1
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Fan S, Georgi LL, Hebard FV, Zhebentyayeva T, Yu J, Sisco PH, Fitzsimmons SF, Staton ME, Abbott AG, Nelson CD. Mapping QTLs for blight resistance and morpho-phenological traits in inter-species hybrid families of chestnut ( Castanea spp.). FRONTIERS IN PLANT SCIENCE 2024; 15:1365951. [PMID: 38650705 PMCID: PMC11033410 DOI: 10.3389/fpls.2024.1365951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Chestnut blight (caused by Cryphonectria parasitica), together with Phytophthora root rot (caused by Phytophthora cinnamomi), has nearly extirpated American chestnut (Castanea dentata) from its native range. In contrast to the susceptibility of American chestnut, many Chinese chestnut (C. mollissima) genotypes are resistant to blight. In this research, we performed a series of genome-wide association studies for blight resistance originating from three unrelated Chinese chestnut trees (Mahogany, Nanking and M16) and a Quantitative Trait Locus (QTL) study on a Mahogany-derived inter-species F2 family. We evaluated trees for resistance to blight after artificial inoculation with two fungal strains and scored nine morpho-phenological traits that are the hallmarks of species differentiation between American and Chinese chestnuts. Results support a moderately complex genetic architecture for blight resistance, as 31 QTLs were found on 12 chromosomes across all studies. Additionally, although most morpho-phenological trait QTLs overlap or are adjacent to blight resistance QTLs, they tend to aggregate in a few genomic regions. Finally, comparison between QTL intervals for blight resistance and those previously published for Phytophthora root rot resistance, revealed five common disease resistance regions on chromosomes 1, 5, and 11. Our results suggest that it will be difficult, but still possible to eliminate Chinese chestnut alleles for the morpho-phenological traits while achieving relatively high blight resistance in a backcross hybrid tree. We see potential for a breeding scheme that utilizes marker-assisted selection early for relatively large effect QTLs followed by genome selection in later generations for smaller effect genomic regions.
Collapse
Affiliation(s)
- Shenghua Fan
- Forest Health Research and Education Center, Department of Horticulture, University of Kentucky, Lexington, KY, United States
| | - Laura L. Georgi
- Forest Health Research and Education Center, U.S. Department of Agriculture (USDA) Forest Service, Southern Research Station, Lexington, KY, United States
- Virginia Chapter, The American Chestnut Foundation, Meadowview, VA, United States
| | - Frederick V. Hebard
- Virginia Chapter, The American Chestnut Foundation, Meadowview, VA, United States
| | - Tetyana Zhebentyayeva
- Forest Health Research and Education Center, Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, United States
| | - Jiali Yu
- Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Paul H. Sisco
- Carolinas Chapter, The American Chestnut Foundation, Asheville, NC, United States
| | - Sara F. Fitzsimmons
- North Central Office, The American Chestnut Foundation, University Park, PA, United States
| | - Margaret E. Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Albert G. Abbott
- Forest Health Research and Education Center, Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, United States
| | - C. Dana Nelson
- Forest Health Research and Education Center, U.S. Department of Agriculture (USDA) Forest Service, Southern Research Station, Lexington, KY, United States
- Southern Institute of Forest Genetics, U.S. Department of Agriculture (USDA) Forest Service, Southern Research Station, Saucier, MS, United States
| |
Collapse
|
3
|
Zhang Y, Zhang W, Liu Y, Zheng Y, Nie X, Wu Q, Yu W, Wang Y, Wang X, Fang K, Qin L, Xing Y. GWAS identifies two important genes involved in Chinese chestnut weight and leaf length regulation. PLANT PHYSIOLOGY 2024; 194:2387-2399. [PMID: 38114094 DOI: 10.1093/plphys/kiad674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
There are many factors that affect the yield of Chinese chestnut (Castanea mollissima), with single nut weight (SNW) being one of the most important. Leaf length is also related to Chinese chestnut yield. However, the genetic architecture and gene function associated with Chinese chestnut nut yield have not been fully explored. In this study, we performed genotyping by sequencing 151 Chinese chestnut cultivars, followed by a genome-wide association study (GWAS) on six horticultural traits. First, we analyzed the phylogeny of the Chinese chestnut and found that the Chinese chestnut cultivars divided into two ecotypes, a northern and southern cultivar group. Differences between the cultivated populations were found in the pathways of plant growth and adaptation to the environment. In the selected regions, we also found interesting tandemly arrayed genes that may influence Chinese chestnut traits and environmental adaptability. To further investigate which horticultural traits were selected, we performed a GWAS using six horticultural traits from 151 cultivars. Forty-five loci that strongly associated with horticultural traits were identified, and six genes highly associated with these traits were screened. In addition, a candidate gene associated with SNW, APETALA2 (CmAP2), and another candidate gene associated with leaf length (LL), CRYPTOCHROME INTERACTING BASIC HELIX-LOOP-HELIX 1 (CmCIB1), were verified in Chinese chestnut and Arabidopsis (Arabidopsis thaliana). Our results showed that CmAP2 affected SNW by negatively regulating cell size. CmCIB1 regulated the elongation of new shoots and leaves by inducing cell elongation, potentially affecting photosynthesis. This study provided valuable information and insights for Chinese chestnut breeding research.
Collapse
Affiliation(s)
- Yu Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Weiwei Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Xinghua Nie
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qinyi Wu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Wenjie Yu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yafeng Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xuefeng Wang
- Longtan Forestry Station, Liyang Bureau of Natural Resources and Planning, Liyang, Jiangsu 213300, China
| | - Kefeng Fang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Ling Qin
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Xing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
4
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Nie X, Zhao S, Hao Y, Gu S, Zhang Y, Qi B, Xing Y, Qin L. Transcriptome analysis reveals key genes involved in the resistance to Cryphonectria parasitica during early disease development in Chinese chestnut. BMC PLANT BIOLOGY 2023; 23:79. [PMID: 36740701 PMCID: PMC9901152 DOI: 10.1186/s12870-023-04072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chestnut blight, one of the most serious branch diseases in Castanea caused by Cryphonectria parasitica, which has ravaged across American chestnut and most of European chestnut since the early twentieth century. Interestingly, the Chinese chestnut is strongly resistant to chestnut blight, shedding light on restoring the ecological status of Castanea plants severely affected by chestnut blight. To better explore the early defense of Chinese chestnut elicited in response to C. parasitica, the early stage of infection process of C. parasitica was observed and RNA sequencing-based transcriptomic profiling of responses of the chestnut blight-resistant wild resource 'HBY-1' at 0, 3 and 9 h after C. parasitica inoculation was performed. RESULTS First, we found that 9 h was a critical period for Chinese chestnut infected by C. parasitica, which was the basis of further study on transcriptional activation of Chinese chestnut in response to chestnut blight in the early stage. In the transcriptome analysis, a total of 283 differentially expressed genes were identified between T9 h and Mock9 h, and these DEGs were mainly divided into two clusters, one of which was metabolism-related pathways including biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, and photosynthesis; the other was related to plant-pathogen interaction and MAPK signal transduction. Meanwhile, the two clusters of pathways could be connected through junction among phosphatidylinositol signaling system, phytohormone signaling pathway and α-Linolenic acid metabolism pathway. It is worth noting that genes associated with JA biosynthesis and metabolic pathway were significantly up-regulated, revealing that the entire JA metabolic pathway was activated in Chinese chestnut at the early stage of chestnut blight infection. CONCLUSION We identified the important infection nodes of C. parasitica and observed the morphological changes of Chinese chestnut wounds at the early stage of infection. In response to chestnut blight, the plant hormone and MAPK signal transduction pathways, plant-pathogen interaction pathways and metabolism-related pathways were activated at the early stage. JA biosynthesis and metabolic pathway may be particularly involved in the Chinese chestnut resistance to chestnut blight. These results contributes to verifying the key genes involved in the resistance of Chinese chestnut to C. parasitica.
Collapse
Affiliation(s)
- Xinghua Nie
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Shuqing Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaqiong Hao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Si Gu
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK
| | - Yu Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Baoxiu Qi
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK
| | - Yu Xing
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.
| | - Ling Qin
- College of Forestry, Beijing Forestry University, Beijing, China.
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
6
|
Dun HF, Hung TH, Green S, MacKay JJ. Comparative transcriptomic responses of European and Japanese larches to infection by Phytophthora ramorum. BMC PLANT BIOLOGY 2022; 22:480. [PMID: 36209051 PMCID: PMC9547440 DOI: 10.1186/s12870-022-03806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Phytophthora ramorum severely affects both European larch (EL) and Japanese larch (JL) trees as indicated by high levels of mortality particularly in the UK. Field observations suggested that EL is less severely affected and so may be less susceptible to P. ramorum than JL; however, controlled inoculations have produced inconsistent or non-statistically significant differences. The present study aimed to compare RNA transcript accumulation profiles in EL and JL in response to inoculation with P. ramorum to improve our understanding of their defence responses. METHODOLOGY RNA-sequencing was carried out on bark tissues following the inoculation with P. ramorum of potted saplings in both EL and JL carried out under controlled environment conditions, with sampling at 1, 3, 10, and 25 days post inoculation in infected and control plants. RESULTS All of the inoculated trees rapidly developed lesions but no statistically significant differences were found in lesion lengths between EL and JL. RNA-Sequencing comparing control and inoculate saplings identified key differences in differentially expressed genes (DEGs) between the two larch species. European larch had rapid induction of defence genes within 24 hours of infection followed by sustained expression until 25 days after inoculation. Results in JL were more varied; upregulation was stronger but more transient and represented fewer defence pathways. Gene enrichment analyses highlighted differences in jasmonate signalling and regulation including NPR1 upregulation in EL only, and specific aspects of secondary metabolism. Some DEGs were represented by multiple responsive copies including lipoxygenase, chalcone synthase and nucleotide-binding, leucine-rich-repeat genes. CONCLUSION The variations between EL and JL in responsive DEGs of interest as potentially related to differences seen in the field and should be considered in the selection of trees for planting and future breeding.
Collapse
Affiliation(s)
- Heather F Dun
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
- Forest Research, Northern Research Station, Roslin, EH25 9SY, UK.
| | - Tin Hang Hung
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Sarah Green
- Forest Research, Northern Research Station, Roslin, EH25 9SY, UK
| | - John J MacKay
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
7
|
Fernandes P, Colavolpe MB, Serrazina S, Costa RL. European and American chestnuts: An overview of the main threats and control efforts. FRONTIERS IN PLANT SCIENCE 2022; 13:951844. [PMID: 36092400 PMCID: PMC9449730 DOI: 10.3389/fpls.2022.951844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Chestnuts are multipurpose trees significant for the economy and wildlife. These trees are currently found around the globe, demonstrating their genetic adaptation to different environmental conditions. Several biotic and abiotic stresses have challenged these species, contributing to the decline of European chestnut production and the functional extinction of the American chestnut. Several efforts started over the last century to understand the cellular, molecular, and genetic interactions behind all chestnut biotic and abiotic interactions. Most efforts have been toward breeding for the primary diseases, chestnut blight and ink disease caused by the pathogens, Cryphonectria parasitica and Phytophthora cinnamomi, respectively. In Europe and North America, researchers have been using the Asian chestnut species, which co-evolved with the pathogens, to introgress resistance genes into the susceptible species. Breeding woody trees has several limitations which can be mostly related to the long life cycles of these species and the big genome landscapes. Consequently, it takes decades to improve traits of interest, such as resistance to pathogens. Currently, the availability of genome sequences and next-generation sequencing techniques may provide new tools to help overcome most of the problems tree breeding is still facing. This review summarizes European and American chestnut's main biotic stresses and discusses breeding and biotechnological efforts developed over the last decades, having ink disease and chestnut blight as the main focus. Climate change is a rising concern, and in this context, the adaptation of chestnuts to adverse environmental conditions is of extreme importance for chestnut production. Therefore, we also discuss the abiotic challenges on European chestnuts, where the response to abiotic stress at the genetic and molecular level has been explored.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Green-It Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | | | - Susana Serrazina
- BioISI – Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Wang Y, Liu C, Fang Z, Wu Q, Xu Y, Gong B, Jiang X, Lai J, Fan J. A Review of the Stress Resistance, Molecular Breeding, Health Benefits, Potential Food Products, and Ecological Value of Castanea mollissima. PLANTS (BASEL, SWITZERLAND) 2022; 11:2111. [PMID: 36015414 PMCID: PMC9416426 DOI: 10.3390/plants11162111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Chestnut (Castanea spp., Fagaceae family) is an economically and ecologically valuable species. The main goals of chestnut production vary among species and countries and depend on the ecological characteristics of orchards, agronomic management, and the architecture of chestnut trees. Here, we review recent research on chestnut trees, including the effects of fungal diseases (Cryphonectria parasitica and Phytophthora cinnamomi) and insect pests (Dryocosmus kuriphilus Yasumatsu), molecular markers for breeding, ecological effects, endophytic fungi, and extracts with human health benefits. We also review research on chestnut in the food science field, technological improvements, the soil and fertilizer used for chestnut production, and the postharvest biology of chestnut. We noted differences in the factors affecting chestnut production among regions, including China, the Americas, and Europe, especially in the causal agents of disease and pests. For example, there is a major difference in the resistance of chestnut to C. parasitica in Asian, European, and American countries. Our review provides new insights into the integrated disease and pest management of chestnut trees in China. We hope that this review will foster collaboration among regions and help to clarify differences in the direction of breeding efforts among countries.
Collapse
Affiliation(s)
- Yanpeng Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Cuiyu Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhou Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qiang Wu
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xibing Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Junsheng Lai
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Jingen Fan
- Lanxi City Nursery of Zhejiang Provence, Lanxi 321100, China
| |
Collapse
|
9
|
Carlson E, Stewart K, Baier K, McGuigan L, Culpepper T, Powell W. Pathogen-induced expression of a blight tolerance transgene in American chestnut. MOLECULAR PLANT PATHOLOGY 2022; 23:370-382. [PMID: 34841616 PMCID: PMC8828690 DOI: 10.1111/mpp.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
American chestnut (Castanea dentata) is a susceptible host of the invasive necrotrophic fungus Cryphonectria parasitica, which causes chestnut blight disease. The fungal pathogen attacks chestnut stems by invading wounded tissue and secreting oxalate. This process leads to the death of infected host cells and the formation of cankers, eventually girdling stems and killing the tree above the infections. To reduce damage caused by fungal oxalate, American chestnut has been genetically engineered to express a wheat oxalate oxidase (OxO). This enzyme degrades the oxalate produced by the pathogen and confers elevated tolerance to Cryphonectria parasitica infection. We report new lines of transgenic American chestnut that have been developed with the win3.12 inducible promoter from poplar (Populus deltoides) driving OxO expression. This promoter is responsive to both wounding and pathogen infection, with a low level of baseline expression. Targeted expression of OxO to wounded and infected tissue is sought as an alternative to constitutive expression for potential metabolic resource conservation and transgene stability over the long lifetime of a tree and over successive generations of breeding. Transgenic Castanea dentata lines harbouring the win3.12-OxO construct were evaluated for transgene expression patterns and tolerance to chestnut blight infection. OxO transcript levels were low in uninfected plants, but robust infection-induced expression levels were observed, with one transgenic line reaching levels comparable to those of previously characterized CaMV35S-OxO lines. In chestnut blight infection bioassays, win3.12-OxO lines showed elevated disease tolerance similar to blight-resistant Chinese chestnut (Castanea mollissima) controls.
Collapse
Affiliation(s)
- Erik Carlson
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Kristen Stewart
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Kathleen Baier
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Linda McGuigan
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Tobi Culpepper
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - William Powell
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| |
Collapse
|
10
|
Zhu C, Wang W, Chen Y, Zhao Y, Zhang S, Shi F, Khalil-Ur-Rehman M, Nieuwenhuizen NJ. Transcriptomics and Antioxidant Analysis of Two Chinese Chestnut ( Castanea mollissima BL.) Varieties Provides New Insights Into the Mechanisms of Resistance to Gall Wasp Dryocosmus kuriphilus Infestation. FRONTIERS IN PLANT SCIENCE 2022; 13:874434. [PMID: 35498685 PMCID: PMC9051522 DOI: 10.3389/fpls.2022.874434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 05/08/2023]
Abstract
Chinese chestnut is a popular fruit tree with a high nutritional value of its nuts, which can suffer from infestation by the chestnut gall wasp Dryocosmus kuriphilus (GWDK) that results in gall formation and resultant loss of production and profitability. The physiological and molecular mechanisms of GWDK resistance found in certain genotypes currently remains elusive. To gain new insights into this phenomenon, a series of RNA-Seq integrated with metabolomic profiling experiments were executed to investigate the chemical and transcriptional differences in response to GWDK infestation in two contrasting chestnut varieties grown in China (the susceptible "HongLi," HL and the partially resistant "Shuhe_Wuyingli," SW). Three time points were selected for comparison: The initiation stage (A), growth stage (B), and maturation stage (C). Results showed that concentrations of hydrogen peroxide (H2O2) and the activities of peroxidase (POD) and superoxide dismutase (SOD) enzyme were elevated in the resistant SW leaves compared with those in HL leaves at all three developmental stages, while catalase (CAT) and polyphenol oxidase (PPO) activities were mostly higher in HL leaves. RNA-Seq transcriptomic analyses of HL and SW leaves revealed that various metabolic pathways involved in GWDK stress responses, such as plant hormone signal transduction, MAPK signaling, and the peroxisome pathway, were enriched in the contrasting samples. Moreover, the weighted gene co-expression network analysis (WGCNA) of differentially expressed genes in the POD pathway combined with transcription factors (TFs) indicated that the expression of TF members of bHLH, WRKY, NAC, and MYB family positively correlated with POD pathway gene expression. The TFs CmbHLH130 (EVM0032437), CmWRKY31 (EVM0017000), CmNAC50 (EVM0000033), and CmPHL12 (EVM0007330) were identified as putative TFs that participate in the regulation of insect-induced plant enzyme activities in chestnut, which may contribute to GWDK resistance in SW. Expression levels of 8 random differentially expressed genes (DEGs) were furthermore selected to perform quantitative reverse transcription PCR (qRT-PCR) to validate the accuracy of the RNA-Seq-derived expression patterns. This study guides the functional analyses of further candidate genes and mechanisms important for GWDK resistance in chestnuts in the future as well as can help in identifying the master transcriptional regulators and important enzyme steps that support major insect defense pathways in chestnut.
Collapse
Affiliation(s)
- Cancan Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Wu Wang,
| | - Yu Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shijie Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Fenghou Shi
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | | | | |
Collapse
|
11
|
Jafari M, Shiran B, Rabiei G, Ravash R, Sayed Tabatabaei BE, Martínez-Gómez P. Identification and verification of seed development related miRNAs in kernel almond by small RNA sequencing and qPCR. PLoS One 2021; 16:e0260492. [PMID: 34851991 PMCID: PMC8635354 DOI: 10.1371/journal.pone.0260492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Many studies have investigated the role of miRNAs on the yield of various plants, but so far, no report is available on the identification and role of miRNAs in fruit and seed development of almonds. In this study, preliminary analysis by high-throughput sequencing of short RNAs of kernels from the crosses between almond cultivars 'Sefid' × 'Mamaee' (with small and large kernels, respectively) and 'Sefid' × 'P. orientalis' (with small kernels) showed that the expressions of several miRNAs such as Pdu-miR395a-3p, Pdu-miR8123-5p, Pdu-miR482f, Pdu-miR6285, and Pdu-miR396a were significantly different. These miRNAs targeted genes encoding different proteins such as NYFB-3, SPX1, PGSIP3 (GUX2), GH3.9, and BEN1. The result of RT-qPCR revealed that the expression of these genes showed significant differences between the crosses and developmental stages of the seeds, suggesting that these genes might be involved in controlling kernel size because the presence of these miRNAs had a negative effect on their target genes. Pollen source can influence kernel size by affecting hormonal signaling and metabolic pathways through related miRNAs, a phenomenon known as xenia.
Collapse
Affiliation(s)
- Marjan Jafari
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Gholamreza Rabiei
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Roudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
12
|
Spriggs EL, Fertakos ME. Evolution of Castanea in North America: restriction-site-associated DNA sequencing and ecological modeling reveal a history of radiation, range shifts, and disease. AMERICAN JOURNAL OF BOTANY 2021; 108:1692-1704. [PMID: 34519029 DOI: 10.1002/ajb2.1726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Although chestnuts and chinquapins are some of the best known and most widely loved of any plants in North America, relatively little genomic sequencing has been done, and much is still unknown about their evolution. METHODS We used double-digest restriction-site-associated DNA (ddRAD) sequencing data to infer the species-level phylogeny for Castanea and assess the phylogeography of the North American species using samples collected from populations that span the full extent of the species' ranges. We also constructed species distribution models using digitized herbarium specimens and observational data from field surveys. RESULTS We identified strong population structure within Castanea dentata (American chestnut) that reflects a stepwise northern migration since the last glacial maximum. Our species distribution models further confirmed this scenario and matched closely with the Castanea fossil pollen record. We also found significant structure within the Castanea pumila lineage, most notably a genetic cluster that corresponds to the frequently recognized Castanea pumila var. ozarkensis. CONCLUSIONS The two North American Castanea species have contrasting patterns of population structure, but each is typical of plant phylogeography in North America. Within the C. pumila complex, we found novel genetic structure that provides new insights about C. pumila taxonomy. Our results also identified a series of distinctive populations that will be valuable in ongoing efforts to conserve and restore chestnuts and chinquapins in North America.
Collapse
|
13
|
Pavese V, Moglia A, Gonthier P, Torello Marinoni D, Cavalet-Giorsa E, Botta R. Identification of Susceptibility Genes in Castanea sativa and Their Transcription Dynamics following Pathogen Infection. PLANTS 2021; 10:plants10050913. [PMID: 34063239 PMCID: PMC8147476 DOI: 10.3390/plants10050913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Castanea sativa is one of the main multipurpose tree species valued for its timber and nuts. This species is susceptible to two major diseases, ink disease and chestnut blight, caused by Phytophthora spp. and Cryphonectria parasitica, respectively. The loss-of-function mutations of genes required for the onset of pathogenesis, referred to as plant susceptibility (S) genes, are one mechanism of plant resistance against pathogens. On the basis of sequence homology, functional domain identification, and phylogenetic analyses, we report for the first time on the identification of S-genes (mlo1, dmr6, dnd1, and pmr4) in the Castanea genus. The expression dynamics of S-genes were assessed in C. sativa and C. crenata plants inoculated with P. cinnamomi and C. parasitica. Our results highlighted the upregulation of pmr4 and dmr6 in response to pathogen infection. Pmr4 was strongly expressed at early infection phases of both pathogens in C. sativa, whereas in C. crenata, no significant upregulation was observed. The infection of P. cinnamomi led to a higher increase in the transcript level of dmr6 in C. sativa compared to C. crenata-infected samples. For a better understanding of plant responses, the transcript levels of defense genes gluB and chi3 were also analyzed.
Collapse
|
14
|
Ren Z, Liu J, Din GMU, Zhang H, Du Z, Chen W, Liu T, Zhang J, Zhao S, Gao L. Transcriptome analysis of wheat spikes in response to Tilletia controversa Kühn which cause wheat dwarf bunt. Sci Rep 2020; 10:21567. [PMID: 33299089 PMCID: PMC7725808 DOI: 10.1038/s41598-020-78628-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Wheat dwarf bunt is caused by Tilletia controversa Kühn, which is one of the most destructive diseases of wheat worldwide. To explore the interaction of T. controversa and wheat, we analysed the transcriptome profile of spikes of the susceptible wheat cultivar Dongxuan 3, which was subjected to a T. controversa infection and a mock infection. The results obtained from a differential expression analysis of T. controversa-infected plants compared with mock-infected ones showed that 10,867 out of 21,354 genes were upregulated, while 10,487 genes were downregulated, and these genes were enriched in 205 different pathways. Our findings demonstrated that the genes associated with defence against diseases, such as PR-related genes, WRKY transcription factors and mitogen-activated protein kinase genes, were more highly expressed in response to T. controversa infection. Additionally, a number of genes related to physiological attributes were expressed during infection. Three pathways were differentiated based on the characteristics of gene ontology classification. KEGG enrichment analysis showed that twenty genes were expressed differentially during the infection of wheat with T. controversa. Notable changes were observed in the transcriptomes of wheat plants after infection. The results of this study may help to elucidate the mechanism governing the interactions between this pathogen and wheat plants and may facilitate the development of new methods to increase the resistance level of wheat against T. controversa, including the overexpression of defence-related genes.
Collapse
Affiliation(s)
- Zhaoyu Ren
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianjian Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,School of Agriculture, Yangtze University, Hubei, 434025, China
| | - Ghulam Muhae Ud Din
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Han Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Xinjiang, 832003, China
| | - Zhenzhen Du
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianmin Zhang
- School of Agriculture, Yangtze University, Hubei, 434025, China
| | - Sifeng Zhao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Xinjiang, 832003, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
15
|
Transformation of American Chestnut (Castanea dentata (Marsh.) Borkh) Using RITA® Temporary Immersion Bioreactors and We Vitro Containers. FORESTS 2020. [DOI: 10.3390/f11111196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
American chestnut (Castanea dentata (Marsh.) Borkh) was almost completely wiped out by the fungal pathogen, Cryphonectria parasitica (Murrill) M.E. Barr. Another invasive pathogen, Phytophthora cinnamomi Rands, is devastating American chestnuts in the southern region of the United States. An alternative approach for controlling these pathogens is to use genetic engineering or gene editing. We successfully transformed American chestnut with a detoxifying enzyme, oxalate oxidase, to enhance blight tolerance and more recently with the Cast_Gnk2-like gene, which encodes for an antifungal protein, to be tested for P. cinnamomi putative tolerance. Eight somatic embryo lines were transformed using three methods of selection: semisolid medium in Petri plates, liquid medium in RITA® temporary immersion bioreactors, or liquid medium in We Vitro containers. No significant differences were found between the treatments. These methods will allow for further testing of transgenes and the development of enhanced pathogen resistance in chestnut. It can serve as a model for other tree species threatened by invasive pests and pathogens.
Collapse
|
16
|
Ma M, Wendehenne D, Philippot L, Hänsch R, Flemetakis E, Hu B, Rennenberg H. Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. PLANT, CELL & ENVIRONMENT 2020; 43:2336-2354. [PMID: 32681574 DOI: 10.1111/pce.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is essential for plant growth and development, as well as interactions with abiotic and biotic environments. Its importance for multiple functions in plants means that tight regulation of NO concentrations is required. This is of particular significance in roots, where NO signalling is involved in processes, such as root growth, lateral root formation, nutrient acquisition, heavy metal homeostasis, symbiotic nitrogen fixation and root-mycorrhizal fungi interactions. The NO signal can also be produced in high levels by microbial processes in the rhizosphere, further impacting root processes. To explore these interesting interactions, in the present review, we firstly summarize current knowledge of physiological processes of NO production and consumption in roots and, thereafter, of processes involved in NO homeostasis in root cells with particular emphasis on root growth, development, nutrient acquisition, environmental stresses and organismic interactions.
Collapse
Affiliation(s)
- Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - David Wendehenne
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Robert Hänsch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Institute for Plant Biology, Technische Universität, Braunschweig, Germany
| | - Emmanouil Flemetakis
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Detection of Very Small Tree Plantations and Tree-Level Characterization Using Open-Access Remote-Sensing Databases. REMOTE SENSING 2020. [DOI: 10.3390/rs12142276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Highly fragmented land property hinders the planning and management of single species tree plantations. In such situations, acquiring information about the available resources is challenging. This study aims to propose a method to locate and characterize tree plantations in these cases. Galicia (Northwest of Spain) is an area where property is extremely divided into small parcels. European chestnut (Castanea sativa) plantations are an important source of income there; however, it is often difficult to obtain information about them due to their small size and scattered distribution. Therefore, we selected a Galician region with a high presence of chestnut plantations as a case study area in order to locate and characterize small plantations using open-access data. First, we detected the location of chestnut plantations applying a supervised classification for a combination of: Sentinel-2 images and the open-access low-density Light Detection and Ranging (LiDAR) point clouds, obtained from the untapped open-access LiDAR Spanish national database. Three classification algorithms were used: Random Forest (RF), Support Vector Machine (SVM), and XGBoost. We later characterized the plots at the tree-level using the LiDAR point-cloud. We detected individual trees and obtained their height applying a local maxima algorithm to a point-cloud-derived Canopy Height Model (CHM). We also calculated the crown surface of each tree by applying a method based on two-dimensional (2D) tree shape reconstruction and canopy segmentation to a projection of the LiDAR point cloud. Chestnut plantations were detected with an overall accuracy of 81.5%. Individual trees were identified with a detection rate of 96%. The coefficient of determination R2 value for tree height estimation was 0.83, while for the crown surface calculation it was 0.74. The accuracy achieved with these open-access databases makes the proposed procedure suitable for acquiring knowledge about the location and state of chestnut plantations as well as for monitoring their evolution.
Collapse
|
18
|
Transcriptome Sequencing and Differential Expression Analysis Reveal Molecular Mechanisms for Starch Accumulation in Chestnut. FORESTS 2020. [DOI: 10.3390/f11040388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chestnuts are popular edible nuts that are rich in starch. In order to enhance the transcriptomic resources and further understand starch and sucrose metabolism in maturing chestnuts, a comparative transcriptomic study of Chinese chestnut kernels was conducted at three ripening stages (70, 82, and 94 DAF). At 82 and 94 days after flowering (DAF), starch continued to accumulate, and the amylopectin/amylose ratio increased. Transcriptomic profiling of kernels at 70 (stage I), 82 (stage II), and 94 DAF (stage III) indicated that soluble starch synthase and α-1,4-glucan branching enzyme genes are actively expressed at 82 and 94 DAF. The starch degradation enzymes amylase, phosphoglucan phosphatase DSP4, and maltose exporter did not show differential gene expression, while glycogen phosphorylase-encoding unigenes were significantly down-regulated at 94 DAF. In addition to starch and sucrose metabolism, RNA transport, RNA degradation, pyrimidine metabolism, purine metabolism, plant hormone signal transduction, plant–pathogen interactions, and glycerophospholipid metabolism were found to be significantly enriched in all comparisons included in the study. As Chinese chestnut matured, the unique enriched pathways switched from ribosomal biogenesis and RNA polymerase of eukaryotes to endocytosis and spliceosomes. These genomic resources and findings are valuable for further understanding starch and sucrose metabolism in the Chinese chestnut.
Collapse
|
19
|
Peng Q, Fang X, Zong X, He Q, Zhu T, Han S, Li S. Comparative transcriptome analysis of Bambusa pervariabilis × Dendrocalamopsis grandis against Arthrinium phaeospermum under protein AP-toxin induction. Gene 2020; 725:144160. [PMID: 31639431 DOI: 10.1016/j.gene.2019.144160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023]
Abstract
Bambusapervariabilis × Dendrocalamopsisgrandis, a fast-growing and easily propagated bamboo species, has been extensively planted in the southern China, resulting in huge ecological benefits. In recent years, it was found that the pathogenic fungus Arthrinium phaeospermum caused the death of a large amount of bamboo. In this study, the transcriptome of B. pervariabilis × D. grandis, induced by inactivated protein AP-toxin from A. phaeospermum was sequenced and analyzed, to reveal the resistance mechanism induced by biotic agents of B. pervariabilis × D. grandis against A. phaeospermum at the gene level. Transcriptome sequencing was performed by Illumina HiSeq 2000 in order to analyze the differentially expressed genes (DEGs) of B. pervariabilis × D. grandis in response to different treatment conditions. In total, 201,875,606 clean reads were obtained, and the percentage of Q30 bases in each sample was more than 94.21%. There were 6398 DEGs in the D-J group (inoculation with a pathogenic spore suspension after three days of AP-toxin induction) compared to the S-J group (inoculation with a pathogenic spore suspension after inoculation of sterile water for three days) with 3297 up-regulated and 3101 down-regulated genes. For the D-S group (inoculation with sterile water after inoculation of AP-toxin for three days), there were 2032 DEGs in comparison to the S-S group (inoculation with sterile water only), with 1035 up-regulated genes and 997 down-regulated genes. These identified genes were mainly involved in lignin and phytoprotein synthesis, tetrapyrrole synthesis, redox reactions, photosynthesis, and other processes. The fluorescence quantitative results showed that 22 pairs of primer amplification products were up-regulated and 7 were down-regulated. The rate of similarity between these results and the sequencing results of the transcription group was 100%, which confirmed the authenticity of the transcriptome sequencing results. Redox proteins, phenylalanine ammonia lyase, and S-adenosine-L-methionine synthetase, among others, were highly expressed; these results may indicate the level of disease resistance of the bamboo. These results provide a foundation for the further exploration of resistance genes and their functions.
Collapse
Affiliation(s)
- Qi Peng
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Xiaozhuo Zong
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Qianqian He
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
20
|
Xing Y, Liu Y, Zhang Q, Nie X, Sun Y, Zhang Z, Li H, Fang K, Wang G, Huang H, Bisseling T, Cao Q, Qin L. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). Gigascience 2019; 8:giz112. [PMID: 31513707 PMCID: PMC6741814 DOI: 10.1093/gigascience/giz112] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/01/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Chinese chestnut (Castanea mollissima) is widely cultivated in China for nut production. This plant also plays an important ecological role in afforestation and ecosystem services. To facilitate and expand the use of C. mollissima for breeding and its genetic improvement, we report here the whole-genome sequence of C. mollissima. FINDINGS We produced a high-quality assembly of the C. mollissima genome using Pacific Biosciences single-molecule sequencing. The final draft genome is ∼785.53 Mb long, with a contig N50 size of 944 kb, and we further annotated 36,479 protein-coding genes in the genome. Phylogenetic analysis showed that C. mollissima diverged from Quercus robur, a member of the Fagaceae family, ∼13.62 million years ago. CONCLUSIONS The high-quality whole-genome assembly of C. mollissima will be a valuable resource for further genetic improvement and breeding for disease resistance and nut quality.
Collapse
Affiliation(s)
- Yu Xing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Yang Liu
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Qing Zhang
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Xinghua Nie
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, 23 Hongda St., Tianjin 300457, China
| | - Zhiyong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Huchen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Kefeng Fang
- College of Landscape Architecture, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Guangpeng Wang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, 39 E Jieyangdajie, Changli 066600, China
| | - Hongwen Huang
- South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Guangzhou 510650, China
| | - Ton Bisseling
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| | - Ling Qin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, 7 Beinong Rd., Beijing 102206, China
| |
Collapse
|
21
|
Transcriptional response of grapevine to infection with the fungal pathogen Lasiodiplodia theobromae. Sci Rep 2019; 9:5387. [PMID: 30926851 PMCID: PMC6441073 DOI: 10.1038/s41598-019-41796-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Botryosphaeria dieback on the grapevine is caused by Botryosphaeriaceae fungi, which threatens the yield and quality of grapes. At present, chemical control strategies are often observed to be ineffective in controlling the disease worldwide. Improving our understanding of the molecular mechanisms that confer resistance to pathogens would facilitate the development of more pathogen-tolerant grape varieties. Here, we used RNA sequencing analysis to profile the transcriptome of grapevine green shoots infected with Lasiodiplodia theobromae over a time course of 4, 8 and 12 hours post inoculation. A total of 5181 genes were identified as differentially expressed genes (DEGs), and DEGs were more abundant over time. Further analysis revealed that many of these DEGs are involved in plant-pathogen interactions, hormone signal transduction and phenylpropanoid biosynthesis pathways, suggesting that innate immunity, phytohormone signaling and many phenylpropanoid compounds, which constitute a complex defense network in plants, are involved in the response of grapevine against to L. theobromae infection. This study provides novel insights into the molecular mechanisms of plant-pathogen interactions that will be valuable for the genetic improvement of grapevines.
Collapse
|
22
|
Abstract
American chestnut (Castanea dentata Borkh.) was a dominant tree species in its native range in eastern North America until the accidentally introduced fungus Cryphonectria parasitica (Murr.) Barr, that causes chestnut blight, led to a collapse of the species. Different approaches (e.g., genetic engineering or conventional breeding) are being used to fight against chestnut blight and to reintroduce the species with resistant planting stock. Because of large climatic differences within the distribution area of American chestnut, successful reintroduction of the species requires knowledge and consideration of local adaptation to the prevailing environmental conditions. Previous studies revealed clear patterns of genetic diversity along the northeast-southwest axis of the Appalachian Mountains, but less is known about the distribution of potentially adaptive genetic variation within the distribution area of this species. In this study, we investigated neutral and potentially adaptive genetic variation in nine American chestnut populations collected from sites with different environmental conditions. In total, 272 individuals were genotyped with 24 microsatellite (i.e., simple sequence repeat (SSR)) markers (seven genomic SSRs and 17 EST-SSRs). An FST-outlier analysis revealed five outlier loci. The same loci, as well as five additional ones, were significantly associated with environmental variables of the population sites in an environmental association analysis. Four of these loci are of particular interest, since they were significant in both methods, and they were associated with environmental variation, but not with geographic variation. Hence, these loci might be involved in (temperature-related) adaptive processes in American chestnut. This work aims to help understanding the genetic basis of adaptation in C. dentata, and therefore the selection of suitable provenances for further breeding efforts.
Collapse
|
23
|
LaBonte NR, Woeste KE. Pooled whole-genome sequencing of interspecific chestnut ( Castanea) hybrids reveals loci associated with differences in caching behavior of fox squirrels ( Sciurus niger L.). Ecol Evol 2018; 8:10638-10654. [PMID: 30519394 PMCID: PMC6262733 DOI: 10.1002/ece3.4336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 12/30/2022] Open
Abstract
Dispersal of seeds by scatter-hoarding rodents is common among tropical and temperate tree species, including chestnuts in the genus Castanea. Backcrossed (BC) interspecific hybrid chestnuts exhibit wide variation in seed traits: as the parent species (Castanea dentata and C. mollissima) have distinct seed phenotypes and tend to be handled differently by seed dispersers, phenotypic variation in BC trees is likely due to inheritance of genes that have undergone divergent evolution in the parent species. To identify candidate genomic regions for interspecific differences in seed dispersal, we used tagged seeds to measure average dispersal distance for seeds of third-generation BC chestnuts and sequenced pooled whole genomes of mother trees with contrasting seed dispersal: high caching rate/long distance; low caching rate/short distance; no caching. Candidate regions affecting seed dispersal were identified as loci with more C. mollissima alleles in the high caching rate/ long-distance pool than expected by chance and observed in the other two pools. Functional annotations of candidate regions included predicted lipid metabolism, dormancy regulation, seed development, and carbohydrate metabolism genes. The results support the hypothesis that perception of seed dormancy is a predominant factor in squirrel caching decisions, and also indicate profitable directions for future work on the evolutionary genomics of trees and coevolved seed dispersers.
Collapse
Affiliation(s)
| | - Keith E. Woeste
- USDA Forest ServiceNorthern Research StationHardwood Tree Improvement and Regeneration CenterWest LafayetteIndiana
| |
Collapse
|
24
|
Klein LL, Miller AJ, Ciotir C, Hyma K, Uribe-Convers S, Londo J. High-throughput sequencing data clarify evolutionary relationships among North American Vitis species and improve identification in USDA Vitis germplasm collections. AMERICAN JOURNAL OF BOTANY 2018; 105:215-226. [PMID: 29578297 DOI: 10.1002/ajb2.1033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Grapes are one of the most economically important berry crops worldwide, with the vast majority of production derived from the domesticated Eurasian species Vitis vinifera. Expansion of production into new areas, development of new cultivars, and concerns about adapting grapevines for changing climates necessitate the use of wild grapevine species in breeding programs. Diversity within Vitis has long been a topic of study; however, questions remain regarding relationships between species. Furthermore, the identity of some living accessions is unclear. METHODS This study generated 11,020 single nucleotide polymorphism (SNP) markers for more than 300 accessions in the USDA-ARS grape germplasm repository using genotyping-by-sequencing. Resulting data sets were used to reconstruct evolutionary relationships among several North American and Eurasian Vitis species, and to suggest taxonomic labels for previously unidentified and misidentified germplasm accessions based on genetic distance. KEY RESULTS Maximum likelihood analyses of SNP data support the monophyly of Vitis, subg. Vitis, a Eurasian subg. Vitis clade, and a North American subg. Vitis clade. Data delineate species groups within North America. In addition, analysis of genetic distance suggested taxonomic identities for 20 previously unidentified Vitis accessions and for 28 putatively misidentified accessions. CONCLUSIONS This work advances understanding of Vitis evolutionary relationships and provides the foundation for ongoing germplasm enhancement. It supports conservation and breeding efforts by contributing to a growing genetic framework for identifying novel genetic variation and for incorporating new, unsampled populations into the germplasm repository system.
Collapse
Affiliation(s)
- Laura L Klein
- Department of Biology, Saint Louis University, St. Louis, MO, 63110, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, St. Louis, MO, 63110, USA
| | - Claudia Ciotir
- Department of Biology, Saint Louis University, St. Louis, MO, 63110, USA
| | - Katie Hyma
- Cornell University, Institute for Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Simon Uribe-Convers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Londo
- United States Department of Agriculture, Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, 14425, USA
| |
Collapse
|
25
|
Plett JM, Martin FM. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:729-746. [PMID: 29265527 DOI: 10.1111/tpj.13802] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Microorganisms, or 'microbes', have formed intimate associations with plants throughout the length of their evolutionary history. In extant plant systems microbes still remain an integral part of the ecological landscape, impacting plant health, productivity and long-term fitness. Therefore, to properly understand the genetic wiring of plants, we must first determine what perception systems plants have evolved to parse beneficial from commensal from pathogenic microbes. In this review, we consider some of the most recent advances in how plants respond at the molecular level to different microbial lifestyles. Further, we cover some of the means by which microbes are able to manipulate plant signaling pathways through altered destructiveness and nutrient sinks, as well as the use of effector proteins and micro-RNAs (miRNAs). We conclude by highlighting some of the major questions still to be answered in the field of plant-microbe research, and suggest some of the key areas that are in greatest need of further research investment. The results of these proposed studies will have impacts in a wide range of plant research disciplines and will, ultimately, translate into stronger agronomic crops and forestry stock, with immune perception and response systems bred to foster beneficial microbial symbioses while repudiating pathogenic symbioses.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche, 1136 INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
26
|
Rigling D, Prospero S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. MOLECULAR PLANT PATHOLOGY 2018; 19:7-20. [PMID: 28142223 PMCID: PMC6638123 DOI: 10.1111/mpp.12542] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 05/25/2023]
Abstract
Chestnut blight, caused by Cryphonectria parasitica, is a devastating disease infecting American and European chestnut trees. The pathogen is native to East Asia and was spread to other continents via infected chestnut plants. This review summarizes the current state of research on this pathogen with a special emphasis on its interaction with a hyperparasitic mycovirus that acts as a biological control agent of chestnut blight. TAXONOMY Cryphonectria parasitica (Murr.) Barr. is a Sordariomycete (ascomycete) fungus in the family Cryphonectriaceae (Order Diaporthales). Closely related species that can also be found on chestnut include Cryphonectria radicalis, Cryphonectria naterciae and Cryphonectria japonica. HOST RANGE Major hosts are species in the genus Castanea (Family Fagaceae), particularly the American chestnut (C. dentata), the European chestnut (C. sativa), the Chinese chestnut (C. mollissima) and the Japanese chestnut (C. crenata). Minor incidental hosts include oaks (Quercus spp.), maples (Acer spp.), European hornbeam (Carpinus betulus) and American chinkapin (Castanea pumila). DISEASE SYMPTOMS Cryphonectria parasitica causes perennial necrotic lesions (so-called cankers) on the bark of stems and branches of susceptible host trees, eventually leading to wilting of the plant part distal to the infection. Chestnut blight cankers are characterized by the presence of mycelial fans and fruiting bodies of the pathogen. Below the canker the tree may react by producing epicormic shoots. Non-lethal, superficial or callusing cankers on susceptible host trees are usually associated with mycovirus-induced hypovirulence. DISEASE CONTROL After the introduction of C. parasitica into a new area, eradication efforts by cutting and burning the infected plants/trees have mostly failed. In Europe, the mycovirus Cryphonectria hypovirus 1 (CHV-1) acts as a successful biological control agent of chestnut blight by causing so-called hypovirulence. CHV-1 infects C. parasitica and reduces its parasitic growth and sporulation capacity. Individual cankers can be therapeutically treated with hypovirus-infected C. parasitica strains. The hypovirus may subsequently spread to untreated cankers and become established in the C. parasitica population. Hypovirulence is present in many chestnut-growing regions of Europe, either resulting naturally or after biological control treatments. In North America, disease management of chestnut blight is mainly focused on breeding with the goal to backcross the Chinese chestnut's blight resistance into the American chestnut genome.
Collapse
Affiliation(s)
- Daniel Rigling
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)Birmensdorf8903Switzerland
| | - Simone Prospero
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)Birmensdorf8903Switzerland
| |
Collapse
|
27
|
Ahmed MMS, Ji W, Wang M, Bian S, Xu M, Wang W, Zhang J, Xu Z, Yu M, Liu Q, Zhang C, Zhang H, Tang S, Gu M, Yu H. Transcriptional changes of rice in response to rice black-streaked dwarf virus. Gene 2017; 628:38-47. [PMID: 28700950 DOI: 10.1016/j.gene.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 02/01/2023]
Abstract
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the understanding of the regulatory mechanisms involved in rice-RBSDV interaction and the biological basis of rice black-streaked dwarf disease development in rice.
Collapse
Affiliation(s)
- Mohamed M S Ahmed
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Department of Crop Protection, Faculty of Agriculture, University of Khartoum, Khartoum North 13314, Sudan
| | - Wen Ji
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Muyue Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Qingdao Saline-Alkali Tolerant Rice Research and Development Center, Qingdao 266100, China
| | - Shiquan Bian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Qingdao Saline-Alkali Tolerant Rice Research and Development Center, Qingdao 266100, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weiyun Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jiangxiang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhihao Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Meimei Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Honggen Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuzhu Tang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
28
|
Massonnet M, Figueroa-Balderas R, Galarneau ERA, Miki S, Lawrence DP, Sun Q, Wallis CM, Baumgartner K, Cantu D. Neofusicoccum parvum Colonization of the Grapevine Woody Stem Triggers Asynchronous Host Responses at the Site of Infection and in the Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:1117. [PMID: 28702038 PMCID: PMC5487829 DOI: 10.3389/fpls.2017.01117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/09/2017] [Indexed: 05/09/2023]
Abstract
Grapevine trunk diseases cause important economic losses in vineyards worldwide. Neofusicoccum parvum, one of the most aggressive causal agents of the trunk disease Botryosphaeria dieback, colonizes cells and tissues of the grapevine wood, leading to the formation of an internal canker. Symptoms then extend to distal shoots, with wilting of leaves and bud mortality. Our aim was to characterize the transcriptional dynamics of grapevine genes in the woody stem and in the leaves during Neofusicoccum parvum colonization. Genome-wide transcriptional profiling at seven distinct time points (0, 3, and 24 hours; 2, 6, 8, and 12 weeks) showed that both stems and leaves undergo extensive transcriptomic reprogramming in response to infection of the stem. While most intense transcriptional responses were detected in the stems at 24 hours, strong responses were not detected in the leaves until the next sampling point at 2 weeks post-inoculation. Network co-expression analysis identified modules of co-expressed genes common to both organs and showed most of these genes were asynchronously modulated. The temporal shift between stem vs. leaf responses affected transcriptional modulation of genes involved in both signal perception and transduction, as well as downstream biological processes, including oxidative stress, cell wall rearrangement and cell death. Promoter analysis of the genes asynchronously modulated in stem and leaves during N. parvum colonization suggests that the temporal shift of transcriptional reprogramming between the two organs might be due to asynchronous co-regulation by common transcriptional regulators. Topology analysis of stem and leaf co-expression networks pointed to specific transcription factor-encoding genes, including WRKY and MYB, which may be associated with the observed transcriptional responses in the two organs.
Collapse
Affiliation(s)
- Mélanie Massonnet
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| | - Erin R. A. Galarneau
- Department of Plant Pathology, University of California, DavisDavis, CA, United States
| | - Shiho Miki
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
- Department of Agriculture and Forest Science, Faculty of Life and Environmental Science, Shimane UniversityMatsue, Japan
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, DavisDavis, CA, United States
| | - Qiang Sun
- Department of Biology, University of WisconsinStevens Point, WI, United States
| | - Christopher M. Wallis
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences CenterParlier, CA, United States
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research UnitDavis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| |
Collapse
|
29
|
Cipollini M, Dingley NR, Felch P, Maddox C. Evaluation of phenotypic traits and blight-resistance in an American chestnut backcross orchard in Georgia. Glob Ecol Conserv 2017. [DOI: 10.1016/j.gecco.2017.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Lane T, Best T, Zembower N, Davitt J, Henry N, Xu Y, Koch J, Liang H, McGraw J, Schuster S, Shim D, Coggeshall MV, Carlson JE, Staton ME. The green ash transcriptome and identification of genes responding to abiotic and biotic stresses. BMC Genomics 2016; 17:702. [PMID: 27589953 PMCID: PMC5009568 DOI: 10.1186/s12864-016-3052-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/27/2016] [Indexed: 11/25/2022] Open
Abstract
Background To develop a set of transcriptome sequences to support research on environmental stress responses in green ash (Fraxinus pennsylvanica), we undertook deep RNA sequencing of green ash tissues under various stress treatments. The treatments, including emerald ash borer (EAB) feeding, heat, drought, cold and ozone, were selected to mimic the increasing threats of climate change and invasive pests faced by green ash across its native habitat. Results We report the generation and assembly of RNA sequences from 55 green ash samples into 107,611 putative unique transcripts (PUTs). 52,899 open reading frames were identified. Functional annotation of the PUTs by comparison to the Uniprot protein database identified matches for 63 % of transcripts and for 98 % of transcripts with ORFs. Further functional annotation identified conserved protein domains and assigned gene ontology terms to the PUTs. Examination of transcript expression across different RNA libraries revealed that expression patterns clustered based on tissues regardless of stress treatment. The transcripts from stress treatments were further examined to identify differential expression. Tens to hundreds of differentially expressed PUTs were identified for each stress treatment. A set of 109 PUTs were found to be consistently up or down regulated across three or more different stress treatments, representing basal stress response candidate genes in green ash. In addition, 1956 simple sequence repeats were identified in the PUTs, of which we identified 465 high quality DNA markers and designed flanking PCR primers. Conclusions North American native ash trees have suffered extensive mortality due to EAB infestation, creating a need to breed or select for resistant green ash genotypes. Stress from climate change is an additional concern for longevity of native ash populations. The use of genomics could accelerate management efforts. The green ash transcriptome we have developed provides important sequence information, genetic markers and stress-response candidate genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3052-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Lane
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37966, USA
| | - Teodora Best
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nicole Zembower
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jack Davitt
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37966, USA
| | - Nathan Henry
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37966, USA
| | - Yi Xu
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA.,Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Jennifer Koch
- Northern Research Station, USDA Forest Service, Delaware, OH, 43015, USA
| | - Haiying Liang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - John McGraw
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Stephan Schuster
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Donghwan Shim
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark V Coggeshall
- Department of Forestry, University of Missouri, Columbia, MO, 65211, USA
| | - John E Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37966, USA.
| |
Collapse
|
31
|
Bashir Z, Shafique S, Ahmad A, Shafique S, Yasin NA, Ashraf Y, Ibrahim A, Akram W, Noreen S. Tomato Plant Proteins Actively Responding to Fungal Applications and Their Role in Cell Physiology. Front Physiol 2016; 7:257. [PMID: 27445848 PMCID: PMC4927627 DOI: 10.3389/fphys.2016.00257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 06/11/2016] [Indexed: 11/13/2022] Open
Abstract
The pattern of protein induction in tomato plants has been investigated after the applications of pathogenic and non-pathogenic fungal species. Moreover, particular roles of the most active protein against biological applications were also determined using chromatographic techniques. Alternaria alternata and Penicillium oxalicum were applied as a pathogenic and non-pathogenic fungal species, respectively. Protein profile analysis revealed that a five protein species (i.e., protein 1, 6, 10, 12, and 13) possessed completely coupled interaction with non-pathogenic inducer application (P. oxalicum). However, three protein species (i.e., 10, 12, and 14) recorded a strong positive interaction with both fungal species. Protein 14 exhibited the maximum interaction with fungal applications, and its role in plant metabolism was studied after its identification as protein Q9M1W6. It was determined that protein Q1M1W6 was involved in guaiacyl lignin biosynthesis, and its inhibition increased the coumarin contents in tomato plants. Moreover, it was also observed that the protein Q9M1W6 takes significant part in the biosynthesis of jasmonic acid and Indole acetic acid contents, which are defense and growth factors of tomato plants. The study will help investigators to design fundamental rules of plant proteins affecting cell physiology under the influence of external fungal applications.
Collapse
Affiliation(s)
- Zoobia Bashir
- Department of Physics, University of the PunjabLahore, Pakistan
| | - Sobiya Shafique
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Aqeel Ahmad
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Shazia Shafique
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Nasim A. Yasin
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Yaseen Ashraf
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Asma Ibrahim
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Waheed Akram
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Institute of Molecular Biology and Biotechnology, University of LahoreLahore, Pakistan
| | - Sibgha Noreen
- Institute of Pure and Applied Biology, Bahauddin Zakariya UniversityMultan, Pakistan
| |
Collapse
|
32
|
Laura M, Borghi C, Bobbio V, Allavena A. The effect on the transcriptome of Anemone coronaria following infection with rust (Tranzschelia discolor). PLoS One 2015; 10:e0118565. [PMID: 25768012 PMCID: PMC4359109 DOI: 10.1371/journal.pone.0118565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/20/2015] [Indexed: 12/25/2022] Open
Abstract
In order to understand plant/pathogen interaction, the transcriptome of uninfected (1S) and infected (2I) plant was sequenced at 3'end by the GS FLX 454 platform. De novo assembly of high-quality reads generated 27,231 contigs leaving 37,191 singletons in the 1S and 38,393 in the 2I libraries. ESTcalc tool suggested that 71% of the transcriptome had been captured, with 99% of the genes present being represented by at least one read. Unigene annotation showed that 50.5% of the predicted translation products shared significant homology with protein sequences in GenBank. In all 253 differential transcript abundance (DTAs) were in higher abundance and 52 in lower abundance in the 2I library. 128 higher abundance DTA genes were of fungal origin and 49 were clearly plant sequences. A tBLASTn-based search of the sequences using as query the full length predicted polypeptide product of 50 R genes identified 16 R gene products. Only one R gene (PGIP) was up-regulated. The response of the plant to fungal invasion included the up-regulation of several pathogenesis related protein (PR) genes involved in JA signaling and other genes associated with defense response and down regulation of cell wall associated genes, non-race-specific disease resistance1 (NDR1) and other genes like myb, presqualene diphosphate phosphatase (PSDPase), a UDP-glycosyltransferase 74E2-like (UGT). The DTA genes identified here should provide a basis for understanding the A. coronaria/T. discolor interaction and leads for biotechnology-based disease resistance breeding.
Collapse
Affiliation(s)
- Marina Laura
- CRA—Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Corso Inglesi 508, 18038 Sanremo (IM), Italy
| | - Cristina Borghi
- CRA—Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Corso Inglesi 508, 18038 Sanremo (IM), Italy
| | - Valentina Bobbio
- CRA—Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Corso Inglesi 508, 18038 Sanremo (IM), Italy
| | - Andrea Allavena
- CRA—Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Corso Inglesi 508, 18038 Sanremo (IM), Italy
| |
Collapse
|
33
|
Rubio M, Rodríguez-Moreno L, Ballester AR, de Moura MC, Bonghi C, Candresse T, Martínez-Gómez P. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. MOLECULAR PLANT PATHOLOGY 2015; 16:164-76. [PMID: 24989162 PMCID: PMC6638525 DOI: 10.1111/mpp.12169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Differences in gene expression were studied after Plum pox virus (PPV, sharka disease) infection in peach GF305 leaves with and without sharka symptoms using RNA-Seq. For each sample, more than 80% of 100-nucleotide paired-end (PE) Illumina reads were aligned on the peach reference genome. In the symptomatic sample, a significant proportion of reads were mapped to PPV reference genomes (1.04% compared with 0.00002% in non-symptomatic leaves), allowing for the ultra-deep assembly of the complete genome of the PPV isolate used (9775 nucleotides, missing only 11 nucleotides at the 5' genome end). In addition, significant alternative splicing events were detected in 359 genes and 12 990 single nucleotide polymorphisms (SNPs) were identified, 425 of which could be annotated. Gene ontology annotation revealed that the high-ranking mRNA target genes associated with the expression of sharka symptoms are mainly related to the response to biotic stimuli, to lipid and carbohydrate metabolism and to the negative regulation of catalytic activity. A greater number of differentially expressed genes were observed in the early asymptomatic phase of PPV infection in comparison with the symptomatic phase. These early infection events were associated with the induction of genes related to pathogen resistance, such as jasmonic acid, chitinases, cytokinin glucosyl transferases and Lys-M proteins. Once the virus had accumulated, the overexpression of Dicer protein 2a genes suggested a gene silencing plant response that was suppressed by the virus HCPro and P1 proteins. These results illustrate the dynamic nature of the peach-PPV interaction at the transcriptome level and confirm that sharka symptom expression is a complex process that can be understood on the basis of changes in plant gene expression.
Collapse
Affiliation(s)
- Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100, Espinardo-Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Lesur I, Bechade A, Lalanne C, Klopp C, Noirot C, Leplé JC, Kremer A, Plomion C, Le Provost G. A unigene set for European beech (Fagus sylvatica L.) and its use to decipher the molecular mechanisms involved in dormancy regulation. Mol Ecol Resour 2015; 15:1192-204. [PMID: 25594128 DOI: 10.1111/1755-0998.12373] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 11/27/2022]
Abstract
Systematic sequencing is the method of choice for generating genomic resources for molecular marker development and candidate gene identification in nonmodel species. We generated 47,357 Sanger ESTs and 2.2M Roche-454 reads from five cDNA libraries for European beech (Fagus sylvatica L.). This tree species of high ecological and economic value in Europe is among the most representative trees of deciduous broadleaf forests. The sequences generated were assembled into 21,057 contigs with MIRA software. Functional annotations were obtained for 85% of these contigs, from the proteomes of four plant species, Swissprot accessions and the Gene Ontology database. We were able to identify 28,079 in silico SNPs for future marker development. Moreover, RNAseq and qPCR approaches identified genes and gene networks regulated differentially between two critical phenological stages preceding vegetative bud burst (the quiescent and swelling buds stages). According to climatic model-based projection, some European beech populations may be endangered, particularly at the southern and eastern edges of the European distribution range, which are strongly affected by current climate change. This first genomic resource for the genus Fagus should facilitate the identification of key genes for beech adaptation and management strategies for preserving beech adaptability.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France.,Helix Venture, F-33700, Mérignac, France
| | - Alison Bechade
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| | - Céline Lalanne
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| | - Christophe Klopp
- Plateforme bioinformatique Genotoul, UR875UR875 Mathématique et Informatique Appliquée de Toulouse, INRA, 31326, Castanet-Tolosan, France
| | - Céline Noirot
- Plateforme bioinformatique Genotoul, UR875UR875 Mathématique et Informatique Appliquée de Toulouse, INRA, 31326, Castanet-Tolosan, France
| | - Jean-Charles Leplé
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières, F-45075, Orléans, France
| | - Antoine Kremer
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| | - Christophe Plomion
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| | - Grégoire Le Provost
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.,Univ. Bordeaux, BIOGECO, UMR 1202, F-33615, Pessac, France
| |
Collapse
|
35
|
Zhang L, Lin Q, Feng Y, Fan X, Zou F, Yuan DY, Zeng X, Cao H. Transcriptomic identification and expression of starch and sucrose metabolism genes in the seeds of Chinese chestnut (Castanea mollissima). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:929-42. [PMID: 25537355 DOI: 10.1021/jf505247d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Chinese chestnut (Castanea mollissima) seed provides a rich source of carbohydrates as food and feed. However, little is known about starch biosynthesis in the seeds. The objectives of this study were to determine seed composition profiles and identify genes involved in starch and sucrose metabolism. Metabolite analysis showed that starch was the major component and rapidly accumulated during seed endosperm development. Amylopectin was approximately 3-fold of amylose content in chestnut starch. Illumina platform-based transcriptome sequencing generated 56671 unigenes in two cDNA libraries from seed endosperms collected at 45 and 75 days after flowering (DAF). A total of 1537 unigenes showed expression differences ≥2-fold in the two stages of seeds including 570 up-regulated and 967 down-regulated unigenes. One hundred and fifty-two unigenes were identified as involved in starch and sucrose metabolism, including 1 for glycogenin glucosyltransferase, 4 for adenylate transporter (brittle1-type), 3 for ADP-glucose pyrophosphorylase (AGP, not brittle2- or shrunken2-type), 3 for starch synthase (SS), 2 for starch branching enzyme, 5 for starch debranching enzyme, 11 for sucrose synthase, and 3 for sucrose-phosphate synthase. Among them, 58 unigenes showed a ≥2-fold expression difference between the 45 and 75 DAF seeds including 11 up- and 47 down-regulated unigenes. The expression of 21 unigenes putatively coding for major enzymes in starch and sucrose metabolism was validated by qPCR using RNA from five seed stages. Expression profiles and correlation analysis indicated that the mRNA levels of AGP (large and small subunits), granule-bound SS2, and soluble SS1 and SS4 were well-correlated with starch accumulation in the seeds. This study suggests that the starch biosynthesis pathway in Chinese chestnut is similar to that of potato tuber/Arabidopsis leaf and differs from that of maize endosperm. The information provides valuable metabolite and genetic resources for future research in starch and sucrose metabolism in Chinese chestnut tree.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology , 498 South Shaoshan Road, Changsha, Hunan Province 410004, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Qin R, LeBoldus JM. The infection biology of Sphaerulina musiva: clues to understanding a forest pathogen. PLoS One 2014; 9:e103477. [PMID: 25072596 PMCID: PMC4114783 DOI: 10.1371/journal.pone.0103477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/02/2014] [Indexed: 11/20/2022] Open
Abstract
Trees in the genus Populus and their interspecific hybrids are used across North America for fiber production and as a potential source of biofuel. Plantations of these species are severely impacted by a fungal pathogen, Sphaerulina musiva, the cause of leaf spot and stem canker. An inoculation protocol that does not rely on stem wounding to achieve infection was recently developed. Using this protocol two experiments were conducted to examine infection biology and disease development in the S. musiva-Populus interaction. In the first experiment non-wounded stems of one moderately resistant clone (NM6) and one susceptible clone (NC11505) were inoculated and examined by scanning electron microscopy at six different times (6 h, 12 h, 24 h, 72 h, 1 week, and 3 weeks) post-inoculation. The images indicate that the pathogen appears to enter host tissue through small openings and lenticels and that there are no significant differences in the penetration rate between the moderately resistant (NM6) and susceptible (NC11505) clones at 12 h post-inoculation. In a second experiment a histological comparison of stem cankers for resistant clone DN74 and susceptible clone NC11505 were conducted at three time points (3 weeks, 5 weeks, and 7 weeks) post-inoculation. Distinct differences in disease development were apparent between the resistant and susceptible clones at each time point, with the susceptible clone exhibiting a weak and delayed defense response. These results suggest, that following penetration, the pathogen may be able to interfere with the defense response in the susceptible host.
Collapse
Affiliation(s)
- Ruqian Qin
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jared M. LeBoldus
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
37
|
Neale DB, Langley CH, Salzberg SL, Wegrzyn JL. Open access to tree genomes: the path to a better forest. Genome Biol 2013; 14:120. [PMID: 23796049 PMCID: PMC3706761 DOI: 10.1186/gb-2013-14-6-120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
An open-access culture and a well-developed comparative-genomics infrastructure must be developed in forest trees to derive the full potential of genome sequencing in this diverse group of plants that are the dominant species in much of the earth's terrestrial ecosystems.
Collapse
|
38
|
Rapidly evolving genes and stress adaptation of two desert poplars, Populus euphratica and P. pruinosa. PLoS One 2013; 8:e66370. [PMID: 23776666 PMCID: PMC3679102 DOI: 10.1371/journal.pone.0066370] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding which genes have evolved rapidly with the recent tree speciation in arid habitats can provide valuable insights into different adaptation mechanisms. We employed a comparative evolutionary analysis of expressed sequence tags (ESTs) from two desert poplars, Populus pruinosa and P. euphratica, which diverged in the recent past. Following an approach taken previously with P. euphratica, we conducted a deep transcriptomic analysis of P. pruinosa. To maximize representation of conditional transcripts, mRNA was obtained from living tissues of two types of callus and desert-grown trees. De novo assembly generated 114,866 high-quality unique sequences using Solexa sequence data. Following assembly we were able to identify, with high confidence, 2859 orthologous sequence pairs between the two species. Based on the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, we identified a total of 84 (2.9%) ortholog pairs exhibiting rapid evolution with signs of strong selection (Ka/Ks>1). Genes homologous to these ortholog pairs in model species are mainly involved in ‘responses to stress’, ‘ubiquitin-dependent protein catabolic processes’, and ‘biological regulation’. Finally, we examined the expression patterns of candidate genes with rapid evolution in response to salt stress. Only one pair of orthologs up-regulated their expression in both species while three and four genes were found to up-regulated in P. pruinosa and in P. euphratica respectively. Our findings together suggest that the genes at the same category or network but with differentiated expressions or functions may have evolved rapidly during adaptive divergence of the two species to differentiated salty desert habitats.
Collapse
|
39
|
Petit RJ, Carlson J, Curtu AL, Loustau ML, Plomion C, González-Rodríguez A, Sork V, Ducousso A. Fagaceae trees as models to integrate ecology, evolution and genomics. THE NEW PHYTOLOGIST 2013; 197:369-371. [PMID: 23253330 DOI: 10.1111/nph.12089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Rémy J Petit
- INRA, UMR 1202 BIOGECO, Cestas, France
- Univ. Bordeaux, UMR 1202 BIOGECO, Talence, France
| | - John Carlson
- Department of Horticulture and The Huck Institutes for Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Alexandru L Curtu
- Department of Forest Sciences, University of Transilvania, Brasov, Romania
| | - Marie-Laure Loustau
- INRA, UMR 1202 BIOGECO, Cestas, France
- Univ. Bordeaux, UMR 1202 BIOGECO, Talence, France
| | - Christophe Plomion
- INRA, UMR 1202 BIOGECO, Cestas, France
- Univ. Bordeaux, UMR 1202 BIOGECO, Talence, France
| | | | - Victoria Sork
- Department of Ecology and Evolutionary Biology and Institute of the Environment, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexis Ducousso
- INRA, UMR 1202 BIOGECO, Cestas, France
- Univ. Bordeaux, UMR 1202 BIOGECO, Talence, France
| |
Collapse
|
40
|
Kovalchuk A, Keriö S, Oghenekaro AO, Jaber E, Raffaello T, Asiegbu FO. Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:221-44. [PMID: 23682916 DOI: 10.1146/annurev-phyto-082712-102307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Molecular pathology of forest trees for a long time lagged behind parallel studies on agricultural crop pathology. Recent technological advances have significantly contributed to the observed progress in this field. The first powerful impulse was provided by the completion of the black cottonwood genome sequence in 2006. Genomes of several other important tree species will be completed within a short time. Simultaneously, application of transcriptomics and next-generation sequencing (NGS) has resulted in the rapid accumulation of a vast amount of data on molecular interactions between trees and their microbial parasites. This review provides an overview of our current knowledge about these responses of forest trees to their pathogens, highlighting the achievements of the past decade, discussing the current state of the field, and emphasizing the prospects and challenges for the near future.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, Forest Pathology Research Laboratory, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
41
|
Jacobs DF, Dalgleish HJ, Nelson CD. A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) reintroduction. THE NEW PHYTOLOGIST 2013; 197:378-393. [PMID: 23163342 DOI: 10.1111/nph.12020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/17/2012] [Indexed: 05/22/2023]
Abstract
We propose a conceptual framework for restoration of threatened plant species that encourages integration of technological, ecological, and social spheres. A sphere encompasses ideas relevant to restoration and the people working within similar areas of influence or expertise. Increased capacity within a sphere and a higher degree of coalescing among spheres predict a greater probability of successful restoration. We illustrate this with Castanea dentata, a foundation forest tree in North America that was annihilated by an introduced pathogen; the species is a model that effectively merges biotechnology, reintroduction biology, and restoration ecology. Because of C. dentata's ecological and social importance, scientists have aggressively pursued blight resistance through various approaches. We summarize recent advancements in tree breeding and biotechnology that have emerged from C. dentata research, and describe their potential to bring new tools to bear on socio-ecological restoration problems. Successful reintroduction of C. dentata will also depend upon an enhanced understanding of its ecology within contemporary forests. We identify a critical need for a deeper understanding of societal influences that may affect setting and achieving realistic restoration goals. Castanea dentata may serve as an important model to inform reintroduction of threatened plant species in general and foundation forest trees in particular.
Collapse
Affiliation(s)
- Douglass F Jacobs
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, Indiana, USA
| | - Harmony J Dalgleish
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, Indiana, USA
- Department of Biology, College of William and Mary, Williamsburg, Virginia, USA
| | - C Dana Nelson
- USDA Forest Service, Southern Research Station, Southern Institute of Forest Genetics, Saucier, Mississippi, USA
| |
Collapse
|