742088 PMCID: PMC5524408 DOI: 10.1371/journal.pone.0180600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Hami melon is famous for its attractive flavor and excellent nutritional value, however, the mechanisms underlying the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the roles of miRNAs during Hami melon fruit development. Two batches of flesh samples were collected at four fruit development stages. Small RNA sequencing yielded a total of 54,553,424 raw reads from eight libraries. 113 conserved miRNAs belonging to 30 miRNA families and nine novel miRNAs comprising nine miRNA families were identified. The expression of 42 conserved miRNAs and three Hami melon-specific miRNAs significantly changed during fruit development. Furthermore, 484 and 124 melon genes were predicted as putative targets of 29 conserved and nine Hami melon-specific miRNA families, respectively. GO enrichment analysis were performed on target genes, "transcription, DNA-dependent", "rRNA processing", "oxidation reduction", "signal transduction", "regulation of transcription, DNA-dependent", and "metabolic process" were the over-represented biological process terms. Cleavage sites of six target genes were validated using 5' RACE. Our results present a comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis towards understanding the regulatory mechanisms in programmed process of normal Hami fruit development and ripening. Specific miRNAs could be selected for further research and applications in breeding practices.
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Lan Yin
- ABLife, Inc., Wuhan, Hubei, China
| | - Huaisong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangzhi Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Xinli Ma
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Meihua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Haibo Wu
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qiushi Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zhang
- ABLife, Inc., Wuhan, Hubei, China
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
33
|
Berruezo F, de Souza FSJ, Picca PI, Nemirovsky SI, Martínez Tosar L, Rivero M, Mentaberry AN, Zelada AM. Sequencing of small RNAs of the fern Pleopeltis minima (Polypodiaceae) offers insight into the evolution of the microrna repertoire in land plants. PLoS One 2017; 12:e0177573. [PMID: 28494025 PMCID: PMC5426797 DOI: 10.1371/journal.pone.0177573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short, single stranded RNA molecules that regulate the stability and translation of messenger RNAs in diverse eukaryotic groups. Several miRNA genes are of ancient origin and have been maintained in the genomes of animal and plant taxa for hundreds of millions of years, playing key roles in development and physiology. In the last decade, genome and small RNA (sRNA) sequencing of several plant species have helped unveil the evolutionary history of land plants. Among these, the fern group (monilophytes) occupies a key phylogenetic position, as it represents the closest extant cousin taxon of seed plants, i.e. gymno- and angiosperms. However, in spite of their evolutionary, economic and ecological importance, no fern genome has been sequenced yet and few genomic resources are available for this group. Here, we sequenced the small RNA fraction of an epiphytic South American fern, Pleopeltis minima (Polypodiaceae), and compared it to plant miRNA databases, allowing for the identification of miRNA families that are shared by all land plants, shared by all vascular plants (tracheophytes) or shared by euphyllophytes (ferns and seed plants) only. Using the recently described transcriptome of another fern, Lygodium japonicum, we also estimated the degree of conservation of fern miRNA targets in relation to other plant groups. Our results pinpoint the origin of several miRNA families in the land plant evolutionary tree with more precision and are a resource for future genomic and functional studies of fern miRNAs.
Collapse
Affiliation(s)
- Florencia Berruezo
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flávio S. J. de Souza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo I. Picca
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sergio I. Nemirovsky
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Martínez Tosar
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| | - Mercedes Rivero
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Santa Fe, Argentina
| | - Alejandro N. Mentaberry
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| | - Alicia M. Zelada
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| |
Collapse
|
34
|
Rodrigues AS, Miguel CM. The pivotal role of small non-coding RNAs in the regulation of seed development. PLANT CELL REPORTS 2017; 36:653-667. [PMID: 28289886 DOI: 10.1007/s00299-017-2120-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Seeds represent a crucial stage of the seed plants life cycle. It is during seed development that the foundations of the future plant body, and the ability to give rise to a new plant capable of growing under sometimes adverse environmental conditions, are established. Small non-coding RNAs are major regulators of gene expression both at the post-transcriptional and transcriptional levels and, not surprisingly, these elements play major roles in seed development and germination. We review here the current knowledge about small RNA expression and functions in seed development, going from the morphogenesis phase comprehending embryo development and patterning, to the several steps of the maturation phase, ending in the transition to the germination. A special focus is given to the small RNAs for which functional studies have been conducted and their participation in regulatory networks operating in seeds. Many challenges remain ahead for dissecting the complex small RNA landscape in seeds, but this is a highly relevant issue in plant biology and advances in this area will most certainly impact plant breeding.
Collapse
Affiliation(s)
- Andreia S Rodrigues
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa (FCUL), Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
35
|
Gao X, Cui Q, Cao QZ, Liu Q, He HB, Zhang DM, Jia GX. Transcriptome-Wide Analysis of Botrytis elliptica Responsive microRNAs and Their Targets in Lilium Regale Wilson by High-Throughput Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:753. [PMID: 28572808 PMCID: PMC5435993 DOI: 10.3389/fpls.2017.00753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 05/07/2023]
Abstract
MicroRNAs, as master regulators of gene expression, have been widely identified and play crucial roles in plant-pathogen interactions. A fatal pathogen, Botrytis elliptica, causes the serious folia disease of lily, which reduces production because of the high susceptibility of most cultivated species. However, the miRNAs related to Botrytis infection of lily, and the miRNA-mediated gene regulatory networks providing resistance to B. elliptica in lily remain largely unexplored. To systematically dissect B. elliptica-responsive miRNAs and their target genes, three small RNA libraries were constructed from the leaves of Lilium regale, a promising Chinese wild Lilium species, which had been subjected to mock B. elliptica treatment or B. elliptica infection for 6 and 24 h. By high-throughput sequencing, 71 known miRNAs belonging to 47 conserved families and 24 novel miRNA were identified, of which 18 miRNAs were downreguleted and 13 were upregulated in response to B. elliptica. Moreover, based on the lily mRNA transcriptome, 22 targets for 9 known and 1 novel miRNAs were identified by the degradome sequencing approach. Most target genes for elliptica-responsive miRNAs were involved in metabolic processes, few encoding different transcription factors, including ELONGATION FACTOR 1 ALPHA (EF1a) and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 2 (TCP2). Furthermore, the expression patterns of a set of elliptica-responsive miRNAs and their targets were validated by quantitative real-time PCR. This study represents the first transcriptome-based analysis of miRNAs responsive to B. elliptica and their targets in lily. The results reveal the possible regulatory roles of miRNAs and their targets in B. elliptica interaction, which will extend our understanding of the mechanisms of this disease in lily.
Collapse
Affiliation(s)
- Xue Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Qi Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Qin-Zheng Cao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Qiang Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Heng-Bin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Dong-Mei Zhang
- Shanghai Academy of Landscape Architecture Science and PlanningShanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban SitesShanghai, China
| | - Gui-Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
- *Correspondence: Gui-Xia Jia
| |
Collapse
|
36
|
Cao D, Xu H, Zhao Y, Deng X, Liu Y, Soppe WJJ, Lin J. Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds. PLANT PHYSIOLOGY 2016; 172:2347-2362. [PMID: 27760880 PMCID: PMC5129703 DOI: 10.1104/pp.16.00384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/14/2016] [Indexed: 05/05/2023]
Abstract
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds.
Collapse
Affiliation(s)
- Dechang Cao
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (D.C., H.X., Y.Z., J.L.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.D., Y.L., J.L.)
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany (D.C.); and
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (W.J.J.S.)
| | - Huimin Xu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (D.C., H.X., Y.Z., J.L.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.D., Y.L., J.L.)
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany (D.C.); and
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (W.J.J.S.)
| | - Yuanyuan Zhao
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (D.C., H.X., Y.Z., J.L.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.D., Y.L., J.L.)
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany (D.C.); and
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (W.J.J.S.)
| | - Xin Deng
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (D.C., H.X., Y.Z., J.L.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.D., Y.L., J.L.)
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany (D.C.); and
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (W.J.J.S.)
| | - Yongxiu Liu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (D.C., H.X., Y.Z., J.L.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.D., Y.L., J.L.)
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany (D.C.); and
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (W.J.J.S.)
| | - Wim J J Soppe
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (D.C., H.X., Y.Z., J.L.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.D., Y.L., J.L.)
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany (D.C.); and
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (W.J.J.S.)
| | - Jinxing Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (D.C., H.X., Y.Z., J.L.);
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.D., Y.L., J.L.);
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany (D.C.); and
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (W.J.J.S.)
| |
Collapse
|
37
|
Xu H, Cao D, Feng J, Wu H, Lin J, Wang Y. Transcriptional regulation of vascular cambium activity during the transition from juvenile to mature stages in Cunninghamia lanceolata. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:7-17. [PMID: 27317969 DOI: 10.1016/j.jplph.2016.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Cunninghamia lanceolata (Lamb.) Hook., an evergreen conifer distributed in southern China, has been recognized as the most commercially important timber species due to its rapid growth. However, the molecular mechanisms underlying growth alternation due to vascular cambium activity are poorly understood. Here, we used cryosectioning to isolate the vascular cambium tissue of C. lanceolata at three stages, namely, juvenile, transition and mature (3-, 13-, and 35-year-old trees respectively) for transcriptome-wide analysis. Through assembling and annotation of transcripts, 108,767 unigenes and some potential growth-regulated genes were identified. A total of 5213, 4873 and 2541 differentially expressed genes (DEGs) were identified in the three stages. DEGs related to cambial activity, cell division and cell wall modification were detected at various developmental stages of the vascular cambium. In addition, some putative genes involved in plant hormone biosynthesis were also differentially regulated. These results indicate that various cambium-related molecular activities result in alterations in the growth of C. lanceolata, particularly during the transition from juvenile to mature stages. The findings of the present study improve our understanding of cambium development and may aid in studies of the molecular mechanisms of wood production and provide fundamental insights into the establishment of the optimal rotation period for silvicultural trees.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dechang Cao
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinling Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Hongyang Wu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanwei Wang
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Bao W, Qu Y, Shan X, Wan Y. Screening and Validation of Housekeeping Genes of the Root and Cotyledon of Cunninghamia lanceolata under Abiotic Stresses by Using Quantitative Real-Time PCR. Int J Mol Sci 2016; 17:ijms17081198. [PMID: 27483238 PMCID: PMC5000596 DOI: 10.3390/ijms17081198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/10/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
Cunninghamia lanceolata (Chinese fir) is a fast-growing and commercially important conifer of the Cupressaceae family. Due to the unavailability of complete genome sequences and relatively poor genetic background information of the Chinese fir, it is necessary to identify and analyze the expression levels of suitable housekeeping genes (HKGs) as internal reference for precise analysis. Based on the results of database analysis and transcriptome sequencing, we have chosen five candidate HKGs (Actin, GAPDH, EF1a, 18S rRNA, and UBQ) with conservative sequences in the Chinese fir and related species for quantitative analysis. The expression levels of these HKGs in roots and cotyledons under five different abiotic stresses in different time intervals were measured by qRT-PCR. The data were statistically analyzed using the following algorithms: NormFinder, BestKeeper, and geNorm. Finally, RankAggreg was applied to merge the sequences generated from three programs and rank these according to consensus sequences. The expression levels of these HKGs showed variable stabilities under different abiotic stresses. Among these, Actin was the most stable internal control in root, and GAPDH was the most stable housekeeping gene in cotyledon. We have also described an experimental procedure for selecting HKGs based on the de novo sequencing database of other non-model plants.
Collapse
Affiliation(s)
- Wenlong Bao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Yanli Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Xiaoyi Shan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
39
|
Xu H, Cao D, Chen Y, Wei D, Wang Y, Stevenson RA, Zhu Y, Lin J. Gene expression and proteomic analysis of shoot apical meristem transition from dormancy to activation in Cunninghamia lanceolata (Lamb.) Hook. Sci Rep 2016; 6:19938. [PMID: 26832850 PMCID: PMC4735791 DOI: 10.1038/srep19938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
Abstract
In contrast to annual plants, in perennial plants, the shoot apical meristem (SAM) can undergo seasonal transitions between dormancy and activity; understanding this transition is crucial for understanding growth in perennial plants. However, little is known about the molecular mechanisms of SAM development in trees. Here, light and transmission electron microscopy revealed that evident changes in starch granules, lipid bodies, and cell walls thickness of the SAM in C. lanceolata during the transition from dormancy to activation. HPLC-ESI-MS/MS analysis showed that levels of indole-3-acetic acid (IAA) increased and levels of abscisic acid (ABA) decreased from dormant to active stage. Examination of 20 genes and 132 differentially expressed proteins revealed that the expression of genes and proteins potentially involved in cell division and expansion significantly increased in the active stage, whereas those related to the abscisic acid insensitive 3(ABI3), the cytoskeleton and energy metabolism decreased in the dormant stage. These findings provide new insights into the complex mechanism of gene and protein expression and their relation to cytological and physiological changes of SAM in this coniferous species.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dechang Cao
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yanmei Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongmei Wei
- School of Life Science, Taizhou University, Zhejiang 318000, China
| | - Yanwei Wang
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rebecca Ann Stevenson
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Jinxing Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
40
|
Gharat SA, Shaw BP. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants. BMC PLANT BIOLOGY 2015; 15:301. [PMID: 26714456 PMCID: PMC4696257 DOI: 10.1186/s12870-015-0682-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/13/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Although miRNAs are reportedly involved in the salt stress tolerance of plants, miRNA profiling in plants has largely remained restricted to glycophytes, including certain crop species that do not exhibit any tolerance to salinity. Hence, this manuscript describes the results from the miRNA profiling of the halophyte Suaeda maritima, which is used worldwide to study salt tolerance in plants. RESULTS A total of 134 conserved miRNAs were identified from unique sRNA reads, with 126 identified using miRBase 21.0 and an additional eight identified using the Plant Non-coding RNA Database. The presence of the precursors of seven conserved miRNAs was validated in S. maritima. In addition, 13 novel miRNAs were predicted using the ESTs of two mangrove plants, Rhizophora mangle and Heritiera littoralis, and the precursors of seven miRNAs were found in S. maritima. Most of the miRNAs considered for characterization were responsive to NaCl application, indicating their importance in the regulation of metabolic activities in plants exposed to salinity. An expression study of the novel miRNAs in plants of diverse ecological and taxonomic groups revealed that two of the miRNAs, sma-miR6 and sma-miR7, were also expressed in Oryza sativa, whereas another two, sma-miR2 and sma-miR5, were only expressed in plants growing under the influence of seawater, similar to S. maritima. CONCLUSION The distribution of conserved miRNAs among only 25 families indicated the possibility of identifying a greater number of miRNAs with increase in knowledge of the genomes of more halophytes. The expression of two novel miRNAs, sma-miR2 and sma-miR5, only in plants growing under the influence of seawater suggested their metabolic regulatory roles specific to saline environments, and such behavior might be mediated by alterations in the expression of certain genes, modifications of proteins leading to changes in their activity and production of secondary metabolites as revealed by the miRNA target predictions. Moreover, the auxin responsive factor targeted by sma-miR7 could also be involved in salt tolerance because the target is conserved between species. This study also indicated that the transcriptome of one species can be successfully used to computationally predict the miRNAs in other species, especially those that have similar metabolism, even if they are taxonomically separated.
Collapse
Affiliation(s)
- Sachin Ashruba Gharat
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| | - Birendra Prasad Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
41
|
Pappas MDCR, Pappas GJ, Grattapaglia D. Genome-wide discovery and validation of Eucalyptus small RNAs reveals variable patterns of conservation and diversity across species of Myrtaceae. BMC Genomics 2015; 16:1113. [PMID: 26714854 PMCID: PMC4696225 DOI: 10.1186/s12864-015-2322-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Background Micro RNAs are a class of small non coding RNAs of 20–24 nucleotides transcribed as single stranded precursors from MIR gene loci. Initially described as post-transcriptional regulators involved in development, two decades ago, miRNAs have been proven to regulate a wide range of processes in plants such as germination, morphology and responses to biotic and abiotic stress. Despite wide conservation in plants, a number of miRNAs are lineage specific. We describe the first genome wide survey of Eucalyptus miRNAs based on high throughput sequencing. Results In addition to discovering small RNA sequences, MIR loci were mapped onto the reference genome and interspecific variability investigated. Sequencing was carried out for the two most world widely planted species, E. grandis and E. globulus. To maximize discovery, E. grandis samples were from BRASUZ1, the same tree whose genome provided the reference sequence. Interspecific analysis reinforces the variability in small RNA repertoire even between closely related species. Characterization of Eucalyptus small RNA sequences showed 95 orthologous to conserved miRNAs and 193 novel miRNAs. In silico target prediction confirmed 163 novel miRNAs and degradome sequencing experimentally confirmed several hundred targets. Experimental evidence based on the exclusive expression of a set of small RNAs across 16 species within Myrtaceae further highlighted variable patterns of conservation and diversity of these regulatory elements. Conclusions The description of miRNAs in Eucalyptus contributes to scientific knowledge of this vast genre, which is the most widely planted hardwood crop in the tropical and subtropical world, adding another important element to the annotation of Eucalyptus grandis reference genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2322-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Dario Grattapaglia
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil. .,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
42
|
Niu SH, Liu C, Yuan HW, Li P, Li Y, Li W. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis. BMC Genomics 2015; 16:693. [PMID: 26369937 PMCID: PMC4570457 DOI: 10.1186/s12864-015-1885-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/27/2015] [Indexed: 01/08/2023] Open
Abstract
Background Small RNA (sRNA) play pivotal roles in reproductive development, and their biogenesis and action mechanisms are well characterised in angiosperm plants; however, corresponding studies in conifers are very limited. To improve our understanding of the roles of sRNA pathways in the reproductive development of conifers, the genes associated with sRNA biogenesis and action pathways were identified and analysed, and sRNA sequencing and parallel analysis of RNA ends (PARE) were performed in male and female cones of the Chinese pine (Pinus tabuliformis). Results Based on high-quality reference transcriptomic sequences, 21 high-confidence homologues involved in sRNA biogenesis and action in P. tabuliformis were identified, including two different DCL3 genes and one AGO4 gene. More than 75 % of genes involved in sRNA biogenesis and action have higher expression levels in female than in male cones. Twenty-six microRNA (miRNA) families and 74 targets, including 46 24-nt sRNAs with a 5’ A, which are specifically expressed in male cones or female cones and probably bind to AGO4, were identified. Conclusions The sRNA pathways have higher activity in female than in male cones, and the miRNA pathways are the main sRNA pathways in P. tabuliformis. The low level of 24-nt short-interfering RNAs in conifers is not caused by the absence of biogenesis-related genes or AGO-binding proteins, but most likely caused by the low accumulation of these key components. The identification of sRNAs and their targets, as well as genes associated with sRNA biogenesis and action, will provide a good starting point for investigations into the roles of sRNA pathways in cone development in conifers. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1885-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Hui Niu
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Chang Liu
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Hu-Wei Yuan
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Pei Li
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Yue Li
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Wei Li
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
43
|
Ma L, Hatlen A, Kelly LJ, Becher H, Wang W, Kovarik A, Leitch IJ, Leitch AR. Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway. Genome Biol Evol 2015; 7:2648-62. [PMID: 26338185 PMCID: PMC4607528 DOI: 10.1093/gbe/evv171] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales.
Collapse
Affiliation(s)
- Lu Ma
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Andrea Hatlen
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Wencai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| |
Collapse
|
44
|
Ma Z, Huang B, Xu S, Chen Y, Li S, Lin S. Isolation of High-Quality Total RNA from Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS One 2015; 10:e0130234. [PMID: 26083257 PMCID: PMC4470689 DOI: 10.1371/journal.pone.0130234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/17/2015] [Indexed: 01/13/2023] Open
Abstract
RNA isolation with RNA in a high quantity is a basic analytical method in plant genetics, molecular biology and related physiological investigations. To understand the genetic and molecular biology of Chinese fir, sufficient high-quality total RNA must be obtained for cDNA library construction and other downstream molecular applications. However, extracting RNA from Chinese fir is difficult and often requires the modification of existing protocols. Chinese fir tissues containing large amounts of polysaccharides and polyphenol compounds and are one of the most difficult plant tissues for RNA isolation. Therefore, we developed a simple method for extracting high-quality RNA from Chinese fir tissues. RNA isolations were performed within two hours, RNA quality was measured for yield and purity. Total RNA obtained from this procedure was successfully used for cDNA library construction, RT-PCR and transcriptome sequencing. It was proven that extracted RNA was intact and suitable for downstream molecular applications, including RT-PCR and qPCR, and other downstream molecular applications. Thus, this protocol represents a simple, efficient, and low-cost method.
Collapse
Affiliation(s)
- Zhihui Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
| | - Binlong Huang
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shanshan Xu
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Yu Chen
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shubin Li
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Sizu Lin
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|
45
|
Qiu Z, Li X, Zhao Y, Zhang M, Wan Y, Cao D, Lu S, Lin J. Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3041-54. [PMID: 25795740 DOI: 10.1093/jxb/erv103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding regulatory RNAs that play key roles in the process of plant development. To date, extensive studies of miRNAs have been performed in a few model plants, but few efforts have focused on small RNAs (sRNAs) in conifers because of the lack of reference sequences for their enormous genomes. In this study, Solexa sequencing of three sRNA libraries obtained from dormant, reactivating, and active vascular cambium in Chinese fir (Cunninghamia lanceolata) using tangential cryosectioning identified 20 known miRNA families and 18 novel potential miRNAs, of which nine novel miRNA precursors were validated by RT-PCR and sequencing. More than half of these novel miRNAs displayed stage-specific expression patterns in the vascular cambium. Furthermore, analysing the 103 miRNAs and their predicted targets indicated that about 70% appeared to negatively regulate their targets, of which two target genes involved in the regulation of cambial cell division were validated via RNA ligase-mediated rapid amplification of 5'-cDNA ends (RLM 5'-RACE) and transient co-expression in Nicotiana benthamiana leaves. Interestingly, miRNA156 and miRNA172 may regulate the phase transition in vascular cambium from dormancy to active growth. These results provide new insights into the important regulatory functions of miRNAs in vascular cambium development and wood formation in conifers.
Collapse
Affiliation(s)
- Zongbo Qiu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China College of Life Sciences, Henan Normal University, Xinxiang 453007, China Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaojuan Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Manman Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dechang Cao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shanfa Lu
- Medicinal Plant Cultivation Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
46
|
Ye X, Song T, Liu C, Feng H, Liu Z. Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology. Hereditas 2015; 151:220-8. [PMID: 25588308 DOI: 10.1111/hrd2.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/09/2014] [Indexed: 12/01/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 21 nt noncoding RNAs that influence the phenotypes of different species through the post-transcriptional regulation of gene expression. Although many miRNAs have been identified in a few model plants, less is known about miRNAs specific to cucumber (Cucumis sativus L.). In this study, two libraries of cucumber RNA, one based on fruit samples and another based on mixed samples from leaves, stems, and roots, were prepared for deep-sequencing. A total of 110 sequences were matched to known miRNAs in 47 families, while 56 sequences in 46 families are newly identified in cucumber. Of these, 77 known and 44 new miRNAs were differentially expressed, with a fold-change of at least 2 and p-value < 0.05. In addition, we predicted the potential targets of known and new miRNAs. The identification and characterization of known and new miRNAs will enable us to better understand the role of these miRNAs in the formation of cucumber fruit.
Collapse
Affiliation(s)
- Xueling Ye
- College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | | | | | | | | |
Collapse
|
47
|
Identification and Characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak. PLoS One 2015; 10:e0127184. [PMID: 25978425 PMCID: PMC4433266 DOI: 10.1371/journal.pone.0127184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Ginkgo biloba, a dioecious plant known as a living fossil, is an ancient gymnosperm that stands distinct from other gymnosperms and angiosperms. Ginkgo biloba var. epiphylla (G. biloba var. epiphylla), with ovules borne on the leaf blade, is an unusual germplasm derived from G. biloba. MicroRNAs (miRNAs) are post-transcriptional gene regulators that play critical roles in diverse biological and metabolic processes. Currently, little is known about the miRNAs involved in the key stage of partly epiphyllous ovule germination in G. biloba var. epiphylla. Two small RNA libraries constructed from epiphyllous ovule leaves and normal leaves of G. biloba var. epiphylla were sequenced on an Illumina/Solexa platform. A total of 82 miRNA sequences belonging to 23 families and 53 putative novel miRNAs were identified in the two libraries. Differential expression analysis showed that 25 conserved and 21 novel miRNAs were differentially expressed between epiphyllous ovule leaves and normal leaves. The expression patterns of partially differentially expressed miRNAs and the transcript levels of their predicted target genes were validated by quantitative real time RT-PCR. All the expression profiles of the 21 selected miRNAs were similar to those detected by Solexa deep sequencing. Additionally, the transcript levels of almost all the putative target genes of 9 selected miRNAs were opposite to those of the corresponding miRNAs. The putative target genes of the differentially expressed miRNAs were annotated with Gene Ontology terms related to reproductive process, metabolic process and responding to stimulus. This work presents a broad range of small RNA transcriptome data obtained from epiphyllous ovule and normal leaves of G. biloba var. epiphylla, which may provide insights into the miRNA-mediated regulation in the epiphyllous ovule germination process.
Collapse
|
48
|
Huang Y, Kendall T, Forsythe ES, Dorantes-Acosta A, Li S, Caballero-Pérez J, Chen X, Arteaga-Vázquez M, Beilstein MA, Mosher RA. Ancient Origin and Recent Innovations of RNA Polymerase IV and V. Mol Biol Evol 2015; 32:1788-99. [PMID: 25767205 PMCID: PMC4476159 DOI: 10.1093/molbev/msv060] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Small RNA-mediated chromatin modification is a conserved feature of eukaryotes. In flowering plants, the short interfering (si)RNAs that direct transcriptional silencing are abundant and subfunctionalization has led to specialized machinery responsible for synthesis and action of these small RNAs. In particular, plants possess polymerase (Pol) IV and Pol V, multi-subunit homologs of the canonical DNA-dependent RNA Pol II, as well as specialized members of the RNA-dependent RNA Polymerase (RDR), Dicer-like (DCL), and Argonaute (AGO) families. Together these enzymes are required for production and activity of Pol IV-dependent (p4-)siRNAs, which trigger RNA-directed DNA methylation (RdDM) at homologous sequences. p4-siRNAs accumulate highly in developing endosperm, a specialized tissue found only in flowering plants, and are rare in nonflowering plants, suggesting that the evolution of flowers might coincide with the emergence of specialized RdDM machinery. Through comprehensive identification of RdDM genes from species representing the breadth of the land plant phylogeny, we describe the ancient origin of Pol IV and Pol V, suggesting that a nearly complete and functional RdDM pathway could have existed in the earliest land plants. We also uncover innovations in these enzymes that are coincident with the emergence of seed plants and flowering plants, and recent duplications that might indicate additional subfunctionalization. Phylogenetic analysis reveals rapid evolution of Pol IV and Pol V subunits relative to their Pol II counterparts and suggests that duplicates were retained and subfunctionalized through Escape from Adaptive Conflict. Evolution within the carboxy-terminal domain of the Pol V largest subunit is particularly striking, where illegitimate recombination facilitated extreme sequence divergence.
Collapse
Affiliation(s)
- Yi Huang
- The School of Plant Sciences, The University of Arizona
| | - Timmy Kendall
- The School of Plant Sciences, The University of Arizona
| | | | - Ana Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Veracruz, México
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside
| | | | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside
| | - Mario Arteaga-Vázquez
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Veracruz, México
| | | | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona The Bio5 Institute, The University of Arizona
| |
Collapse
|
49
|
Djami-Tchatchou AT, Dubery IA. Lipopolysaccharide perception leads to dynamic alterations in the microtranscriptome of Arabidopsis thaliana cells and leaf tissues. BMC PLANT BIOLOGY 2015; 15:79. [PMID: 25848807 PMCID: PMC4354979 DOI: 10.1186/s12870-015-0465-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding RNA molecules which have recently emerged as important gene regulators in plants and their gene expression analysis is becoming increasingly important. miRNAs regulate gene expression at the post-transcriptional level by translational repression or target degradation of specific mRNAs and gene silencing. In order to profile the microtranscriptome of Arabidopsis thaliana leaf and callus tissues in response to bacterial lipopolysaccharide (LPS), small RNA libraries were constructed at 0 and 3 h post induction with LPS and sequenced by Illumina sequencing technology. RESULTS Differential regulation of subset of miRNAs in response to LPS treament was observed. Small RNA reads were mapped to the miRNA database and 358 miRNAs belonging to 49 miRNA families in the callus tissues and 272 miRNAs belonging to 40 miRNA families in the leaf tissues were identified. Moreover, target genes for all the identified miRNAs families in the leaf tissues and 44 of the 49 miRNAs families in the callus tissues were predicted. The sequencing analysis showed that in both callus and leaf tissues, various stress regulated-miRNAs were differentially expressed and real time PCR validated the expression profile of miR156, miR158, miR159, miR169, miR393, miR398, miR399 and miR408 along with their target genes. CONCLUSION A. thaliana callus and leaf callus tissues respond to LPS as a microbe-associated molecular pattern molecule through dynamic changes to the microtranscriptome associated with differential transcriptional regulation in support of immunity and basal resistance.
Collapse
Affiliation(s)
- Arnaud T Djami-Tchatchou
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| |
Collapse
|
50
|
Feng J, Wang J, Fan P, Jia W, Nie L, Jiang P, Chen X, Lv S, Wan L, Chang S, Li S, Li Y. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC PLANT BIOLOGY 2015; 15:63. [PMID: 25848810 PMCID: PMC4349674 DOI: 10.1186/s12870-015-0451-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/06/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND microRNAs (miRNAs) are implicated in plant development processes and play pivotal roles in plant adaptation to environmental stresses. Salicornia europaea, a salt mash euhalophyte, is a suitable model plant to study salt adaptation mechanisms. S. europaea is also a vegetable, forage, and oilseed that can be used for saline land reclamation and biofuel precursor production on marginal lands. Despite its importance, no miRNA has been identified from S. europaea thus far. RESULTS Deep sequencing was performed to investigate small RNA transcriptome of S. europaea. Two hundred and ten conserved miRNAs comprising 51 families and 31 novel miRNAs (including seven miRNA star sequences) belonging to 30 families were identified. About half (13 out of 31) of the novel miRNAs were only detected in salt-treated samples. The expression of 43 conserved and 13 novel miRNAs significantly changed in response to salinity. In addition, 53 conserved and 13 novel miRNAs were differentially expressed between the shoots and roots. Furthermore, 306 and 195 S. europaea unigenes were predicted to be targets of 41 conserved and 29 novel miRNA families, respectively. These targets encoded a wide range of proteins, and genes involved in transcription regulation constituted the largest category. Four of these genes encoding laccase, F-box family protein, SAC3/GANP family protein, and NADPH cytochrome P-450 reductase were validated using 5'-RACE. CONCLUSIONS Our results indicate that specific miRNAs are tightly regulated by salinity in the shoots and/or roots of S. europaea, which may play important roles in salt tolerance of this euhalophyte. The S. europaea salt-responsive miRNAs and miRNAs that target transcription factors, nucleotide binding site-leucine-rich repeat proteins and enzymes involved in lignin biosynthesis as well as carbon and nitrogen metabolism may be applied in genetic engineering of crops with high stress tolerance, and genetic modification of biofuel crops with high biomass and regulatable lignin biosynthesis.
Collapse
Affiliation(s)
- Juanjuan Feng
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Jinhui Wang
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Pengxiang Fan
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
- />Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson road, East Lansing, MI 48824 USA
| | - Weitao Jia
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Lingling Nie
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Ping Jiang
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Xianyang Chen
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Sulian Lv
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Lichuan Wan
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Sandra Chang
- />Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084 China
- />Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Shizhong Li
- />Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084 China
- />Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Yinxin Li
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|