1
|
Zhou X, Zhang J, Ding Y, Huang H, Li Y, Chen W. Predicting late-stage age-related macular degeneration by integrating marginally weak SNPs in GWA studies. Front Genet 2023; 14:1075824. [PMID: 37065470 PMCID: PMC10101437 DOI: 10.3389/fgene.2023.1075824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction: Age-related macular degeneration (AMD) is a progressive neurodegenerative disease and the leading cause of blindness in developed countries. Current genome-wide association studies (GWAS) for late-stage age-related macular degeneration are mainly single-marker-based approaches, which investigate one Single-Nucleotide Polymorphism (SNP) at a time and postpone the integration of inter-marker Linkage-disequilibrium (LD) information in the downstream fine mappings. Recent studies showed that directly incorporating inter-marker connection/correlation into variants detection can help discover novel marginally weak single-nucleotide polymorphisms, which are often missed in conventional genome-wide association studies, and can also help improve disease prediction accuracy. Methods: Single-marker analysis is performed first to detect marginally strong single-nucleotide polymorphisms. Then the whole-genome linkage-disequilibrium spectrum is explored and used to search for high-linkage-disequilibrium connected single-nucleotide polymorphism clusters for each strong single-nucleotide polymorphism detected. Marginally weak single-nucleotide polymorphisms are selected via a joint linear discriminant model with the detected single-nucleotide polymorphism clusters. Prediction is made based on the selected strong and weak single-nucleotide polymorphisms. Results: Several previously identified late-stage age-related macular degeneration susceptibility genes, for example, BTBD16, C3, CFH, CFHR3, HTARA1, are confirmed. Novel genes DENND1B, PLK5, ARHGAP45, and BAG6 are discovered as marginally weak signals. Overall prediction accuracy of 76.8% and 73.2% was achieved with and without the inclusion of the identified marginally weak signals, respectively. Conclusion: Marginally weak single-nucleotide polymorphisms, detected from integrating inter-marker linkage-disequilibrium information, may have strong predictive effects on age-related macular degeneration. Detecting and integrating such marginally weak signals can help with a better understanding of the underlying disease-development mechanisms for age-related macular degeneration and more accurate prognostics.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jipeng Zhang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanming Li
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas, KS, United States
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Chen LJ, Chen ZJ, Pang CP. Latest Development on Genetics of Common Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2023; 12:228-251. [PMID: 36971708 DOI: 10.1097/apo.0000000000000592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 03/29/2023] Open
Abstract
Many complex forms of retinal diseases are common and pan-ethnic in occurrence. Among them, neovascular age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous choroid retinopathy involve both choroidopathy and neovascularization with multifactorial etiology. They are sight-threatening and potentially blinding. Early treatment is crucial to prevent disease progression. To understand their genetic basis, candidate gene mutational and association analyses, linkage analysis, genome-wide association studies, transcriptome analysis, next-generation sequencing, which includes targeted deep sequencing, whole-exome sequencing, and whole genome sequencing have been conducted. Advanced genomic technologies have led to the identification of many associated genes. But their etiologies are attributed to complicated interactions of multiple genetic and environmental risk factors. Onset and progression of neovascular age-related macular degeneration and polypoidal choroidal vasculopathy are affected by aging, smoking, lifestyle, and variants in over 30 genes. Although some genetic associations have been confirmed and validated, individual genes or polygenic risk markers of clinical value have not been established. The genetic architectures of all these complex retinal diseases that involve sequence variant quantitative trait loci have not been fully delineated. Recently artificial intelligence is making an impact in the collection and advanced analysis of genetic, investigative, and lifestyle data for the establishment of predictive factors for the risk of disease onset, progression, and prognosis. This will contribute to individualized precision medicine for the management of complex retinal diseases.
Collapse
Affiliation(s)
- Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital Eye Centre, Hong Kong, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Ji Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Centre of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
3
|
Hall MA, Wallace J, Lucas AM, Bradford Y, Verma SS, Müller-Myhsok B, Passero K, Zhou J, McGuigan J, Jiang B, Pendergrass SA, Zhang Y, Peissig P, Brilliant M, Sleiman P, Hakonarson H, Harley JB, Kiryluk K, Van Steen K, Moore JH, Ritchie MD. Novel EDGE encoding method enhances ability to identify genetic interactions. PLoS Genet 2021; 17:e1009534. [PMID: 34086673 PMCID: PMC8208534 DOI: 10.1371/journal.pgen.1009534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Assumptions are made about the genetic model of single nucleotide polymorphisms (SNPs) when choosing a traditional genetic encoding: additive, dominant, and recessive. Furthermore, SNPs across the genome are unlikely to demonstrate identical genetic models. However, running SNP-SNP interaction analyses with every combination of encodings raises the multiple testing burden. Here, we present a novel and flexible encoding for genetic interactions, the elastic data-driven genetic encoding (EDGE), in which SNPs are assigned a heterozygous value based on the genetic model they demonstrate in a dataset prior to interaction testing. We assessed the power of EDGE to detect genetic interactions using 29 combinations of simulated genetic models and found it outperformed the traditional encoding methods across 10%, 30%, and 50% minor allele frequencies (MAFs). Further, EDGE maintained a low false-positive rate, while additive and dominant encodings demonstrated inflation. We evaluated EDGE and the traditional encodings with genetic data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes: age-related macular degeneration (AMD), age-related cataract, glaucoma, type 2 diabetes (T2D), and resistant hypertension. A multi-encoding genome-wide association study (GWAS) for each phenotype was performed using the traditional encodings, and the top results of the multi-encoding GWAS were considered for SNP-SNP interaction using the traditional encodings and EDGE. EDGE identified a novel SNP-SNP interaction for age-related cataract that no other method identified: rs7787286 (MAF: 0.041; intergenic region of chromosome 7)–rs4695885 (MAF: 0.34; intergenic region of chromosome 4) with a Bonferroni LRT p of 0.018. A SNP-SNP interaction was found in data from the UK Biobank within 25 kb of these SNPs using the recessive encoding: rs60374751 (MAF: 0.030) and rs6843594 (MAF: 0.34) (Bonferroni LRT p: 0.026). We recommend using EDGE to flexibly detect interactions between SNPs exhibiting diverse action. Although traditional genetic encodings are widely implemented in genetics research, including in genome-wide association studies (GWAS) and epistasis, each method makes assumptions that may not reflect the underlying etiology. Here, we introduce a novel encoding method that estimates and assigns an individualized data-driven encoding for each single nucleotide polymorphism (SNP): the elastic data-driven genetic encoding (EDGE). With simulations, we demonstrate that this novel method is more accurate and robust than traditional encoding methods in estimating heterozygous genotype values, reducing the type I error, and detecting SNP-SNP interactions. We further applied the traditional encodings and EDGE to biomedical data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes, and EDGE identified a novel interaction for age-related cataract not detected by traditional methods, which replicated in data from the UK Biobank. EDGE provides an alternative approach to understanding and modeling diverse SNP models and is recommended for studying complex genetics in common human phenotypes.
Collapse
Affiliation(s)
- Molly A. Hall
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| | - John Wallace
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anastasia M. Lucas
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuki Bradford
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shefali S. Verma
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kristin Passero
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jiayan Zhou
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - John McGuigan
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Beibei Jiang
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Peggy Peissig
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Murray Brilliant
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Patrick Sleiman
- Department of Pediatrics, Center for Applied Genomics, Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hakon Hakonarson
- Department of Pediatrics, Center for Applied Genomics, Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- United States Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Kristel Van Steen
- WELBIO, GIGA-R Medical Genomics-BIO3, University of Liège, Liège, Belgium
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Jason H. Moore
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marylyn D. Ritchie
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Wang L, Mao X. Role of Retinal Amyloid-β in Neurodegenerative Diseases: Overlapping Mechanisms and Emerging Clinical Applications. Int J Mol Sci 2021; 22:2360. [PMID: 33653000 PMCID: PMC7956232 DOI: 10.3390/ijms22052360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
Amyloid-β (Aβ) accumulations have been identified in the retina for neurodegeneration-associated disorders like Alzheimer's disease (AD), glaucoma, and age-related macular degeneration (AMD). Elevated retinal Aβ levels were associated with progressive retinal neurodegeneration, elevated cerebral Aβ accumulation, and increased disease severity with a decline in cognition and vision. Retinal Aβ accumulation and its pathological effects were demonstrated to occur prior to irreversible neurodegeneration, which highlights its potential in early disease detection and intervention. Using the retina as a model of the brain, recent studies have focused on characterizing retinal Aβ to determine its applicability for population-based screening of AD, which warrants a further understanding of how Aβ manifests between these disorders. While current treatments directly targeting Aβ accumulations have had limited results, continued exploration of Aβ-associated pathological pathways may yield new therapeutic targets for preserving cognition and vision. Here, we provide a review on the role of retinal Aβ manifestations in these distinct neurodegeneration-associated disorders. We also discuss the recent applications of retinal Aβ for AD screening and current clinical trial outcomes for Aβ-associated treatment approaches. Lastly, we explore potential future therapeutic targets based on overlapping mechanisms of pathophysiology in AD, glaucoma, and AMD.
Collapse
Affiliation(s)
- Liang Wang
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Morrow AK, He GZ, Nothaft FA, Tu ET, Paschall J, Yosef N, Joseph AD. Mango: Exploratory Data Analysis for Large-Scale Sequencing Datasets. Cell Syst 2019; 9:609-613.e3. [PMID: 31812694 DOI: 10.1016/j.cels.2019.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/04/2018] [Accepted: 11/04/2019] [Indexed: 11/25/2022]
Abstract
The decreasing cost of DNA sequencing over the past decade has led to an explosion of sequencing datasets, leaving us with petabytes of data to analyze. However, current sequencing visualization tools are designed to run on single machines, which limits their scalability and interactivity on modern genomic datasets. Here, we leverage the scalability of Apache Spark to provide Mango, consisting of a Jupyter notebook and genome browser, which removes scalability and interactivity constraints by leveraging multi-node compute clusters to allow interactive analysis over terabytes of sequencing data. We demonstrate scalability of the Mango tools by performing quality control analyses on 10 terabytes of 100 high-coverage sequencing samples from the Simons Genome Diversity Project, enabling capability for interactive genomic exploration of multi-sample datasets that surpass the computational limitations of single-node visualization tools. Mango is freely available for download with full documentation at https://bdg-mango.readthedocs.io/en/latest/.
Collapse
Affiliation(s)
- Alyssa Kramer Morrow
- Electrical Engineering and Computer Science Department, University of California Berkeley, 465 Soda Hall, Berkeley, CA 94720-1776, USA.
| | - George Zhixuan He
- Electrical Engineering and Computer Science Department, University of California Berkeley, 465 Soda Hall, Berkeley, CA 94720-1776, USA; Harvard Law School, 1563 Massachusetts Avenue, Cambridge, MA 02138, USA; Google, 355 Main St, Cambridge, MA 02142, USA
| | - Frank Austin Nothaft
- Electrical Engineering and Computer Science Department, University of California Berkeley, 465 Soda Hall, Berkeley, CA 94720-1776, USA; Databricks, Inc., 160 Spear Street, 13th Floor, San Francisco, CA 94105, USA
| | - Eric Tongching Tu
- Electrical Engineering and Computer Science Department, University of California Berkeley, 465 Soda Hall, Berkeley, CA 94720-1776, USA; The Boeing Company, 1950 E Imperial Hwy, El Segundo, CA 90245-2701, USA
| | - Justin Paschall
- Electrical Engineering and Computer Science Department, University of California Berkeley, 465 Soda Hall, Berkeley, CA 94720-1776, USA
| | - Nir Yosef
- Electrical Engineering and Computer Science Department, University of California Berkeley, 465 Soda Hall, Berkeley, CA 94720-1776, USA; Center for Computational Biology, University of California Berkeley, 108 Stanley Hall, Berkeley, CA 94720-3220, USA
| | - Anthony Douglas Joseph
- Electrical Engineering and Computer Science Department, University of California Berkeley, 465 Soda Hall, Berkeley, CA 94720-1776, USA; Center for Computational Biology, University of California Berkeley, 108 Stanley Hall, Berkeley, CA 94720-3220, USA; Unite Genomics, Inc., 1301 Marina Village Pkwy, Suite 320, Alameda, CA 94501, USA
| |
Collapse
|
6
|
Neisseria cinerea Expresses a Functional Factor H Binding Protein Which Is Recognized by Immune Responses Elicited by Meningococcal Vaccines. Infect Immun 2017; 85:IAI.00305-17. [PMID: 28739825 PMCID: PMC5607398 DOI: 10.1128/iai.00305-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis and sepsis worldwide. Capsular polysaccharide vaccines are available against meningococcal serogroups A, C, W, and Y. More recently two protein-based vaccines, Bexsero and Trumenba, against meningococcal serogroup B strains have been licensed; both vaccines contain meningococcal factor H binding protein (fHbp). fHbp is a surface-exposed lipoprotein that binds the negative complement regulator complement factor H (CFH), thereby inhibiting the alternative pathway of complement activation. Recent analysis of available genomes has indicated that some commensal Neisseria species also contain genes that potentially encode fHbp, although the functions of these genes and how immunization with fHbp-containing vaccines could affect the commensal flora have yet to be established. Here, we show that the commensal species Neisseria cinerea expresses functional fHbp on its surface and that it is responsible for recruitment of CFH by the bacterium. N. cinerea fHbp binds CFH with affinity similar to that of meningococcal fHbp and promotes survival of N. cinerea in human serum. We examined the potential impact of fHbp-containing vaccines on N. cinerea We found that immunization with Bexsero elicits serum bactericidal activity against N. cinerea, which is primarily directed against fHbp. The shared function of fHbp in N. cinerea and N. meningitidis and cross-reactive responses elicited by Bexsero suggest that the introduction of fHbp-containing vaccines has the potential to affect carriage of N. cinerea and other commensal species.
Collapse
|
7
|
DeAngelis MM, Owen LA, Morrison MA, Morgan DJ, Li M, Shakoor A, Vitale A, Iyengar S, Stambolian D, Kim IK, Farrer LA. Genetics of age-related macular degeneration (AMD). Hum Mol Genet 2017; 26:R45-R50. [PMID: 28854576 PMCID: PMC5886461 DOI: 10.1093/hmg/ddx228] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive blinding disease and represents the leading cause of visual impairment in the aging population. AMD affects central vision which impairs one's ability to drive, read and recognize faces. There is no cure for this disease and current treatment modalities for the exudative form of the disease require repeated intravitreal injections which may be painful, are incompletely efficacious, and represent a significant treatment burden for both the patient and physician. As such, AMD represents a significant and important clinical problem.It is anticipated that in three years' time, 196 million individuals will be affected with AMD. Over 250 billion dollars per year are spent on care for AMD patients in the US. Over half of the heritability is explained by two major loci, thus AMD is considered the most well genetically defined of the complex disorders. A recent GWAS on 43,566 subjects identified novel loci and pathways associated with AMD risk, which has provided an excellent platform for additional functional studies. Genetic variants have been investigated, particularly with respect to anti-VEGF treatment, however to date, no pharmacogenomic associations have been consistently identified across these studies. It may be that if the goal of personalized medicine is to be realized and biomarkers are to have predictive value for determining the magnitude of risk for AMD at the genetic level, one will need to examine the relationships between these pathways across disease state and relative to modifiable risk factors such as hypertension, smoking, body mass index, and hypercholesterolemia. Further studies investigating protective alleles in populations with low AMD prevalence may lead to this goal.
Collapse
Affiliation(s)
- Margaret M. DeAngelis
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Pharmacotherapy, University of Utah, College of Pharmacy, Salt Lake City, UT 84132, USA
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Margaux A. Morrison
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Denise J. Morgan
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Albert Vitale
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sudha Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ivana K. Kim
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics)
- Department of Neurology
- Department of Ophthalmology, Boston University Schools of Medicine, Boston, MA 02118, USA
- Department of Biostatistics
- Department of Epidemiology, Boston University Schools of Public Health, Boston, MA 02118, USA
| |
Collapse
|
8
|
Zhang P, Zhu M, Geng-Spyropoulos M, Shardell M, Gonzalez-Freire M, Gudnason V, Eiriksdottir G, Schaumberg D, Van Eyk JE, Ferrucci L, Semba RD. A novel, multiplexed targeted mass spectrometry assay for quantification of complement factor H (CFH) variants and CFH-related proteins 1-5 in human plasma. Proteomics 2017; 17:10.1002/pmic.201600237. [PMID: 27647805 PMCID: PMC5534329 DOI: 10.1002/pmic.201600237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/27/2016] [Accepted: 09/14/2016] [Indexed: 11/08/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual loss among older adults. Two variants in the complement factor H (CFH) gene, Y402H and I62V, are strongly associated with risk of AMD. CFH is encoded in regulator of complement activation gene cluster in chromosome 1q32, which includes complement factor related (CFHR) proteins, CFHR1 to CFHR5, with high amino acid sequence homology to CFH. Our goal was to build a SRM assay to measure plasma concentrations of CFH variants Y402, H402, I62, and V62, and CFHR1-5. The final assay consisted of 24 peptides and 72 interference-free SRM transition ion pairs. Most peptides showed good linearity over 0.3-200 fmol/μL concentration range. Plasma concentrations of CFH variants and CFHR1-5 were measured using the SRM assay in 344 adults. Plasma CFH concentrations (mean, SE in μg/mL) by inferred genotype were: YY402, II62 (170.1, 31.4), YY402, VV62 (188.8, 38.5), HH402, VV62 (144.0, 37.0), HY402, VV62 (164.2, 42.3), YY402, IV62 (194.8, 36.8), HY402, IV62 (181.3, 44.7). Mean (SE) plasma concentrations of CFHR1-5 were 1.63 (0.04), 3.64 (1.20), 0.020 (0.001), 2.42 (0.18), and 5.49 (1.55) μg/mL, respectively. This SRM assay should facilitate the study of the role of systemic complement and risk of AMD.
Collapse
Affiliation(s)
- Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Min Zhu
- National Institute on Aging, National Institutes of Health, Baltimore, MD
| | | | - Michelle Shardell
- National Institute on Aging, National Institutes of Health, Baltimore, MD
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Debra Schaumberg
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Jennifer E. Van Eyk
- Advanced Clinical BioSystems Research Institute, The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Richard D. Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Taylor-Walker G, Lynn SA, Keeling E, Munday R, Johnston DA, Page A, Scott JA, Goverdhan S, Lotery AJ, Ratnayaka JA. The Alzheimer's-related amyloid beta peptide is internalised by R28 neuroretinal cells and disrupts the microtubule associated protein 2 (MAP-2). Exp Eye Res 2016; 153:110-121. [PMID: 27751744 PMCID: PMC5131630 DOI: 10.1016/j.exer.2016.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022]
Abstract
Age-related Macular Degeneration (AMD) is a common, irreversible blinding condition that leads to the loss of central vision. AMD has a complex aetiology with both genetic as well as environmental risks factors, and share many similarities with Alzheimer's disease. Recent findings have contributed significantly to unravelling its genetic architecture that is yet to be matched by molecular insights. Studies are made more challenging by observations that aged and AMD retinas accumulate the highly pathogenic Alzheimer's-related Amyloid beta (Aβ) group of peptides, for which there appears to be no clear genetic basis. Analyses of human donor and animal eyes have identified retinal Aβ aggregates in retinal ganglion cells (RGC), the inner nuclear layer, photoreceptors as well as the retinal pigment epithelium. Aβ is also a major drusen constituent; found correlated with elevated drusen-load and age, with a propensity to aggregate in retinas of advanced AMD. Despite this evidence, how such a potent driver of neurodegeneration might impair the neuroretina remains incompletely understood, and studies into this important aspect of retinopathy remains limited. In order to address this we exploited R28 rat retinal cells which due to its heterogeneous nature, offers diverse neuroretinal cell-types in which to study the molecular pathology of Aβ. R28 cells are also unaffected by problems associated with the commonly used RGC-5 immortalised cell-line, thus providing a well-established model in which to study dynamic Aβ effects at single-cell resolution. Our findings show that R28 cells express key neuronal markers calbindin, protein kinase C and the microtubule associated protein-2 (MAP-2) by confocal immunofluorescence which has not been shown before, but also calretinin which has not been reported previously. For the first time, we reveal that retinal neurons rapidly internalised Aβ1-42, the most cytotoxic and aggregate-prone amongst the Aβ family. Furthermore, exposure to physiological amounts of Aβ1-42 for 24 h correlated with impairment to neuronal MAP-2, a cytoskeletal protein which regulates microtubule dynamics in axons and dendrites. Disruption to MAP-2 was transient, and had recovered by 48 h, although internalised Aβ persisted as discrete puncta for as long as 72 h. To assess whether Aβ could realistically localise to living retinas to mediate such effects, we subretinally injected nanomolar levels of oligomeric Aβ1-42 into wildtype mice. Confocal microscopy revealed the presence of focal Aβ deposits in RGC, the inner nuclear and the outer plexiform layers 8 days later, recapitulating naturally-occurring patterns of Aβ aggregation in aged retinas. Our novel findings describe how retinal neurons internalise Aβ to transiently impair MAP-2 in a hitherto unreported manner. MAP-2 dysfunction is reported in AMD retinas, and is thought to be involved in remodelling and plasticity of post-mitotic neurons. Our insights suggest a molecular pathway by which this could occur in the senescent eye leading to complex diseases such as AMD. Molecular basis of complex retinopathies such as AMD is incompletely understood. The Alzheimer's-related Aβ peptides are rapidly internalised by retinal neurons. Internalised Aβ is retained within neurons and transiently impairs MAP-2. Subretinally injected Aβ mimics its naturally-occurring distribution in aged retinas.
Collapse
Affiliation(s)
- George Taylor-Walker
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - David A Johnston
- Biomedical Imaging Unit, University of Southampton, SGH, MP12, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, SGH, MP12, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Jennifer A Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Srini Goverdhan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom; Eye Unit, University Southampton NHS Trust, Southampton, SO16 6YD, United Kingdom
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
10
|
Huang XF, Wang Y, Li FF, Lin D, Dai ML, Wang QF, Jin ZB. CFHR2-rs2986127 as a genetic protective marker for acute anterior uveitis in Chinese patients. J Gene Med 2016; 18:193-8. [PMID: 27306586 DOI: 10.1002/jgm.2890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/10/2016] [Indexed: 11/10/2022] Open
Affiliation(s)
- Xiu-Feng Huang
- The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health; The Eye Hospital of Wenzhou Medical University; Wenzhou China
| | - Yuqin Wang
- The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health; The Eye Hospital of Wenzhou Medical University; Wenzhou China
| | - Fen-Fen Li
- The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health; The Eye Hospital of Wenzhou Medical University; Wenzhou China
| | - Dan Lin
- The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health; The Eye Hospital of Wenzhou Medical University; Wenzhou China
| | - Ma-Li Dai
- The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health; The Eye Hospital of Wenzhou Medical University; Wenzhou China
| | - Qing-Feng Wang
- The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health; The Eye Hospital of Wenzhou Medical University; Wenzhou China
| | - Zi-Bing Jin
- The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health; The Eye Hospital of Wenzhou Medical University; Wenzhou China
| |
Collapse
|
11
|
Zou J, Duan X, Zheng G, Zhao Z, Chen S, Dai P, Zheng H. A novel PIK3CD C896T mutation detected in bilateral sudden sensorineural hearing loss using next generation sequencing: An indication of primary immunodeficiency. J Otol 2016; 11:78-83. [PMID: 29937814 PMCID: PMC6002587 DOI: 10.1016/j.joto.2016.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 12/02/2022] Open
Abstract
Objective To investigate immune-related genetic background in bilateral sudden sensorineural hearing loss (SSNHL). Case report and methods The case is a 45-year-old man presenting with a 7-year history of bilateral profound SSNHL. Blood biochemical testing demonstrated increased levels of total cholesterol (5.88 mmol/L). Tests for hepatitis B showed a positive antibody against the hepatitis B core antigen. Complement C3 was below the normal value, and complement C4 and IgG were in the lower range of normal values. CT images showed a normal inner ear and vestibular aqueduct but round window membranous ossification on both sides. A total number of 232 immune-associated genes were sequenced using the next generation sequencing technique. Results Mutations were detected in 5 genes, including the phosphoinositide 3-kinase catalytic subunit delta (PIK3CD), caspase recruitment domain-containing protein 9 (CARD9), complement factor H-related (CFHR2), immunoglobulin lambda-like polypeptide 1 Protein (IGLL1), and transmembrane channel-like gene family 8 (TMC8). In the PIK3CD gene, a C896T substitute in exon 7 was detected. This mutation causes primary immunodeficiency and is an autosomal dominant disease. Conclusion The PIK3CD C896T mutation responsible for primary immunodeficiency may contribute to the onset of bilateral SSNHL with subsequent rapid progression.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
- Corresponding author. Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Changhai Road #168, Shanghai 200433, China. Tel.: +86 21 311 62021.
| | - Xiangqiang Duan
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guiliang Zheng
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhen Zhao
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shiyue Chen
- Department of Radiology, National Key Discipline, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Pu Dai
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Hongliang Zheng
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Morrison MA, Magalhaes TR, Ramke J, Smith SE, Ennis S, Simpson CL, Portas L, Murgia F, Ahn J, Dardenne C, Mayne K, Robinson R, Morgan DJ, Brian G, Lee L, Woo SJ, Zacharaki F, Tsironi EE, Miller JW, Kim IK, Park KH, Bailey-Wilson JE, Farrer LA, Stambolian D, DeAngelis MM. Ancestry of the Timorese: age-related macular degeneration associated genotype and allele sharing among human populations from throughout the world. Front Genet 2015. [PMID: 26217379 PMCID: PMC4496576 DOI: 10.3389/fgene.2015.00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We observed that the third leading cause of blindness in the world, age-related macular degeneration (AMD), occurs at a very low documented frequency in a population-based cohort from Timor-Leste. Thus, we determined a complete catalog of the ancestry of the Timorese by analysis of whole exome chip data and haplogroup analysis of SNP genotypes determined by sequencing the Hypervariable I and II regions of the mitochondrial genome and 17 genotyped YSTR markers obtained from 535 individuals. We genotyped 20 previously reported AMD-associated SNPs in the Timorese to examine their allele frequencies compared to and between previously documented AMD cohorts of varying ethnicities. For those without AMD (average age > 55 years), genotype and allele frequencies were similar for most SNPs with a few exceptions. The major risk allele of HTRA1 rs11200638 (10q26) was at a significantly higher frequency in the Timorese, as well as 3 of the 5 protective CFH (1q32) SNPs (rs800292, rs2284664, and rs12066959). Additionally, the most commonly associated AMD-risk SNP, CFH rs1061170 (Y402H), was also seen at a much lower frequency in the Korean and Timorese populations than in the assessed Caucasian populations (C ~7 vs. ~40%, respectively). The difference in allele frequencies between the Timorese population and the other genotyped populations, along with the haplogroup analysis, also highlight the genetic diversity of the Timorese. Specifically, the most common ancestry groupings were Oceanic (Melanesian and Papuan) and Eastern Asian (specifically Han Chinese). The low prevalence of AMD in the Timorese population (2 of 535 randomly selected participants) may be due to the enrichment of protective alleles in this population at the 1q32 locus.
Collapse
Affiliation(s)
- Margaux A Morrison
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Tiago R Magalhaes
- National Children's Research Centre, Our Lady's Children's Hospital Dublin, Ireland ; Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | | | - Silvia E Smith
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Sean Ennis
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin Dublin, Ireland ; National Centre for Medical Genetics, Our Lady's Children's Hospital Dublin, Ireland
| | - Claire L Simpson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health Baltimore, MD, USA
| | - Laura Portas
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health Baltimore, MD, USA ; Institute of Population Genetics, The National Research Council Sassari, Italy
| | - Federico Murgia
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health Baltimore, MD, USA ; Institute of Population Genetics, The National Research Council Sassari, Italy
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University College of Medicine Seoul, South Korea ; Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center Seoul, South Korea
| | - Caitlin Dardenne
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Katie Mayne
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Rosann Robinson
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Denise J Morgan
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Garry Brian
- The Fred Hollows Foundation New Zealand Auckland, New Zealand
| | - Lucy Lee
- The Fred Hollows Foundation New Zealand Auckland, New Zealand ; London School of Hygiene and Tropical Medicine, University of London London, UK
| | - Se J Woo
- Department of Ophthalmology, Seoul National University College of Medicine Seoul, South Korea ; Department of Ophthalmology, Seoul National University Bundang Hospital Seoungnam, South Korea
| | - Fani Zacharaki
- Department of Ophthalmology, University of Thessaly School of Medicine Larissa, Greece
| | - Evangelia E Tsironi
- Department of Ophthalmology, University of Thessaly School of Medicine Larissa, Greece
| | - Joan W Miller
- Retina Service and Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School Boston, MA, USA
| | - Ivana K Kim
- Retina Service and Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School Boston, MA, USA
| | - Kyu H Park
- Department of Ophthalmology, Seoul National University College of Medicine Seoul, South Korea ; Department of Ophthalmology, Seoul National University Bundang Hospital Seoungnam, South Korea
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health Baltimore, MD, USA
| | - Lindsay A Farrer
- Departments of Medicine, Ophthalmology, Neurology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health Boston, MA, USA
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania Philadelphia, PA, USA
| | - Margaret M DeAngelis
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
13
|
Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 2015; 45:1-29. [PMID: 25486088 PMCID: PMC4339497 DOI: 10.1016/j.preteyeres.2014.11.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022]
Abstract
Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies.
Collapse
Affiliation(s)
- S Scott Whitmore
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Elliott H Sohn
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Kathleen R Chirco
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Arlene V Drack
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| |
Collapse
|
14
|
Identification of genome-wide SNP-SNP and SNP-clinical Boolean interactions in age-related macular degeneration. Methods Mol Biol 2015; 1253:217-55. [PMID: 25403535 DOI: 10.1007/978-1-4939-2155-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We propose here a methodology to uncover modularities in the network of SNP-SNP interactions most associated with disease. We start by computing all possible Boolean binary SNP interactions across the whole genome. By constructing a weighted graph of the most relevant interactions and via a combinatorial optimization approach, we find the most highly interconnected SNPs. We show that the method can be easily extended to find SNP/environment interactions. Using a modestly sized GWAS dataset of age-related macular degeneration (AMD), we identify a group of only 19 SNPs, which include those in previously reported regions associated to AMD. We also uncover a larger set of loci pointing to a matrix of key processes and functions that are affected. The proposed integrative methodology extends and overlaps traditional statistical analysis in a natural way. Combinatorial optimization techniques allow us to find the kernel of the most central interactions, complementing current methods of GWAS analysis and also enhancing the search for gene-environment interaction.
Collapse
|
15
|
Wiley LA, Burnight ER, Mullins RF, Stone EM, Tucker BA. Stem cells as tools for studying the genetics of inherited retinal degenerations. Cold Spring Harb Perspect Med 2014; 5:a017160. [PMID: 25502747 DOI: 10.1101/cshperspect.a017160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability to provide early clinical intervention for inherited disorders is heavily dependent on knowledge of a patient's disease-causing mutations and the resultant pathophysiologic mechanism(s). Without knowing a patient's disease-causing gene, and how gene mutations alter the health and functionality of affected cells, it would be difficult to develop and deliver patient-specific molecular or small molecule therapies. Many believe that the field of stem cell biology holds the keys to the future development of disease-, patient-, and cell-specific therapies. In the case of the eye, which is susceptible to an extremely common late-onset degenerative disease known as age-related macular degeneration, stem cell-based therapies could increase the quality of life for millions of patients worldwide. Furthermore, autologous, patient-specific induced pluripotent stem cells could be a viable source to treat rare Mendelian retinal degenerative diseases such as retinitis pigmentosa, Stargardt disease, and Best disease, to name a few.
Collapse
Affiliation(s)
- Luke A Wiley
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Erin R Burnight
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242 Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa 52242
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
16
|
Wiley LA, Burnight ER, Songstad AE, Drack AV, Mullins RF, Stone EM, Tucker BA. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res 2014; 44:15-35. [PMID: 25448922 DOI: 10.1016/j.preteyeres.2014.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 12/26/2022]
Abstract
Vision is the sense that we use to navigate the world around us. Thus it is not surprising that blindness is one of people's most feared maladies. Heritable diseases of the retina, such as age-related macular degeneration and retinitis pigmentosa, are the leading cause of blindness in the developed world, collectively affecting as many as one-third of all people over the age of 75, to some degree. For decades, scientists have dreamed of preventing vision loss or of restoring the vision of patients affected with retinal degeneration through drug therapy, gene augmentation or a cell-based transplantation approach. In this review we will discuss the use of the induced pluripotent stem cell technology to model and develop various treatment modalities for the treatment of inherited retinal degenerative disease. We will focus on the use of iPSCs for interrogation of disease pathophysiology, analysis of drug and gene therapeutics and as a source of autologous cells for cell transplantation and replacement.
Collapse
Affiliation(s)
- Luke A Wiley
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Erin R Burnight
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Allison E Songstad
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Arlene V Drack
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
17
|
Ward MJ, Marsolo KA, Froehle CM. Applications of Business Analytics in Healthcare. BUSINESS HORIZONS 2014; 57:571-582. [PMID: 25429161 PMCID: PMC4242091 DOI: 10.1016/j.bushor.2014.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The American healthcare system is at a crossroads, and analytics, as an organizational skill, figures to play a pivotal role in its future. As more healthcare systems capture information electronically and as they begin to collect more novel forms of data, such as human DNA, how will we leverage these resources and use them to improve human health at a manageable cost? In this article, we argue that analytics will play a fundamental role in the transformation of the American healthcare system. However, there are numerous challenges to the application and use of analytics, namely the lack of data standards, barriers to the collection of high-quality data, and a shortage of qualified personnel to conduct such analyses. There are also multiple managerial issues, such as how to get end users of electronic data to employ it consistently for improving healthcare delivery, and how to manage the public reporting and sharing of data. In this article, we explore applications of analytics in healthcare, barriers and facilitators to its widespread adoption, and how analytics can help us achieve the goals of the modern healthcare system: high-quality, responsive, affordable, and efficient care.
Collapse
Affiliation(s)
- Michael J. Ward
- Vanderbilt University, Department of Emergency Medicine, 1313 21st Avenue, 703 Oxford House, Nashville, TN 37232-4700, 615-936-8379 (phone), 615-936-3754 (fax)
| | - Keith A. Marsolo
- Cincinnati Children’s Hospital Medical Center, Division of Biomedical Informatics, 3333 Burnet Ave, Cincinnati, OH 45229-3026, 513-803-0333, University of Cincinnati, College of Medicine
| | - Craig M. Froehle
- University of Cincinnati, Carl H. Lindner College of Business, 2925 Campus Green Drive, Cincinnati, OH 45221-0130, 513-556-7174, University of Cincinnati, College of Medicine, Cincinnati Children’s Hospital Medical Center, James M. Anderson Center for Health Systems Excellence
| |
Collapse
|
18
|
Contreras AV, Zenteno JC, Fernández-López JC, Rodríguez-Corona U, Falfán-Valencia R, Sebastian L, Morales F, Ochoa-Contreras D, Carnevale A, Silva-Zolezzi I. CFH haplotypes and ARMS2, C2, C3, and CFB alleles show association with susceptibility to age-related macular degeneration in Mexicans. Mol Vis 2014; 20:105-16. [PMID: 24453474 PMCID: PMC3891434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/11/2014] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To evaluate the contribution of genetic variants of complement factor H (CFH), complement component 2 and 3 (C2 and C3), complement factor B (CFB), and age-related maculopathy susceptibility 2 (ARMS2) to age-related macular degeneration (AMD) risk in the Mexican Mestizo population. METHODS Analysis included 282 unrelated Mexican patients with advanced AMD, 205 healthy controls, and 280 population controls. Stereoscopic fundus images were graded on the Clinical Age-Related Maculopathy System (CARMS). We designed a resequencing strategy using primers with M13 adaptor for the 23 exons of the CFH gene in a subgroup of 96 individuals clinically evaluated: 48 AMD cases and 48 age- and sex-matched healthy controls. Single nucleotide polymorphisms (SNPs) in C3 (Arg80Gly and Pro292Leu), C2 (rs547154), CFB (Leu9His), and ARMS2 (Ala69Ser) were genotyped in all patients, healthy and population controls using TaqMan assay. RESULTS All evaluated individuals were Mexican Mestizos, and their genetic ancestry was validated using 224 ancestry informative markers and calculating F(st) values. The CFH resequencing revealed 19 SNPs and a common variant in the intron 2 splice acceptor site; three CFH haplotypes inferred from individual genotypes, showed significant differences between cases and controls. The risk alleles in C3 (rs1047286, odds ratio [OR]=2.48, 95% confidence interval [CI]=1.64-3.75, p=1.59E-05; rs2230199, OR=2.15, 95% CI=1.48-3.13, p=6.28E-05) and in ARMS2 (rs10490924, OR=3.09, 95% CI=2.48-3.86, p=5.42E-23) were strongly associated with risk of AMD. The protective effect of alleles in C2 (rs547154) and CFB (rs4151667) showed a trend but was not significantly associated after correction for multiple testing. CONCLUSIONS Our results show that ARMS2 and C3 are major contributors to advanced AMD in Mexican patients, while the contributions of CFH, C2, and CFB are minor to those of other populations, reveling significant ethnic differences in minor allele frequencies. We provide evidence that two specific common haplotypes in the CFH gene predispose individuals to AMD, while another may confer reduced risk of disease in this admixed population.
Collapse
Affiliation(s)
| | - Juan Carlos Zenteno
- Department of Genetics and Research Unit, Institute of Ophthalmology Conde de Valenciana, Mexico City, Mexico,Biochemistry Department, Faculty of Medicine, UNAM, Mexico City, Mexico
| | | | | | - Ramcés Falfán-Valencia
- Laboratorio HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Fabiola Morales
- Instituto Nacional de Medicina Genómica. Mexico City, Mexico
| | - Daniel Ochoa-Contreras
- Asociación Para Evitar la Ceguera en México, Hospital “Dr. Luis Sánchez Bulnes,” Mexico City, Mexico
| | | | - Irma Silva-Zolezzi
- Nutrition and Health Department, Nestlé Research Center, Lausanne, Switzerland
| |
Collapse
|
19
|
Abstract
Factor H-related proteins (CFHRs) are plasma glycoproteins related in structure and antigenicity to each other and to the complement inhibitory protein factor H. Such proteins are found in most mammals but their number and domain composition vary. This chapter summarizes our current knowledge on the human factor H-related proteins. In contrast to factor H, they have no strong complement inhibitory activity, although for some of them regulatory or complement modulatory activity has been reported. A common feature of CFHRs is that they bind to the C3b component of complement. Novel links between CFHRs and various diseases (C3 glomerulopathies, atypical hemolytic uremic syndrome and age-related macular degeneration) have been revealed in recent years, but we are still far from understanding their biological function.
Collapse
|
20
|
Zarbin MA, Arlow T, Ritch R. Regenerative nanomedicine for vision restoration. Mayo Clin Proc 2013; 88:1480-90. [PMID: 24290123 DOI: 10.1016/j.mayocp.2013.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
Herein, we discuss recent applications of nanotechnology to ophthalmology, including nanoparticles for drug, gene, and trophic factor delivery; regenerative medicine (in the areas of optogenetics and optic nerve regeneration); and diagnostics (eg, minimally invasive biometric monitoring). Specific applications for the management of choroidal neovascularization, retinal neovascularization, oxidative damage, optic nerve damage, and retinal degenerative disease are considered. Nanotechnology will play an important role in early- and late-stage interventions in the management of blinding diseases.
Collapse
Affiliation(s)
- Marco A Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, Rutgers University, Newark, NJ.
| | | | | |
Collapse
|
21
|
Human factor H-related protein 2 (CFHR2) regulates complement activation. PLoS One 2013; 8:e78617. [PMID: 24260121 PMCID: PMC3832495 DOI: 10.1371/journal.pone.0078617] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/13/2013] [Indexed: 11/25/2022] Open
Abstract
Mutations and deletions within the human CFHR gene cluster on chromosome 1 are associated with diseases, such as dense deposit disease, CFHR nephropathy or age-related macular degeneration. Resulting mutant CFHR proteins can affect complement regulation. Here we identify human CFHR2 as a novel alternative pathway complement regulator that inhibits the C3 alternative pathway convertase and terminal pathway assembly. CFHR2 is composed of four short consensus repeat domains (SCRs). Two CFHR2 molecules form a dimer through their N-terminal SCRs, and each of the two C-terminal ends can bind C3b. C3b bound CFHR2 still allows C3 convertase formation but the CFHR2 bound convertases do not cleave the substrate C3. Interestingly CFHR2 hardly competes off factor H from C3b. Thus CFHR2 likely acts in concert with factor H, as CFHR2 inhibits convertases while simultaneously allowing factor H assisted degradation by factor I.
Collapse
|
22
|
Yu W, Dong S, Zhao C, Wang H, Dai F, Yang J. Cumulative association between age-related macular degeneration and less studied genetic variants in PLEKHA1/ARMS2/HTRA1: a meta and gene-cluster analysis. Mol Biol Rep 2013; 40:5551-61. [PMID: 24013816 PMCID: PMC3864106 DOI: 10.1007/s11033-013-2656-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
The objective of this study is to examine the cumulative effect of the less studied genetic variants in PLEKHA1/ARMS2/HTRA1 on age-related macular degeneration (AMD). We performed an extensive literature search for studies on the association between AMD and the less studied genetic variants in PLEKHA1/ARMS2/HTRA1. Multiple meta-analyses were performed to evaluate the association between individual genetic variants and AMD. A gene-cluster analysis was used to investigate the cumulative effect of these less studied genetic variants on AMD. A total of 23 studies from 20 published papers met the eligibility criteria and were included in our analyses. Several genetic variants in the gene cluster are significantly associated with AMD in our meta-analyses or in individual studies. Gene-cluster analysis reveals a strong cumulative association between these genetic variants in this gene cluster and AMD (p < 10(-5)). However, two previously suspected SNPs in ARMS2, including rs2736911, the SNP having the largest number of studies in our meta-analyses; and rs3793917, the SNP with the largest sample size, were not significantly associated with AMD (both p's > 0.12). Sensitivity analyses reveal significant association of AMD with rs2736911 in Chinese but not in Caucasian, with c.372_815del443ins54 in Caucasian but not in Chinese, and with rs1049331 in both ethnic groups. These less studied genetic variants have a significant cumulative effect on wet AMD. Our study provides evidence of the joint contribution of genetic variants in PLEKHA1/ARMS2/HTRA1 to AMD risk, in addition to the two widely studied genetic variants whose association with AMD was well established.
Collapse
Affiliation(s)
- Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Shuqian Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chuntao Zhao
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haina Wang
- College of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Fei Dai
- Division of Gastroenterology, Second Affiliated Hospital, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Jingyun Yang
- The Methodology Center, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
23
|
Jacobo SMP, DeAngelis MM, Kim IK, Kazlauskas A. Age-related macular degeneration-associated silent polymorphisms in HtrA1 impair its ability to antagonize insulin-like growth factor 1. Mol Cell Biol 2013; 33:1976-90. [PMID: 23478260 PMCID: PMC3647976 DOI: 10.1128/mcb.01283-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/27/2013] [Indexed: 11/20/2022] Open
Abstract
Synonymous single nucleotide polymorphisms (SNPs) within a transcript's coding region produce no change in the amino acid sequence of the protein product and are therefore intuitively assumed to have a neutral effect on protein function. We report that two common variants of high-temperature requirement A1 (HTRA1) that increase the inherited risk of neovascular age-related macular degeneration (NvAMD) harbor synonymous SNPs within exon 1 of HTRA1 that convert common codons for Ala34 and Gly36 to less frequently used codons. The frequent-to-rare codon conversion reduced the mRNA translation rate and appeared to compromise HtrA1's conformation and function. The protein product generated from the SNP-containing cDNA displayed enhanced susceptibility to proteolysis and a reduced affinity for an anti-HtrA1 antibody. The NvAMD-associated synonymous polymorphisms lie within HtrA1's putative insulin-like growth factor 1 (IGF-1) binding domain. They reduced HtrA1's abilities to associate with IGF-1 and to ameliorate IGF-1-stimulated signaling events and cellular responses. These observations highlight the relevance of synonymous codon usage to protein function and implicate homeostatic protein quality control mechanisms that may go awry in NvAMD.
Collapse
Affiliation(s)
- Sarah Melissa P. Jacobo
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Ivana K. Kim
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Andrius Kazlauskas
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Scheetz TE, Fingert JH, Wang K, Kuehn MH, Knudtson KL, Alward WLM, Boldt HC, Russell SR, Folk JC, Casavant TL, Braun TA, Clark AF, Stone EM, Sheffield VC. A genome-wide association study for primary open angle glaucoma and macular degeneration reveals novel Loci. PLoS One 2013; 8:e58657. [PMID: 23536807 PMCID: PMC3594156 DOI: 10.1371/journal.pone.0058657] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/07/2013] [Indexed: 11/22/2022] Open
Abstract
Glaucoma and age-related macular degeneration (AMD) are the two leading causes of visual loss in the United States. We utilized a novel study design to perform a genome-wide association for both primary open angle glaucoma (POAG) and AMD. This study design utilized a two-stage process for hypothesis generation and validation, in which each disease cohort was utilized as a control for the other. A total of 400 POAG patients and 400 AMD patients were ascertained and genotyped at 500,000 loci. This study identified a novel association of complement component 7 (C7) to POAG. Additionally, an association of central corneal thickness, a known risk factor for POAG, was found to be associated with ribophorin II (RPN2). Linked monogenic loci for POAG and AMD were also evaluated for evidence of association, none of which were found to be significantly associated. However, several yielded putative associations requiring validation. Our data suggest that POAG is more genetically complex than AMD, with no common risk alleles of large effect.
Collapse
Affiliation(s)
- Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grover VK, Cole DE, Hamilton DC. Genotype-Based Association Analysis Using Discordant Pairs: A Penetrance Odds Ratio Approach. Ann Hum Genet 2013; 77:137-46. [DOI: 10.1111/ahg.12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/08/2012] [Indexed: 11/24/2022]
Affiliation(s)
- Vaneeta K. Grover
- Mathematics & Statistics; Dalhousie University; Halifax; Nova Scotia; Canada; B3H 4R2
| | - David E.C. Cole
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Banting Institute; Toronto; Ontario; Canada; M5G 1L5
| | - David C. Hamilton
- Mathematics & Statistics; Dalhousie University; Halifax; Nova Scotia; Canada; B3H 4R2
| |
Collapse
|
26
|
Miller JW. Age-related macular degeneration revisited--piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am J Ophthalmol 2013; 155:1-35.e13. [PMID: 23245386 DOI: 10.1016/j.ajo.2012.10.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 12/11/2022]
Abstract
PURPOSE To present the current understanding of age-related macular degeneration (AMD) pathogenesis, based on clinical evidence, epidemiologic data, histopathologic examination, and genetic data; to provide an update on current and emerging therapies; and to propose an integrated model of the pathogenesis of AMD. DESIGN Review of published clinical and experimental studies. METHODS Analysis and synthesis of clinical and experimental data. RESULTS We are closer to a complete understanding of the pathogenesis of AMD, having progressed from clinical observations to epidemiologic observations and clinical pathologic correlation. More recently, modern genetic and genomic studies have facilitated the exploration of molecular pathways. It seems that AMD is a complex disease that results from the interaction of genetic susceptibility with aging and environmental factors. Disease progression also seems to be driven by a combination of genetic and environmental factors. CONCLUSIONS Therapies based on pathophysiologic features have changed the paradigm for treating neovascular AMD. With improved understanding of the underlying genetic susceptibility, we can identify targets to halt early disease and to prevent progression and vision loss.
Collapse
|
27
|
Parmeggiani F, Romano MR, Costagliola C, Semeraro F, Incorvaia C, D'Angelo S, Perri P, De Palma P, De Nadai K, Sebastiani A. Mechanism of inflammation in age-related macular degeneration. Mediators Inflamm 2012; 2012:546786. [PMID: 23209345 PMCID: PMC3504473 DOI: 10.1155/2012/546786] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/02/2012] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease.
Collapse
|
28
|
Morrison MA, Silveira AC, Huynh N, Jun G, Smith SE, Zacharaki F, Sato H, Loomis S, Andreoli MT, Adams SM, Radeke MJ, Jelcick AS, Yuan Y, Tsiloulis AN, Chatzoulis DZ, Silvestri G, Kotoula MG, Tsironi EE, Hollis BW, Chen R, Haider NB, Miller JW, Farrer LA, Hageman GS, Kim IK, Schaumberg DA, DeAngelis MM. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration. Hum Genomics 2012; 5:538-68. [PMID: 22155603 PMCID: PMC3525248 DOI: 10.1186/1479-7364-5-6-538] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vitamin D has been shown to have anti-angiogenic properties and to play a protective role in several types of cancer, including breast, prostate and cutaneous melanoma. Similarly, vitamin D levels have been shown to be protective for risk of a number of conditions, including cardiovascular disease and chronic kidney disease, as well as numerous autoimmune disorders such as multiple sclerosis, inflammatory bowel diseases and type 1 diabetes mellitus. A study performed by Parekh et al. was the first to suggest a role for vitamin D in age-related macular degeneration (AMD) and showed a correlation between reduced serum vitamin D levels and risk for early AMD. Based on this study and the protective role of vitamin D in diseases with similar pathophysiology to AMD, we examined the role of vitamin D in a family-based cohort of 481 sibling pairs. Using extremely phenotypically discordant sibling pairs, initially we evaluated the association of neovascular AMD and vitamin D/sunlight-related epidemiological factors. After controlling for established AMD risk factors, including polymorphisms of the genes encoding complement factor H (CFH) and age-related maculopathy susceptibility 2/HtrA serine peptidase (ARMS2/HTRA1), and smoking history, we found that ultraviolet irradiance was protective for the development of neovascular AMD (p = 0.001). Although evaluation of serum vitamin D levels (25-hydroxyvitamin D [25(OH)D]) was higher in unaffected individuals than in their affected siblings, this finding did not reach statistical significance. Based on the relationship between ultraviolet irradiance and vitamin D production, we employed a candidate gene approach for evaluating common variation in key vitamin D pathway genes (the genes encoding the vitamin D receptor [VDR]; cytochrome P450, family 27, subfamily B, polypeptide 1 [CYP27B1]; cytochrome P450, family 24, subfamily A, polypeptide 1 [CYP24A1]; and CYP27A1) in this same family-based cohort. Initial findings were then validated and replicated in the extended family cohort, an unrelated case-control cohort from central Greece and a prospective nested case-control population from the Nurse's Health Study and Health Professionals Follow-Up Studies, which included patients with all subtypes of AMD for a total of 2,528 individuals. Single point variants in CYP24A1 (the gene encoding the catabolising enzyme of the vitamin D pathway) were demonstrated to influence AMD risk after controlling for smoking history, sex and age in all populations, both separately and, more importantly, in a meta-analysis. This is the first report demonstrating a genetic association between vitamin D metabolism and AMD risk. These findings were also supplemented with expression data from human donor eyes and human retinal cell lines. These data not only extend previous biological studies in the AMD field, but further emphasise common antecedents between several disorders with an inflammatory/immunogenic component such as cardiovascular disease, cancer and AMD.
Collapse
Affiliation(s)
- Margaux A Morrison
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Clinical validation of a genetic model to estimate the risk of developing choroidal neovascular age-related macular degeneration. Hum Genomics 2012; 5:420-40. [PMID: 21807600 PMCID: PMC3525964 DOI: 10.1186/1479-7364-5-5-420] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Predictive tests for estimating the risk of developing late-stage neovascular age-related macular degeneration (AMD) are subject to unique challenges. AMD prevalence increases with age, clinical phenotypes are heterogeneous and control collections are prone to high false-negative rates, as many control subjects are likely to develop disease with advancing age. Risk prediction tests have been presented previously, using up to ten genetic markers and a range of self-reported non-genetic variables such as body mass index (BMI) and smoking history. In order to maximise the accuracy of prediction for mainstream genetic testing, we sought to derive a test comparable in performance to earlier testing models but based purely on genetic markers, which are static through life and not subject to misreporting. We report a multicentre assessment of a larger panel of single nucleotide polymorphisms (SNPs) than previously analysed, to improve further the classification performance of a predictive test to estimate the risk of developing choroidal neovascular (CNV) disease. We developed a predictive model based solely on genetic markers and avoided inclusion of self-reported variables (eg smoking history) or non-static factors (BMI, education status) that might otherwise introduce inaccuracies in calculating individual risk estimates. We describe the performance of a test panel comprising 13 SNPs genotyped across a consolidated collection of four patient cohorts obtained from academic centres deemed appropriate for pooling. We report on predictive effect sizes and their classification performance. By incorporating multiple cohorts of homogeneous ethnic origin, we obtained >80 per cent power to detect differences in genetic variants observed between cases and controls. We focused our study on CNV, a subtype of advanced AMD associated with a severe and potentially treatable form of the disease. Lastly, we followed a two-stage strategy involving both test model development and test model validation to present estimates of classification performance anticipated in the larger clinical setting. The model contained nine SNPs tagging variants in the regulators of complement activation (RCA) locus spanning the complement factor H (CFH), complement factor H-related 4 (CFHR4), complement factor H-related 5 (CFHR5) and coagulation factor XIII B subunit (F13B) genes; the four remaining SNPs targeted polymorphisms in the complement component 2 (C2), complement factor B (CFB), complement component 3 (C3) and age-related maculopathy susceptibility protein 2 (ARMS2) genes. The pooled sample size (1,132 CNV cases, 822 controls) allowed for both model development and model validation to confirm the accuracy of risk prediction. At the validation stage, our test model yielded 82 per cent sensitivity and 63 per cent specificity, comparable with metrics reported with earlier testing models that included environmental risk factors. Our test had an area under the curve of 0.80, reflecting a modest improvement compared with tests reported with fewer SNPs.
Collapse
|
30
|
Biswas S, Lin S. Logistic Bayesian LASSO for identifying association with rare haplotypes and application to age-related macular degeneration. Biometrics 2011; 68:587-97. [PMID: 21955118 DOI: 10.1111/j.1541-0420.2011.01680.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rare variants have been heralded as key to uncovering "missing heritability" in complex diseases. These variants can now be genotyped using next-generation sequencing technologies; nonetheless, rare haplotypes may also result from combination of common single nucleotide polymorphisms available from genome-wide association studies (GWAS). The National Eye Institute's data on age-related macular degeneration (AMD) is such an example. Studies on AMD had identified potential rare variants; however, due to lack of appropriate statistical tools, effects of individual rare haplotypes were never studied. Here we develop a method for identifying association with rare haplotypes for case-control design. A logistic regression based retrospective likelihood is formulated and is regularized using logistic Bayesian LASSO (LBL). In particular, we penalize the regression coefficients using appropriate priors to weed out unassociated haplotypes, making it possible for the rare associated ones to stand out. We applied LBL to the AMD data and identified common and rare haplotypes in the complement factor H gene, gaining insights into rare variants' contributions to AMD beyond the current literature. This analysis also demonstrates the richness of GWAS data for mapping rare haplotypes-a potential largely unexplored. Additionally, we conducted simulations to investigate the performance of LBL and compare it with Hapassoc. Our results show that LBL is much more powerful in identifying rare associated haplotypes when the false positive rates for both approaches are kept the same.
Collapse
Affiliation(s)
- Swati Biswas
- Department of Biostatistics, School of Public Health, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | |
Collapse
|
31
|
Copy number variation in the complement factor H-related genes and age-related macular degeneration. Mol Vis 2011; 17:2080-92. [PMID: 21850184 PMCID: PMC3156785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/03/2011] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To determine the contribution of copy number variation (CNV) in the regulation of complement activation (RCA) locus to the development of age-related macular degeneration (AMD). METHODS A multiplex ligation-dependent probe amplification assay was developed to quantify the number of copies of CFH, CFHR3, CFHR1, CFHR4, CFHR2, and CFHR5 in humans. Subjects with (451) and without (362) AMD were genotyped using the assay, and the impact on AMD risk was evaluated. RESULTS Eight unique combinations of copy number variation were observed in the 813 subjects. Combined deletion of CFHR3 and CFHR1 was protective (OR=0.47, 95% confidence interval 0.36-0.62) against AMD and was observed in 88 (82 [18.6%] with one deletion, 6 [1.4%] with two deletions) subjects with AMD and 127 (108 [30.7%] with one deletion, 19 [5.4%] with two deletions) subjects without AMD. Other deletions were much less common: CFH intron 1 (n=2), CFH exon 18 (n=2), combined CFH exon 18 and CFHR3 (n=1), CFHR3 (n=2), CFHR1 (n=1), combined CFHR1 and CFHR4 (n=15), and CFHR2 deletion (n=7, 0.9%). The combined CFHR3 and CFHR1 deletion was observed on a common protective haplotype, while the others appeared to have arisen on multiple different haplotypes. CONCLUSIONS We found copy number variations of CFHR3, CFHR1, CFHR4, and CFHR2. Combined deletion of CFHR3 and CFHR1 was associated with a decreased risk of developing AMD. Other deletions were not sufficiently common to have a statistically detectable impact on the risk of AMD, and duplications were not observed.
Collapse
|
32
|
Kawano S, Ono H, Takagi T, Bono H. Tutorial videos of bioinformatics resources: online distribution trial in Japan named TogoTV. Brief Bioinform 2011; 13:258-68. [PMID: 21803786 PMCID: PMC3294242 DOI: 10.1093/bib/bbr039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In recent years, biological web resources such as databases and tools have become more complex because of the enormous amounts of data generated in the field of life sciences. Traditional methods of distributing tutorials include publishing textbooks and posting web documents, but these static contents cannot adequately describe recent dynamic web services. Due to improvements in computer technology, it is now possible to create dynamic content such as video with minimal effort and low cost on most modern computers. The ease of creating and distributing video tutorials instead of static content improves accessibility for researchers, annotators and curators. This article focuses on online video repositories for educational and tutorial videos provided by resource developers and users. It also describes a project in Japan named TogoTV (http://togotv.dbcls.jp/en/) and discusses the production and distribution of high-quality tutorial videos, which would be useful to viewer, with examples. This article intends to stimulate and encourage researchers who develop and use databases and tools to distribute how-to videos as a tool to enhance product usability.
Collapse
Affiliation(s)
- Shin Kawano
- Database Center for Life Science, Research Organization of Information and Systems, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
33
|
Khandhadia S, Cipriani V, Yates JRW, Lotery AJ. Age-related macular degeneration and the complement system. Immunobiology 2011; 217:127-46. [PMID: 21868123 DOI: 10.1016/j.imbio.2011.07.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 06/22/2011] [Accepted: 07/18/2011] [Indexed: 11/30/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. It is a complex multifactorial disease, and despite new advances in treatment, many patients still succumb to visual impairment. The complement pathway has been implicated in the pathogenesis of many diseases, and recently variants in several genes encoding complement pathway proteins have been associated with AMD. Complement proteins have been found in histological specimens of eyes with AMD. Altered levels of both intrinsic complement proteins and activated products have been found in the circulation of patients with AMD. Complement activation may be triggered by oxidative stress, resulting from retinal exposure to incoming light; indeed an inter-play between these two pathological processes seems to exist. Finally, complement inhibitors are currently being evaluated in clinical trials. This article reviews the role of the complement system in AMD, and the potential of complement inhibition in preventing the devastating blindness resulting from this disease.
Collapse
Affiliation(s)
- S Khandhadia
- Clinical Neurosciences Division, University of Southampton, UK
| | | | | | | |
Collapse
|
34
|
Feehan M, Hartman J, Durante R, Morrison MA, Miller JW, Kim IK, DeAngelis MM. Identifying subtypes of patients with neovascular age-related macular degeneration by genotypic and cardiovascular risk characteristics. BMC MEDICAL GENETICS 2011; 12:83. [PMID: 21682878 PMCID: PMC3141628 DOI: 10.1186/1471-2350-12-83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 06/17/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND One of the challenges in the interpretation of studies showing associations between environmental and genotypic data with disease outcomes such as neovascular age-related macular degeneration (AMD) is understanding the phenotypic heterogeneity within a patient population with regard to any risk factor associated with the condition. This is critical when considering the potential therapeutic response of patients to any drug developed to treat the condition. In the present study, we identify patient subtypes or clusters which could represent several different targets for treatment development, based on genetic pathways in AMD and cardiovascular pathology. METHODS We identified a sample of patients with neovascular AMD, that in previous studies had been shown to be at elevated risk for the disease through environmental factors such as cigarette smoking and genetic variants including the complement factor H gene (CFH) on chromosome 1q25 and variants in the ARMS2/HtrA serine peptidase 1 (HTRA1) gene(s) on chromosome 10q26. We conducted a multivariate segmentation analysis of 253 of these patients utilizing available epidemiologic and genetic data. RESULTS In a multivariate model, cigarette smoking failed to differentiate subtypes of patients. However, four meaningfully distinct clusters of patients were identified that were most strongly differentiated by their cardiovascular health status (histories of hypercholesterolemia and hypertension), and the alleles of ARMS2/HTRA1 rs1049331. CONCLUSIONS These results have significant personalized medicine implications for drug developers attempting to determine the effective size of the treatable neovascular AMD population. Patient subtypes or clusters may represent different targets for therapeutic development based on genetic pathways in AMD and cardiovascular pathology, and treatments developed that may elevate CV risk, may be ill advised for certain of the clusters identified.
Collapse
Affiliation(s)
- Michael Feehan
- Observant LLC, 1601 Trapelo Road, Waltham, MA, 02451, USA
| | - John Hartman
- Observant LLC, 1601 Trapelo Road, Waltham, MA, 02451, USA
| | | | - Margaux A Morrison
- Ocular Molecular Genetics Institute and the Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
- 3 Ophthalmology and Visual Sciences, University of Utah, Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Joan W Miller
- Ocular Molecular Genetics Institute and the Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Ivana K Kim
- Ocular Molecular Genetics Institute and the Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Margaret M DeAngelis
- Ocular Molecular Genetics Institute and the Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
- 3 Ophthalmology and Visual Sciences, University of Utah, Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| |
Collapse
|
35
|
DeAngelis MM, Silveira AC, Carr EA, Kim IK. Genetics of age-related macular degeneration: current concepts, future directions. Semin Ophthalmol 2011; 26:77-93. [PMID: 21609220 PMCID: PMC4242505 DOI: 10.3109/08820538.2011.577129] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive degenerative disease which leads to blindness, affecting the quality of life of millions of Americans. More than 1.75 million individuals in the United States are affected by the advanced form of AMD. The etiological pathway of AMD is not yet fully understood, but there is a clear genetic influence on disease risk. To date, the 1q32 (CFH) and 10q26 (PLEKHA1/ARMS2/HTRA1) loci are the most strongly associated with disease; however, the variation in these genomic regions alone is unable to predict disease development with high accuracy. Therefore, current genetic studies are aimed at identifying new genes associated with AMD and their modifiers, with the goal of discovering diagnostic or prognostic biomarkers. Moreover, these studies provide the foundation for further investigation into the pathophysiology of AMD by utilizing a systems-biology-based approach to elucidate underlying mechanistic pathways.
Collapse
Affiliation(s)
- Margaret M. DeAngelis
- Ocular Molecular Genetics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Alexandra C. Silveira
- Ocular Molecular Genetics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth A. Carr
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Bellazzi R, Diomidous M, Sarkar IN, Takabayashi K, Ziegler A, McCray AT. Data analysis and data mining: current issues in biomedical informatics. Methods Inf Med 2011; 50:536-44. [PMID: 22146916 PMCID: PMC3233983 DOI: 10.3414/me11-06-0002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Medicine and biomedical sciences have become data-intensive fields, which, at the same time, enable the application of data-driven approaches and require sophisticated data analysis and data mining methods. Biomedical informatics provides a proper interdisciplinary context to integrate data and knowledge when processing available information, with the aim of giving effective decision-making support in clinics and translational research. OBJECTIVES To reflect on different perspectives related to the role of data analysis and data mining in biomedical informatics. METHODS On the occasion of the 50th year of Methods of Information in Medicine a symposium was organized, which reflected on opportunities, challenges and priorities of organizing, representing and analysing data, information and knowledge in biomedicine and health care. The contributions of experts with a variety of backgrounds in the area of biomedical data analysis have been collected as one outcome of this symposium, in order to provide a broad, though coherent, overview of some of the most interesting aspects of the field. RESULTS The paper presents sections on data accumulation and data-driven approaches in medical informatics, data and knowledge integration, statistical issues for the evaluation of data mining models, translational bioinformatics and bioinformatics aspects of genetic epidemiology. CONCLUSIONS Biomedical informatics represents a natural framework to properly and effectively apply data analysis and data mining methods in a decision-making context. In the future, it will be necessary to preserve the inclusive nature of the field and to foster an increasing sharing of data and methods between researchers.
Collapse
Affiliation(s)
- R Bellazzi
- University of Pavia, Dipartimento di Informatica e Sistemistica, Via Ferrata 1, 27100 Pavia (PV), Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Ryu E, Fridley BL, Tosakulwong N, Bailey KR, Edwards AO. Genome-wide association analyses of genetic, phenotypic, and environmental risks in the age-related eye disease study. Mol Vis 2010; 16:2811-21. [PMID: 21197116 PMCID: PMC3008720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/13/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To present genome-wide association analyses of genotypic and environmental risks on age-related macular degeneration (AMD) using 593 subjects from the age-related eye disease study (AREDS), after adjusting for population stratification and including questionable controls. METHODS Single nucleotide polymorphism (SNP) associations with AMD for the non-Hispanic white population were investigated using a log-additive model after adjusting for population stratification. Replication of possible SNP-disease association was performed by genotyping an independent group of 444 AMD case and 300 control subjects. Logistic regression models were used to assess interaction effects between smoking and SNPs associated with AMD. Independent genetic risk effects among the disease-associated SNPs were also investigated using multiple logistic regression models. RESULTS Population stratification was observed among the individuals having a self-reported race of non-Hispanic white. Risk allele frequencies at established AMD loci demonstrated that questionable control subjects were similar to control subjects in the AREDS, suggesting that they could be used as true controls in the analyses. Genetic loci (complement factor H [CFH], complement factor B [CFB], the age-related maculopathy susceptibility 2 locus containing the hypothetical gene [LOC387715]/the high-temperature requirement A-1 [HTRA1], and complement component 3 [C3]) that were already known to be associated with AMD were identified. An additional 26 novel SNPs potentially associated with AMD were identified, but none were definitely replicated in a second independent group of subjects. Smoking did not interact with known AMD loci, but was associated with late AMD. Statistically independent genetic signals were observed within the Pleckstrin homology domain-containing family A member 1 (PLEKHA1) region near LOC387715/HTRA1 and within a haplotype spanning exon 19 of the C3 gene. CONCLUSIONS Population stratification among Caucasian subjects from the multicentered AREDS was observed, suggesting that it should be adjusted for in future studies. The AREDS questionable control subjects can be used as control subjects in the AREDS genome-wide association study (GWAS). Smoking was an independent risk factor for advanced AMD in the AREDS subjects. There continues to be evidence that the 10q26 (age-related maculopathy susceptibility 2 gene [ARMS2]) locus spanning PLEKHA1-LOC387715-HTRA1 and the C3 gene may contain multiple independent genetic risks contributing to AMD.
Collapse
Affiliation(s)
- Euijung Ryu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | | | - Kent R. Bailey
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
38
|
Kopplin LJ, Igo RP, Wang Y, Sivakumaran TA, Hagstrom SA, Peachey NS, Francis PJ, Klein ML, SanGiovanni JP, Chew EY, Pauer GJT, Sturgill GM, Joshi T, Tian L, Xi Q, Henning AK, Lee KE, Klein R, Klein BEK, Iyengar SK. Genome-wide association identifies SKIV2L and MYRIP as protective factors for age-related macular degeneration. Genes Immun 2010; 11:609-21. [PMID: 20861866 PMCID: PMC3375062 DOI: 10.1038/gene.2010.39] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 01/11/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly in the developed world. We conducted a genome-wide association study in a series of families enriched for AMD and completed a meta-analysis of this new data with results from reanalysis of an existing study of a late-stage case-control cohort. We tested the top findings for replication in 1896 cases and 1866 controls and identified two novel genetic protective factors for AMD. In addition to the complement factor H (CFH) (P=2.3 × 10⁻⁶⁴) and age-related maculopathy susceptibility 2 (ARMS2) (P=1.2 × 10⁻⁶⁰) loci, we observed a protective effect at rs429608, an intronic SNP in SKIV2L (P=5.3 × 10⁻¹⁵), a gene near the complement component 2 (C2)/complement factor B (BF) locus, that indicates the protective effect may be mediated by variants other than the C2/BF variants previously studied. Haplotype analysis at this locus identified three protective haplotypes defined by the rs429608 protective allele. We also identified a new potentially protective effect at rs2679798 in MYRIP (P=2.9 × 10⁻⁴), a gene involved in retinal pigment epithelium melanosome trafficking. Interestingly, MYRIP was initially identified in the family-based scan and was confirmed in the case-control set. From these efforts, we report the identification of two novel protective factors for AMD and confirm the previously known associations at CFH, ARMS2 and C3.
Collapse
Affiliation(s)
- L J Kopplin
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Forman MR, Greene SM, Avis NE, Taplin SH, Courtney P, Schad PA, Hesse BW, Winn DM. Bioinformatics: Tools to accelerate population science and disease control research. Am J Prev Med 2010; 38:646-51. [PMID: 20494241 DOI: 10.1016/j.amepre.2010.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/18/2022]
Abstract
Population science and disease control researchers can benefit from a more proactive approach to applying bioinformatics tools for clinical and public health research. Bioinformatics utilizes principles of information sciences and technologies to transform vast, diverse, and complex life sciences data into a more coherent format for wider application. Bioinformatics provides the means to collect and process data, enhance data standardization and harmonization for scientific discovery, and merge disparate data sources. Achieving interoperability (i.e. the development of an informatics system that provides access to and use of data from different systems) will facilitate scientific explorations and careers and opportunities for interventions in population health. The National Cancer Institute's (NCI's) interoperable Cancer Biomedical Informatics Grid (caBIG) is one of a number of illustrative tools in this report that are being mined by population scientists. Tools are not all that is needed for progress. Challenges persist, including a lack of common data standards, proprietary barriers to data access, and difficulties pooling data from studies. Population scientists and informaticists are developing promising and innovative solutions to these barriers. The purpose of this paper is to describe how the application of bioinformatics systems can accelerate population health research across the continuum from prevention to detection, diagnosis, treatment, and outcome.
Collapse
|
40
|
Wang M, Chen X, Zhang H. Maximal conditional chi-square importance in random forests. ACTA ACUST UNITED AC 2010; 26:831-7. [PMID: 20130032 DOI: 10.1093/bioinformatics/btq038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MOTIVATION High-dimensional data are frequently generated in genome-wide association studies (GWAS) and other studies. It is important to identify features such as single nucleotide polymorphisms (SNPs) in GWAS that are associated with a disease. Random forests represent a very useful approach for this purpose, using a variable importance score. This importance score has several shortcomings. We propose an alternative importance measure to overcome those shortcomings. RESULTS We characterized the effect of multiple SNPs under various models using our proposed importance measure in random forests, which uses maximal conditional chi-square (MCC) as a measure of association between a SNP and the trait conditional on other SNPs. Based on this importance measure, we employed a permutation test to estimate empirical P-values of SNPs. Our method was compared to a univariate test and the permutation test using the Gini and permutation importance. In simulation, the proposed method performed consistently superior to the other methods in identifying of risk SNPs. In a GWAS of age-related macular degeneration, the proposed method confirmed two significant SNPs (at the genome-wide adjusted level of 0.05). Further analysis showed that these two SNPs conformed with a heterogeneity model. Compared with the existing importance measures, the MCC importance measure is more sensitive to complex effects of risk SNPs by utilizing conditional information on different SNPs. The permutation test with the MCC importance measure provides an efficient way to identify candidate SNPs in GWAS and facilitates the understanding of the etiology between genetic variants and complex diseases. CONTACT heping.zhang@yale.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | | | | |
Collapse
|
41
|
Bousman CA, Cherner M, Glatt SJ, Atkinson JH, Grant I, Tsuang MT, Everall IP. Impact of COMT Val158Met on executive functioning in the context of HIV and methamphetamine. ACTA ACUST UNITED AC 2010; 2010:1-11. [PMID: 24078782 DOI: 10.2147/nbhiv.s8245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The catechol-O-methyltransferease (COMT) Val allele has been linked to executive dysfunction among healthy individuals. The nature of this relationship is unknown in the context of HIV infection and/or methamphetamine (METH) dependence, two conditions that can alter dopaminergic system functioning. We sought to determine if the putative relationship between COMT and executive dysfunction could be observed among individuals with and without HIV-infection and/or METH dependence, and to explore the specificity of this relationship by examining other cognitive domains. Utilizing an existing cohort of 229 men with and without HIV infection and/or METH dependence we found that Met/Met carriers within the HIV-only and control groups, displayed better executive functioning compared to Val/Val and Val/Met carriers. However, this effect was attenuated in the METH-only and comorbid (ie, HIV+/METH+) groups. Examination of other neurocognitive domains were not consistent with effects found for executive functioning. Results support the presumed neuroprotective effect of Met/Met genotype on executive functioning among HIV-only and control groups. Among METH-only and comorbid groups, the slower rate of dopamine clearance conferred by the Met/Met genotype may increase the risk of adverse effects of METH, resulting in comparable executive dysfunction to that of Val allele carriers.
Collapse
Affiliation(s)
- Chad A Bousman
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Goto A, Akahori M, Okamoto H, Minami M, Terauchi N, Haruhata Y, Obazawa M, Noda T, Honda M, Mizota A, Tanaka M, Hayashi T, Tanito M, Ogata N, Iwata T. Genetic analysis of typical wet-type age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese population. J Ocul Biol Dis Infor 2009; 2:164-175. [PMID: 20157352 PMCID: PMC2816809 DOI: 10.1007/s12177-009-9047-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 11/06/2009] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common cause of blindness in the elderly. Caucasian patients are predominantly affected by the dry form of AMD, whereas Japanese patients have predominantly the wet form of AMD and/or polypoidal choroidal vasculopathy (PCV). Although genetic association in the 10q26 (ARMS2/HTRA1) region has been established in many ethnic groups for dry-type AMD, typical wet-type AMD, and PCV, the contribution of the 1q32 (CFH) region seem to differ among these groups. Here we show a single nucleotide polymorphism (SNP) in the ARMS2/HTRA1 locus is associated in the whole genome for Japanese typical wet-type AMD (rs10490924: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ p = 4.1 \times 10 ^{ - 4}$$\end{document}, OR = 4.16) and PCV (rs10490924: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ p = 3.7 \times 10 ^{ -8}$$\end{document}, OR = 2.72) followed by CFH (rs800292: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ p = 7.4 \times 10 ^{ -5}$$\end{document}, OR = 2.08; \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ p = 2.6 \times {10^{ - 4}} $$\end{document}, OR = 2.00), which differs from previous studies in Caucasian populations. Moreover, a SNP (rs2241394) in complement component C3 gene showed significant association with PCV (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ p = 2.5 \times {10^{ - 3}} $$\end{document}, OR = 3.47). We conclude that dry-type AMD, typical wet-type AMD, and PCV have both common and distinct genetic risks that become apparent when comparing Japanese versus Caucasian populations.
Collapse
|
43
|
Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, Hancox LS, Hu J, Ebright JN, Malek G, Hauser MA, Rickman CB, Bok D, Hageman GS, Johnson LV. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 2009; 29:95-112. [PMID: 19961953 DOI: 10.1016/j.preteyeres.2009.11.003] [Citation(s) in RCA: 565] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past ten years, dramatic advances have been made in unraveling the biological bases of age-related macular degeneration (AMD), the most common cause of irreversible blindness in western populations. In that timeframe, two distinct lines of evidence emerged which implicated chronic local inflammation and activation of the complement cascade in AMD pathogenesis. First, a number of complement system proteins, complement activators, and complement regulatory proteins were identified as molecular constituents of drusen, the hallmark extracellular deposits associated with early AMD. Subsequently, genetic studies revealed highly significant statistical associations between AMD and variants of several complement pathway-associated genes including: Complement factor H (CFH), complement factor H-related 1 and 3 (CFHR1 and CFHR3), complement factor B (CFB), complement component 2 (C2), and complement component 3 (C3). In this article, we revisit our original hypothesis that chronic local inflammatory and immune-mediated events at the level of Bruch's membrane play critical roles in drusen biogenesis and, by extension, in the pathobiology of AMD. Secondly, we report the results of a new screening for additional AMD-associated polymorphisms in a battery of 63 complement-related genes. Third, we identify and characterize the local complement system in the RPE-choroid complex - thus adding a new dimension of biological complexity to the role of the complement system in ocular aging and AMD. Finally, we evaluate the most salient, recent evidence that bears directly on the role of complement in AMD pathogenesis and progression. Collectively, these recent findings strongly re-affirm the importance of the complement system in AMD. They lay the groundwork for further studies that may lead to the identification of a transcriptional disease signature of AMD, and hasten the development of new therapeutic approaches that will restore the complement-modulating activity that appears to be compromised in genetically susceptible individuals.
Collapse
Affiliation(s)
- Don H Anderson
- Center for the Study of Macular Degeneration, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Andreoli MT, Morrison MA, Kim BJ, Chen L, Adams SM, Miller JW, DeAngelis MM, Kim IK. Comprehensive analysis of complement factor H and LOC387715/ARMS2/HTRA1 variants with respect to phenotype in advanced age-related macular degeneration. Am J Ophthalmol 2009; 148:869-74. [PMID: 19796758 PMCID: PMC2787659 DOI: 10.1016/j.ajo.2009.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/01/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To examine the interaction of genotypic variation of 16 single-nucleotide polymorphisms (SNP) in the complement factor H (CFH) and LOC387715/ARMS2/HTRA1 loci with clinical characteristics of age-related macular degeneration (AMD). DESIGN Retrospective cohort study. METHODS Eighty-four patients with neovascular AMD were genotyped using direct sequencing or Sequenom iPLEX technology. The Fisher exact test, Cochran-Mantel-Haenszel statistics, and Mann-Whitney U test were used to assess the effect of each SNP with respect to the following phenotypic manifestations: age at diagnosis, gender, affected eye, study and fellow eye visual acuity at diagnosis and at last follow-up, study eye best acuity during follow-up, presence of large drusen and retinal pigment epithelium (RPE) hyperpigmentation in study and fellow eye, choroidal neovascularization (CNV) angiographic subtype (classic vs occult), CNV size, presence of wet AMD in fellow eye, presence of dry AMD in fellow eye, and smoking history. RESULTS Only SNPs in the LOC387715/ARMS2/HTRA1 (10q26) region were associated with disease phenotypes. The polymorphisms rs10664316 and rs1049331 were associated with a decreased risk of poor visual acuity during follow-up and at diagnosis; rs2672598 and rs2293870 were associated with a decreased risk of RPE hyperpigmentation; rs10664316 was associated with a decreased risk of RPE hyperpigmentation with large drusen in the study eye, but an increased risk of large drusen in the fellow eye; rs11200638 was associated with an increased risk of larger CNV; rs10490924 and rs11200638 were associated with younger age of diagnosis. CONCLUSIONS Several polymorphisms examined in the LOC387715/ARMS2/HTRA1 locus, but none in the CFH region, correlated with specific phenotypic attributes of AMD.
Collapse
Affiliation(s)
- Michael T. Andreoli
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Margaux A. Morrison
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Ben J. Kim
- Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Ling Chen
- Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Scott M. Adams
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Joan W. Miller
- Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Margaret M. DeAngelis
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Ivana K. Kim
- Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
45
|
Silveira AC, Morrison MA, Ji F, Xu H, Reinecke JB, Adams SM, Arneberg TM, Janssian M, Lee JE, Yuan Y, Schaumberg DA, Kotoula MG, Tsironi EE, Tsiloulis AN, Chatzoulis DZ, Miller JW, Kim IK, Hageman GS, Farrer LA, Haider NB, DeAngelis MM. Convergence of linkage, gene expression and association data demonstrates the influence of the RAR-related orphan receptor alpha (RORA) gene on neovascular AMD: a systems biology based approach. Vision Res 2009; 50:698-715. [PMID: 19786043 DOI: 10.1016/j.visres.2009.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/04/2009] [Accepted: 09/18/2009] [Indexed: 12/28/2022]
Abstract
To identify novel genes and pathways associated with AMD, we performed microarray gene expression and linkage analysis which implicated the candidate gene, retinoic acid receptor-related orphan receptor alpha (RORA, 15q). Subsequent genotyping of 159 RORA single nucleotide polymorphisms (SNPs) in a family-based cohort, followed by replication in an unrelated case-control cohort, demonstrated that SNPs and haplotypes located in intron 1 were significantly associated with neovascular AMD risk in both cohorts. This is the first report demonstrating a possible role for RORA, a receptor for cholesterol, in the pathophysiology of AMD. Moreover, we found a significant interaction between RORA and the ARMS2/HTRA1 locus suggesting a novel pathway underlying AMD pathophysiology.
Collapse
Affiliation(s)
- Alexandra C Silveira
- Ocular Molecular Genetics Institute and Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Narendra U, Pauer GJ, Hagstrom SA. Genetic analysis of complement factor H related 5, CFHR5, in patients with age-related macular degeneration. Mol Vis 2009; 15:731-6. [PMID: 19365580 PMCID: PMC2667568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 04/06/2009] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To investigate the complement factor H related 5 (CFHR5) gene, encoding a member of the complement factor H family, for the presence of genetic polymorphisms or mutations associated with age-related macular degeneration (AMD). METHODS We screened 639 unrelated patients with AMD and 663 age-matched normal controls using direct genomic sequencing of the ten coding exons, along with the immediately flanking intronic DNA. The pathologic impact of the identified sequence variants were analyzed by computational methods using PolyPhen and PMut algorithms. RESULTS We identified five heterozygous sequence changes in CFHR5. Asp169Asp had a minor allele frequency of 0.001% in patients and 0.014% in controls (p<0.0001), while Arg356His had a minor allele frequency of 0.016% in patients and 0.007% in controls. Val379Leu, Met514Arg, and Cys568Ter were found only in normal controls. In silico analysis predicted Arg356His and Val379Leu to be neutral and benign. Met514Arg was predicted to be pathological and damaging to the function of the CFHR5 protein. CONCLUSIONS No definitive pathogenic CFHR5 mutations have been found in any of 639 unrelated patients with AMD, indicating that sequence variations in CFHR5 do not play a major role in determining AMD susceptibility. However, our findings suggest a possible protective role for Asp169Asp. Further studies of different and larger populations of patient and control samples will be required to address this observation.
Collapse
Affiliation(s)
- Umadevi Narendra
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Gayle J.T. Pauer
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Stephanie A. Hagstrom
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| |
Collapse
|
47
|
Yan T, Yang YN, Cheng X, DeAngelis MM, Hoh J, Zhang H. Genotypic Association Analysis Using Discordant-Relative-Pairs. Ann Hum Genet 2009; 73:84-94. [DOI: 10.1111/j.1469-1809.2008.00488.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Edwards AO, Fridley BL, James KM, Sharma AK, Cunningham JM, Tosakulwong N. Evaluation of clustering and genotype distribution for replication in genome wide association studies: the age-related eye disease study. PLoS One 2008; 3:e3813. [PMID: 19043567 PMCID: PMC2583911 DOI: 10.1371/journal.pone.0003813] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/06/2008] [Indexed: 01/22/2023] Open
Abstract
Genome-wide association studies (GWASs) assess correlation between traits and DNA sequence variation using large numbers of genetic variants such as single nucleotide polymorphisms (SNPs) distributed across the genome. A GWAS produces many trait-SNP associations with low p-values, but few are replicated in subsequent studies. We sought to determine if characteristics of the genomic loci associated with a trait could be used to identify initial associations with a higher chance of replication in a second cohort. Data from the age-related eye disease study (AREDS) of 100,000 SNPs on 395 subjects with and 198 without age-related macular degeneration (AMD) were employed. Loci highly associated with AMD were characterized based on the distribution of genotypes, level of significance, and clustering of adjacent SNPs also associated with AMD suggesting linkage disequilibrium or multiple effects. Forty nine loci were highly associated with AMD, including 3 loci (CFH, C2/BF, LOC387715/HTRA1) already known to contain important genetic risks for AMD. One additional locus (C3) reported during the course of this study was identified and replicated in an additional study group. Tag-SNPs and haplotypes for each locus were evaluated for association with AMD in additional cohorts to account for population differences between discovery and replication subjects, but no additional clearly significant associations were identified. Relying on a significant genotype tests using a log-additive model would have excluded 57% of the non-replicated and none of the replicated loci, while use of other SNP features and clustering might have missed true associations.
Collapse
Affiliation(s)
- Albert O Edwards
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America.
| | | | | | | | | | | |
Collapse
|