1
|
Wang T, Lei Y, Sun J, Wang L, Lin Y, Wu Z, Zhang S, Cao C, Wang H. Targeting NANOS1 in triple-negative breast cancer: synergistic effects of digoxin and PD-1 inhibitors in modulating the tumor immune microenvironment. Front Oncol 2025; 14:1536406. [PMID: 39927118 PMCID: PMC11802438 DOI: 10.3389/fonc.2024.1536406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer resistant to endocrine and targeted therapies. Immune checkpoint inhibitors (ICIs) have shown significant efficacy in various cancers. Taraxacum officinale, commonly known as dandelion, has traditionally been used to treat breast-related diseases and is recognized for its beneficial composition and low side effects. FDA-approved drugs, having undergone rigorous validation for their safety, efficacy, and quality, provide a foundation for drug repurposing research. Researchers may explore FDA-approved drugs targeting the potential target NANOS1 for TOE (Taraxacum officinale extract) treatment to develop innovative therapeutic strategies. In this context, Dig (Digoxin) and AA (Algestone acetophenide) have been identified as potential drug candidates for further exploration of their therapeutic effects and application potential in targeting NANOS1. Methods RNA sequencing (RNA-seq) was employed to identify potential targets for triple-negative breast cancer (TNBC) from TOE. Bioinformatics tools, including bc-GenExMiner v4.8, the Human Protein Atlas, and the TIMER database, were utilized for target identification. Molecular docking studies assessed FDA-approved drugs interacting with these targets, with Dig and AA selected as candidate drugs. The therapeutic efficacy of Dig and AA in combination with PD-1 inhibitors was evaluated using the 4T1 mouse model. Flow cytometry was applied to assess lymphocyte infiltration in the tumor immune microenvironment. RNA-seq analysis after target silencing by small interfering RNA (siRNA) was performed, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Validation of findings was conducted through quantitative PCR and Western blot analysis. Results TOE inhibited TNBC cell growth, migration, and invasion, as assessed by CCK-8 and transwell assays. RNA-seq indicated the effects may be due to NANOS1 down-regulation. Survival analysis showed lower NANOS1 expression correlated with better prognosis. Immunoinfiltration analysis indicated a negative correlation between NANOS1 levels and activated NK cells. Molecular docking identified Dig and AA as high-affinity binders of NANOS1. Animal experiments showed Dig and PD-1 inhibitor combination enhanced immunotherapy efficacy for TNBC. Discussion The findings from this study suggest that TOE may offer a novel therapeutic approach for TNBC by targeting NANOS1, a protein whose down-regulation is associated with improved patient outcomes. The negative correlation between NANOS1 and activated NK cells highlights the potential role of the immune system in TNBC pathogenesis and response to treatment. The identification of Dig as potential drugs targeting NANOS1 provides a new direction for drug repurposing in TNBC. The synergistic effect of Dig and PD-1 inhibition observed in animal models is promising and warrants further investigation into the role of immunotherapy in TNBC treatment. Overall, this study identifies NANOS1 as a new target for TNBC therapy and suggests a combination therapy approach that could enhance immunotherapy effectiveness and improve patient outcomes.
Collapse
Affiliation(s)
- Tangyi Wang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Yadian Lei
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Jingwei Sun
- Department of Medical Laboratory, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Li Wang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Yuxin Lin
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Zhijing Wu
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Chengzhu Cao
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Haiyan Wang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
2
|
Tiwari R, Singh VK, Gautam V, Mehrotra S, Kumar R. Host directed immunotherapy for chronic infections and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:355-388. [PMID: 39978972 DOI: 10.1016/bs.apcsb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Host-directed immunotherapy (HDI) is emerging as a transformative strategy in managing chronic diseases by leveraging the host's immune system to combat disease. This innovative approach has shown promise in a range of conditions, including cancer and parasitic infections. In oncology, HDI aims to enhance the body's natural immune response against cancer cells through mechanisms such as immune checkpoint inhibition, monoclonal antibodies, and cytokine therapies. These strategies are designed to boost the immune system's ability to recognize and destroy tumors, improving patient outcomes and offering alternatives to traditional cancer treatments. Similarly, in parasitic infections, HDI focuses on strengthening the host's immune defenses to control and eradicate those infections. For diseases like malaria, leishmaniasis, and Chagas disease, HDI strategies may involve adjuvants or immune modulators that amplify the body's ability to target and eliminate parasites. By optimizing immune responses and reducing reliance on conventional treatments, HDI holds the potential to revolutionize therapeutic approaches across various chronic diseases. This chapter highlights the flexibility and potential of HDI in advancing treatments, offering novel ways for improving patient care and disease management.
Collapse
Affiliation(s)
- Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras, Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras, Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras, Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras, Hindu University, Varanasi, India.
| |
Collapse
|
3
|
Arzuk E, Birim D, Armağan G. Celecoxib inhibits NLRP1 inflammasome pathway in MDA-MB-231 Cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9191-9202. [PMID: 38990306 PMCID: PMC11522188 DOI: 10.1007/s00210-024-03286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
NLRP1 is predominantly overexpressed in breast cancer tissue, and the evaluated activation of NLRP1 inflammasome is associated with tumor growth, angiogenesis, and metastasis. Therefore, targeting NLRP1 activation could be a crucial strategy in anticancer therapy. In this study, we investigated the hypothesis that NLRP1 pathway may contribute to the cytotoxic effects of celecoxib and nimesulide in MDA-MB-231 cells. First of all, IC50 values and inhibitory effects on the colony-forming ability of drugs were evaluated in cells. Then, the alterations in the expression levels of NLRP1 inflammasome components induced by drugs were investigated. Subsequently, the release of inflammatory cytokine IL-1β and the activity of caspase-1 in drug-treated cells were measured. According to our results, celecoxib and nimesulide selectively inhibited the viability of MDA-MB-231 cells. These drugs remarkably inhibited the colony-forming ability of cells. The expression levels of NLRP1 inflammasome components decreased in celecoxib-treated cells, accompanied by decreased caspase-1 activity and IL-1β release. In contrast, nimesulide treatment led to the upregulation of the related protein expressions with unchanged caspase-1 activity and increased IL-1β secretion. Our results indicated that the NLRP1 inflammasome pathway might contribute to the antiproliferative effects of celecoxib in MDA-MB-231 cells but is not a crucial mechanism for nimesulide.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, 35040, Izmir, Turkey.
| | - Derviş Birim
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Güliz Armağan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
4
|
SenGupta S, Cohen E, Serrenho J, Ott K, Coulombe PA, Parent CA. TGFβ1-TNFα regulated secretion of neutrophil chemokines is independent of epithelial-mesenchymal transitions in breast tumor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617845. [PMID: 39416223 PMCID: PMC11483069 DOI: 10.1101/2024.10.11.617845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neutrophils have tumor-promoting roles in breast cancer and are detected in higher numbers in aggressive breast tumors. How aggressive breast tumors recruit neutrophils remains undefined. Here, we investigated the roles of TGF-β1 and TNF-α in the regulation of neutrophil recruitment by breast cancer cells. TGF-β1 and TNF-α are pro-inflammatory factors upregulated in breast tumors and induce epithelial to mesenchymal transitions (EMT), a process linked to cancer cell aggressiveness. We report that, as expected, dual treatment with TGF-β1 and TNF-α induces EMT signatures in premalignant M2 cells, which are part of the MCF10A breast cancer progression model. Conditioned media (CM) harvested from M2 cells treated with TGF-β1/TNF-α gives rise to amplified neutrophil chemotaxis compared to CM from control M2 cells. This response correlates with higher levels of the neutrophil chemokines CXCL1, CXCL2, and CXCL8 and is significantly attenuated in the presence of a CXCL8-neutralizing antibody. Furthermore, we found that secretion of CXCL1 and CXCL8 from treated M2 cells depends on p38MAPK activity. By combining gene editing, immunological and biochemical approaches, we show that the regulation of neutrophil recruitment and EMT signatures are not mechanistically linked in treated M2 cells. Finally, analysis of publicly available cancer cell line transcriptomic databases revealed a significant correlation between CXCL8 and TGF-β1/TNF-α-regulated or effector genes in breast cancer. Together, our findings establish a novel role for the TGF-β1/TNF-α/p38 MAPK signaling axis in regulating neutrophil recruitment in breast cancer, independent of TGF-β1/TNF-α regulated EMT.
Collapse
|
5
|
Paquette B, Oweida A. Combination of radiotherapy and immunotherapy in duality with the protumoral action of radiation. Cancer Radiother 2024; 28:484-492. [PMID: 39304400 DOI: 10.1016/j.canrad.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024]
Abstract
Radiotherapy is widely used to treat various cancers. Its combination with immune checkpoint inhibitors is intensively studied preclinically and clinically. Although the first results were very encouraging, the number of patients who respond positively remains low, and the therapeutic benefit is often temporary. This review summarizes how radiation can stimulate an antitumor immune response and its combination with immunotherapy based on inhibiting immune checkpoints. We will provide an overview of radiotherapy parameters that should be better controlled to avoid downregulating the antitumor immune response. The low response rate of combining radiotherapy and immunotherapy could, at least in part, be caused by the stimulation of cancer cell invasion and metastasis development that occur at similar doses and number of radiation fractions. To end on a positive note, we explore how a targeted inhibition of the inflammatory cytokines induced by radiation with a cyclooxygenase-2 inhibitor could both support an antitumor immune response and block radiation-induced metastasis formation.
Collapse
Affiliation(s)
- Benoît Paquette
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Ayman Oweida
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
Cruceriu D, Balacescu L, Baldasici O, Gaal OI, Balacescu O, Russom A, Irimia D, Tudoran O. Gene expression-phenotype association study reveals the dual role of TNF-α/TNFR1 signaling axis in confined breast cancer cell migration. Life Sci 2024; 354:122982. [PMID: 39151886 DOI: 10.1016/j.lfs.2024.122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
AIMS While enhanced tumor cell migration is a key process in the tumor dissemination, mechanistic insights into causal relationships between tumor cells and mechanical confinement are still limited. Here we combine the use of microfluidic platforms to characterize confined cell migration with genomic tools to systematically unravel the global signaling landscape associated with the migratory phenotype of breast cancer (BC) cells. METERIALS AND METHODS The spontaneous migration capacity of seven BC cell lines was evaluated in 3D microfluidic devices and their migration capacity was correlated with publicly available molecular signatures. The role of identified signaling pathways on regulating BC migration capacity was determined by receptor stimulation through ligand binding or inhibition through siRNA silencing. Downstream effects on cell migration were evaluated in microfluidic devices, while the molecular changes were monitored by RT-qPCR. KEY FINDINGS Expression of 715 genes was correlated with BC cells migratory phenotype, revealing TNF-α as one of the top upstream regulators. Signal transduction experiments revealed that TNF-α stimulates the confined migration of triple negative, mesenchymal-like BC cells that are also characterized by high TNFR1 expression, but inhibits the migration of epithelial-like cells with low TNFR1 expression. TNFR1 was strongly associated with the migration capacity and triple-negative, mesenchymal phenotype. Downstream of TNF/TNFR1 signaling, transcriptional regulation of NFKB seems to be important in driving cell migration in confined spaces. SIGNIFICANCE TNF-α/TNFR1 signaling axis reveals as a key player in driving BC cells confined migration, emerging as a promising therapeutic strategy in targeting dissemination and metastasis of triple negative, mesenchymal BC cells.
Collapse
Affiliation(s)
- Daniel Cruceriu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania; "Babes-Bolyai" University, Department of Molecular Biology and Biotechnology, 1 Mihail Kogalniceanu Street, Cluj-Napoca, Romania.
| | - Loredana Balacescu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania.
| | - Oana Baldasici
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania.
| | - Orsolya Ildiko Gaal
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania; Iuliu Hațieganu University of Medicine and Pharmacy, Department of Medical Genetics, 8 Victor Babes Street, Cluj-Napoca, Romania.
| | - Ovidiu Balacescu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania.
| | - Aman Russom
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Tomtebodavägen 23a 171 65, Solna, Sweden.
| | - Daniel Irimia
- Harvard Medical School, Center for Engineering in Medicine and Surgery, Department of Surgery, 51 Blossom Street, Boston, MA, United States of America.
| | - Oana Tudoran
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania; KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Tomtebodavägen 23a 171 65, Solna, Sweden.
| |
Collapse
|
7
|
Chen Y, Zhang Z, Xiong R, Luan M, Qian Z, Zhang Q, Wang S. A multi-component paclitaxel -loaded β-elemene nanoemulsion by transferrin modification enhances anti-non-small-cell lung cancer treatment. Int J Pharm 2024; 663:124570. [PMID: 39134291 DOI: 10.1016/j.ijpharm.2024.124570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
A multi-component paclitaxel (PTX) -loaded β-elemene nanoemulsion by transferrin modification (Tf-PE-MEs) was developed to enhance non-small-cell lung cancer (NSCLC) treatment. After transferrin modification, the particle size of Tf-PE-MEs was (14.87 ± 1.84) nm, and the zeta potential was (-10.19 ± 0.870) mV, respectively. In vitro experiments showed that Tf-PE-MEs induced massive apoptosis in A549 cells, indicating that it had significant cytotoxicity to A549 cells. Through transferrin modification, Tf-PE-MEs accumulated at the tumor site efficiently with overexpressed transferrin receptor (TfR) on the surface of A549 cells. This will allow increasing PTX and β-elemene concentration in the target cells, enhancing the therapeutic effect. Compared to PTX alone, Tf-PE-MEs displayed good anti-tumor efficacy and diminished systemic toxicity in vivo studies. With favourable therapeutic potential, this study provides a new strategy for the combined anticancer treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yunyan Chen
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Ziwei Zhang
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Rui Xiong
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Minna Luan
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Zhilei Qian
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Zhang
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Shaozhen Wang
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
8
|
Qian J, Zhao L, Xu L, Zhao J, Tang Y, Yu M, Lin J, Ding L, Cui Q. Cell Death: Mechanisms and Potential Targets in Breast Cancer Therapy. Int J Mol Sci 2024; 25:9703. [PMID: 39273650 PMCID: PMC11395276 DOI: 10.3390/ijms25179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) has become the most life-threatening cancer to women worldwide, with multiple subtypes, poor prognosis, and rising mortality. The molecular heterogeneity of BC limits the efficacy and represents challenges for existing therapies, mainly due to the unpredictable clinical response, the reason for which probably lies in the interactions and alterations of diverse cell death pathways. However, most studies and drugs have focused on a single type of cell death, while the therapeutic opportunities related to other cell death pathways are often neglected. Therefore, it is critical to identify the predominant type of cell death, the transition to different cell death patterns during treatment, and the underlying regulatory mechanisms in BC. In this review, we summarize the characteristics of various forms of cell death, including PANoptosis (pyroptosis, apoptosis, necroptosis), autophagy, ferroptosis, and cuproptosis, and discuss their triggers and signaling cascades in BC, which may provide a reference for future pathogenesis research and allow for the development of novel targeted therapeutics in BC.
Collapse
Affiliation(s)
- Jiangying Qian
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Linna Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ling Xu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jin Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongxu Tang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
9
|
Chang X, Su H, Ma S, Li Y, Tan Y, Li Y, Dong S, Lin J, Zhou B, Zhang H. Transcriptome analysis of Vero cells infected with attenuated vaccine strain CDV-QN-1. Microb Pathog 2024; 193:106786. [PMID: 38971506 DOI: 10.1016/j.micpath.2024.106786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
To better understand the interaction between attenuated vaccines and host antiviral responses, we used bioinformatics and public transcriptomics data to analyze the immune response mechanisms of host cells after canine distemper virus (CDV) infection in Vero cells and screened for potential key effector factors. In this study, CDV-QN-1 infect with Vero cells at an MOI of 0.5, and total RNA was extracted from the cells 24 h later and reverse transcribed into cDNA. Transcriptome high-throughput sequencing perform using Illumina. The results showed that 438 differentially expressed genes were screened, of which 409 were significantly up-regulated and 29 were significantly down-regulated. Eight differentially expressed genes were randomly selected for RT-qPCR validation, and the change trend was consistent with the transcriptomics data. GO and KEGG analysis of differentially expressed genes revealed that most of the differentially expressed genes in CDV-QN-1 infection in the early stage were related to immune response and antiviral activity. The enriched signaling pathways mainly included the interaction between cytokines and cytokine receptors, the NF-kappa B signaling pathway, the Toll-like receptor signaling pathway, and the NOD-like receptor signaling pathway. This study provides a foundation for further exploring the pathogenesis of CDV and the innate immune response of host cells in the early stage of infection.
Collapse
Affiliation(s)
- Xiaoyun Chang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hong Su
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Shuai Ma
- Qingdao Animal Disease Prevention and Control Center, Qingdao, Shandong, China
| | - Yingguang Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yue Tan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yan Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaoming Dong
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiaxu Lin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Baokun Zhou
- Qingdao Jimo District Animal Health Quarantine Center, Qingdao, Shandong, China.
| | - Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Sarf EA, Dyachenko EI, Bel’skaya LV. The Role of Salivary Vascular Endothelial Growth Factor A, Cytokines, and Amino Acids in Immunomodulation and Angiogenesis in Breast Cancer. Biomedicines 2024; 12:1329. [PMID: 38927536 PMCID: PMC11201966 DOI: 10.3390/biomedicines12061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
In this work, we focused on the analysis of VEGF content in saliva and its relationship with pro-inflammatory cytokines and amino acids involved in immunomodulation and angiogenesis in breast cancer. The study included 230 breast cancer patients, 92 patients with benign breast disease, and 59 healthy controls. Before treatment, saliva samples were obtained from all participants, and the content of VEGF and cytokines in saliva was determined by an enzyme-linked immunosorbent assay, as well as the content of amino acids by high-performance liquid chromatography. It was found that VEGF was positively correlated with the level of pro-inflammatory cytokines IL-1β (r = 0.6367), IL-6 (r = 0.3813), IL-8 (r = 0.4370), and IL-18 (r = 0.4184). Weak correlations were shown for MCP-1 (r = 0.2663) and TNF-α (r = 0.2817). For the first time, we demonstrated changes in the concentration of VEGF and related cytokines in saliva in different molecular biological subtypes of breast cancer depending on the stage of the disease, differentiation, proliferation, and metastasis to the lymph nodes. A correlation was established between the expression of VEGF and the content of aspartic acid (r = -0.3050), citrulline (r = -0.2914), and tryptophan (r = 0.3382) in saliva. It has been suggested that aspartic acid and citrulline influence the expression of VEGF via the synthesis of the signaling molecule NO, and then tryptophan ensures tolerance of the immune system to tumor cells.
Collapse
Affiliation(s)
| | | | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14, Tukhachevsky Str., 644099 Omsk, Russia; (E.A.S.); (E.I.D.)
| |
Collapse
|
11
|
Geddawy A, Attya ME, Hegazy A, AbdElhaseeb MK, Fawzy MA, Atta M, Ali FF, Abdelzaher WY. The ameliorative effect of vinpocetine against gentamicin-induced uterine-injury in rats involves the inflammasome/caspase-1/IL-1β pathway. Mol Biol Rep 2024; 51:655. [PMID: 38739285 DOI: 10.1007/s11033-024-09556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND There is limited data regarding the hazardous effect of gentamicin (GM) on the uterus and whether or not vinpocetine (Vinpo) ameliorates it. The present study aimed to identify the possible protective effect of Vinpo in GM-induced uterine injury in rats. METHODS Female rats were assorted in control-group, Vinpo-group, GM-group, and Vinpo plus GM group. Serum and uterine GM concentration were measured. Uterine oxidative stress parameters besides inflammatory and apoptotic biomarkers were evaluated. Uterine histopathological examination and interlukin-1beta (IL-1β) immune-histochemical study were detected. RESULTS GM significantly increased uterine oxidative stress, inflammatory and apoptotic biomarkers. Histopathological picture of uterine damage and increased IL-1β immunoexpression were detected. Vinpo significantly ameliorated the distributed GM concentration, oxidative stress, inflammatory and apoptotic biomarkers with a prompt improvement in histopathological picture and a decrease in IL-1β immunoexpression. CONCLUSION Vinpo protective effect against GM-induced uterine injury involves modulation of inflammasome/caspase-1/IL-1β signaling pathway.
Collapse
Affiliation(s)
- Ayman Geddawy
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - AbdelRahman Hegazy
- Department of Obstetrics & Gynecology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Medhat Atta
- Department of Anatomy, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Fatma F Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt
- Biochemistry, Molecular biology and Physiology Department, Faculty of Medicine, Mutah University, Mutah, Jordan
| | - Walaa Yehia Abdelzaher
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| |
Collapse
|
12
|
Lee JH, Hallis SP, Kwak MK. Continuous TNF-α exposure in mammary epithelial cells promotes cancer phenotype acquisition via EGFR/TNFR2 activation. Arch Pharm Res 2024; 47:465-480. [PMID: 38734854 DOI: 10.1007/s12272-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Tumor necrosis factor alpha (TNF-α), an abundant inflammatory cytokine in the tumor microenvironment (TME), is linked to breast cancer growth and metastasis. In this study, we established MCF10A cell lines incubated with TNF-α to investigate the effects of continuous TNF-α exposure on the phenotypic change of normal mammary epithelial cells. The established MCF10A-LE cell line, through long-term exposure to TNF-α, displayed cancer-like features, including increased proliferation, migration, and sustained survival signaling even in the absence of TNF-α stimulation. Unlike the short-term exposed cell line MCF10A-SE, MCF10A-LE exhibited elevated levels of epidermal growth factor receptor (EGFR) and subsequent TNF receptor 2 (TNFR2), and silencing of EGFR or TNFR2 suppressed the cancer-like phenotype of MCF10A-LE. Notably, we demonstrated that the elevated levels of NAD(P)H oxidase 4 (NOX4) and the resulting increase in reactive oxygen species (ROS) were associated with EGFR/TNFR2 elevation in MCF10A-LE. Furthermore, mammosphere-forming capacity and the expression of cancer stem cell (CSC) markers increased in MCF10A-LE. Silencing of EGFR reversed these effects, indicating the acquisition of CSC-like properties via EGFR signaling. In conclusion, our results reveal that continuous TNF-α exposure activates the EGFR/TNFR2 signaling pathway via the NOX4/ROS axis, promoting neoplastic changes in mammary epithelial cells within the inflammatory TME.
Collapse
Affiliation(s)
- Jin-Hee Lee
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea
| | - Steffanus Pranoto Hallis
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
13
|
Gudd CLC, Mitchell E, Atkinson SR, Mawhin MA, Turajlic S, Larkin J, Thursz MR, Goldin RD, Powell N, Antoniades CG, Woollard KJ, Possamai LA, Triantafyllou E. Therapeutic inhibition of monocyte recruitment prevents checkpoint inhibitor-induced hepatitis. J Immunother Cancer 2024; 12:e008078. [PMID: 38580334 PMCID: PMC11002390 DOI: 10.1136/jitc-2023-008078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Checkpoint inhibitor-induced hepatitis (CPI-hepatitis) is an emerging problem with the widening use of CPIs in cancer immunotherapy. Here, we developed a mouse model to characterize the mechanism of CPI-hepatitis and to therapeutically target key pathways driving this pathology. METHODS C57BL/6 wild-type (WT) mice were dosed with toll-like receptor (TLR)9 agonist (TLR9-L) for hepatic priming combined with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) plus anti-programmed cell death 1 (PD-1) ("CPI") or phosphate buffered saline (PBS) control for up to 7 days. Flow cytometry, histology/immunofluorescence and messenger RNA sequencing were used to characterize liver myeloid/lymphoid subsets and inflammation. Hepatocyte damage was assessed by plasma alanine transaminase (ALT) and cytokeratin-18 (CK-18) measurements. In vivo investigations of CPI-hepatitis were carried out in Rag2-/- and Ccr2rfp/rfp transgenic mice, as well as following anti-CD4, anti-CD8 or cenicriviroc (CVC; CCR2/CCR5 antagonist) treatment. RESULTS Co-administration of combination CPIs with TLR9-L induced liver pathology closely resembling human disease, with increased infiltration and clustering of granzyme B+perforin+CD8+ T cells and CCR2+ monocytes, 7 days post treatment. This was accompanied by apoptotic hepatocytes surrounding these clusters and elevated ALT and CK-18 plasma levels. Liver RNA sequencing identified key signaling pathways (JAK-STAT, NF-ΚB) and cytokine/chemokine networks (Ifnγ, Cxcl9, Ccl2/Ccr2) as drivers of CPI-hepatitis. Using this model, we show that CD8+ T cells mediate hepatocyte damage in experimental CPI-hepatitis. However, their liver recruitment, clustering, and cytotoxic activity is dependent on the presence of CCR2+ monocytes. The absence of hepatic monocyte recruitment in Ccr2rfp/rfp mice and CCR2 inhibition by CVC treatment in WT mice was able to prevent the development and reverse established experimental CPI-hepatitis. CONCLUSION This newly established mouse model provides a platform for in vivo mechanistic studies of CPI-hepatitis. Using this model, we demonstrate the central role of liver infiltrating CCR2+ monocyte interaction with tissue-destructive CD8+ T cells in the pathogenesis of CPI-hepatitis and highlight CCR2 inhibition as a novel therapeutic target.
Collapse
Affiliation(s)
- Cathrin L C Gudd
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Eoin Mitchell
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Atkinson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marie-Anne Mawhin
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nick Powell
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Kevin J Woollard
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Lucia A Possamai
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | |
Collapse
|
14
|
Tang J, Yu W, Lin L, Yang R, Li G, Jin M, Gu Y, Jiang B, Lu E. Role of αENaC in root resorption of adjacent teeth due to entirely impacted mandibular third molars. BMC Oral Health 2024; 24:360. [PMID: 38515079 PMCID: PMC10956368 DOI: 10.1186/s12903-024-04040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/17/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Entirely impacted mandibular third molar (EIM3M) concerns the pathological external root resorption (ERR) of the adjacent mandibular second molar (M2M) and formation of granulation tissue between two molars. The study aimed to clarify the effect of αENaC, a mechano-sensitive molecule, to explore the mechanical mechanism in this scenario. METHODS The force EIM3M exerted on M2M was proved by finite element analysis. αENaC expressions were tested by real-time polymerase chain reaction (PCR), immunoblotting and immunofluorescence. Inflammatory and epithelial-mesenchymal transition (EMT)-related molecules expressions were also detected by real-time PCR. The correlation was analyzed by Spearman's correlation analysis, and receiver-operator characteristic (ROC) curve was further exhibited. RESULTS The force was concentrated in the ERR area. αENaC was upregulated, positively correlated with ERR degree and localized to the fibroblasts in ERR granulation tissues. Moreover, αENaC was respectively and positively associated with elevated TNF-α and N-cadherin in ERR granulation tissues. More importantly, ROC analysis verified αENaC as a novel indication of the incidence of this disease. CONCLUSIONS Our finding revealed the force from EIM3M causing ERR of M2M, and elucidated the expression and localization of αENaC and its positive correlation with inflammation, EMT and disease severity, suggesting a novel indication in this disease.
Collapse
Affiliation(s)
- Jiaqi Tang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Weijun Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Lu Lin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ruhan Yang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Guanglong Li
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Bin Jiang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
15
|
Meyer C, Brockmueller A, Buhrmann C, Shakibaei M. Prevention and Co-Management of Breast Cancer-Related Osteoporosis Using Resveratrol. Nutrients 2024; 16:708. [PMID: 38474838 DOI: 10.3390/nu16050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer (BC) is currently one of the most common cancers in women worldwide with a rising tendency. Epigenetics, generally inherited variations in gene expression that occur independently of changes in DNA sequence, and their disruption could be one of the main causes of BC due to inflammatory processes often associated with different lifestyle habits. In particular, hormone therapies are often indicated for hormone-positive BC, which accounts for more than 50-80% of all BC subtypes. Although the cure rate in the early stage is more than 70%, serious negative side effects such as secondary osteoporosis (OP) due to induced estrogen deficiency and chemotherapy are increasingly reported. Approaches to the management of secondary OP in BC patients comprise adjunctive therapy with bisphosphonates, non-steroidal anti-inflammatory drugs (NSAIDs), and cortisone, which partially reduce bone resorption and musculoskeletal pain but which are not capable of stimulating the necessary intrinsic bone regeneration. Therefore, there is a great therapeutic need for novel multitarget treatment strategies for BC which hold back the risk of secondary OP. In this review, resveratrol, a multitargeting polyphenol that has been discussed as a phytoestrogen with anti-inflammatory and anti-tumor effects at the epigenetic level, is presented as a potential adjunct to both support BC therapy and prevent osteoporotic risks by positively promoting intrinsic regeneration. In this context, resveratrol is also known for its unique role as an epigenetic modifier in the regulation of essential signaling processes-both due to its catabolic effect on BC and its anabolic effect on bone tissue.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Constanze Buhrmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| |
Collapse
|
16
|
Chen Y, Zhang Z, Qian Z, Ma R, Luan M, Sun Y. Sequentially Released Liposomes Enhance Anti-Liver Cancer Efficacy of Tetrandrine and Celastrol-Loaded Coix Seed Oil. Int J Nanomedicine 2024; 19:727-742. [PMID: 38288265 PMCID: PMC10822770 DOI: 10.2147/ijn.s446895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Background A sequential release co-delivery system is an effective strategy to improve anti-cancer efficacy. Herein, multicomponent-based liposomes (TET-CTM/L) loaded with tetrandrine (TET) and celastrol (CEL)-loaded coix seed oil microemulsion (CTM) were fabricated, which showed synergistic anti-liver cancer activities. By virtue of Enhanced Permeability and Retention (EPR) effect, TET-CTM/L can achieve efficient accumulation at the tumor site. TET was released initially to repair abnormal vessels and decrease the fibroblasts, and CTM was released subsequently for eradication of tumor tissue. Methods TEM (transmission electron microscopy) and DLS (dynamic light scattering) were adopted to characterize the TET-CTM/L. Flow cytometry was adopted to examine the cellular uptake and cytotoxicity of HepG2 cells. The HepG2 xenograft nude mice were adopted to evaluate the anti-tumor efficacy and systemic safety of TET-CTM/L. Results TEM images of TET-CTM/L showed the structure of small particle size of CTM within large-size liposomes, indicating that CTM can be encapsulated in liposomes by film dispersion method. In in vitro studies, TET-CTM/L induced massive apoptosis toward HepG2 cells, indicating synergistic cytotoxicity against HepG2 cells. In in vivo studies, TET-CTM/L displayed diminished systemic toxicity compared to celastrol or TET used alone. TET-CTM/L showed the excellent potential for tumor-targeting ability in a biodistribution study. Conclusion Our study provides a new strategy for combining anti-cancer therapy that has good potential not only in the treatment of liver cancer but also can be applied to the treatment of other solid tumors.
Collapse
Affiliation(s)
- Yunyan Chen
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| | - Ziwei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| | - Zhilei Qian
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Rui Ma
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| | - Minna Luan
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| | - Yu Sun
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| |
Collapse
|
17
|
Abbate JM, Arfuso F, Riolo K, Giudice E, Brunetti B, Lanteri G. Upregulation of miR-21 and pro-inflammatory cytokine genes IL-6 and TNF-α in promoting a pro-tumorigenic microenvironment in canine mammary carcinomas. Res Vet Sci 2023; 164:105014. [PMID: 37741040 DOI: 10.1016/j.rvsc.2023.105014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023]
Abstract
This study evaluated the gene expression of the pro-inflammatory cytokines, interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in canine mammary tumors (CMTs), and correlated them with gene expression of miRNAs expected to regulate the secretion of pro-inflammatory cytokines within the tumor microenvironment (TME). Furthermore, gene expression of cytokines and miRNAs involved in tumor cell proliferation and invasion (i.e. miR-21; miR-124; miR-145) were correlated with tumor proliferation index (Ki67 index) to determine the prognostic value in CMTs. Twenty-six canine mammary samples were used, including 22 CMTs and 4 control samples. MiR-21, IL-6 and TNF-α were upregulated in mammary carcinomas compared with controls (p < 0.05). MiR-146b was downregulated in CMTs compared with control cases (p < 0.05). IL-6 expression showed a significant positive correlation with miR-21 and a negative correlation with miR-146b; while, TNF-α gene expression was positively correlated with miR-21 and miR-145 in mammary carcinomas. In carcinomas, the Ki67 index correlated positively with gene expression of IL-6 and miR-21 and negatively correlated with miR-145 and miR-146b. Specifically, gene expression of IL-6 and miR-21 was positively correlated with ki67 index >33.3%, whereas, expression of miR-145 and miR-146b was negatively correlated with ki67 index <33.3%. Results reinforce the concept of interaction between tumor cells and inflammatory cells within the TME, with a central role of IL-6 and TNF-α. Since the upregulation of miR-21 reflects the gene overexpression of interleukins and the high proliferation index of tumor cells, this miRNA may be considered a biomarker with prognostic value in CMTs.
Collapse
Affiliation(s)
- Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168 Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168 Messina, Italy
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168 Messina, Italy
| | - Barbara Brunetti
- Department of Medical Veterinary Sciences, University of Bologna, via Tolara di Sopra, Ozzano dell'Emilia, 40126 Bologna, Italy.
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| |
Collapse
|
18
|
Santolaya JL, Schweer DS, Cardenas-Goicoechea J, Bukowski R, Santolaya-Forgas J. Bioavailability of the tumor necrosis factor alpha/regulated on activation, normal T cell expressed and secreted (RANTES) biosystem inside the gestational sac during the pre-immune stages of embryo development. J Perinat Med 2023; 51:891-895. [PMID: 37067543 DOI: 10.1515/jpm-2022-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVES In-vivo studies of the bioavailability of major components of the tumor necrosis factor alpha (TNFα) biosystem inside the gestational sac during embryogenesis have not been reported. We sought to determine the concentration of TNFα, soluble (s) TNFα receptors (sTNFR1, sTNFR2), and RANTES in the primate extraembryonic celomic fluid (ECF). METHODS A validated timed-pregnant baboon animal model (N: 10) for experimental research in pregnancy was used to collect paired maternal blood and ECF samples in ongoing pregnancies. The concentrations (pg/dL) of TNFα, sTNFR1, sTNFR2, and RANTES were then determined by ELISA immunoassays. RESULTS All animals delivered at term healthy newborns. The differential concentration of TNFα, sTNFR1, sTNFR2, and RANTES between the maternal plasma and the ECF could be determined with ratios for TNFα (5.4), sTNFR2 (1.85) and RANTES (3.59) that contrasted with that of sTNFR1 (0.07), which favored the gestational sac compartment. No significant correlations were noted between maternal plasma and ECF TNFR1, sTNFR2 and RANTES. There was a trend for a correlation between TNFα in maternal plasma and ECF (R=0.74; p=0.07). CONCLUSIONS We report the physiological concentrations of TNFα, sTNFR1, sTNFR2, and RANTES in extraembryonic celomic fluid during embryogenesis in primates.
Collapse
Affiliation(s)
- Jacobo L Santolaya
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David S Schweer
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA
| | | | - Radek Bukowski
- Department of Obstetrics and Gynecology, University of Texas, Austin, TX, USA
| | | |
Collapse
|
19
|
Yoshimura T, Li C, Wang Y, Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol Immunol 2023:10.1038/s41423-023-01013-0. [PMID: 37208442 DOI: 10.1038/s41423-023-01013-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide, and metastasis is the leading cause of death in cancer patients. Human monocyte chemoattractant protein-1 (MCP-1/CCL2) was isolated from the culture supernatants of not only mitogen-activated peripheral blood mononuclear leukocytes but also malignant glioma cells based on its in vitro chemotactic activity toward human monocytes. MCP-1 was subsequently found to be identical to a previously described tumor cell-derived chemotactic factor thought to be responsible for the accumulation of tumor-associated macrophages (TAMs), and it became a candidate target of clinical intervention; however, the role of TAMs in cancer development was still controversial at the time of the discovery of MCP-1. The in vivo role of MCP-1 in cancer progression was first evaluated by examining human cancer tissues, including breast cancers. Positive correlations between the level of MCP-1 production in tumors and the degree of TAM infiltration and cancer progression were established. The contribution of MCP-1 to the growth of primary tumors and metastasis to the lung, bone, and brain was examined in mouse breast cancer models. The results of these studies strongly suggested that MCP-1 is a promoter of breast cancer metastasis to the lung and brain but not bone. Potential mechanisms of MCP-1 production in the breast cancer microenvironment have also been reported. In the present manuscript, we review studies in which the role of MCP-1 in breast cancer development and progression and the mechanisms of its production were examined and attempt to draw a consensus and discuss the potential use of MCP-1 as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| | - Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
20
|
Ben-Yaakov H, Meshel T, Pasmanik-Chor M, Körner C, Ben-Baruch A. A Tumor Microenvironment-Driven Network Regulated by STAT3 and p65 Negatively Controls the Enrichment of Cancer Stem Cells in Human HR+/HER2- Breast Cancer. Cancers (Basel) 2023; 15:cancers15082255. [PMID: 37190183 DOI: 10.3390/cancers15082255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Hormone receptor-positive and HER2-negative (HR+/HER2-; luminal A) tumors are prevalent in breast cancer. Our past studies demonstrated that "TME Stimulation" (estrogen + TNFα + EGF, representing three arms of the tumor microenvironment, TME) has enriched metastasis-forming cancer stem cells (CSCs) in HR+/HER2- human breast cancer cells. Here, following information obtained by RNAseq analyses of TME-stimulated CSCs and Non-CSCs, we found that TME Stimulation has induced the activation of S727-STAT3, Y705-STAT3, STAT1 and p65. Upon TME Stimulation, stattic (STAT3 inhibitor) usage demonstrated that Y705-STAT3 activation negatively controlled CSC enrichment and epithelial-to-mesenchymal transition (EMT) traits, while inducing CXCL8 (IL-8) and PD-L1 expression. However, STAT3 knock-down (siSTAT3) had no effect on these functions; in terms of CSC enrichment, p65 had down-regulatory roles that compensated for the loss of an entire STAT3 protein. Y705-STAT3 and p65 acted additively in reducing CSC enrichment, and Y705A-STAT3 variant + sip65 has enriched chemo-resistant CSCs. Clinical data analyses revealed an inverse correlation between Y705-STAT3 + p65 phosphorylation and CSC signature in luminal A patients, and connection to improved disease course. Overall, we find regulatory roles for Y705-STAT3 and p65 in TME-stimulated HR+/HER2- tumors, with the ability to limit CSC enrichment. These findings raise concerns about using inhibitors of STAT3 and p65 as therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Hagar Ben-Yaakov
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
21
|
Wilson BE, Shen Q, Cescon DW, Reedijk M. Exploring immune interactions in triple negative breast cancer: IL-1β inhibition and its therapeutic potential. Front Genet 2023; 14:1086163. [PMID: 37065483 PMCID: PMC10095561 DOI: 10.3389/fgene.2023.1086163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Triple negative breast cancer (TNBC) has poor prognosis when compared to other breast cancer subtypes. Despite pre-clinical data supporting an immune targeted approach for TNBCs, immunotherapy has failed to demonstrate the impressive responses seen in other solid tumor malignancies. Additional strategies to modify the tumor immune microenvironment and potentiate response to immunotherapy are needed. In this review, we summarise phase III data supporting the use of immunotherapy for TNBC. We discuss the role of IL-1β in tumorigenesis and summarize pre-clinical data supporting IL-1β inhibition as a potential therapeutic strategy in TNBC. Finally, we present current trials evaluating IL-1β in breast cancer and other solid tumor malignancies and discuss future studies that may provide a strong scientific rationale for the combination of IL-1β and immunotherapy in the neoadjuvant and metastatic setting for people with TNBC.
Collapse
Affiliation(s)
- Brooke E. Wilson
- Department of Oncology, Queen’s University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen’s Cancer Research Institute, Kingston, ON, Canada
| | - Qiang Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
| | - Michael Reedijk
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
- Department of Surgical Oncology, University Health Network, Toronto, ON, Canada
- *Correspondence: Michael Reedijk,
| |
Collapse
|
22
|
Bella YF, Oliveira CR, Mateus-Silva JR, Brandao-Rangel MAR, Silva-Reis A, Santos JDMB, Albertini R, Lopes-Martins RAB, de Oliveira LVF, Vieira RP. A phytotherapic blend immunity-6™ inhibits myeloid leukemic cells 2 activation involving purinergic signaling. Biomed Pharmacother 2023; 159:114263. [PMID: 36652732 DOI: 10.1016/j.biopha.2023.114263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Leukemia is among the most common types of hematological cancers and the use of herbal medicines to prevent and treat leukemia are under quick development. Among several molecular pathways involved in leukemia pathogenesis and exacerbations, purinergic signaling is revealed as a key component. In the present study, the effects of two doses (5 ug/mL and 10 ug/mL) of Immunity-6™, a phytocomplex composed by beta-glucan, green tea (Camelia sinensis), chamomile (Matricaria chamomilla), and ascorbic acid (vitamin C) was tested in vitro, using chronic myelogenous leukemia cell line (K-562; 5 ×104/mL/well), which were challenged with lipopolysaccharide (LPS; 1 ug/mL) for 24 h. The results demonstrated that both doses of Immunity-6™ inhibited ATP release (p < 0.001) and P2×7 receptor at mRNA levels expression (p < 0.001). Purinergic inhibition by Immunity-6™ was followed by reduced release of proinflammatory cytokines IL-1beta (p < 0.001) and IL-6 (p < 0.001), while only 5 ug/mL of Immunity-6™ reduced the release of TNF-alpha (p < 0.001). Beyond to inhibit the release of pro-inflammatory cytokines, both doses of Immunity-6™ induced the release of anti-inflammatory cytokine IL-10 (p < 0.001), while only the higher dose (10 ug/mL) of Immunity-6™ induced the release of anti-inflammatory IL-1ra (p < 0.05) and klotho (p < 0.001). Thus, Immunity-6™ may be a promising adjuvant in the treatment of leukemia and further clinical trials are guaranteed.
Collapse
Affiliation(s)
- Yanesko Fernandes Bella
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Carlos Rocha Oliveira
- Federal University of São Paulo (UNIFESP), Department of Biomedical Engineering, Rua Talim 330, São José dos Campos, SP 12231-280, Brazil
| | - José Roberto Mateus-Silva
- Federal University of São Paulo (UNIFESP), Department of Biomedical Engineering, Rua Talim 330, São José dos Campos, SP 12231-280, Brazil
| | - Maysa Alves Rodrigues Brandao-Rangel
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Anamei Silva-Reis
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Juliana de Melo Batista Santos
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Regiane Albertini
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Rodrigo Alvaro Brandao Lopes-Martins
- Unievangelica, Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Avenida Universitária Km 3,5, Anápolis, GP 75083-515, Brazil
| | - Luis Vicente Franco de Oliveira
- Unievangelica, Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Avenida Universitária Km 3,5, Anápolis, GP 75083-515, Brazil
| | - Rodolfo P Vieira
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil; Unievangelica, Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Avenida Universitária Km 3,5, Anápolis, GP 75083-515, Brazil; Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, Rua Pedro Ernesto 240, São José dos Campos, SP 12245-520, Brazil; Universidade Brasil, Post-graduate Program in Bioengineering and Biomedical Engineering, Rua Carolina Fonseca 235, São Paulo, SP 08230-030, Brazil.
| |
Collapse
|
23
|
Marini W, Wilson BE, Reedijk M. Targeting Notch-Driven Cytokine Secretion: Novel Therapies for Triple Negative Breast Cancer. DNA Cell Biol 2023; 42:73-81. [PMID: 36579947 DOI: 10.1089/dna.2022.0578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Compared with other breast cancer subtypes, triple negative breast cancer (TNBC) is an aggressive malignancy with a high recurrence rate and reduced overall survival. Immune checkpoint inhibition (ICI) has shown modest results in this subgroup, highlighting the need for improved targeted therapeutic options. Notch is a defining feature of TNBC and drives the expression of interleukin-1 beta (IL1β) and C-C motif chemokine ligand 2 (CCL2). These cytokines are involved in the recruitment of tumor-associated macrophages (TAMs) to the tumor, resulting in immune evasion and tumor progression. Targeting Notch, IL1β or CCL2 may reduce TAM recruitment and resistance to ICI, illuminating the potential of combination immunotherapy in TNBC.
Collapse
Affiliation(s)
- Wanda Marini
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brooke E Wilson
- Department of Oncology, Queen's University, Kingston, Ontario, Canada.,Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Michael Reedijk
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Correlation between oxidative stress markers and cytokines in different stages of breast cancer. Cytokine 2023; 161:156082. [PMID: 36347127 DOI: 10.1016/j.cyto.2022.156082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
This study aims to estimate the level of malondialdehyde (MDA) as oxidative stress marker and reduced glutathione (GSH) as antioxidant and correlate them to different inflammatory markers as interleukins (IL-6, IL-8, IL-10) and tumor necrosis factor alpha (TNF-α) in different stages of breast cancer (BC). For the purpose of comparisons, 35 healthy subjects matched for age, sex and ethnic background were selected who have no history or clinical evidence of BC or any chronic disease and obvious abnormalities as a control group and 35 patients of different stages of BC were participated in the study. The cancer patients were diagnosed by specialists. Even the exact cause of the disease has not been identified but according to this study, 5% of the patients were having family history of the disease and 62% of the patients were having a BMI over 25. Over 60% of the patients were postmenopausal and all females participated in this study were nonsmokers. MDA level showed a significant increase when BC patients were compared to healthy subjects, this oxidative stress marker showed a significant increase with the increase of the stage of the disease. In contrast the level of the lipid peroxide scavenger GSH reduced with increasing the stage of the disease. The level of some cytokines showed a significant change between different stages and the control group. Correlation between MDA and GSH with these cytokines showed a positive correlation between all cytokines and the MDA level and a negative correlation between GSH and the cytokines. The results of this study suggests that BC stimulates the oxidative stress response and for that, different inflammatory cytokines will be produced and there is a pronounced relationship between oxidative stress parameters and these cytokines and the level of these cytokines are associated with aggressive tumors.
Collapse
|
25
|
Esmailiyan M, Kargarfard M, Esfarjani F, Vaseghi G, Haghjooy Javanmard S, Amerizadeh A. The Effects of 4-Week Aerobic Exercise on the Levels of CCl2, CCl5, and their Respective Receptors in Female BALB/C Mice Suffering from Breast Cancer. Adv Biomed Res 2023; 12:28. [PMID: 37057225 PMCID: PMC10086640 DOI: 10.4103/abr.abr_288_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 04/15/2023] Open
Abstract
Background The studies reported that chemokines Chemokine (C-C motif) ligand 2 (CCL2) and Chemokine (C-C motif) ligand 5 (CCL5) have tumor-promoting roles in breast cancer (BC). The aim of the present study was to evaluate the effect of 4 weeks of continuous aerobic exercise (AE) on chemokines CCL2 and CCL5 and their relative receptors in animal model of human BC. Materials and Methods BALB/c mice were divided randomly into four groups included cancer control (CC) and three other groups. The total duration of the experiment was 14 weeks, including 2 weeks of familiarization of mice with treadmills and three of 4-week periods of experiment. Tumor inoculation and formation were performed in the second 4-week period. Group 1 received AE in the first 4-week, Group 2 received AE in the second 4-week and Group 3 in the third 4-week. Results The CCL2 was reduced significantly in Groups 1, 2, and 3 compared to control (F3,12= 4705, P = 0.0001). In terms of CCL5, a significant decrease was seen only between Group 3 and control. Western blot results showed a significant reduction in C-C chemokine receptor Type 2 (CCR2) between Group 1 versus CC and Group 2 versus CC (F3,20= 1.812, P = 0.004). In terms of C-C chemokine receptor Type 5 (CCR5) a significant decrease was observed between Group 2 versus control and Group 3 versus control (F3,20= 273.3, P = 0.042), (P = 0.004). Conclusion It can be concluded that 4-week AE significantly reduces the chemokines CCL2 and CCL5 and their respective receptors levels CCR5 and CCR2 in different stages, and it may have an inhibitory effect on tumor growth.
Collapse
Affiliation(s)
- Mehrnoosh Esmailiyan
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
- Address for correspondence: Prof. Mehdi Kargarfard, Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, HezarJerib Ave, Azadi Sq., P.O. Box: 81799-54359, Isfahan, Iran. E-mail:
| | - Fahimeh Esfarjani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Science, Isfahan, Iran
| | - Atefeh Amerizadeh
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Ferreira KCB, Valle ABCDS, Gualberto ACM, Aleixo DT, Silva LM, Santos MM, Costa DDS, Oliveira LL, Gameiro J, Tavares GD, da Silva Filho AA, Corrêa JODA, Pittella F. Kaurenoic acid nanocarriers regulates cytokine production and inhibit breast cancer cell migration. J Control Release 2022; 352:712-725. [PMID: 36374787 DOI: 10.1016/j.jconrel.2022.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/15/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer is the type of cancer with the highest incidence in women around the world. Noteworthy, the triple-negative subtype affects 20% of the patients while presenting the highest death rate among subtypes. This is due to its aggressive phenotype and the capability of invading other tissues. In general, tumor-associated macrophages (TAM) and other immune cells, are responsible for maintaining a favorable tumor microenvironment for inflammation and metastasis by secreting several mediators such as pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, chemokines like CCL2, and other proteins, as metalloproteinases of matrix (MMP). On the other hand, immunomodulatory agents can interfere in the immune response of TAM and change the disease prognosis. In this work, we prepared nanostructured lipid carriers containing kaurenoic acid (NLC-KA) to evaluate the effect on cytokine production in vitro of bone marrow-derived macrophages (BMDM) and the migratory process of 4 T1 breast cancer cells. NLC-KA prepared from a blend of natural lipids was shown to have approximately 90 nm in diameter with low polydispersity index. To test the effect on cytokine production in vitro in NLC-KA treated BMDM, ELISA assay was performed and pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were quantified. The formulation reduced the secretion of IL-1β and TNF-α cytokines while presenting no hemolytic activity. Noteworthy, an anti-migratory effect in 4 T1 breast cancer cells treated with NLC-KA was observed in scratch assays. Further, MMP9 and CCL2 gene expressions in both BMDM and 4 T1 treated cells confirmed that the mechanism of inhibition of migration is related to the blockade of this pathway by KA. Finally, cell invasion assays confirmed that NLC-KA treatment resulted in less invasiveness of 4 T1 cells than control, and it is independent of CCL2 stimulus or BMDM direct stimulus. Ultimately, NLC-KA was able to regulate the cytokine production in vitro and reduce the migration of 4 T1 breast cancer cells by decreasing MMP9 gene expression.
Collapse
Affiliation(s)
- Kézia Cristine Barbosa Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | | | - Ana Cristina Moura Gualberto
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Davi Trombini Aleixo
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Lívia Mara Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Milena Maciel Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Danilo de Souza Costa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Letícia Ludmilla Oliveira
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Jacy Gameiro
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Ademar Alves da Silva Filho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - José Otávio do Amaral Corrêa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frederico Pittella
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Dharshini LCP, Rasmi RR, Kathirvelan C, Kumar KM, Saradhadevi KM, Sakthivel KM. Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Appl Biochem Biotechnol 2022; 195:2893-2916. [PMID: 36441404 DOI: 10.1007/s12010-022-04266-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
Cancer progression is closely linked to oxidative stress (OS) inflammation. OS is caused by an imbalance between the amount of reactive oxygen species produced and antioxidants present in the body. Excess ROS either oxidizes biomolecules or activates the signaling cascade, resulting in inflammation. Immune cells secrete cytokines and chemokines when inflammation is activated. These signaling molecules attract a wide range of immune cells to the site of infection or oxidative stress. Similarly, increased ROS production by immune cells at the inflamed site causes oxidative stress in the affected area. A review on the role of oxidative stress and inflammation in cancer-related literature was conducted to obtain data. All of the information gathered was focused on the current state of oxidative stress and inflammation in various cancers. After gathering all relevant information, a narrative review was created to provide a detailed note on oxidative stress and inflammation in cancer. Proliferation, differentiation, angiogenesis, migration, invasion, metabolic changes, and evasion of programmed cell death are all aided by OS and inflammation in cancer. Imbalance between reactive oxygen species (ROS) and antioxidants lead to oxidative stress that damages macromolecules (nucleic acids, lipids and proteins). It causes breakdown of the biological signaling cascade. Prolonged oxidative stress causes inflammation by activating transcription factors (NF-κB, p53, HIF-1α, PPAR-γ, Nrf2, AP-1) that alter the expression of many other genes and proteins, including growth factors, tumor-suppressor genes, oncogenes, and pro-inflammatory cytokines, resulting in cancer cell survival. The present review article examines the complex relationship between OS and inflammation in certain types of cancer (colorectal, breast, lung, bladder, and gastric cancer).
Collapse
Affiliation(s)
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India
| | - Chinnadurai Kathirvelan
- Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal, 637 002, Tamil Nadu, India
| | - Kalavathi Murugan Kumar
- School of Lifescience, Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | - K M Saradhadevi
- Department of Biochemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India.
| |
Collapse
|
28
|
Novel Methods of Targeting IL-1 Signalling for the Treatment of Breast Cancer Bone Metastasis. Cancers (Basel) 2022; 14:cancers14194816. [PMID: 36230739 PMCID: PMC9561984 DOI: 10.3390/cancers14194816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The pro-inflammatory cytokine, IL1β, plays a pivotal role in breast cancer bone metastasis. Inhibiting IL-1 signalling with the IL1β specific antibody, Canakinumab, or the IL1R1 antagonist Anakinra almost eliminates bone metastases but has adverse effects on tumours growing outside of the bone and immune regulation. This current study demonstrated that pharmacological inhibition of other members of the IL-1 signalling pathway Caspase-1, IL1β and IL1R reduced migration and invasion of E0771 and Py8119 cells in vitro and also reduced spontaneous metastasis and metastatic outgrowth of breast cancer in the bone, in vivo. Interestingly, targeting IRAK1 had no anti-tumour effects. Importantly, inhibiting Caspase-1 reduces bone metastasis without adversely affecting tumours outside of bone or immune cell regulation, suggesting that targeting immediately upstream of IL1β may be a good therapeutic strategy for treating patients with breast-cancer-induced bone disease. Abstract Breast cancer bone metastasis is currently incurable. Evidence suggests that inhibiting IL-1 signalling with the IL1R antagonist, Anakinra, or the IL1β antibody, Canakinumab, prevents metastasis and almost eliminates breast cancer growth in the bone. However, these drugs increase primary tumour growth. We, therefore, investigated whether targeting other members of the IL-1 pathway (Caspase-1, IL1β or IRAK1) could reduce bone metastases without increasing tumour growth outside of the bone. Inhibition of IL-1 via MLX01 (IL1β secretion inhibitor), VRT043198/VX765 (Caspase-1 inhibitor), Pacritinib (IRAK1 inhibitor) or Anakinra (IL1R antagonist) on tumour cell viability, migration and invasion were assessed in mouse mammary E0771 and Py8119 cells in vitro and on primary tumour growth, spontaneous metastasis and metastatic outgrowth in vivo. In vitro, Inhibition of IL-1 signalling by MLX01, VRT043198 and Anakinra reduced migration of E0771 and Py8119 cells and reversed tumour-derived IL1β induced-increased invasion and migration towards bone cells. In vivo, VX765 and Anakinra significantly reduced spontaneous metastasis and metastatic outgrowth in the bone, whereas MLX01 reduced primary tumour growth and bone metastasis. Pacritinib had no effect on metastasis in vitro or in vivo. Targeting IL-1 signalling with small molecule inhibitors may provide a new therapeutic strategy for breast cancer bone metastasis.
Collapse
|
29
|
Promny T, Kutz CS, Jost T, Distel LV, Kadam S, Schmid R, Arkudas A, Horch RE, Kengelbach-Weigand A. An In Vitro Approach for Investigating the Safety of Lipotransfer after Breast-Conserving Therapy. J Pers Med 2022; 12:1284. [PMID: 36013233 PMCID: PMC9409821 DOI: 10.3390/jpm12081284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The application of lipotransfer after breast-conserving therapy (BCT) and irradiation in breast cancer patients is an already widespread procedure for reconstructing volume deficits of the diseased breast. Nevertheless, the safety of lipotransfer has still not been clarified yet due to contradictory data. The goal of this in vitro study was to further elucidate the potential effects of lipotransfer on the irradiated remaining breast tissue. The mammary epithelial cell line MCF-10A was co-cultured with the fibroblast cell line MRC-5 and irradiated with 2 and 5 Gy. Afterwards, cells were treated with conditioned medium (CM) from adipose-derived stem cells (ADSC), and the effects on the cellular functions of MCF-10A cells and on gene expression at the mRNA level in MCF-10A and MRC-5 cells were analyzed. Treatment with ADSC CM stimulated transmigration and invasion and decreased the surviving fraction of MCF-10A cells. Further, the expression of cytokines, extracellular, and mesenchymal markers was enhanced in mammary epithelial cells. Only an effect of ADSC CM on irradiated fibroblasts could be observed. The present data suggest epithelial-mesenchymal transition-like changes in the epithelial mammary breast cell line. Thus, the benefits of lipotransfer after BCT should be critically weighed against its possible risks for the affected patients.
Collapse
Affiliation(s)
- Theresa Promny
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Chiara-Sophia Kutz
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tina Jost
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sheetal Kadam
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Rafael Schmid
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
30
|
Baram T, Oren N, Erlichman N, Meshel T, Ben-Baruch A. Inflammation-Driven Regulation of PD-L1 and PD-L2, and Their Cross-Interactions with Protective Soluble TNFα Receptors in Human Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:3513. [PMID: 35884574 PMCID: PMC9323351 DOI: 10.3390/cancers14143513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 12/02/2022] Open
Abstract
Pro-inflammatory cytokines play key roles in elevating cancer progression in triple-negative breast cancer (TNBC). We demonstrate that specific combinations between TNFα, IL-1β and IFNγ up-regulated the proportion of human TNBC cells co-expressing the inhibitory immune checkpoints PD-L1 and PD-L2: TNFα + IL-1β in MDA-MB-231 cells and IFNγ + IL-1β in BT-549 cells; in the latter cells, the process depended entirely on STAT1 activation, with no involvement of p65 (CRISPR-Cas9 experiments). Highly significant associations between the pro-inflammatory cytokines and PD-L1/PD-L2 expression were revealed in the TCGA dataset of basal-like breast cancer patients. In parallel, we found that the pro-inflammatory cytokines regulated the expression of the soluble receptors of tumor necrosis factor α (TNFα), namely sTNFR1 and sTNFR2; moreover, we revealed that sTNFR1 and sTNFR2 serve as anti-metastatic and protective factors in TNBC, reducing the TNFα-induced production of inflammatory pro-metastatic chemokines (CXCL8, CXCL1, CCL5) by TNBC cells. Importantly, we found that in the context of inflammatory stimulation and also without exposure to pro-inflammatory cytokines, elevated levels of PD-L1 have down-regulated the production of anti-tumor sTNFR1 and sTNFR2. These findings suggest that in addition to its immune-suppressive activities, PD-L1 may promote disease course in TNBC by inhibiting the protective effects of sTNFR1 and sTNFR2.
Collapse
Affiliation(s)
| | | | | | | | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (T.B.); (N.O.); (N.E.); (T.M.)
| |
Collapse
|
31
|
Chairani E, Fuchigami T, Koyama H, Ono Y, Iijima M, Kishida M, Kibe T, Nakamura N, Kishida S. Intercellular signaling between ameloblastoma and osteoblasts. Biochem Biophys Rep 2022; 30:101233. [PMID: 35243014 PMCID: PMC8861578 DOI: 10.1016/j.bbrep.2022.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022] Open
Abstract
Ameloblastoma is an odontogenic tumor located in the bone jaw with clinical characteristics of extensive bone resorption. It is a locally invasive tumor with a high recurrence rate despite adequate surgical removal. In bone disease, tumors and other cells including osteoblasts, osteoclasts, and osteocytes in the bone microenvironment contribute to the pathogenesis of tumor growth. However, the effect of osteoblasts on ameloblastoma cells is not well-understood, and there has been limited research on interactions between them. This study investigated interactions between ameloblastoma cells and osteoblasts using a human ameloblastoma cell line (AM-3 ameloblastoma cells) and a murine pre-osteoblast cell line (MC3T3-E1 cells). We treated each cell type with the conditioned medium by the other cell type. We analyzed the effect on cytokine production by MC3T3-E1 cells and the production of MMPs by AM-3 cells. Treatment with AM-3-conditioned medium induced inflammatory cytokine production of IL-6, MCP-1, and RANTES from MC3T3-E1 cells. The use of an IL-1 receptor antagonist suppressed the production of these inflammatory cytokines by MC3T3-E1 cells stimulated with AM-3-conditioned medium. The MC3T3-E1-conditioned medium triggered the expression of MMP-2 from AM-3 cells. Furthermore, we have shown that the proliferation and migration activity of AM-3 cells were accelerated by MC3T3-E1 conditioned media. In conclusion, these intercellular signalings between ameloblastoma cells and osteoblasts may play multiple roles in the pathogenesis of ameloblastoma. Ameloblastoma conditioned medium induced IL-6, MCP-1 and RANTES production from osteoblast cell in IL-1 dependent manner. Unidentified factors from osteoblast conditioned medium induced MMP-2 production and stimulate proliferation and cellular motility of ameloblastoma cells.
Collapse
|
32
|
Ben-Baruch A. Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Front Immunol 2022; 13:903679. [PMID: 35663982 PMCID: PMC9157545 DOI: 10.3389/fimmu.2022.903679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Gharib AF, El Askary A, Almehmadi M, Alhuthali HM, Elsawy WH, Allam HH, Elsayyad LK, Ayoub MA, Shafie A. Association of vitamin D deficiency and inflammatory cytokines with the clinicopathological features of breast cancer in female Saudi patients. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death among women in Saudi Arabia. Many studies have suggested a strong correlation between vitamin D and multiple types of cancer. This study included 100 female Saudi patients with early or locally advanced breast cancer. Patients were recruited from King Faisal Hospital in Taif City, Saudi Arabia, from January 2020 to September 2020. We aimed to study the association between serum vitamin D, calcium, interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α) and chemerin and breast cancer progression. The control group consisted of 100 healthy individuals. Serum levels of vitamin D, calcium, IL-6, TNF-α and chemerin were measured in all participants. Vitamin D was significantly decreased in patients with high-grade tumours ( p < 0.0001), obesity ( p = 0.013), negative oestrogen receptors ( p < 0.0001), negative progesterone receptors ( p < 0.0001) and positive HER2 receptors ( p < 0.0001). Vitamin D was also decreased in patients with large tumours ( p < 0.0001), axillary lymph node involvement ( p < 0.0001) and advanced-stage cancers ( p < 0.0001). Moreover, higher levels of IL-6, TNF-α and chemerin were significantly associated with the presence of breast cancer, particularly in its advanced stages. Vitamin D deficiency and elevated levels of IL-6, TNF- α and chemerin were associated with adverse clinicopathological features of breast cancer. Vitamin D deficiency and elevated inflammatory cytokines (IL-6, TNF-α and chemerin) were associated with the clinicopathological features of breast cancer in female Saudi patients.
Collapse
Affiliation(s)
- Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Wael H Elsawy
- Department of Clinical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hatem H Allam
- Department of Physical Therapy, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Lamiaa K Elsayyad
- Department of Physical Therapy, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Manal Ali Ayoub
- Ministry of Health, King Faisal Hospital, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
34
|
Interleukin-1 and Nuclear Factor Kappa B Signaling Promote Breast Cancer Progression and Treatment Resistance. Cells 2022; 11:cells11101673. [PMID: 35626710 PMCID: PMC9139516 DOI: 10.3390/cells11101673] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
While meant for wound healing and immunity in response to injury and infection, inflammatory signaling is usurped by cancerous tumors to promote disease progression, including treatment resistance. The interleukin-1 (IL-1) inflammatory cytokine family functions in wound healing and innate and adaptive immunity. Two major, closely related IL-1 family members, IL-1α and IL-1β, promote tumorigenic phenotypes and contribute to treatment resistance in cancer. IL-1 signaling converges on transactivation of the Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP-1) transcription factors. NF-κB and AP-1 signaling are also activated by the inflammatory cytokine Tumor Necrosis Factor Alpha (TNFα) and microbe-sensing Toll-Like Receptors (TLRs). As reviewed elsewhere, IL-1, TNFα, and TLR can promote cancer progression through NF-κB or AP-1. In this review, we focus on what is known about the role of IL-1α and IL-1β in breast cancer (BCa) progression and therapeutic resistance, and state evidence for the role of NF-κB in mediating IL-1-induced BCa progression and therapeutic resistance. We will present evidence that IL-1 promotes BCa cell proliferation, BCa stem cell expansion, angiogenesis, and metastasis. IL-1 also regulates intracellular signaling and BCa cell hormone receptor expression in a manner that confers a growth advantage to the tumor cells and allows BCa cells to evade therapy. As such, the IL-1 receptor antagonist, anakinra, is in clinical trials to treat BCa and multiple other cancer types. This article presents a review of the literature from the 1990s to the present, outlining the evidence supporting a role for IL-1 and IL-1-NF-κB signaling in BCa progression.
Collapse
|
35
|
Masih M, Agarwal S, Kaur R, Gautam PK. Role of chemokines in breast cancer. Cytokine 2022; 155:155909. [PMID: 35597171 DOI: 10.1016/j.cyto.2022.155909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023]
Abstract
Chemokines belong to a family of chemoattractant cytokines and are well known to have an essential role in various cancer aetiologies. Multiplesubsets of immune cells are recruited and enrolled into the tumor microenvironment through interactions between chemokines and their specific receptors. These populations and their interactions have a distinct impact on tumor growth, progression, and treatment outcomes. While it is clear that many chemokines and their cognate receptors can be detected in breast and other cancers, the role of each chemokine and receptor has yet to be determined. This review focuses on the main chemokines that play a crucial role in the tumor microenvironment, emphasizing breast cancer. We have also discussed the techniques used to identify the chemokines and their future implication in the early diagnosis of cancer. In-depth knowledge of chemokines and their role in breast cancer progression can provide specific targets for breast cancer biotherapy.
Collapse
Affiliation(s)
- Marilyn Masih
- Department of Biochemistry, AIIMS, New Delhi -110029, India.
| | - Sonam Agarwal
- Department of Biochemistry, AIIMS, New Delhi -110029, India.
| | - Rupinder Kaur
- Department of Biochemistry, AIIMS, New Delhi -110029, India.
| | | |
Collapse
|
36
|
Go RE, Lee SM, Shin YJ, Kim MS, Park CM, Ko EB, Kim S, Choi KC. Time-dependent effect of inhaled cigarette smoke exposure in the bleomycin-induced lung injury rat model. ENVIRONMENTAL TOXICOLOGY 2022; 37:1231-1243. [PMID: 35112775 DOI: 10.1002/tox.23479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Cigarette smoke (CS) substances are known to induce diverse ailments such as cancer, decreased immunity, and lung diseases. Although some studies have been actively conducted to evaluate cigarette toxicity, the current animal exposure methods, that is, exposure of 28- or 90-days, require considerable research cost and lead to obscure results of the CS effects. In a previous study, we compared the effects of CS in a rat model of bleomycin (BLM) and lipopolysaccharide (LPS) induced lung disease. We determined that compared to the LPS-induced rat model, the BLM-induced rat model was more sensitive to alterations in secreting cytokines and total cell number. In the current study, we further confirmed the time-point of effective inhalation exposure by CS in the BLM-induced lung injury rat model. Using an automatic video instillator, rats were administered a single dose of 2.5 mg/kg BLM (day 1), and subsequently exposed to CS via inhalation (nose-only) 4 h/day, for 1, 2, 3, and 4 weeks. The bronchoalveolar lavage fluid (BALF) was obtained from the right lung lobes, total cell numbers were counted, and chemokine and cytokine expressions were evaluated using Enzyme-Linked Immunosorbent Assay. For the 1-week exposure, we observed a greater increase of neutrophils in the BLM + CS 300 μg/L group than in the BLM or CS 300 μg/L groups. Exposure of CS in the BLM-induced lung injury rat model enhanced the secretions of chemokines and cytokines, such as CCL2/MCP-1, CXCL2/MIP-2 and TNF-α, at 1 week. Immunohistochemistry and Hematoxylin and Eosin staining of lungs at 1-2 weeks after exposure clearly confirmed this tendency in the increased levels of CCL2/MCP-1 and TNF-α. Taken together, these results indicate that the rat model of BLM-induced lung injury is more sensitive to CS exposure than other rat models, and may be an appropriate model to evaluate the effect of CS exposure at 1-2 weeks.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sung-Moo Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Young-Jun Shin
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Chul-Min Park
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Eul-Bee Ko
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Soochong Kim
- Laboratory of Pathology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
37
|
Morris RM, Mortimer TO, O’Neill KL. Cytokines: Can Cancer Get the Message? Cancers (Basel) 2022; 14:cancers14092178. [PMID: 35565306 PMCID: PMC9103018 DOI: 10.3390/cancers14092178] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cytokines are important molecular players in cancer development, progression, and potential targets for treatment. Despite being small and overlooked, research has revealed that cytokines influence cancer biology in multiple ways. Cytokines are often found to contribute to immune function, cell damage, inflammation, angiogenesis, metastasis, and several other cellular processes important to tumor survival. Cytokines have also proven to have powerful effects on complex tumor microenvironment molecular biology and microbiology. Due to their heavy involvement in critical cancer-related processes, cytokines have also become attractive therapeutic targets for cancer treatment. In this review, we describe the relationship between several cytokines and crucial cancer-promoting processes and their therapeutic potential. Abstract Cytokines are small molecular messengers that have profound effects on cancer development. Increasing evidence shows that cytokines are heavily involved in regulating both pro- and antitumor activities, such as immune activation and suppression, inflammation, cell damage, angiogenesis, cancer stem-cell-like cell maintenance, invasion, and metastasis. Cytokines are often required to drive these cancer-related processes and, therefore, represent an important research area for understanding cancer development and the potential identification of novel therapeutic targets. Interestingly, some cytokines are reported to be related to both pro- and anti-tumorigenicity, indicating that cytokines may play several complex roles relating to cancer pathogenesis. In this review, we discuss some major cancer-related processes and their relationship with several cytokines.
Collapse
|
38
|
Wilczyński JR. Cancer Stem Cells: An Ever-Hiding Foe. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:219-251. [PMID: 35165866 DOI: 10.1007/978-3-030-91311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer stem cells are a population of cells enable to reproduce the original phenotype of the tumor and capable to self-renewal, which is crucial for tumor proliferation, differentiation, recurrence, and metastasis, as well as chemoresistance. Therefore, the cancer stem cells (CSCs) have become one of the main targets for anticancer therapy and many ongoing clinical trials test anti-CSCs efficacy of plenty of drugs. This chapter describes CSCs starting from general description of this cell population, through CSCs markers, signaling pathways, genetic and epigenetic regulation, role of epithelial-mesenchymal transition (EMT) transition and autophagy, cooperation with microenvironment (CSCs niche), and finally role of CSCs in escaping host immunosurveillance against cancer.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
39
|
Nowak E, Bednarek I. Aspects of the Epigenetic Regulation of EMT Related to Cancer Metastasis. Cells 2021; 10:3435. [PMID: 34943943 PMCID: PMC8700111 DOI: 10.3390/cells10123435] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) occurs during the pathological process associated with tumor progression and is considered to influence and promote the metastatic cascade. Characterized by loss of cell adhesion and apex base polarity, EMT enhances cell motility and metastasis. The key markers of the epithelial to mesenchymal transition are proteins characteristic of the epithelial phenotype, e.g., E-cadherin, cytokeratins, occludin, or desmoplakin, the concentration and activity of which are reduced during this process. On the other hand, as a result of acquiring the characteristics of mesenchymal cells, an increased amount of N-cadherin, vimentin, fibronectin, or vitronectin is observed. Importantly, epithelial cells undergo partial EMT where some of the cells show both epithelial and mesenchymal characteristics. The significant influence of epigenetic regulatory mechanisms is observed in the gene expression involved in EMT. Among the epigenetic modifications accompanying incorrect genetic reprogramming in cancer are changes in the level of DNA methylation within the CpG islands and posttranslational covalent changes of histone proteins. All observed modifications, which are stable but reversible changes, affect the level of gene expression leading to the development and progression of the disease, and consequently affect the uncontrolled growth of the population of cancer cells.
Collapse
Affiliation(s)
- Ewa Nowak
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | | |
Collapse
|
40
|
Mehmood Y, Anwar F, Saleem U, Hira S, Ahmad B, Bashir M, Imtiaz MT, Najm S, Ismail T. The anti-cancer potential of 2,4,6 tris-methyphenylamino1,3,5-triazine compound against mammary glands cancer: Via down-regulating the hormonal, inflammatory mediators, and oxidative stress. Life Sci 2021; 285:119994. [PMID: 34592236 DOI: 10.1016/j.lfs.2021.119994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022]
Abstract
AIM OF THE STUDY Breast cancer is caused by abnormal growth of the cells and progressed due to the over-expression of estrogen (ER) and progesterone (PR). The current study was designed to evaluate the anti-tumor activity of 2,4,6 tris-methyphenylamino1,3,5-triazine compound (MPAT) in N-nitroso, N-methyl urea (NMU)-induced mammary gland cancer. METHODS Molecular docking and in-vitro studies were conducted before the in-vivo analysis. Female Albino rats were divided into 5 groups (n = 6). Group I received Carboxymethylcellulose (CMC) (1 mL/100 g). Group II (diseased group) received NMU 50 mg/kg. Group III (standard group) received tamoxifen (5 mg/kg). Group IV-V received MPAT at doses of 30 and 60 mg/kg respectively. All groups received NMU intraperitoneally except the control group at 3 weeks intervals for 12 weeks. After 12 weeks of NMU dosing, MPAT was given for 15 consecutive days. Biochemical, oxidative stress markers, hormonal profile, and inflammatory mediators were analyzed. KEY FINDINGS MPAT showed significant interaction with the selected targets in docking studies. An over-expression of ER and PR was observed in NMU-treated rats which were restored significantly after MPAT administration. Nitrite and MDA levels were high in the diseased group and MPAT treatment attenuated the oxidative damage after treatment. Antioxidants such as superoxide dismutase (SOD), Catalase (CAT), total sulfhydryl (TSH), glutathione (GSH), and Lactate dehydrogenase (LDH) values were low in NMU-treated rats. SIGNIFICANCE This study concluded that MPAT can be used as an anticancer agent due to its significant effects on down-regulating the hormonal profile and oxidative stress markers.
Collapse
Affiliation(s)
- Yumna Mehmood
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Manal Bashir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Tayyab Imtiaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Saima Najm
- Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore 55150, Pakistan
| | - Tariq Ismail
- COMSAT University, Department of Pharmacy, Abbottabad, Pakistan.
| |
Collapse
|
41
|
Maraviroc Prevents HCC Development by Suppressing Macrophages and the Liver Progenitor Cell Response in a Murine Chronic Liver Disease Model. Cancers (Basel) 2021; 13:cancers13194935. [PMID: 34638423 PMCID: PMC8508380 DOI: 10.3390/cancers13194935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Liver stem cells and activated macrophages have been implicated as contributors to liver cancer; hence, reducing their abundance is a potential avenue for therapy. In this article, we demonstrate that Maraviroc, a drug approved for human use, reduces the liver stem cell response and macrophage activation in a mouse model of liver cancer. These findings underline the preventive potential of this drug in liver cancer, a deadly disease for which there are few effective treatments. Abstract Maraviroc (MVC), a CCR5 antagonist, reduces liver fibrosis, injury and tumour burden in mice fed a hepatocarcinogenic diet, suggesting it has potential as a cancer therapeutic. We investigated the effect of MVC on liver progenitor cells (LPCs) and macrophages as both have a role in hepatocarcinogenesis. Mice were fed the hepatocarcinogenic choline-deficient, ethionine-supplemented diet (CDE) ± MVC, and immunohistochemistry, RNA and protein expression were used to determine LPC and macrophage abundance, migration and related molecular mechanisms. MVC reduced LPC numbers in CDE mice by 54%, with a smaller reduction seen in macrophages. Transcript and protein abundance of LPC-associated markers correlated with this reduction. The CDE diet activated phosphorylation of AKT and STAT3 and was inhibited by MVC. LPCs did not express Ccr5 in our model; in contrast, macrophages expressed high levels of this receptor, suggesting the effect of MVC is mediated by targeting macrophages. MVC reduced CD45+ cells and macrophage migration in liver and blocked the CDE-induced transition of liver macrophages from an M1- to M2-tumour-associated macrophage (TAM) phenotype. These findings suggest MVC has potential as a re-purposed therapeutic agent for treating chronic liver diseases where M2-TAM and LPC numbers are increased, and the incidence of HCC is enhanced.
Collapse
|
42
|
Jørgensen N, Lænkholm AV, Sækmose SG, Hansen LB, Hviid TVF. Peripheral blood immune markers in breast cancer: Differences in regulatory T cell abundance are related to clinical parameters. Clin Immunol 2021; 232:108847. [PMID: 34506945 DOI: 10.1016/j.clim.2021.108847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cancer development is among other factors driven by tumor immune escape and tumor-mediated changes in the immune response. Investigating systemic immune changes may provide important knowledge for the improvement of patient prognosis and treatment opportunities. METHODS The systemic immune profile of patients with ER-positive breast cancer (n = 22) and healthy controls (n = 30) was investigated based on complete blood counts, flow cytometric analysis of T cell subsets including regulatory T cells (Tregs), and immune assays investigating soluble (s)HLA-G and the cytokine profile in plasma. We further examined the correlation between the immune markers and clinical parameters including tumor size, tumor grade and lymph node involvement. RESULTS Results indicated that breast cancer patients possessed a higher amount of neutrophils and monocytes and fewer lymphocytes and eosinophils compared with healthy controls. Breast cancer patients had significantly more CD25+CD127low Tregs than controls, and both lymphocyte and Treg numbers were negatively correlated with tumor size. Furthermore, Treg numbers were elevated in grade I tumors compared with grade II tumors and with healthy controls. No difference in sHLA-G levels was observed between patients and controls. Higher levels of IL-6 and TNF-α were observed in breast cancer patients. Cytokine and sHLA-G levels were not associated with clinical parameters. CONCLUSION The results of this exploratory study contribute to the elucidation of the systemic immune response in breast cancer indicating a potential use of peripheral immune cell counts and Tregs to distinguish patients from healthy controls and as potential diagnostic and prognostic biomarkers to be investigated in future studies.
Collapse
Affiliation(s)
- Nanna Jørgensen
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Anne-Vibeke Lænkholm
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Surgical Pathology, Zealand University Hospital, Sygehusvej 9, 4000 Roskilde, Denmark
| | - Susanne Gjørup Sækmose
- Department of Clinical Immunology, Zealand University Hospital, Ringstedgade 77, 4700 Næstved, Denmark
| | - Lone Bak Hansen
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Plastic and Breast Surgery, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
43
|
Wang J, Chen X, Xie C, Sun M, Hu C, Zhang Z, Luan L, Zhou J, Zhou J, Zhu X, Ouyang J, Dong X, Li D, Zhang J, Zhao X. MicroRNA miR-29a Inhibits Colon Cancer Progression by Downregulating B7-H3 Expression: Potential Molecular Targets for Colon Cancer Therapy. Mol Biotechnol 2021; 63:849-861. [PMID: 34100183 DOI: 10.1007/s12033-021-00348-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
MiR-29a belongs to one of the subtypes of miRNAs known as non-coding single-stranded RNAs and is preferentially expressed in normal tissues. B7-H3, a member of the B7/CD28 immunoglobulin superfamily, was shown to be overexpressed in several solid malignant tumors, including colon cancer. In addition, it is associated with tumor progression and poor prognosis. We used immunohistochemical and Western blotting to assess B7-H3 protein expression levels in colon cancer and adjacent normal tissues and then compared their relationships with clinicopathological factors. Quantitative real-time reverse-transcription PCR was used to assess B7-H3 and miRNA-29a mRNA expression levels, and then their relationship and clinical significance were evaluated. In addition, colon cancer Caco-2 cells, which constitutively overexpress B7-H3, were transfected with lentivirus particles for miR-29a upregulation. Invasion and migration assays were carried out in vitro along with the establishment of a subcutaneous xenograft model in vivo to determine the role of miRNA-29a in colon cancer progression. The B7-H3 protein showed elevated expression in colon carcinoma and was relevant to TNM staging, lymph node metastasis, and reduced survival. Meanwhile, miR-29a was preferentially expressed in normal colon tissues, while B7-H3 transcript levels had no marked differences between tumor and normal tissue specimens. In vitro, miR-29a upregulation resulted in reduced B7-H3 expression. Furthermore, miR-29a upregulation reduced the invasive and migratory abilities of colon carcinoma cells. In animal models, upregulation of miR-29a slowed down the growth of subcutaneous xenotransplanted tumors and resulted in prolonged survival time. MiR-29a downregulates B7-H3 expression and accordingly inhibits colon cancer progression, invasion, and migration, indicating miR-29a and B7-H3 might represent novel molecular targets for advanced immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Jin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, China
- Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojuan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Xie
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingbing Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenrui Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lipeng Luan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Ouyang
- Department of Urology Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianglei Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
44
|
Li JJ, Tsang JY, Tse GM. Tumor Microenvironment in Breast Cancer-Updates on Therapeutic Implications and Pathologic Assessment. Cancers (Basel) 2021; 13:cancers13164233. [PMID: 34439387 PMCID: PMC8394502 DOI: 10.3390/cancers13164233] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment (TME) in breast cancer comprises local factors, cancer cells, immune cells and stromal cells of the local and distant tissues. The interaction between cancer cells and their microenvironment plays important roles in tumor proliferation, propagation and response to therapies. There is increasing research in exploring and manipulating the non-cancerous components of the TME for breast cancer treatment. As the TME is now increasingly recognized as a treatment target, its pathologic assessment has become a critical component of breast cancer management. The latest WHO classification of tumors of the breast listed stromal response pattern/fibrotic focus as a prognostic factor and includes recommendations on the assessment of tumor infiltrating lymphocytes and PD-1/PD-L1 expression, with therapeutic implications. This review dissects the TME of breast cancer, describes pathologic assessment relevant for prognostication and treatment decision, and details therapeutic options that interacts with and/or exploits the TME in breast cancer.
Collapse
Affiliation(s)
| | | | - Gary M. Tse
- Correspondence: ; Tel.: 852-3505-2359; Fax: 852-2637-4858
| |
Collapse
|
45
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|
46
|
Buhrmann C, Brockmueller A, Harsha C, Kunnumakkara AB, Kubatka P, Aggarwal BB, Shakibaei M. Evidence That Tumor Microenvironment Initiates Epithelial-To-Mesenchymal Transition and Calebin A can Suppress it in Colorectal Cancer Cells. Front Pharmacol 2021; 12:699842. [PMID: 34276382 PMCID: PMC8283792 DOI: 10.3389/fphar.2021.699842] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor microenvironment (TME) has a pivotal impact on tumor progression, and epithelial-mesenchymal transition (EMT) is an extremely crucial initial event in the metastatic process in colorectal cancer (CRC) that is not yet fully understood. Calebin A (an ingredient in Curcuma longa) has been shown to repress CRC tumor growth. However, whether Calebin A is able to abrogate TME-induced EMT in CRC was investigated based on the underlying pathways. Methods: CRC cell lines (HCT116, RKO) were exposed with Calebin A and/or a FAK inhibitor, cytochalasin D (CD) to investigate the action of Calebin A in TME-induced EMT-related tumor progression. Results: TME induced viability, proliferation, and increased invasiveness in 3D-alginate CRC cultures. In addition, TME stimulated stabilization of the master EMT-related transcription factor (Slug), which was accompanied by changes in the expression patterns of EMT-associated biomarkers. Moreover, TME resulted in stimulation of NF-κB, TGF-β1, and FAK signaling pathways. However, these effects were dramatically reduced by Calebin A, comparable to FAK inhibitor or CD. Finally, TME induced a functional association between NF-κB and Slug, suggesting that a synergistic interaction between the two transcription factors is required for initiation of EMT and tumor cell invasion, whereas Calebin A strongly inhibited this binding and subsequent CRC cell migration. Conclusion: We propose for the first time that Calebin A modulates TME-induced EMT in CRC cells, at least partially through the NF-κB/Slug axis, TGF-β1, and FAK signaling. Thus, Calebin A appears to be a potential agent for the prevention and management of CRC.
Collapse
Affiliation(s)
- Constanze Buhrmann
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany.,Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Augsburg, Augsburg, Germany
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
47
|
Lim YX, Lin H, Chu T, Lim YP. WBP2 promotes BTRC mRNA stability to drive migration and invasion in triple-negative breast cancer via NF-κB activation. Mol Oncol 2021; 16:422-446. [PMID: 34197030 PMCID: PMC8763649 DOI: 10.1002/1878-0261.13048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
WW‐domain‐binding protein 2 (WBP2) is an oncogene that drives breast carcinogenesis through regulating Wnt, estrogen receptor (ER), and Hippo signaling. Recent studies have identified neoteric modes of action of WBP2 other than its widely recognized function as a transcriptional coactivator. Here, we identified a previously unexplored role of WBP2 in inflammatory signaling in breast cancer via an integrated proteogenomic analysis of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA BRCA) dataset. WBP2 was shown to enhance the migration and invasion in triple‐negative breast cancer (TNBC) cells especially under tumor necrosis factor alpha (TNF‐α) stimulation. Molecularly, WBP2 potentiates TNF‐α‐induced nuclear factor kappa B (NF‐κB) transcriptional activity and nuclear localization through aggrandizing ubiquitin‐mediated proteasomal degradation of its upstream inhibitor, NF‐κB inhibitor alpha (NFKBIA; also known as IκBα). We further demonstrate that WBP2 induces mRNA stability of beta‐transducin repeat‐containing E3 ubiquitin protein ligase (BTRC), which targets IκBα for ubiquitination and degradation. Disruption of IκBα rescued the impaired migratory and invasive phenotypes in WBP2‐silenced cells, while loss of BTRC ameliorated WBP2‐driven migration and invasion. Clinically, the WBP2‐BTRC‐IκBα signaling axis correlates with poorer prognosis in breast cancer patients. Our findings reveal a pivotal mechanism of WBP2 in modulating BTRC‐IκBα‐NF‐κB pathway to promote TNBC aggressiveness.
Collapse
Affiliation(s)
- Yvonne Xinyi Lim
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hexian Lin
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tinghine Chu
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University Health System, Singapore City, Singapore
| | - Yoon Pin Lim
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,National University Cancer Institute, Singapore City, Singapore
| |
Collapse
|
48
|
Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediators Inflamm 2021; 2021:9918379. [PMID: 34220337 PMCID: PMC8219436 DOI: 10.1155/2021/9918379] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor cells undergo invasion and metastasis through epithelial-to-mesenchymal cell transition (EMT) by activation of alterations in extracellular matrix (ECM) protein-encoding genes, enzymes responsible for the breakdown of ECM, and activation of genes that drive the transformation of the epithelial cell to the mesenchymal type. Inflammatory cytokines such as TGFβ, TNFα, IL-1, IL-6, and IL-8 activate transcription factors such as Smads, NF-κB, STAT3, Snail, Twist, and Zeb that drive EMT. EMT drives primary tumors to metastasize in different parts of the body. T and B cells, dendritic cells (DCs), and tumor-associated macrophages (TAMs) which are present in the tumor microenvironment induce EMT. The current review elucidates the interaction between EMT tumor cells and immune cells under the microenvironment. Such complex interactions provide a better understanding of tumor angiogenesis and metastasis and in defining the aggressiveness of the primary tumors. Anti-inflammatory molecules in this context may open new therapeutic options for the better treatment of tumor progression. Targeting EMT and the related mechanisms by utilizing natural compounds may be an important and safe therapeutic alternative in the treatment of tumor growth.
Collapse
|
49
|
Baram T, Erlichman N, Dadiani M, Balint-Lahat N, Pavlovski A, Meshel T, Morzaev-Sulzbach D, Gal-Yam EN, Barshack I, Ben-Baruch A. Chemotherapy Shifts the Balance in Favor of CD8+ TNFR2+ TILs in Triple-Negative Breast Tumors. Cells 2021; 10:cells10061429. [PMID: 34201054 PMCID: PMC8229590 DOI: 10.3390/cells10061429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is primarily treated via chemotherapy; in parallel, efforts are made to introduce immunotherapies into TNBC treatment. CD4+ TNFR2+ lymphocytes were reported as Tregs that contribute to tumor progression. However, our published study indicated that TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs) were associated with improved survival in TNBC patient tumors. Based on our analyses of the contents of CD4+ and CD8+ TILs in TNBC patient tumors, in the current study, we determined the impact of chemotherapy on CD4+ and CD8+ TIL subsets in TNBC mouse tumors. We found that chemotherapy led to (1) a reduction in CD4+ TNFR2+ FOXP3+ TILs, indicating that chemotherapy decreased the content of CD4+ TNFR2+ Tregs, and (2) an elevation in CD8+ TNFR2+ and CD8+ TNFR2+ PD-1+ TILs; high levels of these two subsets were significantly associated with reduced tumor growth. In spleens of tumor-bearing mice, chemotherapy down-regulated CD4+ TNFR2+ FOXP3+ cells but the subset of CD8+ TNFR2+ PD-1+ was not present prior to chemotherapy and was not increased by the treatment. Thus, our data suggest that chemotherapy promotes the proportion of protective CD8+ TNFR2+ TILs and that, unlike other cancer types, therapeutic strategies directed against TNFR2 may be detrimental in TNBC.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Nofar Erlichman
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Maya Dadiani
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Nora Balint-Lahat
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Anya Pavlovski
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Tsipi Meshel
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Dana Morzaev-Sulzbach
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Einav Nili Gal-Yam
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Iris Barshack
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978-01, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
- Correspondence: ; Tel.: +972-3-6407933 or +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
50
|
Fourie C, Shridas P, Davis T, de Villiers WJ, Engelbrecht AM. Serum amyloid A and inflammasome activation: A link to breast cancer progression? Cytokine Growth Factor Rev 2021; 59:62-70. [DOI: 10.1016/j.cytogfr.2020.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
|