1
|
Alkhaldi O, Abusulieh S, Abusara OH, Sunoqrot S. Development of Mitoxantrone-Loaded Quercetin Nanoparticles for Breast Cancer Therapy with Potential for Synergism with Bioactive Natural Products. Int J Pharm 2024; 665:124674. [PMID: 39245083 DOI: 10.1016/j.ijpharm.2024.124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems have caused a paradigm shift in cancer treatment by enabling drug targeting, sustaining drug release, and reducing systemic toxicity of chemotherapy. Here we developed a novel NP formulation for the anticancer drug mitoxantrone (MTZ) by loading it into an emerging nanomaterial derived from the plant polyphenol quercetin (QCT). QCT was partially oxidized to produce amphiphilic oxQCT which was co-assembled with poly(ethylene glycol) (PEG) and MTZ by nanoprecipitation to form MTZ NPs. The optimal NPs exhibited an average diameter of 128 nm, a polydispersity index of 0.22, and a drug loading efficiency of 76%. While only a small fraction of the loaded drug was released at physiologic pH, a significantly higher fraction was released at acidic pH. The anticancer activity of MTZ NPs was assessed in MCF-7 and MDA-MB-231 breast cancer cell lines, alone and in combination with the bioactive natural products curcumin (CUR) and thymoquinone (TQ). In cell viability assays, MTZ NPs were slightly less potent than free MTZ, most likely due to their sustained release properties, but their cytotoxicity was greatly enhanced in the presence of TQ (in MCF-7 cells) as well as CUR (in MDA-MB-231 cells). The results were corroborated by apoptosis assays such as mitochondrial membrane potential measurement, acridine orange/ethidium bromide staining, in addition to caspase activity assays. The assays revealed that the NPs' proapoptotic effect was enhanced in the presence of CUR or TQ, depending on the cell line. Our work presents a promising nanocarrier platform for MTZ with the potential to enhance its bioactivity against breast cancer when combined with bioactive natural products.
Collapse
Affiliation(s)
- Otrujja Alkhaldi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Samah Abusulieh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| |
Collapse
|
2
|
He J, Zhang B, Tan C, Tang Y, Shen Z, Wu S, Zhou S. Distinguishing contributions of diverse sediment components to vanadium transport, immobilization and transformation in aquifer. WATER RESEARCH 2024; 265:122248. [PMID: 39142071 DOI: 10.1016/j.watres.2024.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Vanadium (V) occurs in environment naturally and anthropogenically, but little has been understood about its environmental behavior in groundwater aquifer with sediments. This study investigated the pentavalent V [V(V)] transport and transformation under the influence of different sediment components (minerals, organic matter, and microorganisms) through column experiments. All these components played pivotal roles in V immobilization. The synergistic effects of sediment components enhanced V retention compared to individual component. Mineral components, particularly those containing carbonates and metal oxides, predominantly influenced V(V) transport as indicated by XRD analysis. Organic matter, especially under low pH conditions, induced particle aggregation, thereby inhibiting the transport of V(V). The V K-edge X-ray absorption near-edge structure spectroscopy revealed the formation of tetravalent V[V(IV)] in treatments involving organic matter and microorganisms. Notably, organic matter exhibited the capability to directly reduce V(V). The introduction of microorganisms restricted V(V) transfer. V(V) reducing genera (e.g., Brevundimonas, Arenimonas, Xanthobacter) were detected, achieving V(V) reduction to insoluble V(IV). V(V) bioreduction was improved by minerals that promote microbial metabolism with enhanced electron transfer, or by organic matter that increases levels of intracellular nicotinamide adenine dinucleotide and extracellular polymeric substances. This study specifies the contributions of different sediment components to the transportation and transformation of V, deepening our understanding of V biogeochemistry in groundwater aquifer.
Collapse
Affiliation(s)
- Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China.
| | - Cong Tan
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China
| | - Yang Tang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China
| | - Zhongjun Shen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China
| | - Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P R China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P R China
| |
Collapse
|
3
|
Makhal PN, Dayare LN, Chilvery S, Devi P, Sujat Shaikh A, Sharma A, Negi A, Godugu C, Rao Kaki V. Synthesis, biological evaluation, and molecular docking studies of novel N-substituted piperazine-tethered thiophene-3-carboxamide selenides as potent antiproliferative agents with EGFR kinase inhibitory activity. Bioorg Chem 2024; 151:107677. [PMID: 39088978 DOI: 10.1016/j.bioorg.2024.107677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
In the context of structural investigation and optimization of various potential EGFR inhibitors, a novel series of asymmetrical piperazine-tethered trisubstituted thiophene-3-carboxamide selenide derivatives were synthesized and evaluated for their antiproliferative potential against selected human cancer cell lines. These derivatives, built based on a previously identified hit molecule, were synthesized via multiple-step reactions, including optimization of the C-Se cross-coupling reaction. Two compounds, 17i and 18i, displayed significant cytotoxicity (IC50 value: 4.82 ± 0.80 µM and 1.43 ± 0.08 µM) against HCT116 and A549 cancer cell lines, respectively. Quantitative analysis of apoptotic stages using Annexin V-FITC/PI double staining validated their apoptotic potential. Further, compound 18i demonstrated a remarkable inhibition of EGFR kinase, with an IC50 concentration of 42.3 nM. The lead compound 18i, with remarkable in vitro cytotoxicity, apoptosis induction capability, and EGFR inhibition, emerges as a promising candidate for anticancer therapy.
Collapse
Affiliation(s)
- Priyanka N Makhal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Lahu N Dayare
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priyanka Devi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anamika Sharma
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Aakansha Negi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
4
|
Das A, Sankaralingam M. Unravelling the mechanism of apoptosis induced by copper(II) complexes of NN 2-pincer ligands in lung cancer cells. Dalton Trans 2024; 53:14364-14377. [PMID: 39136161 DOI: 10.1039/d4dt01075b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The invention of efficient chemotherapeutic drugs is essential for human health and development. Keeping this in mind, a series of copper(II) pincer complexes, 1-4, of ligands L1(H) = 2-morpholino-N-(quinolin-8-yl)acetamide, L2(H) = 2-di-n-propylamino-N-(quinolin-8-yl)acetamide, L3(H) = 2-di-n-butylamino-N-(quinolin-8-yl)acetamide and L4(H) = 2-di-n-benzylamino-N-(quinolin-8-yl)acetamide have been synthesized, characterized, and utilized for inhibiting cancer proliferation. Complexes 1-4 showed very efficient activity against lung (A549) and breast (MCF-7) cancer cells, which are the most frequently diagnosed cancers according to the WHO. Among them, 1 was highly active against lung cancer cells with an IC50 value of 8 μM, showing no toxicity towards common L929 fibroblast cell lines (IC50 > 1000 μM). Moreover, AO-EB staining inferred that this cellular demise was attributed to apoptosis, which was determined to be 25.91% of cells by flow cytometry at the IC50 concentration. Furthermore, carboxy-H2DCFDA staining revealed the involvement of ROS in the mechanism. Interestingly, JC-1 dye staining revealed a change in the potential of the mitochondrial membrane, which indicates the enhanced production of ROS in mitochondria. A deep search for the mechanism through in silico studies guided us to the fact that complexes 1-4 might perturb the function of complex I in mitochondria. Furthermore, the studies can be expanded towards clinical applications mainly with morpholine appended complex 1.
Collapse
Affiliation(s)
- Athulya Das
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
| |
Collapse
|
5
|
Yıldız B, Demirel R, Havadar HB, Yıldız G, Öziç C, Kamiloğlu NN, Özden Ö. Blocking SIG1R Along with Low Cadmium Exposure Display Anti-cancer Qualities in Both MCF7 and MDA-MB-231 Cells. Biol Trace Elem Res 2024; 202:3588-3600. [PMID: 37940833 DOI: 10.1007/s12011-023-03947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Sigma-1 receptor (SIG1R) is a chaperone that modulates inositol 1,4,5-trisphosphate receptor type1 (IP3R1) calcium (Ca2+) channels on the endoplasmic reticulum. Therefore, SIG1R functions as an indirect regulator of Ca2+ and acts as an apoptosis modulator. Increased expression of SIG1R is associated with poor prognosis in breast cancers (BC), and SIG1R antagonists like BD1047 induce apoptosis. As a heavy metal, cadmium (Cd2+) is competitive with Ca2+ due to its physicochemical similarities and may trigger apoptosis at low concentrations. Our study investigated the SIG1R protein expression in 74 BC patients and found a significant increase in SIG1R expression in the triple-negative BC subtype. We also examined the apoptotic and anti-cancer effects of BD1047 in combination with CdCl2 in MCF7 and MDA-MB-213 cells. Cells were treated with CdCl2 at doses of 1 μM, 25 μM, and 50 μM, along with BD1047. Higher doses of CdCl2 were cytotoxic on both cancer cells and significantly increased DNA breaks. However, low-dose CdCl2 with BD1047 increased cell death and the apoptotic index in BC cells, although it did not exhibit cytotoxic effects on HUVEC cells. Co-administration of low-dose CdCl2 with BD1047 also reduced the migration and colony-forming ability of BC cells. Moreover, the expression of SIG1R protein in these groups decreased significantly compared to groups treated with BD1047 or low-dose CdCl2 alone. In conclusion, low-dose CdCl2 is thought to increase the apoptotic ability of BD1047 in BC cells by reducing SIG1R expression.
Collapse
Affiliation(s)
- Barış Yıldız
- Institute of Health Sciences, Department of Physiology, Kafkas University, 36100, Kars, Turkey
| | - Ramazan Demirel
- Department of Bioengineering, Institute of Natural and Applied Sciences, Kafkas University, 36100, Kars, Turkey
| | - Hatice Beşeren Havadar
- Deparment of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, 36100, Kars, Turkey
| | - Gülden Yıldız
- Deparment of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, 36100, Kars, Turkey
| | - Cem Öziç
- Department of Medical Biology, School of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Nadide Nabil Kamiloğlu
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
| | - Özkan Özden
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars, Turkey.
| |
Collapse
|
6
|
Mohammadi A, Kazemipour N, Ghorbankhani GA, Morovati S, Hashempour Sadeghian M. Glycated nisin enhances nisin's cytotoxic effects on breast cancer cells. Sci Rep 2024; 14:17808. [PMID: 39090195 PMCID: PMC11294603 DOI: 10.1038/s41598-024-68765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
Antimicrobial peptides, such as nisin, are proposed as promising agents for cancer treatment. While glycation has been recognized as an effective method for enhancing various physicochemical properties of nisin, its anticancer effects remain unexplored. Therefore, we aimed to assess the anticancer potential of glycated nisin against MDA-MB-231 cells. The MDA-MB cells were treated with increasing concentrations of nisin and glycated nisin for 24, 48, and 72 h. The IC50 values for nisin were higher than those for glycated nisin. Glycated nisin at concentrations of 20 and 40 µg/mL decreased cell viability more than nisin at the same concentrations. The rate of apoptosis in the group treated with 20 µg/mL of nisin was lower compared to other treatment groups, and no significant difference in apoptosis rates was observed at different time points (p > 0.05). However, in the glycated nisin groups with concentrations of 10, 20, and 40 µg/mL, the level of apoptosis was very high after 24 h (73-81% of cells undergoing apoptosis). Overall, our study suggests that glycated nisin exhibits stronger cytotoxic effects on MDA-MB-231 cells, primarily involving the induction of apoptosis. This indicates its potential utilization as an alternative approach to address the issue of drug resistance in cancer cells.
Collapse
Affiliation(s)
- Ali Mohammadi
- Division of Virology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Gholam Abbas Ghorbankhani
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
7
|
El-Araby RE, Wasif K, Johnson R, Tu Q, Aboushousha T, Zhu ZX, Chen J. Establishment of a novel cellular model for Alzheimer's disease in vitro studies. Exp Neurol 2024; 378:114820. [PMID: 38789025 DOI: 10.1016/j.expneurol.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory loss, cognitive impairment, and behavioral and psychological symptoms of dementia. The limited efficacy of drugs for the treatment of neurodegenerative diseases reflects their complex etiology and pathogenesis. A novel in vitro model may help to bridge the gap between existing preclinical animal models and human clinical trials, thus identifying promising therapeutic targets that can be explored in upcoming clinical trials. By assisting in the identification of the mechanism of action and potential dangers, in vitro testing can also shorten the time and expense of translation. AIM As a result of these factors, our objective is to develop a powerful and informative cellular model of AD within a short period of time. Through triggering the MAPK and NF-κβ signaling pathways with the aid of small chemical compounds (PAF C-16 and BetA), respectively, in mouse microglial (SIM-A9) and neuroblast Neuro-2a (N2a) cell lines. RESULTS PAF C-16, initiated an activation effect at a concentration of 3.12 nM to 25 nM in the SIM-A9 and N2a cell lines after 72 h. BetA, activated the NF-κβ pathway with a concentration of 12.5 nM to 25 nM in the SIM-A9 and N2a cell lines after 72 h. The combination of the activator chemicals provided suitable activation for MEK1/2-ERK and NF-κβ in more than three subcultures. Activators significantly initiate APP and MAPT gene expression, as well as the expression of proteins APP, β. Amyloid, tau, and p-tau. The activation of the targeted pathways leads to significant morphological changes. CONCLUSION We can infer that the MEK1/2-ERK and NF-κβ pathways, respectively, are directly activated by the PAF C-16 and BetA chemicals. The activation of MEK1/2-ERK pathway results in the activation of the APP gene, which in turn activates the β. Amyloid protein, which in turn results in plaque. Furthermore, NF-κβ activation results in the activation of the MAPT gene, which leads to Tau and p-Tau protein activation, which ultimately results in tangles. This can be put into practice in just three days, with a high level of activity and stability that is passed down to the next three generations (subculture), with significant morphological changes. In microglial and neuroblast cell lines, we were successful in creating a novel AD-cell model.
Collapse
Affiliation(s)
- Rady E El-Araby
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA; Theodor Bilharz Research Institute, Ministry of scientific Research, Cairo, Egypt
| | - Komal Wasif
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA; Department of Human Physiology, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
| | - Rebecca Johnson
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA; Department of Human Physiology, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Tarek Aboushousha
- Theodor Bilharz Research Institute, Ministry of scientific Research, Cairo, Egypt
| | - Zoe Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA; Department of Genetics, Molecular and Cell Biology, Tufts University School of Medicine, and Graduate School of Biomedical Sciences. 136 Harrison Ave, M&V 830, Boston, MA 02111, USA.
| |
Collapse
|
8
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
9
|
Kumar S, Shukla A, Singh SP, Singh RK, Patel AK, Verma PK, Kumar S, Kumar N, Singh V, Wasnik K, Acharya A. Synthesized Gold Nanoparticles with Moringa Oleifera leaf Extract Induce Mitotic Arrest (G2/M phase) and Apoptosis in Dalton's Lymphoma Cells. Cell Biochem Biophys 2024; 82:1043-1059. [PMID: 38696103 DOI: 10.1007/s12013-024-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 08/25/2024]
Abstract
The therapeutic potential of chemically synthesized AuNPs has been demonstrated in various types of cancer. However, gold nanoparticles (AuNPs) synthesized using typical chemical methods have concerns regarding their environmental safety and adverse impact on human well-being. To overcome this issue, we used an environmentally friendly approach in which gold nanoparticles were synthesized using Moringa oleifera leaf extract (MLE). The present research was mainly focused on the biosynthesis and characterization of gold nanoparticles (AuNPs) using Moringa oleifera leaf extract (MLE-AuNPs) and explore its anticancer potential against Dalton's Lymphoma (DL) cells. Characterization of the MLE-AuNPs was conducted using UV-Vis Spectroscopy to confirm the reduction process, FTIR analysis to ascertain the presence of functional groups, and XRD analysis to confirm the crystallinity. SEM and TEM images were used to examine size and morphology. After characterization, MLE-AuNPs were evaluated for their cytotoxic effects on Dalton's lymphoma cells, and the results showed an IC50 value of 75 ± 2.31 µg/mL; however, there was no discernible cytotoxicity towards normal murine thymocytes. Furthermore, flow cytometric analysis revealed G2/M phase cell cycle arrest mediated by the downregulation of cyclin B1 and Cdc2 and upregulation of p21. Additionally, apoptosis induction was evidenced by Annexin V Staining, accompanied by modulation of apoptosis-related genes including decreased Bcl-2 expression and increased expression of Bax, Cyt-c, and Caspase-3 at both the mRNA and protein levels. Collectively, our findings underscore the promising anti-cancer properties of MLE-AuNPs, advocating their potential as a novel therapeutic avenue for Dalton's lymphoma.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alok Shukla
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Surya Pratap Singh
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rishi Kant Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anand Kumar Patel
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Praveen Kumar Verma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Sanjay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Naveen Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Varsha Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
10
|
Sufina Nazar S, Ayyappan JP. Mechanistic evaluation of myristicin on apoptosis and cell cycle regulation in breast cancer cells. J Biochem Mol Toxicol 2024; 38:e23740. [PMID: 38779996 DOI: 10.1002/jbt.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The current study was focused on the anticancer activity of myristicin against MCF-7 human breast cancer (BC) cells. BC is the most common and leading malignant disease in women worldwide. Now-a-days, various conventional therapies are used against BC and still represent a chief challenge because those treatments fail to differentiate normal cells from malignant cells, and they have severe side effects also. So, there is a need develop new therapies to decrease BC-related morbidity and mortality. Myristicin, a 1‑allyl‑5‑methoxy‑3, 4‑methylenedioxybenzene, is a main active aromatic compound present in various spices, such as nutmeg, mace, carrot, cinnamon, parsely and some essential oils. Myristicin has a wide range of effects, including antitumor, antioxidative and antimicrobial activity. Nevertheless, the effects of myristicin on human BC cells remain largely unrevealed. The cytotoxicity effect of myristicin on MCF‑7 cells was increased dose dependently detected by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Lactate Dehydrogenase assays. Myristicin was found to be significantly inducing the cell apoptosis, as compared to control, using acridine orange/ethidium bromide, Hoechst stain and annexin V. Moreover, it activates cell antimigration, intracellular reactive oxygen species generation and cell cycle arrest in the G1/S phase. In addition, myristicin induces the expression of apoptosis and cell cycle genes (Caspases8, Bax, Bid, Bcl2, PARP, p53, and Cdk1) was demonstrated by quantitative polymerase chain reaction and apoptosis proteins (c-PARP, Caspase 9, Cytochrome C, PDI) expression was also analyzed with western blot. Overall, we illustrated that myristicin could regulate apoptosis signaling pathways in MCF-7 BC cells.
Collapse
Affiliation(s)
- Sudhina Sufina Nazar
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Biochemistry, Centre for Advanced Cancer Research, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Biochemistry, Centre for Advanced Cancer Research, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Kumar N, Shukla A, Kumar S, Ulasov I, Singh RK, Kumar S, Patel A, Yadav L, Tiwari R, Paswan R, Mohanta SP, Kaushalendra, Antil J, Acharya A. FNC (4'-azido-2'-deoxy-2'-fluoro(arbino)cytidine) as an Effective Therapeutic Agent for NHL: ROS Generation, Cell Cycle Arrest, and Mitochondrial-Mediated Apoptosis. Cell Biochem Biophys 2024; 82:623-639. [PMID: 38253918 DOI: 10.1007/s12013-023-01193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/12/2023] [Indexed: 01/24/2024]
Abstract
Cytotoxic nucleoside analogs (NAs) hold great promise in cancer therapeutics by mimicking endogenous nucleosides and interfering with crucial cellular processes. Here, we investigate the potential of the novel cytidine analog, 4'-azido-2'-deoxy-2'-fluoro(arbino)cytidine (FNC), as a therapeutic agent for Non-Hodgkin lymphoma (NHL) using Dalton's lymphoma (DL) as a T-cell lymphoma model. FNC demonstrated dose- and time-dependent inhibition of DL cell growth and proliferation. IC-50 values of FNC were measured at 1 µM, 0.5 µM, and 0.1 µM after 24, 48, and 72 h, respectively. Further elucidation of FNC's mechanism of action uncovers its role in inducing apoptosis in DL cells. Notable DNA fragmentation and nuclear condensation point to activated apoptotic pathways. FNC-induced apoptosis was concomitant with changes in cellular membranes, characterized by membrane rupture and altered morphology. The robust anticancer effects of FNC are linked to its capacity to induce reactive oxygen species (ROS) production, prompting oxidative stress-mediated apoptosis. Additionally, FNC disrupted mitochondrial membrane potential (MMP), leading to mitochondrial dysfunction, further promoting apoptosis. Dysregulation of apoptotic genes, with upregulation of Bax and downregulation of Bcl-2 and Bcl-xl, implicates the mitochondrial-mediated apoptosis pathway. Furthermore, FNC-induced G2/M phase cell cycle arrest was mediated through modulation of the cell cycle inhibitor p21. Overall, this study highlights the potential of FNC as a promising therapeutic agent for NHL.
Collapse
Affiliation(s)
| | | | | | - Ilya Ulasov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | | | | | | | | | - Kaushalendra
- Pachhunga University College Campus, Mizoram University, Aizawl, India
| | | | | |
Collapse
|
12
|
Sahu RK, Tandon S, Singh S, Das BC, Hedau ST. Methyl CpG binding protein MBD2 has a regulatory role on the BRCA1 gene expression and its modulation by resveratrol in ER+, PR+ & triple-negative breast cancer cells. BMC Cancer 2024; 24:566. [PMID: 38711004 PMCID: PMC11071212 DOI: 10.1186/s12885-024-12274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.
Collapse
Affiliation(s)
- Ram Krishna Sahu
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India
| | | | - Shalini Singh
- Division of Clinical Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Suresh T Hedau
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
13
|
Prajapati KP, Mittal S, Ansari M, Mahato OP, Bharati S, Singh AP, Ahlawat S, Tiku AB, Anand BG, Kar K. Pleiotropic Nanostructures Built from l-Histidine Show Biologically Relevant Multicatalytic Activities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18268-18284. [PMID: 38564419 DOI: 10.1021/acsami.3c14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aβ1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Bharati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhilesh Pratap Singh
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shobha Ahlawat
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashu Bhan Tiku
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Firouzjaie F, Taghipour N, Akhavan AA, Seyyed Tabaei SJ, Rouhani S, Shirazian M, Koochaki A, Fatemi M, Mosaffa N, Moin Vaziri V. Neutrophil extracellular traps formation: effect of Leishmania major promastigotes and salivary gland homogenates of Phlebotomus papatasi in human neutrophil culture. BMC Microbiol 2024; 24:117. [PMID: 38575882 PMCID: PMC10993452 DOI: 10.1186/s12866-024-03270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Leishmaniasis as a neglected tropical disease (NTD) is caused by the inoculation of Leishmania parasites via the bite of phlebotomine sand flies. After an infected bite, a series of innate and adaptive immune responses occurs, among which neutrophils can be mentioned as the initiators. Among the multiple functions of these fighting cells, neutrophil extracellular traps (NETs) were studied in the presence of Leishmania major promastigotes and salivary gland homogenates (SGH) of Phlebotomus papatasi alone, and in combination to mimic natural conditions of transmission. MATERIAL & METHODS The effect of L. major and SGH on NETs formation was studied in three different groups: neutrophils + SGH (NS), neutrophils + L. major (NL), neutrophils + L. major + SGH (NLS) along with negative and positive controls in 2, 4 and 6 h post-incubation. Different microscopic methods were used to visualize NETs comprising: fluorescence microscopy by Acridine Orange/ Ethidium Bromide staining, optical microscopy by Giemsa staining and scanning electron microscopy. In addition, the expression level of three different genes NE, MPO and MMP9 was evaluated by Real-Time PCR. RESULTS All three microscopical methods revealed similar results, as in NS group, chromatin extrusion as a sign of NETosis, was not very evident in each three time points; but, in NL and especially NLS group, more NETosis was observed and the interaction between neutrophils and promastigotes in NL and also with saliva in NLS group, gradually increased over times. Real-time reveals that, the expression of MPO, NE and MMP9 genes increased during 2 and 4 h after exposure, and then decreased at 6 h in most groups. CONCLUSION Hence, it was determined that the simultaneous presence of parasite and saliva in NLS group has a greater impact on the formation of NETs compared to NL and NS groups.
Collapse
Affiliation(s)
- Fahimeh Firouzjaie
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Rouhani
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Shirazian
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Fatemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vahideh Moin Vaziri
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
SHIKHALIYEVA I, KIĞ C, GÖMEÇ ÖY, ALBAYRAK G. Fusariotoxin-Induced Toxicity in Mesenchymal Stem Cells and Fibroblasts: A Comparison Between Differentiated and Undifferentiated Cells. Turk J Pharm Sci 2024; 21:62-70. [PMID: 38529558 PMCID: PMC10982889 DOI: 10.4274/tjps.galenos.2023.76128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 03/27/2024]
Abstract
Objectives Humans are unknowingly exposed to mycotoxins through the consumption of plant-derived foods and processed products contaminated with these toxic compounds. In addition to agricultural losses, Fusarium toxins pose a threat to human health. However, the effects of fusariotoxins on the viability and proliferation of stem cells have not been fully explored. We investigated the cytotoxic effects of deoxynivalenol (DON) and B-trichothecene mix (MIX) on mesenchymal stem cells (MSCs) and the L929 fibroblast cell line. Materials and Methods MSCs were isolated from the dental pulp tissue. The doubling time and viability of dental pulp stem cells (DPSCs) and L929 cells were determined using the MTT assay. The following doses of B-trichothecenes (0.25-16 µg/mL; 24 hours and 48 hours) were used to evaluate cytotoxicity. In addition, changes in the confluency-dependent response of DPSCs to DON toxicity were determined. Moreover, we investigated the effect of DON on cell death via acridine orange/ethidium bromide (AO/EB) double staining. Results A DON and MIX showed a dose- and time-dependent inhibitory effect on the proliferation of both cells. DPSCs exposed to DON for 48 hours (IC50 = 0.5 μg/mL) were found to be 16-fold more sensitive than L929 cells (IC50 = 8 μg/mL). Compared with a culture with 80% confluency, DPSCs from a 50% confluent culture were more sensitive to varying doses of DON (0.25-4 µg/mL, 24-48 hours). Moreover, AO/EB staining showed that treatment of DPSCs with DON led to a significant increase in cell death (17% for 2.4 µg/mL; 50% for 4.8 µg/mL). Conclusion This study reveals that undifferentiated MSCs are significantly more sensitive to DON than differentiated somatic cells (L929). Given that humans are frequently exposed to these mycotoxins, our findings imply that prolonged exposure to them may also have harmful effects on cellular differentiation and embryonic development.
Collapse
Affiliation(s)
- Inji SHIKHALIYEVA
- İstanbul University, Institute of Graduate Studies in Sciences, Programme of Molecular Biology and Genetics, İstanbul, Türkiye
| | - Cenk KIĞ
- İstanbul University, Faculty of Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye
| | - Ömer Yavuz GÖMEÇ
- Yeni Yüzyıl University, Faculty of Dentistry, Department of Restorative Dentistry, İstanbul, Türkiye
| | - Gülruh ALBAYRAK
- İstanbul University, Faculty of Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye
| |
Collapse
|
16
|
Bin Shahari MS, Junaid A, Tiekink ERT, Dolzhenko AV. 6-Aryl-4-cycloamino-1,3,5-triazine-2-amines: synthesis, antileukemic activity, and 3D-QSAR modelling. RSC Adv 2024; 14:8264-8282. [PMID: 38469184 PMCID: PMC10925993 DOI: 10.1039/d3ra08091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Despite significant progress in immunotherapy and chimeric antigen receptor T cell therapy of leukemia, chemotherapy is the major treatment option for the disease. Therefore, the development of potent and safe drugs for standard and targeted chemotherapy of leukemia remains an important task for medicinal chemists. A library of 94 diverse 6-aryl-4-cycloamino-1,3,5-triazine-2-amines was prepared using a one-pot microwave-assisted protocol, which involves a three-component reaction of cyanoguanidine, aromatic aldehydes and cyclic amines, and subsequent dehydrogenative aromatization of the dihydrotriazine intermediates in the presence of alkali. The cytotoxic properties of prepared compounds were evaluated against the leukemic Jurkat T cell line and the selectivity of the 24 most active compounds was also assessed using a normal fibroblast MRC-5 cell line, indicating selective antiproliferative activity against leukemic cells. The structure-activity relationship was analysed, and the prepared 3D-QSAR model was found to predict the antileukemic activity of the compounds with reasonable accuracy. In the cell morphology study, both apoptosis and necrosis features were observed in Jurkat T cells after treatment with the most active compound.
Collapse
Affiliation(s)
- Muhammad Syafiq Bin Shahari
- Center for Drug Design, College of Pharmacy, University of Minnesota Nils Hasselmo Hall, 312 Church Street SE, Mail Code 1191 Minneapolis Minnesota 55455 USA
| | - Ahmad Junaid
- Inimmune Corp. 1121 E Broadway St, Ste 106 Missoula Montana 59802 USA
| | - Edward R T Tiekink
- Department of Chemistry, Universitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway Selangor Darul Ehsan 47500 Malaysia
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University GPO Box U1987 Perth Western Australia 6845 Australia
| |
Collapse
|
17
|
Pasternak-Mnich K, Szwed-Georgiou A, Ziemba B, Pieszyński I, Bryszewska M, Kujawa J. Effect of photobiomodulation therapy on the morphology, intracellular calcium concentration, free radical generation, apoptosis and necrosis of human mesenchymal stem cells-an in vitro study. Lasers Med Sci 2024; 39:75. [PMID: 38383862 DOI: 10.1007/s10103-024-04008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
The aim of the study was to investigate the impact of multiwave locked system (MLS M1) emitting synchronized laser radiation at 2 wavelength simultaneous (λ = 808 nm, λ = 905 nm) on the mesenchymal stem cells (MSCs). Human MSCs were exposed to MLS M1 system laser radiation with the power density 195-318 mW/cm2 and doses of energy 3-20 J, in continuous wave emission (CW) or pulsed emission (PE). After irradiation exposure in doses of energy 3 J, 10 J (CW, ƒ = 1000 Hz), and 20 J (ƒ = 2000 Hz), increased proliferation of MSCs was observed. Significant reduction of Fluo-4 Direct™ Ca2+ indicator fluorescence over controls after CW and PE with 3 J, 10 J, and 20 J was noticed. A decrease in fluorescence intensity after the application of radiation with a frequency of 2000 Hz in doses of 3 J, 10 J, and 20 J was observed. In contrary, an increase in DCF fluorescence intensity after irradiation with laser radiation of 3 J, 10 J, and 20 J (CW, ƒ = 1000 Hz and ƒ = 2000 Hz) was also shown. Laser irradiation at a dose of 20 J, emitted at 1000 Hz and 2000 Hz, and 3 J emitted at a frequency of 2000 Hz caused a statistically significant loss of MSC viability. The applied photobiomodulation therapy induced a strong pro-apoptotic effect dependent on the laser irradiation exposure time, while the application of a sufficiently high-energy dose and frequency with a sufficiently long exposure time significantly increased intracellular calcium ion concentration and free radical production by MSCs.
Collapse
Affiliation(s)
- Kamila Pasternak-Mnich
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St., 92-213, Lodz, Poland.
| | - Aleksandra Szwed-Georgiou
- Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Department of Immunology and Infectious Biology, University of Lodz, 12/16 Banacha St., 90-236, Lodz, Poland
| | - Barbara Ziemba
- Department of Clinical Genetic, Medical University of Lodz, 251 Pomorska St., 92-213, Lodz, Poland
| | - Ireneusz Pieszyński
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St., 92-213, Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Jolanta Kujawa
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St., 92-213, Lodz, Poland
| |
Collapse
|
18
|
Jiang H, Su W, Wang H, Luo C, Wang Y, Zhang L, Luo L, Lu Z, Shen D, Su G. DPY30 knockdown suppresses colorectal carcinoma progression via inducing Raf1/MST2-mediated apoptosis. Heliyon 2024; 10:e24807. [PMID: 38314299 PMCID: PMC10837565 DOI: 10.1016/j.heliyon.2024.e24807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Colorectal Carcinoma (CRC) is one of the most common malignant tumors of the digestive tract, with a high mortality rate. DPY30 is one of the core subunits of the histone methyltransferase complex, which was involved in many cancer processes. However, the role of DPY30 in the occurrence and progression of CRC remains unclear. In this study, we sought to evaluate the role and mechanism of DPY30 in CRC cells apoptosis. Here, we identified that knockdown of DPY30 significantly inhibited the HT29 and HCT116 cells proliferation in vitro. Moreover, the knockdown of DPY30 significantly increased the apoptosis rate and promoted the expression of apoptosis-related proteins in CRC cells. Meanwhile, DPY30 knockdown promoted CRC cells apoptosis through endogenous programmed death and in a caspase activation-dependent manner. Furthermore, RNA-seq analysis revealed that the action of DPY30 is closely related to the apoptosis biological processes, and screened its potential effectors Raf1. Mechanistically, DPY30 downregulation promotes MST2-induced apoptosis by inhibiting Raf1 transcriptional activity through histone H3 lysine 4 trimethylation (H3K4me3). In vivo experiments showed that DPY30 was correlated with Raf1 in nude mouse subcutaneous xenografts tissues significantly. Clinical colorectal specimens further confirmed that overexpression of DPY30 in malignant tissues was significantly correlated with Raf1 level. The vital role of the DPY30/Raf1/MST2 signaling axis in the cell death and survival rate of CRC cells was disclosed, which provides potential new targets for early diagnosis and clinical treatment of CRC.
Collapse
Affiliation(s)
- HaiFeng Jiang
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
- Department of Critical Care Medicine, Second People's Hospital of Yibin City, Yibin, 644000, Sichuan Province, China
| | - WeiChao Su
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, 361012, China
| | - HaiXing Wang
- Department of Endoscopy Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - ChunYing Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - YaTao Wang
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - LinJun Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - LingTao Luo
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - ZeBin Lu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - DongYan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - GuoQiang Su
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
19
|
Makhal PN, Sood A, Shaikh AS, Dayare LN, Khatri DK, Rao Kaki V. Development of trisubstituted thiophene-3-arboxamide selenide derivatives as novel EGFR kinase inhibitors with cytotoxic activity. RSC Med Chem 2023; 14:2677-2698. [PMID: 38107169 PMCID: PMC10718591 DOI: 10.1039/d3md00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023] Open
Abstract
Overexpression of EGFR is one of the eminent oncogenic drivers detected in the development of several human cancers. The increasing incidences of mutation-based resistance in the tyrosine kinase domain call upon the need for the development of a newer class of small-molecule TK inhibitors. Accordingly, a new series of symmetrical trisubstituted thiophene-3-carboxamide selenide derivatives was developed via the hybridization of complementary pharmacophores. Most of the compounds showed a modest to excellent antiproliferative action at 20 μM concentration. The utmost antiproliferative activity was portrayed by compound 16e on the selected cancer cell lines with IC50 < 9 μM, the lowest being 3.20 ± 0.12 μM in the HCT116 cell line. Further, it also displayed an impressive EGFR kinase inhibition with an IC50 value of 94.44 ± 2.22 nM concentration. As a corollary of the reported EGFR inhibition, the nature, energy, and stability of the binding interactions were contemplated via in silico studies.
Collapse
Affiliation(s)
- Priyanka N Makhal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Lahu N Dayare
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| |
Collapse
|
20
|
Jabloñski M, Rodríguez MS, Rivero EM, Bruque CD, Vanzulli S, Bruzzone A, Pérez Piñero C, Lüthy IA. The Beta2-adrenergic agonist salbutamol synergizes with paclitaxel on cell proliferation and tumor growth in triple negative breast cancer models. Cancer Chemother Pharmacol 2023; 92:485-499. [PMID: 37725114 DOI: 10.1007/s00280-023-04586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Globally breast cancer accounts for 24.5% in incidence and 15.5% in cancer deaths in women. The triple-negative subtype lacks any specific therapy and is treated with chemotherapy, resulting in significant side-effects. We aimed to investigate if the dose of chemotherapeutic drugs could be diminished by co-administering it with the β2-agonist salbutamol. METHODS Cell proliferation was measured by thymidine incorporation; gene expression, by real-time PCR and protein phosphorylation by WB. Apoptosis was assessed by acridine orange / ethidium bromide and TUNEL tests. Public patient databases were consulted. Cells were inoculated to nude mice and their growth assessed. RESULTS The β2-agonist salbutamol synergizes in MDA-MB-231 cells in vitro with paclitaxel and doxorubicin on cell proliferation through ADRB2 receptors, while the β-blocker propranolol does not. The expression of this receptor was assessed in patient databases and other cell lines. Triple negative samples had the lowest expression. Salbutamol and paclitaxel decreased MDA-MB-231 cell proliferation while their combination further inhibited it. The pathways involved were analyzed. When these cells were inoculated to nude mice, paclitaxel and salbutamol inhibited tumor growth. The combined effect was significantly greater. Paclitaxel increased the expression of MDR1 while salbutamol partially reversed this increase. CONCLUSION While the effect of salbutamol was mainly on cell proliferation, suboptimal concentrations of paclitaxel provoked a very important enhancement of apoptosis. The latter enhanced transporter proteins as MDR1, whose expression were diminished by salbutamol. The expression of ADRB2 should be assessed in the biopsy or tumor to eventually select patients that could benefit from salbutamol repurposing.
Collapse
Affiliation(s)
- Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ezequiel Mariano Rivero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
- Centre for Genomic Regulation, Barcelona, Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC - El Calafate, El Calafate, Argentina
| | | | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET), Bahía Blanca, Argentina
| | - Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Isabel Alicia Lüthy
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
21
|
Gurunathan S, Ajmani A, Kim JH. Extracellular nanovesicles produced by Bacillus licheniformis: A potential anticancer agent for breast and lung cancer. Microb Pathog 2023; 185:106396. [PMID: 37863272 DOI: 10.1016/j.micpath.2023.106396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Cancer is a major public burden and leading cause of death worldwide; furthermore, it is a significant barrier to increasing life expectancy in most countries of the world. Among various types of cancers, breast and lung cancers lead to significant mortality in both males and females annually. Bacteria-derived products have been explored for their use in cancer therapy. Although bacteria contain significant amounts of anticancer substances, attenuated bacteria may still pose a potential risk for infection owing to the variety of immunomodulatory molecules present in the parental bacteria; therefore, non-cellular bacterial extracellular vesicles (BEVs), which are naturally non-replicating, safer, and are considered to be potential anticancer agents, are preferred for cancer therapy. Gram-positive bacteria actively secrete cytoplasmic membrane vesicles that are spherical and vary between 10 and 400 nm in size. However, no studies have considered cytoplasmic membrane vesicles derived from Bacillus licheniformisin cancer treatment. In this study, we investigated the potential use of B. licheniformis extracellular nanovesicles (BENVs) as therapeutic agents to treat cancer. Purified BENVs from the culture supernatant of B. licheniformis using ultracentrifugation and ExoQuick were characterized using a series of analytical techniques. Human breast cancer cells (MDA-MB-231) and lung cancer cells (A549) were treated with different concentrations of purified BENVs, which inhibited the cell viability and proliferation, and increased cytotoxicity in a dose-dependent manner. To elucidate the mechanism underlying the anticancer activity of BENVs, the oxidative stress markers such as reactive oxygen species (ROS) and glutathione (GSH) levels were measured. The ROS levels were significantly higher in BENV-treated cells, whereas the GSH levels were markedly reduced. Cells treated with BENVs, doxorubicin (DOX), or a combination of BENVs and DOX showed significantly increased expression of p53, p21, caspase-9/3, and Bax, and concomitantly decreased expression of Bcl-2. The combination of BENVs and doxorubicin enhanced mitochondrial dysfunction, DNA damage, and apoptosis. To our knowledge, this is the first study to determine the anticancer properties of BENVs derived from industrially significant probacteria on breast and lung cancer cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, RathinamTechzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India.
| | - Abhishek Ajmani
- Institute of Advanced Virology, Thiruvananthapuram, 695014, Kerala, India
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
22
|
Kuppusamy KM, Selvaraj S, Singaravelu P, John CM, Racheal K, Varghese K, Kaliyamoorthy D, Perumal E, Gunasekaran K. Anti-microbial and anti-cancer efficacy of acetone extract of Rosa chinensis against resistant strain and lung cancer cell line. BMC Complement Med Ther 2023; 23:406. [PMID: 37950173 PMCID: PMC10636979 DOI: 10.1186/s12906-023-04222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Screening of herbal plants for various therapeutic properties is the hour as it shows promising activity. Scientific evidence of the pharmacological activity of the plant strengthens the traditional application of plants. METHODS Rose flowers (Rosa chinensis) were procured and grounded into a coarse powder. The DNA was isolated from rose flower and molecular identification was performed by rbcL-BF and rbcL-724R primers. Antibacterial activity was evaluated by using disc and agar diffusion methods and the anti-cancer effect of the rose flower extract (RE) was examined using MTT assay in lung cancer cell line. The mechanism of cell death induced by RE was qualitatively measured using Acridine orange/Ethidium bromide staining and Hoechst staining. GC-MS analysis was performed using GC-MS-5975C. RESULT The RE showed potent antimicrobial activity against various ATCC cultures. The rose extract strongly inhibits the growth of ESBL resistant organism along with inhibition of biofilm formation in the ESBL resistant organism. The extract caused apoptotic and necrotic cell death in lung cancer cells. GC-MS analysis demonstrated the presence of several biologically active compounds such as Clindamycin, Phytol, Octanoic acid, and Stigmasterol which might be the reason for the therapeutic properties of the plant. CONCLUSION This study shows the antimicrobial and biofilm inhibition activity against the clinical isolates of Klebsiella pneumonia. The study shows the cytotoxic and apoptotic activity in A549 cancer cell line. Thus, the plant may act as a potent antimicrobial drug against resistant strains.
Collapse
Affiliation(s)
- Kalaivani Madhavaram Kuppusamy
- Research Centre for Cellular Genomics and Cancer Research, Sree Balaji Medical College and Hospital, Chennai, 600044, India
| | - Sivakumar Selvaraj
- Molecular Biology section, Consultant Molecular Biologist, Medall Healthcare Private Limited, Chennai, India
| | - Pujithaa Singaravelu
- Research Centre for Cellular Genomics and Cancer Research, Sree Balaji Medical College and Hospital, Chennai, 600044, India
| | - Cordelia Mano John
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Kalaiselvan Racheal
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Keziaann Varghese
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Dinesh Kaliyamoorthy
- Department of Microbiology, Sree Balaji Medical College and Hospital, Chennai, 600044, India
| | - Elumalai Perumal
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Krishnamoorthy Gunasekaran
- Department of Medical Biochemistry, College of Health Sciences, Dambi Dollo University, KelamWelega Zone, Dembidolo, P.O. Box: 360, Oromia Region, Ethiopia.
| |
Collapse
|
23
|
Chandan P, Dev A, Ezhilarasan D, Shree Harini K. Boldine Treatment Induces Cytotoxicity in Human Colorectal Carcinoma and Osteosarcoma Cells. Cureus 2023; 15:e48126. [PMID: 38046745 PMCID: PMC10693387 DOI: 10.7759/cureus.48126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Cancer continues to be a significant health issue worldwide, with colorectal cancer (CRC) standing out as one of the most prevalent forms of cancer on a global scale. The lifetime risk of developing CRC is about one in 23 (4.3%) for men and one in 25 (4.0%) for women. Moreover, children and adolescents are frequently reported with osteosarcoma with a low five-year survival rate (69% and 67%, respectively). Aim The aim of the study was to analyze the cytotoxic effects of boldine against human CRC (HCT-116) and osteosarcoma cell lines (Saos-2). Materials and methods HCT-116 and Saos-2 cell lines were subjected to different concentrations of boldine treatment (5, 10, 20, 30, 40, and 50 μg/mL) and (10, 20, 40, 60, and 80 µg/mL), respectively, for 24 hours. The cytotoxicity was analyzed by MTT assay, AO/EB staining, DCFH-DA assay, and scratch assay. Results The MTT assay, microscopic analysis, and staining showed that boldine had dose-dependent cytotoxic effects against HCT-116 and Saos-2 cell lines by inhibiting their proliferation, viability, and migration, and inducing ROS-mediated apoptosis. Conclusion The study concluded that boldine had a concentration-dependent cytotoxic effect on human CRC and osteosarcoma cell lines.
Collapse
Affiliation(s)
- Panigrahi Chandan
- Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Arora Dev
- Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Devaraj Ezhilarasan
- Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Karthik Shree Harini
- Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
24
|
Das NC, Chakraborty P, Nandy S, Dey A, Malik T, Mukherjee S. Programmed cell death pathways as targets for developing antifilarial drugs: Lessons from the recent findings. J Cell Mol Med 2023; 27:2819-2840. [PMID: 37605891 PMCID: PMC10538269 DOI: 10.1111/jcmm.17913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
More than half a century has passed since the introduction of the National Filariasis Control Program; however, as of 2023, lymphatic filariasis (LF) still prevails globally, particularly in the tropical and subtropical regions, posing a substantial challenge to the objective of worldwide elimination. LF is affecting human beings and its economically important livestock leading to a crucial contributor to morbidities and disabilities. The current scenario has been blowing up alarms of attention to develop potent therapeutics and strategies having efficiency against the adult stage of filarial nematodes. In this context, the exploration of a suitable drug target that ensures lethality to macro and microfilariae is now our first goal to achieve. Apoptosis has been the potential target across all three stages of filarial nematodes viz. oocytes, microfilariae (mf) and adults resulting in filarial death after receiving the signal from the reactive oxygen species (ROS) and executed through intrinsic and extrinsic pathways. Hence, it is considered a leading target for developing antifilarial drugs. Herein, we have shown the efficacy of several natural and synthetic compounds/nanoformulations in triggering the apoptotic death of filarial parasites with little or no toxicity to the host body system.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| | - Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| | - Samapika Nandy
- Department of Life SciencePresidency UniversityKolkataIndia
- School of PharmacyGraphic Era Hill UniversityDehradunIndia
| | - Abhijit Dey
- Department of Life SciencePresidency UniversityKolkataIndia
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| |
Collapse
|
25
|
Sanniyasi E, Gopal RK, Damodharan R, Arumugam A, Sampath Kumar M, Senthilkumar N, Anbalagan M. In vitro anticancer potential of laminarin and fucoidan from Brown seaweeds. Sci Rep 2023; 13:14452. [PMID: 37660108 PMCID: PMC10475116 DOI: 10.1038/s41598-023-41327-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
Marine seaweeds are rich source of polysaccharides present in their cell wall and are cultivated and consumed in China, Japan, Korea, and South Asian countries. Brown seaweeds (Phaeophyta) are rich source of polysaccharides such as Laminarin and Fucoidan. In present study, both the laminarin and fucoidan were isolated was yielded higher in PP (Padina pavonica) (4.36%) and STM (Stoechospermum marginatum) (2.32%), respectively. The carbohydrate content in laminarin and fucoidan was 86.91% and 87.36%, whereas the sulphate content in fucoidan was 20.68%. Glucose and mannose were the major monosaccharide units in laminarin (PP), however, fucose, galactose, and xylose in fucoidan (STM). FT-IR down peaks represent the carbohydrate of laminarin and fucoidan except, for 1219 cm-1, and 843 cm-1, illustrating the sulphate groups of fucoidan. The molecular weight of laminarin was 3-5 kDa, and the same for fucoidan was 2-6 kDa, respectively. Both the Fucoidan and Laminarin showed null cytotoxicity on Vero cells. Contrastingly, the fucoidan possess cytotoxic activity on human liver cancer cells (HepG2) (IC50-24.4 ± 1.5 µg/mL). Simultaneously, laminarin also shown cytotoxicity on human colon cancer cells (HT-29) (IC50-57 ± 1.2 µg/mL). The AO/EB (Acriding Orange/Ethidium Bromide) assay significantly resulted in apoptosis and necrosis upon laminarin and fucoidan treatments, respectively. The DNA fragmentation results support necrotic cancer cell death. Therefore, laminarin and fucoidan from PP and STM were potential bioactive compounds for anticancer therapy.
Collapse
Affiliation(s)
- Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600025, India.
| | - Rajesh Kanna Gopal
- Department of Microbiology, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, India
| | - Rajesh Damodharan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Arthi Arumugam
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | | | | | - Monisha Anbalagan
- Department of Biotechnology, Jeppiar Engineering College, Chennai, 600119, India
| |
Collapse
|
26
|
Dutta A, Panchali T, Khatun A, Jarapala SR, Das K, Ghosh K, Chakrabarti S, Pradhan S. Anti-cancer potentiality of linoelaidic acid isolated from marine Tapra fish oil (Ophisthopterus tardoore) via ROS generation and caspase activation on MCF-7 cell line. Sci Rep 2023; 13:14125. [PMID: 37644076 PMCID: PMC10465529 DOI: 10.1038/s41598-023-34885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/09/2023] [Indexed: 08/31/2023] Open
Abstract
The implication of inflammation in the pathophysiology of several types of cancers has been under intense investigation. Conjugated fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. In this paper, we evaluated the efficacy of new conjugated fatty acids isolated from marine Opisthopterus tardoore (Tapra fish) in human breast cancer cell lines MCF-7. Linoelaidic acid, a marine fish (O. tardoore) derived unsaturated fatty acids, showed effective anticancer activity against MCF-7. Cell viability (MTT) assay revealed a dose-dependent decline in cancer cell viability. It was noteworthy that 5 µM linoelaidic acid decreased the MCF-7 cell viability by 81.82%. Besides that, linoelaidic acid significantly (P< 0.05) increased the level of tumor necrosis factor-α (TNF-α) and interleukin-1 receptor antagonist (IL-1ra) studied by ELISA. Not only that, linoelaidic acid significantly decreased the reduced glutathione level and increased the oxidized glutathione level in MCF-7 cells indicating the oxidative stress inside the cell. Two different cell staining methods with acridine orange-ethidium bromide and DAPI confirmed that the linoelaidic acid rendered their detrimental effect on cancer cells. To decipher the mode of apoptosis Western blotting was performed in which the expression pattern of several proteins (p53, IL-10, and IL-1ra) established the apoptosis in the studied cell lines after linoelaidic acid exposure. Hence it may be conferred that linoelaidic acid has prompt anticancer activity. Therefore this drug can be used further for the treatment of cancer.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Titli Panchali
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Amina Khatun
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Sreenivasa Rao Jarapala
- Department of Food Chemistry and Nutrient Analysis, National Institute of Nutrition (NIN), Hyderabad, Telengana, 500007, India
| | - Koushik Das
- Department of Nutrition, Belda College, Paschim Medinipur, 721424, West Bengal, India
| | - Kuntal Ghosh
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Sudipta Chakrabarti
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India.
| |
Collapse
|
27
|
Kumar S, Sahu RK, Kumari P, Maity J, Kumar B, Chhatwal RJ, Singh BK, Prasad AK. Efficient and stereoselective synthesis of sugar fused pyrano[3,2- c]pyranones as anticancer agents. RSC Adv 2023; 13:24604-24616. [PMID: 37601594 PMCID: PMC10436030 DOI: 10.1039/d3ra02371k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
A highly stereoselective, efficient and facile route was achieved for the synthesis of novel and biochemically potent sugar fused pyrano[3,2-c]pyranone derivatives starting from inexpensive, naturally occurring d-galactose and d-glucose. First, β-C-glycopyranosyl aldehydes were synthesized from these d-hexose sugars in six steps, with overall yields 41-55%. Next, two different 1-C-formyl glycals were synthesized from these β-C-glycopyranosyl aldehydes by treatment in basic conditions. The optimization of reaction conditions was carried out following reactions between 1-C-formyl galactal and 4-hydroxycoumarin. Next, 1-C-formyl galactal and 1-C-formyl glucal were treated with nine substituted 4-hydroxy coumarins at room temperature (25 °C) in ethyl acetate for ∼1-2 h in the presence of l-proline to obtain exclusively single diastereomers of pyrano[3,2-c]pyranone derivatives in excellent yields. Four compounds were found to be active for the MCF-7 cancer cell line. The MTT assay, apoptosis assay and migration analysis showed significant death of the cancer cells induced by the synthesized compounds.
Collapse
Affiliation(s)
- Sandeep Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
- Department of Chemistry, Ramjas College, University of Delhi Delhi-110007 India
| | - Ram Krishna Sahu
- National Institute of Cancer Prevention & Research Noida Uttar Pradesh India
| | - Priti Kumari
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen College, University of Delhi Delhi-110007 India
| | - Binayak Kumar
- National Institute of Cancer Prevention & Research Noida Uttar Pradesh India
| | | | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
28
|
Kumari P, Kumar R, Singh D, Kumar R. N-acetyl-L-tryptophan (NAT) provides protection to intestinal epithelial cells (IEC-6) against radiation-induced apoptosis via modulation of oxidative stress and mitochondrial membrane integrity. Mol Biol Rep 2023; 50:6381-6397. [PMID: 37322322 DOI: 10.1007/s11033-023-08579-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ionizing radiation generates oxidative stress in biological systems via inducing free radicals. Gastro-intestinal system has been known for its high radiosensitivity. Therefore, to develop an effective radiation countermeasure for gastrointestinal system, N-acetyl L-tryptophan was evaluated for its radioprotective efficacy using intestinal epithelial cells-6 (IEC-6) cells as the experimental model. METHODS AND RESULTS Cellular metabolic and lysosomal activity of L-NAT and L-NAT treated irradiated IEC-6 cells were assessed by MTT and NRU staining, respectively. ROS and mitochondrial superoxide levels along with mitochondrial disruption were detected using specific fluorescent probes. Endogenous antioxidants (CAT, SOD, GST, GPx) activities were determined using calorimetric assay. Apoptosis and DNA damage were assessed using flow cytometery and Comet assay, respectively. Results of the study were demonstrated that L-NAT pre-treatment (- 1 h) to irradiated IEC-6 cells significantly contribute to ensuring 84.36% to 87.68% (p < 0.0001) survival at 0.1 μg/mL concentration against LD50 radiation dose (LD50; 20 Gy). Similar level of radioprotection was observed with a clonogenic assay against γ radiation (LD50; 5 Gy). L-NAT was found to provide radioprotection by neutralizing radiation-induced oxidative stress, enhancing antioxidant enzymes (CAT, SOD, GST, and GPx), and protecting DNA from radiation-induced damage. Further, significant restoration of mitochondrial membrane integrity along with apoptosis inhibition was observed with irradiated IEC-6 cells upon L-NAT pretreatment.
Collapse
Affiliation(s)
- Pratibha Kumari
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Ravi Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Darshana Singh
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Raj Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
29
|
Babonaitė M, Čepulis M, Kazlauskaitė J, Lazutka JR. Evaluation of In Vitro Genotoxicity of Polystyrene Nanoparticles in Human Peripheral Blood Mononuclear Cells. TOXICS 2023; 11:627. [PMID: 37505592 PMCID: PMC10384665 DOI: 10.3390/toxics11070627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
According to the trade association PlasticEurope, global plastics production increased to 390.7 million tons in 2021. Unfortunately, the majority of produced plastics eventually end up as waste in the ocean or on land. Since synthetic plastics are not fully biodegradable, they tend to persist in natural environments and transform into micro- and nanoplastic particles due to fragmentation. The presence of nanoplastics in air, water, and food causes ecotoxicological issues and leads to human exposure. One of the main concerns is their genotoxic potential. Therefore, this study aimed to evaluate the internalization rates, cytotoxicity, and genotoxicity of polystyrene nanoparticles (PS-NPs) in human peripheral blood mononuclear cells (PBMCs) in vitro. The uptake of PS-NPs was confirmed with flow cytometry light scattering analysis. None of the tested nanoparticle concentrations had a cytotoxic effect on human PBMCs, as evaluated by a dual ethidium bromide/acridine orange staining technique. However, an alkaline comet assay results revealed a significant increase in the levels of primary DNA damage after 24 h of exposure to PS-NPs in a dose-dependent manner. Moreover, all tested PS-NPs concentrations induced a significant amount of micronucleated cells, as well. The results of this study revealed the genotoxic potential of commercially manufactured polystyrene nanoparticles and highlighted the need for more studies with naturally occurring plastic NPs.
Collapse
Affiliation(s)
- Milda Babonaitė
- Department of Botany and Genetics, Institute of Biosciences, Vilnius University, 7 Sauletekis Av., LT-10257 Vilnius, Lithuania
| | - Matas Čepulis
- Department of Botany and Genetics, Institute of Biosciences, Vilnius University, 7 Sauletekis Av., LT-10257 Vilnius, Lithuania
| | - Jūratė Kazlauskaitė
- Department of Botany and Genetics, Institute of Biosciences, Vilnius University, 7 Sauletekis Av., LT-10257 Vilnius, Lithuania
| | - Juozas Rimantas Lazutka
- Department of Botany and Genetics, Institute of Biosciences, Vilnius University, 7 Sauletekis Av., LT-10257 Vilnius, Lithuania
| |
Collapse
|
30
|
Ahmed SA, Al-Shanon AF, Al-Saffar AZ, Tawang A, Al-Obaidi JR. Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro. J Genet Eng Biotechnol 2023; 21:75. [PMID: 37393563 DOI: 10.1186/s43141-023-00529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Cancer is a major issue in medical science with increasing death cases every year worldwide. Therefore, searching for alternatives and nonorthodox methods of treatments with high efficiency, selectivity and less toxicity is the main goal in fighting cancer. Acetyl-11-keto-β-boswellic acid (AKBA), is a derivative pentacyclic triterpenoid that exhibited various biological activities with potential anti-tumoral agents. In this research, AKBA was utilized to examine the potential cytotoxic activity against MCF-7 cells in vitro and monitor the cellular and morphological changes with a prospective impact on apoptosis induction. METHODS The cytotoxic activity of AKBA was measured by 3(4,5dimethylthiazole- 2-yl)-2,5 diphyneltetrazolium bromide (MTT) assay. A dose-dependent inhibition in MCF-7 cell viability was detected. The clonogenicity of MCF-7 cells was significantly suppressed by AKBA increment in comparison with untreated cells. RESULT Morphologically, exposure of MCF-7 cells to high AKBA concentrations caused changes in cell nuclear morphology which was indicated by increasing in nuclear size and cell permeability intensity. The mitochondrial membrane potential (ΔΨm) was reduced by increasing AKBA concentration with a significant release of cytochrome c. Acridine orange/ethidium bromide dual staining experiment confirmed that MCF-7 cells treated with AKBA (IC50 concentration) displayed a late stage of apoptosis indicated by intense and bright reddish colour. CONCLUSION A significant increase in reactive oxygen species formation was observed. Caspase 8 and caspase 9 activities were estimated and AKBA activated the production of caspase 8 and caspase 9 in a dose-dependent pattern. Finally, the cell phase distribution analysis was conducted, and flow cytometric analysis showed that AKBA at 200 μg mL-1 significantly arrest MCF-7 cells at the G1 phase and triggered apoptosis.
Collapse
Affiliation(s)
- Saja A Ahmed
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | | | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq.
| | - Alene Tawang
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
| |
Collapse
|
31
|
Bhat SA, Pajaniradje S, Bhunia S, Subramanian S, Chandramohan S, Parthasarathi D, Bhaskaran S, Ali Padushah MS, Rajagopalan R. A study on the anticancer activity of imidazolyl benzamide derivative-IMUEB on a 549 lung cancer cell line. J Cancer Res Ther 2023; 19:1288-1296. [PMID: 37787297 DOI: 10.4103/jcrt.jcrt_1788_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Cancer is a deadly disease, which is due to the uncontrolled division of cells with abnormal or unusual characteristics. It is a consequence of lethal mutations occurring due to various chemical and physical carcinogens, affecting many cellular signalling pathways and leading to uncontrolled proliferation. In this study, we analyzed the effect of 4-(1H-imidazol-1-yl)-N-(2-(3-(4-methylbenzyl) ureido) ethyl)benzamide (IMUEB), an imidazole derivative, on A549 cells (lung cancer cells). Methods The MTT and LDH assays were performed to measure the cytotoxicity of IMUEB against A549 cells. Apoptotic mode of cell death of A549 cells was determined by fluorescence imaging by using different stains. Flow cytometry was performed to detect the cell cycle arrest. Western blotting was performed to determine the levels of apoptotic protein. Wound healing assay was performed to find the effect of IMUEB on cell migration. In silico molecular docking of IMUEB was performed to predict its affinity towards apoptotic proteins and metastasis related enzymes. Result and Discussion The MTT assay showed an increase in cytotoxicity with increasing concentrations of IMUEB. In addition, it was found that IMUEB arrests cell cycle at G1 phase as detected by flow cytometry analysis and induces apoptosis. The treatment with IMUEB drastically decreased the migratory potential of A549 cells as evaluated by migration and invasion assay. By Western blotting analysis, it was found that the concentration of caspase-3 was increased after the treatment with IMUEB. Conclusion Altogether, our results indicate that IMUEB shows antitumor activity by inhibiting proliferation and inducing apoptosis in A549 cells.
Collapse
Affiliation(s)
- Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- Centre for Nanoscience and Technology, Anna University, Chennai, Tamil Nadu, India
| | - Sayandeep Bhunia
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - D Parthasarathi
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Savitha Bhaskaran
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - M Syed Ali Padushah
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
32
|
Serban RM, Niculae D, Manda G, Neagoe I, Dobre M, Niculae DA, Temelie M, Mustăciosu C, Leonte RA, Chilug LE, Cornoiu MR, Cocioabă D, Stan M, Dinischiotu A. Modifications in cellular viability, DNA damage and stress responses inflicted in cancer cells by copper-64 ions. Front Med (Lausanne) 2023; 10:1197846. [PMID: 37415761 PMCID: PMC10320858 DOI: 10.3389/fmed.2023.1197846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Due to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged β- particles, 64Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The in vitro study aimed to investigate the biological and molecular background of 64CuCl2 therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL 64CuCl2. Radioisotope uptake and retention were assessed, and cell viability/death, DNA damage, oxidative stress, and the expression of 84 stress genes were investigated at various time points after [64Cu]CuCl2 addition. All the investigated cells incorporated 64Cu ions similarly, independent of their tumoral or normal status, but their fate after exposure to [64Cu]CuCl2 was cell-dependent. The most striking cytotoxic effects of the radioisotope were registered in colon carcinoma HCT116 cells, for which a substantial decrease in the number of metabolically active cells, and an increased DNA damage and oxidative stress were registered. The stress gene expression study highlighted the activation of both death and repair mechanisms in these cells, related to extrinsic apoptosis, necrosis/necroptosis or autophagy, and cell cycle arrest, nucleotide excision repair, antioxidant, and hypoxic responses, respectively. The in vitro study indicated that 40 MBq/mL [64Cu]CuCl2 delivers a therapeutic effect in human colon carcinoma, but its use is limited by harmful, yet lower effects on normal fibroblasts. The exposure of tumor cells to 20 MBq/mL [64Cu]CuCl2, might be used for a softer approach aiming for a lower radiotoxicity in normal fibroblasts as compared to tumor cells. This radioactive concentration was able to induce a persistent decrease in the number of metabolically active cells, accompanied by DNA damage and oxidative stress, associated with significant changes in stress gene expression in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Radu M. Serban
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dana Niculae
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Gina Manda
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Ionela Neagoe
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Maria Dobre
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Dragoș A. Niculae
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Mihaela Temelie
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Cosmin Mustăciosu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Radu A. Leonte
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Livia E. Chilug
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Maria R. Cornoiu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Applied Chemistry and Materials Science, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Bucharest, Romania
| | - Diana Cocioabă
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Physics, Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Miruna Stan
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | |
Collapse
|
33
|
Khurana D, Kumar Shaw A, Tabassum M, Ahmed M, Shukla SK, Soni S. Gold Nanoblackbodies-based Multifunctional Nanocomposite for Multimodal Cancer Therapy. Int J Pharm 2023:123112. [PMID: 37302667 DOI: 10.1016/j.ijpharm.2023.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Multifunctional nanocomposites are of potential use to achieve complete tumor elimination and, thus, to avoid tumor recurrence. Herein, polydopamine (PDA)-based gold nanoblackbodies (AuNBs) loaded with indocyanine green (ICG) and Doxorubicin (DOX) termed as A-P-I-D nanocomposite were investigated for multimodal plasmonic photothermal-photodynamic-chemotherapy. Upon near-infrared (NIR) irradiation, A-P-I-D nanocomposite showed enhanced photothermal conversion efficiency of 69.2% compared to bare AuNBs (62.9%) due to the presence of ICG, along with ROS (1O2) generation as well as enhanced DOX release. On assessment of therapeutic effects on breast cancer (MCF-7) and melanoma (B16F10) cell lines, A-P-I-D nanocomposite showed significantly lower cell viabilities of 45.5% and 24% compared to 79.3% and 76.8% for AuNBs. Fluorescence images of stained cells revealed characteristic signs of apoptotic mode of cell death, with almost complete damage on A-P-I-D nanocomposite+NIR treated cells. Further, on evaluation of photothermal performance through breast tumor-tissue mimicking phantoms, A-P-I-D nanocomposite provided required thermal ablation temperatures within the tumor along with the potential for the elimination of residual cancerous cells through photodynamic therapy and chemotherapy. Overall, this study demonstrates that A-P-I-D nanocomposite+NIR provides better therapeutic outcome on cell lines and enhanced photothermal performance on breast tumor-tissue mimicking phantoms to be a promising agent for multimodal cancer therapy.
Collapse
Affiliation(s)
- Divya Khurana
- CSIR-Central Scientific Instruments Organisation, Chandigarh-160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amit Kumar Shaw
- CSIR-Central Scientific Instruments Organisation, Chandigarh-160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Manzoor Ahmed
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Sanket K Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Sanjeev Soni
- CSIR-Central Scientific Instruments Organisation, Chandigarh-160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
34
|
Araújo APDC, Luz TMD, Ahmed MAI, Ali MM, Rahman MM, Nataraj B, de Melo E Silva D, Barceló D, Malafaia G. Toxicity assessment of polyethylene microplastics in combination with a mix of emerging pollutants on Physalaemus cuvieri tadpoles. J Environ Sci (China) 2023; 127:465-482. [PMID: 36522078 DOI: 10.1016/j.jes.2022.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 06/17/2023]
Abstract
Studies in recent years have shown that aquatic pollution by microplastics (MPs) can be considered to pose additional stress to amphibian populations. However, our knowledge of how MPs affect amphibians is very rudimentary, and even more limited is our understanding of their effects in combination with other emerging pollutants. Thus, we aimed to evaluate the possible toxicity of polyethylene MPs (PE-MPs) (alone or in combination with a mix of pollutants) on the health of Physalaemus cuvieri tadpoles. After 30 days of exposure, multiple biomarkers were measured, including morphological, biometric, and developmental indices, behavioral parameters, mutagenicity, cytotoxicity, antioxidant and cholinesterase responses, as well as the uptake and accumulation of PE-MPs in animals. Based on the results, there was no significant change in any of the parameters measured in tadpoles exposed to treatments, but induced stress was observed in tadpoles exposed to PE-MPs combined with the mixture of pollutants, reflecting significant changes in physiological and biochemical responses. Through principal component analysis (PCA) and integrated biomarker response (IBR) assessment, effects induced by pollutants in each test group were distinguished, confirming that the exposure of P. cuvieri tadpoles to the PE-MPs in combination with a mix of emerging pollutants induces an enhanced stress response, although the uptake and accumulation of PE-MPs in these animals was reduced. Thus, our study provides new insight into the danger to amphibians of MPs coexisting with other pollutants in aquatic environments.
Collapse
Affiliation(s)
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO 75790-000, Brazil
| | | | - Mir Mohammad Ali
- Department of Aquaculture; Faculty of Fisheries, Aquaculture & Marine Science; Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Savar 1342, Bangladesh
| | - Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Daniela de Melo E Silva
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO 74690-970, Brazil; Laboratory of Environmental Mutagenesis, Federal University of Goiás, Goiânia, GO 74690-970, Brazil
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona 1826, Barcelona 08034, Spain
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil; Post-Graduation Programa in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO 74605-050, Brazil.
| |
Collapse
|
35
|
Mundhra S, Bondre VP. Higher replication potential of West Nile virus governs apoptosis induction in human neuroblastoma cells. Apoptosis 2023:10.1007/s10495-023-01844-2. [PMID: 37186273 DOI: 10.1007/s10495-023-01844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 05/17/2023]
Abstract
The extent of neuronal cell damage caused by West Nile virus (WNV) infection governs the disease severity ranging from mild, febrile illness to fatal encephalitis. Availability of naturally occurring genetic variants is helpful to study viral factors governing differential pathogenesis. During WNV infection, apoptosis serves as a virulence determinant positively contributing to viral pathogenesis. We investigated the levels of apoptosis induced by a low neurovirulent WNV lineage 5 strain 804994 and a high neurovirulent lineage 1 strain 68856 in human neuroblastoma cells, IMR-32. Our investigations clearly show the correlation between higher multiplication capacities of 68856 with higher levels of cytopathology induced by apoptosis. We observed activation of both the extrinsic and intrinsic apoptotic pathways during WNV infection. Infection with higher neurovirulent strain resulted in higher upregulation of pro-apoptotic proteins including death receptors (DR), adaptor protein, BH3-only regulatory proteins and higher cleavage of initiator caspases of both pathways. These results suggest that the virulence of a WNV strain may correlate with its higher replication fitness and ability to cause more cellular damage.
Collapse
Affiliation(s)
- Sonal Mundhra
- Encephalitis Group, ICMR-National Institute of Virology, Pashan - Sus Road, Pune, Maharashtra, 411021, India
| | - Vijay P Bondre
- Encephalitis Group, ICMR-National Institute of Virology, Pashan - Sus Road, Pune, Maharashtra, 411021, India.
| |
Collapse
|
36
|
Khlusov IA, Grenadyorov AS, Solovyev AA, Semenov VA, Zhulkov MO, Sirota DA, Chernyavskiy AM, Poveshchenko OV, Surovtseva MA, Kim II, Bondarenko NA, Semin VO. Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiO x-Coated Ti-6Al-4V Substrate. Int J Mol Sci 2023; 24:6675. [PMID: 37047649 PMCID: PMC10095527 DOI: 10.3390/ijms24076675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
This paper focuses on the surface modification of the Ti-6Al-4V alloy substrate via a-C:H:SiOx coating deposition. Research results concern the a-C:H:SiOx coating structure, investigated using transmission electron microscopy and in vitro endothelization to study the coating. Based on the analysis of the atomic radial distribution function, a model is proposed for the atomic short-range order structure of the a-C:H:SiOx coating, and chemical bonds (C-O, C-C, Si-C, Si-O, and Si-Si) are identified. It is shown that the a-C:H:SiOx coating does not possess prolonged cytotoxicity in relation to EA.hy926 endothelial cells. In vitro investigations showed that the adhesion, cell number, and nitric oxide production by EA.hy926 endothelial cells on the a-C:H:SiOx-coated Ti-6Al-4V substrate are significantly lower than those on the uncoated surface. The findings suggest that the a-C:H:SiOx coating can reduce the risk of endothelial cell hyperproliferation on implants and medical devices, including mechanical prosthetic heart valves, endovascular stents, and mechanical circulatory support devices.
Collapse
Affiliation(s)
- Igor A. Khlusov
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Tract, 634050 Tomsk, Russia
| | | | - Andrey A. Solovyev
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia
| | - Vyacheslav A. Semenov
- The Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., 634055 Tomsk, Russia
| | - Maksim O. Zhulkov
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Dmitry A. Sirota
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Aleksander M. Chernyavskiy
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Olga V. Poveshchenko
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of Institute of Cytology and Genetics SB RAS, 2, Timakov Str., 630060 Novosibirsk, Russia
| | - Maria A. Surovtseva
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of Institute of Cytology and Genetics SB RAS, 2, Timakov Str., 630060 Novosibirsk, Russia
| | - Irina I. Kim
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of Institute of Cytology and Genetics SB RAS, 2, Timakov Str., 630060 Novosibirsk, Russia
| | - Natalya A. Bondarenko
- E.N. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of Institute of Cytology and Genetics SB RAS, 2, Timakov Str., 630060 Novosibirsk, Russia
| | - Viktor O. Semin
- Institute of Strength Physics and Materials Science SB RAS, 2/4, Akademichesky Ave., 634055 Tomsk, Russia
| |
Collapse
|
37
|
Tyutereva EV, Dalinova AA, Demchenko KN, Dmitrieva VA, Dubovik VR, Lukinskiy YV, Mitina GV, Voitsekhovskaja OV, Berestetskiy A. Effects of Phytotoxic Nonenolides, Stagonolide A and Herbarumin I, on Physiological and Biochemical Processes in Leaves and Roots of Sensitive Plants. Toxins (Basel) 2023; 15:toxins15040234. [PMID: 37104172 PMCID: PMC10145764 DOI: 10.3390/toxins15040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Phytotoxic macrolides attract attention as prototypes of new herbicides. However, their mechanisms of action (MOA) on plants have not yet been elucidated. This study addresses the effects of two ten-membered lactones, stagonolide A (STA) and herbarumin I (HBI) produced by the fungus Stagonospora cirsii, on Cirsium arvense, Arabidopsis thaliana and Allium cepa. Bioassay of STA and HBI on punctured leaf discs of C. arvense and A. thaliana was conducted at a concentration of 2 mg/mL to evaluate phenotypic responses, the content of pigments, electrolyte leakage from leaf discs, the level of reactive oxygen species, Hill reaction rate, and the relative rise in chlorophyll a fluorescence. The toxin treatments resulted in necrotic and bleached leaf lesions in the dark and in the light, respectively. In the light, HBI treatment caused the drop of carotenoids content in leaves on both plants. The electrolyte leakage caused by HBI was light-dependent, in contrast with that caused by STA. Both compounds induced light-independent peroxide generation in leaf cells but did not affect photosynthesis 6 h after treatment. STA (10 µg/mL) caused strong disorders in root cells of A. thaliana leading to the complete dissipation of the mitochondrial membrane potential one hour post treatment, as well as DNA fragmentation and disappearance of acidic vesicles in the division zone after 8 h; the effects of HBI (50 µg/mL) were much milder. Furthermore, STA was found to inhibit mitosis but did not affect the cytoskeleton in cells of root tips of A. cepa and C. arvense, respectively. Finally, STA was supposed to inhibit the intracellular vesicular traffic from the endoplasmic reticulum to the Golgi apparatus, thus interfering with mitosis. HBI is likely to have another main MOA, probably inhibiting the biosynthesis of carotenoids.
Collapse
Affiliation(s)
- Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Anna A Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Kirill N Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Valeriya A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Vsevolod R Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Yuriy V Lukinskiy
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Galina V Mitina
- Laboratory of Microbiological Plant Protection, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| |
Collapse
|
38
|
Sasidharan S, Saudagar P. An anti-leishmanial compound 4',7-dihydroxyflavone elicits ROS-mediated apoptosis-like death in Leishmania parasite. FEBS J 2023. [PMID: 36871140 DOI: 10.1111/febs.16770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The treatment for leishmaniasis is currently plagued by side effects such as toxicity and the emergence of drug resistance to the available repertoire of drugs, as well as the expense of these drugs. Considering such rising concerns, we report the anti-leishmanial activity and mechanism of a flavone compound 4',7-dihydroxyflavone (TI 4). Four flavanoids were initially screened for anti-leishmanial activity and cytotoxicity. The results showed that the compound TI 4 exhibited higher activity and selectivity index at the same time as maintaining low cytotoxicity. Preliminary microscopic studies and fluorescence-activated cell sorting analysis reported that the parasite underwent apoptosis on TI 4 treatment. Further in-depth studies revealed high reactive oxygen species (ROS) production and thiol levels in the parasites, suggesting ROS-mediated apoptosis in the parasites upon TI 4 treatment. Other apoptotic indicators such as intracellular Ca2+ and mitochondrial membrane potential also indicated the onset of apoptosis in the treated parasites. The mRNA expression levels signified that the redox metabolism genes were upregulated by two-fold along with the apoptotic genes. In summary, the use of TI 4 on Leishmania parasites induces ROS-mediated apoptosis; therefore, the compound has immense potential to be an anti-leishmanial drug. However, in vivo studies would be required to ascertain its safety and efficacy before we can exploit the compound against the growing leishmaniasis crisis.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
39
|
Mohanasundaram P, Saral AM. Phytochemical Screening, Antibacterial, Antifungal, Anti-Biofilm and Antioxidant Activity of Azadiracta Indica A. Juss. Flowers. Chem Biodivers 2023; 20:e202201049. [PMID: 36810960 DOI: 10.1002/cbdv.202201049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The present study involves investigation of Azadiracta Indica flowers with respect to its pharmacognostic properties, phytochemical screening, and its application as anti-oxidant, anti-biofilm, and anti-microbial agent. The Pharmacognostic characteristics were evaluated with respect to moisture content, total ash content, acid, and water-soluble ash content, swelling index, foaming index, and metal content. The macro and micronutrient content of the crude drug was estimated by AAS and Flame photometric methods and it gives the quantitative estimation of minerals, where calcium is present in abundance (88.64 mg/L). Soxhlet extraction was carried out in the increasing order of polarity of the solvent viz Petroleum Ether (PE), Acetone (AC), and Hydroalcohol (20 %) (HA) to extract the bioactive compounds. The characterization of the bioactive compounds of all the three extract have been carried out using gcms and lcms. The presence of 13 major compounds have been identified in PE extract and 8 compounds in AC extract using gcms studies. The HA extract is found to contain polyphenols, flavanoids, and glycosides. The antioxidant activity of the extracts was evaluated by DPPH, FRAP, and Phosphomolybdenum assay. This reveals that HA extract shows good scavenging activity than PE and AC extracts which is well correlated with the bioactive compounds, especially phenols which are present as a major component in the extract. The anti-microbial activity was investigated via Agar well diffusion method for all the extracts. Among all the extracts HA extract shows good antibacterial activity with MIC of 25 μg/mL and AC extract shows good anti-fungal activity with MIC of 25 μg/mL. The antibiofilm assay confirms that the HA extract shows good biofilm inhibition about 94 % among other extracts when tested on human pathogens. The results confirm that the HA extract of A. Indica flowers will be an excellent source of natural anti-oxidant and also antimicrobial agents. This paves the way for its potential uses in herbal product formulation.
Collapse
Affiliation(s)
| | - A Mary Saral
- Department of Chemistry, Vellore Institute of Technology, Vellore, India -, 632 014
| |
Collapse
|
40
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
41
|
Ghaemi Z, Mowla SJ, Soltani BM. Novel splice variants of LINC00963 suppress colorectal cancer cell proliferation via miR-10a/miR-143/miR-217/miR-512-mediated regulation of PI3K/AKT and Wnt/β-catenin signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194921. [PMID: 36804476 DOI: 10.1016/j.bbagrm.2023.194921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Emerging evidence has shown lncRNAs play important roles in signaling pathways involved in colorectal cancer (CRC) carcinogenesis. However, only a few functional lncRNAs have been extensively researched, especially in CRC-related signaling pathways. Looking for novel candidate regulators of CRC incidence and progression, using available RNA-seq and microarray datasets, LINC00963 was introduced as a bona fide oncogenic-lncRNA. Consistently, RT-qPCR results showed that LINC00963 was up-regulated in CRC tissues. However, our attempt to amplify the full-length lncRNA from cDNA resulted in the discovery of two novel variants (LINC00963-v2 & LINC00963-v3) that surprisingly, were downregulated in CRC tissues, detected by RT-qPCR. Overexpression of LINC00963-v2/-v3 in HCT116 and SW480 cells resulted in downregulation of the major oncogenes and upregulation of the main tumor suppressor genes involved in PI3K and Wnt signaling, verified through RT-qPCR, western blotting, and TOPFlash assays. Mechanistic studies revealed that LINC00963-v2/-v3 exert their effect on PI3K and Wnt signaling through sponging miR-10a-5p, miR-143-3p, miR-217, and miR-512-3p, which in turn these miRNAs are fine-regulators of PTEN, APC1, and Axin1 tumor suppressor genes verified by dual-luciferase assay and RT-qPCR. At cellular levels, LINC00963-v2/-v3 overexpression suppressed cell proliferation, viability, and migration while increasing the apoptosis of CRC cell lines, detected by PI flow cytometry, colony formation, MTT, RT-qPCR, wound-healing, Transwell, AnnexinV-PE/7AAD, caspase3/7 activity assays, and Hoechst/PI-AO/EB staining. Overall, our results indicate that LINC00963-v2 & -v3 are novel tumor suppressor ceRNAs that attenuate the PI3K and Wnt pathways during CRC incidence and these lncRNAs may serve as potential targets for CRC therapy.
Collapse
Affiliation(s)
- Zahra Ghaemi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Javad Mowla
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
42
|
Albayrak G, Yörük E, Teker T, Sefer Ö. Investigation of antifungal activities of myrcene on Fusarium reference strains. Arch Microbiol 2023; 205:82. [PMID: 36738315 DOI: 10.1007/s00203-023-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Antifungal effects of myrcene, the plant-based naturel compound, were investigated on Fusarium graminearum PH-1 and Fusarium culmorum FcUK99 references, for the first time. Minimum inhibitory concentration (MIC) and half of MIC (MIC50) of both Fusarium strains against myrcene were found as 25 µg/µl and 12.5 µg/µl, respectively. MIC50 application decreased the cell viabilities in the ratios of 34.90% and 33.91% in PH-1 and FcUK99, respectively (p < 0.01). The significantly increased catalase (CAT) activity was recorded in MIC50 treated strains (p < 0.01). Apoptosis-like process and cellular oxidative stress were also monitored with acridine orange/ethidium bromide (Ao/Eb) dual staining and 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) staining. The genomic template stability (GTS) percentages were calculated as 79% for PH-1 and 71% for FcUK99 via random amplified polymorphic DNA (RAPD). Methylation polymorphism values were calculated as 53.8% and 50.6% in PH-1 and 40.4% and 39% in FcUK99 for HapII and MspI, respectively by coupled restriction enzyme digestion-random amplification (CRED-RA). Methylation-sensitive amplified polymorphism (MSAP) revealed that myrcene caused both type I and type III epigenetic modifications in both genomes. MIC50 dose caused up to 13.86 ± 0.42-fold changes in the expressions of cat, mst20, and stuA, whereas downregulation in tri5 was recorded. Myrcene application did not change the retrotransposon movement in both species by the amplifying of idiomorphic retrotransposon patterns through inter-retrotransposon polymorphism-polymerase chain reaction (IRAP-PCR). This study demonstrated that myrcene is an effective compound in the management of phytopathogenic Fusarium species by causing morphological, genetic, epigenetic, and cellular alterations, and has a potential to utilize as an antifungal agent.
Collapse
Affiliation(s)
- Gülruh Albayrak
- Department of Molecular Biology and Genetics, Faculty of Sciences, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Emre Yörük
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Cevizlibag, 34010, Istanbul, Turkey
| | - Tuğba Teker
- Institute of Graduate Studies in Sciences, Programme of Molecular Biotechnology and Genetics, Istanbul University, Suleymaniye, 34116, Istanbul, Turkey
| | - Özlem Sefer
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Cevizlibag, 34010, Istanbul, Turkey
| |
Collapse
|
43
|
Nongpiur CGL, Verma AK, Singh RK, Ghate MM, Poluri KM, Kaminsky W, Kollipara MR. Half-sandwich ruthenium(II), rhodium(III) and iridium(III) fluorescent metal complexes containing pyrazoline based ligands: DNA binding, cytotoxicity and antibacterial activities. J Inorg Biochem 2023; 238:112059. [PMID: 36345069 DOI: 10.1016/j.jinorgbio.2022.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
A series of nine new complexes of ruthenium(II), rhodium(III), and iridium(III) incorporated with pyrazoline-based ligands were synthesized and characterized by various spectroscopic techniques such as FTIR, 1H NMR, 13C NMR, UV-Vis spectroscopy, ESI-MS spectrometry and X-ray crystallographic studies. All the synthesized compounds were assessed for their antibacterial abilities against Gram-positive and Gram-negative bacterial strains. The compounds showed better antibacterial activity against two Gram-positive bacteria (Staphylococcus aureus and Bacillus Thuringiensis), with activities superior to standard kanamycin. Antioxidant studies revealed the mild radical scavenging proficiency of the compounds. DNA binding studies using fluorescence spectroscopy showed that the compounds could bind to Salmon Milt DNA electrostatically via external contact and groove surface binding with moderate affinity. The synthesized complexes were tested for anticancer activity using cell cytotoxicity and apoptosis assays in Dalton's lymphoma (DL) cell lines. The findings were compared to cisplatin (the standard drug) under identical experimental conditions. The cell viability results showed that complex 7 induced higher cytotoxicity in the DL cell line than the other tested compounds. The results of the molecular docking analysis further suggest that selective complexes have complete contact with the active amino acids sites of anti-apoptotic Bcl-2 family protein.
Collapse
Affiliation(s)
| | | | - Rohit Kumar Singh
- Department of Zoology, Cotton University, Guwahati 781001, Assam, India
| | - Mayur Mohan Ghate
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mohan Rao Kollipara
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
44
|
Ghorbankhani GA, Mohammadi A, Kazemipur N, Morovati S, Gharesi Fard B, Nazifi Habibabadi S, Hashempour Sadeghian M. Apoptotic activity of Newcastle disease virus in comparison with nisin A in MDA-MB-231 cell line. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:29-37. [PMID: 36816859 PMCID: PMC9906615 DOI: 10.30466/vrf.2022.542258.3297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/13/2022] [Indexed: 02/24/2023]
Abstract
Given the development of drug-resistant cancer cells, designing alternative approaches for cancer treatment seems essential. In this study, we evaluated the anti-tumor effects of nisin A and Newcastle disease virus (NDV) on triple-negative MDA-MB-231 cell line. The MDA-MB-231 cell line was separately and in combination subjected to the different concentrations of a Vero-adapted NDV (JF820294.1) and nisin A. The oncolytic effects of these treatments were analyzed by different cytotoxic and apoptosis techniques including trypan blue staining, MTT assay, acridine orange (EB/AO) staining, colony assay and flow cytometry over time. Nisin A at doses of more than 20.00 μg mL-1 could represent the anti-viral effects and interfere with the oncolytic activity of NDV. Moreover, the analyses indicated that the anti-proliferative and cytotoxic features of combination therapy were stronger than those of individual NDV groups. However, the most apoptotic effect was seen in NDV experimental groups. Taken together, the results from cytotoxicity tests, flow cytometry and colony assay showed that either of the oncolytic agents had significant effects at low concentrations 72 hr post-treatment. Thereby, they had the potential to be used as new approaches in cancer treatment.
Collapse
Affiliation(s)
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; ,Correspondence Ali Mohammadi. DVM, PhD, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran. E-mail:
| | - Nasrin Kazemipur
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran;
| | - Solmaz Morovati
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran;
| | - Behrouz Gharesi Fard
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Saeed Nazifi Habibabadi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | | |
Collapse
|
45
|
Baishya T, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Bhattacharyya MK. Enclathration of Mn(II)(H2O)6 guests and unusual Cu⋯O bonding contacts in supramolecular assemblies of Mn(II) Co-crystal hydrate and Cu(II) Pyridinedicarboxylate: Antiproliferative evaluation and theoretical studies. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Shariatzadeh M, Karami A, Moghadam A, Lotfi M, Maggi F, Ebrahimie E. The Essential Oil from Oliveria decumbens Vent. (Apiaceae) as Inhibitor of Breast Cancer Cell (MCF-7) Growth. Pharmaceuticals (Basel) 2022; 16:ph16010059. [PMID: 36678556 PMCID: PMC9863695 DOI: 10.3390/ph16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Oliveria decumbens Vent. is an aromatic and medicinal plant traditionally used in Iran for the treatment of infections, gastrointestinal diseases, cancer, and inflammation. This research was aimed at investigating the pharmacological potential of O. decumbens essential oil (OEO) and its main compounds, focusing on OEO's cytotoxic effects on MCF-7 breast cancer cells. OEO was obtained by hydro-distillation, and the chemical constituents were identified using GC-MS. Thymol, carvacrol, γ-terpinene, and p-cymene were the main OEO constituents. When MCF-7 cells were treated with OEO, the expressions of genes related to apoptosis (BIM and Bcl-2), tumor suppression (PTEN), and cell growth inhibition (AURKA), were evaluated using real-time PCR. Moreover, molecular docking was used for studying in silico the interaction of OEO principal compounds with PTEN and AURKA. The expression of AURKA was significantly reduced since the OEO treatment enhanced the expression of PTEN. Through in silico molecular docking, it was revealed that thymol, carvacrol, p-cymene, and γ-terpinene can activate PTEN and thus inhibit AURKA. Additionally, the DNA fragmentation assay, acridine orange/ethidium bromide (AO/EB) double-staining assay, and real-time PCR highlighted the fact that the OEO treatment could activate apoptosis and inhibit cell proliferation. Therefore, OEO is a viable candidate to be employed in the pharmaceutical industry, specifically as a possible agent for cancer therapy.
Collapse
Affiliation(s)
| | - Akbar Karami
- Department of Horticulture Science, School of Agriculture, Shiraz University, Shiraz 71441, Iran
- Correspondence: (A.K.); (F.M.); Tel.: +39-(073)-740-4506 (F.M.)
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz 71441, Iran
| | - Mahbobeh Lotfi
- Institute of Biotechnology, Shiraz University, Shiraz 71441, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (A.K.); (F.M.); Tel.: +39-(073)-740-4506 (F.M.)
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3000, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
47
|
Mono-Rhamnolipid Biosurfactants Synthesized by Pseudomonas aeruginosa Detrimentally Affect Colorectal Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14122799. [PMID: 36559292 PMCID: PMC9782318 DOI: 10.3390/pharmaceutics14122799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
Over the past 15 years, glycolipid-type biosurfactant compounds have been postulated as novel, naturally synthesized anticancer agents. This study utilized a recombinant strain of Pseudomonas aeruginosa to biosynthesize a preparation of mono-rhamnolipids that were purified via both liquid and solid-phase extraction, characterized by HPLC-MS, and utilized to treat two colorectal cancer cell lines (HCT-116 and Caco2) and a healthy colonic epithelial cell line CCD-841-CoN. Additionally, the anticancer activity of these mono-rhamnolipids was compared to an alternative naturally derived anticancer agent, Piceatannol. XTT cell viability assays showed that treatment with mono-rhamnolipid significantly reduced the viability of both colorectal cancer cell lines whilst having little effect on the healthy colonic epithelial cell line. At the concentrations tested mono-rhamnolipids were also shown to be more cytotoxic to the colorectal cancer cells than Piceatannol. Staining of mono-rhamnolipid-treated cells with propidium iodine and acridine orange appeared to show that these compounds induced necrosis in both colorectal cancer cell lines. These data provide an early in vitro proof-of-principle for utilizing these compounds either as active pharmaceutical ingredient for the treatment of colorectal cancer or incorporations into nutraceutical formulations to potentially prevent gastrointestinal tract cancer.
Collapse
|
48
|
Cytotoxicity and Genotoxicity Evaluation of Some Stored Grain Insects and Their Infested Flour Using the BHK-21 Cell Line in an In Vitro Experimental Model. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6415310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Globally, stored grain is vulnerable to pest infestation, resulting in significant economic losses for some crops. Wheat is one of the most important crops in the world. Many sucking, piercing insects infect wheat in the form of grains or flour and may produce toxic residues that are harmful to human health. The current study aimed to estimate the safe use of four stored grain insects by evaluating the potential genotoxic effects and cytotoxicity of crushed insects (T. granarium, S. oryzae, R. dominica, and T. castaneum) and their flour residues. MTT and comet assays were conducted to assess the effects of six concentrations of insect flour residues (0, 6.5, 12.5, 25, 50, and 100%) on the baby hamster kidney cell line (BHK-21). The lowest BHK-21 cell viability was noted against T. granarium (LC50% 36.42 μg/ml) followed by T. castaneum flour (LC50% 46.73 μg/ml) compared to the control (LC50% 808.2 μg/ml). Significantly high DNA comet (%) was observed in the treatments of T. castaneum flour (18.8%), S. oryzae wheat (15.6%), T. granarium (15.4%), T. castaneum (13.6%), and T. granarium wheat (13.1%). FTIR spectra of stored grain insects and their flour residues identified various functional metabolite groups, including alkynes and phenols, which could enhance cell apoptosis and genotoxicity. T. granarium, T. castaneum, and their flour residues had the highest cytotoxic and genotoxic effects on the BHK-21 cell line. The current study concludes that insect residues in flour may have cytotoxic and genotoxic effects on living cells, potentially affecting public health, particularly after consuming T. granarium and T. castaneum-infested flour. Therefore, good storage of stored grains and their products is recommended.
Collapse
|
49
|
Asong GM, Voshavar C, Amissah F, Bricker B, Lamango NS, Ablordeppey SY. An Evaluation of the Anticancer Properties of SYA014, a Homopiperazine-Oxime Analog of Haloperidol in Triple Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:6047. [PMID: 36551533 PMCID: PMC9776707 DOI: 10.3390/cancers14246047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a type of breast cancer associated with early metastasis, poor prognosis, high relapse rates, and mortality. Previously, we demonstrated that SYA013, a selective σ2RL, could inhibit cell proliferation, suppress migration, reduce invasion, and induce mitochondria-mediated apoptosis in MDA-MB-231 cell lines, although we were unable to demonstrate the direct involvement of sigma receptors. This study aimed to determine the anticancer properties and mechanisms of action of SYA014, [4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluorophenyl)butan-1-one oxime], an oxime analogue of SYA013, the contribution of its sigma-2 receptor (σ2R) binding, and its possible synergistic use with cisplatin to improve anticancer properties in two TNBC cell lines, MDA-MB-231 (Caucasian) and MDA-MB-468 (Black). In the present investigation, we have shown that SYA014 displays anticancer properties against cell proliferation, survival, metastasis and apoptosis in the two TNBC cell lines. Furthermore, a mechanistic investigation was conducted to identify the apoptotic pathway by which SYA014 induces cell death in MDA-MB-231 cells. Since SYA014 has a higher binding affinity for σ2R compared to σ1R, we tested the role of σ2R on the antiproliferative property of SYA014 with a σ2R blockade. We also attempted to evaluate the combination effect of SYA014 with cisplatin in TNBC cells.
Collapse
Affiliation(s)
- Gladys M. Asong
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Chandrashekhar Voshavar
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Felix Amissah
- College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Barbara Bricker
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Nazarius S. Lamango
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Seth Y. Ablordeppey
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
50
|
Pandya N, Rani R, Kumar V, Kumar A. Discovery of potent Guanidine derivative that selectively binds and stabilizes the human BCL-2 G-quadruplex DNA and downregulates the transcription. Gene 2022; 851:146975. [PMID: 36261091 DOI: 10.1016/j.gene.2022.146975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/09/2022]
Abstract
Small molecules that interact with quadruplexes offer a wide range of potential applications, including not just as medications but also as sensors for quadruplexes structures. The BCL-2 is a proto-oncogene that often gets mutated in lethal cancer and could be an interesting target for developing an anti-cancer drug. In the present study, we have employed various biophysical techniques such as fluorescence, CD, Isothermal calorimeter, gel retardation, and PCR stop assay, indicating that Guanidine derivatives GD-1 and GD-2 selectively interact with high affinity with BCL-2 G-quadruplex over other G-quadruplex DNA and duplex DNA. The most promising small molecule GD-1 increases the thermostability of the BCL-2 GQ structure by 12°C. Our biological experiments such as ROS generation, qRT-PCR, western blot, TFP based Reporter assay, show that the GD-1 ligand causes a synthetic lethal interaction by suppressing the expression BCL-2 genes via interaction and stabilization of its the promoter G-quadruplexes in HeLa cells and act as a potential anti-cancer agent.
Collapse
Affiliation(s)
- Nirali Pandya
- Department for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, Simrol, India
| | - Reshma Rani
- Department of Biotechnology, Amity University, Noida
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research
| | - Amit Kumar
- Department for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, Simrol, India.
| |
Collapse
|