1
|
Ma X, Yu J, Ma Y, Huang X, Zhu K, Jiang Z, Zhang L, Liu Y. Explore the mechanism of yishenjiangya formula in the treatment of senile hypertension based on multi-omics technology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118886. [PMID: 39362324 DOI: 10.1016/j.jep.2024.118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Yishenjiangya formula (YSJ) is a traditional Chinese medicine (TCM) primarily composed of qi-tonifying components. This classic formula is commonly utilized to treat kidney qi deficiency in elderly patients with hypertension. According to TCM, maintaining a balance between qi and blood is crucial for stable blood pressure. Kidney qi deficiency can disrupt this balance, altering fluid shear force and, ultimately, leading to hypertension, particularly in elderly populations. Despite YSJ's efficacy in treating hypertension, its specific anti-hypertensive mechanisms remain unclear. AIM OF THE STUDY YSJ is commonly prescribed for elderly patients with hypertension. Earlier metabolomics studies demonstrated that YSJ exerts antihypertensive effects by influencing four key pathways: linoleic acid metabolism, glycerol phospholipid metabolism, arginine and proline metabolism, and steroid hormone biosynthesis. This study aims to combine metabolomic and proteomic analyses to thoroughly understand the molecular biological mechanisms responsible for YSJ's anti-hypertensive properties. METHODS Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) metabolomics, combined with Label-Free Quantitation (LFQ) proteomics, was employed to analyze serum samples from elderly individuals with and without hypertension pre- and post-YSJ intervention. Serum levels of candidate proteins were assessed using enzyme-linked immunosorbent assay, and receiver operating characteristic curves were used to evaluate the diagnostic performance of the target proteins. RESULTS Eight differentially expressed metabolites and three differentially expressed proteins were identified as potential therapeutic targets of YSJ. These substances are primarily involved in unsaturated fatty acid metabolism, fluid shear stress and atherosclerosis pathway, primary bile acid biosynthesis, proline metabolism, apoptosis, and endoplasmic reticulum stress. YSJ exerts its therapeutic effects on hypertension in the elderly by modulating these pathways. CONCLUSIONS YSJ effectively treats senile hypertension. By analyzing the correlation between therapeutic targets and pathways, YSJ's anti-hypertensive effect was achieved by inhibiting lipid peroxidation and matrix degeneration. Combining metabolomics and proteomics provides an effective method for uncovering YSJ's anti-hypertensive mechanisms.
Collapse
Affiliation(s)
- Xu Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Yongbo Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, Shanghai, China
| | - Xinyu Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Kunpeng Zhu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Zhen Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| | - Yingying Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
2
|
Thongsepee N, Martviset P, Himakhun W, Chantree P, Sornchuer P, Sangpairoj K, Hiranyachattada S. Cardiovascular Protective Effect of Garcinia dulcis Flower Acetone Extract in 2-Kidney-1-Clip Hypertensive Rats. Adv Pharmacol Pharm Sci 2024; 2024:9916598. [PMID: 38455637 PMCID: PMC10919976 DOI: 10.1155/2024/9916598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/25/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Morelloflavone and camboginol are bioactive compounds purified from Garcinia dulcis (GD), which has anti-inflammatory and antihypertensive properties. The objective of this study was to examine the cardiovascular protective effect of GD flower acetone extract in 2-kidney-1-clip (2K1C) hypertensive rats. Male Wistar rats underwent 2K1C or sham operation (SO) and were housed for 4 weeks. Each group of rats, then, was further divided into 2 subgroups receiving oral administration of either 50 mg/kg BW GD extract or corn oil (vehicle) daily for 4 weeks. Noninvasive blood pressure (BP) and body weight were measured weekly throughout the study. Subsequently, the invasive measurement of arterial BP and the heart rate were determined in all anesthetized rats. The baroreceptor reflex sensitivity (BRS) was investigated by injection of either phenylephrine or sodium nitroprusside for bradycardia or tachycardia response, respectively. Histological examination of the heart and thoracic aorta was also performed in order to investigate the general morphology and the tumor necrosis factor alpha (TNF-α) expression. We found that the GD flower extract significantly diminished the BP and restored the impaired BRS. Moreover, it also decreased the TNF-α expression in the cardiac muscle and thoracic aorta of 2K1C when compared to the SO group. Taken together, our data showed that GD flower extract exhibits the cardiovascular protective effect in the 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Wanwisa Himakhun
- Department of Pathology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | | |
Collapse
|
3
|
Siddiqui SA, Khan S, Wani SA. Controlling diabetes with the aid of medicinal herbs: a critical compilation of a decade of research. Crit Rev Food Sci Nutr 2023; 63:12552-12566. [PMID: 35900120 DOI: 10.1080/10408398.2022.2103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diabetes is a metabolic disorder owing to the insulin faulty production or the resistance to the action mechanism where the accumulation of glucose is the major side effect in the body in the case of diabetes. Numerous herbs with the potential of reducing glucose production along with combating the secondary ailments associated with it but >1% out of 250,000 have been pharmacologically validated. Affordability and historical usage of these herbal remedies often result in patients' preference as primary or as adjunctive to conventional therapies. Clinical trials conducted with herbs are necessary for determining the efficacy of the herbs against diabetes. Additional benefits of herbal employment include the treatment of secondary ailments in patients along with diabetes including triglyceride reduction, cholesterol level management, body mass index, and cardiovascular disease control. Any individual extract marketed as antidiabetic formulations requires clinical validation before adoption but with ongoing disease status, quick validation in protocols and testing is needed to understand, isolate and cross-verify the status of the bioactive ingredient in individual herb and the polyherb extract formulations. Standardization, characterization, long-term role and impact on the human body, efficacy status, and toxicity profile need to be addressed fully for each active ingredient before it is advanced for production. Therefore, after trials, the related regulatory bodies will be approached to confirm the safety status and efficacy of the prepared concoction.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Sajad Ahmad Wani
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
4
|
Fan Y, Yang Z, Wang L, Liu Y, Song Y, Liu Y, Wang X, Zhao Z, Mao J. Traditional Chinese medicine for heart failure with preserved ejection fraction: clinical evidence and potential mechanisms. Front Pharmacol 2023; 14:1154167. [PMID: 37234711 PMCID: PMC10206212 DOI: 10.3389/fphar.2023.1154167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure with preserved ejection fraction accounts for a large proportion of heart failure, and it is closely related to a high hospitalization rate and high mortality rate of cardiovascular disease. Although the methods and means of modern medical treatment of HFpEF are becoming increasingly abundant, they still cannot fully meet the clinical needs of HFpEF patients. Traditional Chinese medicine is an important complementary strategy for the treatment of diseases in modern medicine, and it has been widely used in clinical research on HFpEF in recent years. This article reviews the current situation of HFpEF management, the evolution of guidelines, the clinical evidence and the mechanism of TCM in the treatment of HFpEF. The purpose of this study is to explore the application of TCM for HFpEF, to further improve the clinical symptoms and prognosis of patients and to provide a reference for the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Yujian Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulong Song
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqiang Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Chaihongsa N, Maneesai P, Sangartit W, Rattanakanokchai S, Potue P, Khamseekaew J, Bunbupha S, Pakdeechote P. Cardiorenal dysfunction and hypertrophy induced by renal artery occlusion are normalized by galangin treatment in rats. Biomed Pharmacother 2022; 152:113231. [PMID: 35687907 DOI: 10.1016/j.biopha.2022.113231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Galangin is a polyphenolic compound found in Alpinia officinarum and propolis. This study investigated the effect of galangin on blood pressure, the renin angiotensin system (RAS), cardiac and kidney alterations and oxidative stress in two-kidney one-clipped (2K-1C) hypertensive rats. Hypertension was induced in male Sprague Dawley rats (180-220 g), and the rats were given galangin (30 and 60 mg/kg) and losartan (10 mg/kg) for 4 weeks (n = 8/group). Galangin decreased hypertension and cardiac dysfunction and hypertrophy, which was related to the reducing circulation angiotensin converting enzyme (ACE) activity and angiotensin II concentration (p < 0.05). These effects were consistent with the reduced overexpression of angiotensin II receptor type 1 (AT1R), transforming growth factor beta 1 (TGF-β1) and collagen type I (Col I) protein in cardiac tissue (p < 0.05). Additionally, renal artery occlusion, procedure-induced kidney dysfunction and fibrosis were attenuated in the galangin-treated group. Galangin treatment normalized the overexpression of AT1R and NADPH oxidase 4 (Nox-4) protein and normalized the downregulation of nuclear factor-erythroid Factor 2-related Factor 2 (Nrf-2) and haem oxygenase 1 (HO-1) in 2K-1C rats (p < 0.05). Galangin exhibited antioxidative effects, as it reduced systemic and tissue oxidative stress markers and increased catalase activity in 2K-1C rats (p < 0.05). In conclusion, galangin attenuated hypertension, renin-angiotensin system activation, cardiorenal damage and oxidative stress induced by renal artery stenosis in rats. These effects might be associated with modulation of the expression of AT1R, TGF-β1 and Col I protein in the heart as well as AT1R/Nox-4 and Nrf-2/HO-1 protein in renal tissue in hypertensive rats.
Collapse
Affiliation(s)
- Nisita Chaihongsa
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
6
|
Shah M, Mubin S, Hassan SSU, Tagde P, Ullah O, Rahman MH, Al-Harrasi A, Rehman NU, Murad W. Phytochemical Profiling and Bio-Potentiality of Genus Scutellaria: Biomedical Approach. Biomolecules 2022; 12:biom12070936. [PMID: 35883492 PMCID: PMC9313281 DOI: 10.3390/biom12070936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Scutellaria (Lamiaceae) comprises over 360 species. Based on its morphological structure of calyx, also known as Skullcap, it is herbaceous by habit and cosmopolitan by habitat. The species of Scutellaria are widely used in local communities as a natural remedy. The genus contributed over three hundred bioactive compounds mainly represented by flavonoids and phenols, chemical ingredients which serve as potential candidates for the therapy of various biological activities. Thus, the current review is an attempt to highlight the biological significance and its correlation to various isolated bioactive ingredients including flavonoids, terpenoids, phenols, alkaloids, and steroids. However, flavonoids were the dominant group observed. The findings of the Scutellaria reveal that due to its affluent basis of numerous chemical ingredients it has a diverse range of pharmacological potentials, such as antimicrobial, antioxidant, antifeedant, enzyme inhibition, anti-inflammatory, and analgesic significance. Currently, various bioactive ingredients have been investigated for various biological activities from the genus Scutellaria in vitro and in vivo. Furthermore, these data help us to highlight its biomedical application and to isolate the responsible compounds to produce innovative medications as an alternative to synthetic drugs.
Collapse
Affiliation(s)
- Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | - Syed Shams ul Hassan
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Obaid Ullah
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- Correspondence: (A.A.-H.); (N.U.R.); (W.M.)
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- Correspondence: (A.A.-H.); (N.U.R.); (W.M.)
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: (A.A.-H.); (N.U.R.); (W.M.)
| |
Collapse
|
7
|
Iampanichakul M, Poasakate A, Potue P, Rattanakanokchai S, Maneesai P, Prachaney P, Settheetham-Ishida W, Pakdeechote P. Nobiletin resolves left ventricular and renal changes in 2K-1C hypertensive rats. Sci Rep 2022; 12:9289. [PMID: 35662276 PMCID: PMC9166784 DOI: 10.1038/s41598-022-13513-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
This study investigated the effects of nobiletin on cardiorenal changes and the underlying mechanisms involved in two-kidney, one-clip (2K-1C) hypertension. 2K-1C rats were treated with nobiletin (15 or 30 mg/kg/day) or losartan (10 mg/kg/day) for 4 weeks (n = 8/group). Nobiletin (30 mg/kg) reduced high levels of blood pressure and circulating angiotensin II and angiotensin-converting enzyme activity in 2K-1C rats. Left ventricular (LV) dysfunction and remodelling in 2K-1C rats were alleviated in the nobiletin-treated group (P < 0.05). Nobiletin reduced the upregulation of Ang II type I receptor (AT1R)/JAK (Janus kinase)/STAT (signal transducer and activator of transcription) protein expression in cardiac tissue of 2K-1C rats (P < 0.05). The reduction in kidney function, and accumulation of renal fibrosis in 2K-1C rats were alleviated by nobiletin (P < 0.05). Overexpression of AT1R and NADPH oxidase 4 (Nox4) protein in nonclipped kidney tissue was suppressed in the nobiletin-treated group (P < 0.05). The elevations in oxidative stress parameters and the reductions in antioxidant enzymes were attenuated in 2K-1C rats treated with nobiletin (P < 0.05). In summary, nobiletin had renin-angiotensin system inhibitory and antioxidant effects and attenuated LV dysfunction and remodelling via restoration of the AT1R/JAK/STAT pathway. Nobiletin also resolved renal damage that was related to modulation of the AT1R/Nox4 cascade in 2K-1C hypertension.
Collapse
Affiliation(s)
- Metee Iampanichakul
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Anuson Poasakate
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Prapassorn Potue
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Siwayu Rattanakanokchai
- grid.9786.00000 0004 0470 0856Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Putcharawipa Maneesai
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Parichat Prachaney
- grid.9786.00000 0004 0470 0856Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Wannapa Settheetham-Ishida
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Poungrat Pakdeechote
- grid.9786.00000 0004 0470 0856Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
8
|
Xie M, Tao W, Wu F, Wu K, Huang X, Ling G, Zhao C, Lv Q, Wang Q, Zhou X, Chen Y, Yuan Q, Chen Y. Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: A review. Int J Biol Macromol 2021; 185:917-934. [PMID: 34229020 DOI: 10.1016/j.ijbiomac.2021.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
Cardiovascular diseases (CVDs), a leading cause of death in modern society, have become a major public health issue globally. Although numerous approaches have been proposed to reduce morbidity and mortality, the pursuit of pharmaceuticals with more preventive and/or therapeutic value remains a focus of attention. Being a vast treasure trove of natural drug molecules, Traditional Chinese Medicine (TCM) has a long history of clinical use in the prophylaxis and remedy of CVDs. Increasing lines of preclinical evidence have demonstrated the effectiveness of TCM-derived polysaccharides on hindering the progression of CVDs, e.g. hypertension, myocardial infarction. However, to the best of our knowledge, there are few reviews on the application of TCM-derived polysaccharides in combating CVDs. Hence, we provide an overview of primary literature on the anti-hypertensive and cardioprotective activities of herbal polysaccharides. Additionally, we also discuss the current limitations and propose a new hypothesis about how polysaccharides exert cardiovascular effects based on the metabolism of polysaccharides.
Collapse
Affiliation(s)
- Miaotian Xie
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Weili Tao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fengjia Wu
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kunlin Wu
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiujie Huang
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Gensong Ling
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Chuanyi Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qian Lv
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiongjin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xianhuan Zhou
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ying Chen
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qin Yuan
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
9
|
Li Y, Zhang Z, Li S, Yu T, Jia Z. Therapeutic Effects of Traditional Chinese Medicine on Cardiovascular Diseases: the Central Role of Calcium Signaling. Front Pharmacol 2021; 12:682273. [PMID: 34305595 PMCID: PMC8299363 DOI: 10.3389/fphar.2021.682273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium, as a second messenger, plays an important role in the pathogenesis of cardiovascular diseases (CVDs). The malfunction of calcium signaling in endothelial cells and vascular smooth muscle cells promotes hypertension. In cardiomyocytes, calcium overload induces apoptosis, leading to myocardial infarction and arrhythmias. Moreover, the calcium–calcineurin–nuclear factor of activated T cells (NFAT) pathway is essential for expressing the cardiac pro-hypertrophic gene. Heart failure is also characterized by reduced calcium transient amplitude and enhanced sarcoplasmic reticulum (SR) calcium leakage. Traditional Chinese medicine (TCM) has been used to treat CVDs for thousands of years in China. Because of its multicomponent and multitarget characteristics, TCM's unique advantages in CVD treatment are closely related to the modulation of multiple calcium handling proteins and calcium signaling pathways in different types of cells involved in distinct CVDs. Thus, we systematically review the diverse mechanisms of TCM in regulating calcium pathways to treat various types of CVDs, ranging from hypertrophic cardiomyopathy to diabetic heart disease.
Collapse
Affiliation(s)
- Yuxin Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoqi Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Dong Z, Dai H, Feng Z, Liu W, Gao Y, Liu F, Zhang Z, Zhang N, Dong X, Zhao Q, Zhou X, Du J, Liu B. Mechanism of herbal medicine on hypertensive nephropathy (Review). Mol Med Rep 2021; 23:234. [PMID: 33537809 PMCID: PMC7893801 DOI: 10.3892/mmr.2021.11873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertensive nephropathy is the most common complication of hypertension, and is one of the main causes of end-stage renal disease (ESRD) in numerous countries. The basic pathological feature of hypertensive nephropathy is arteriolosclerosis followed by renal parenchymal damage. The etiology of this disease is complex, and its pathogenesis is mainly associated with renal hemodynamic changes and vascular remodeling. Despite the increased knowledge on the pathogenesis of hypertensive nephropathy, the current clinical treatment methods are still not effective in preventing the development of the disease to ESRD. Herbal medicine, which is used to relieve symptoms, can improve hypertensive nephropathy through multiple targets. Since there are few clinical studies on the treatment of hypertensive nephropathy with herbal medicine, this article aims to review the progress on the basic research on the treatment of hypertensive nephropathy with herbal medicine, including regulation of the renin angiotensin system, inhibition of sympathetic excitation, antioxidant stress and anti-inflammatory protection of endothelial cells, and improvement of obesity-associated factors. Herbal medicine with different components plays a synergistic and multi-target role in the treatment of hypertensive nephropathy. The description of the mechanism of herbal medicine in the treatment of hypertensive nephropathy will contribute towards the progress of modern medicine.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, P.R. China
| | - Zhandong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing 101200, P.R. China
| | - Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zihan Zhang
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jieli Du
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
11
|
Hong MH, Jin XJ, Yoon JJ, Lee YJ, Oh HC, Lee HS, Kim HY, Kang DG. Antihypertensive Effects of Gynura divaricata (L.) DC in Rats with Renovascular Hypertension. Nutrients 2020; 12:E3321. [PMID: 33138042 PMCID: PMC7692656 DOI: 10.3390/nu12113321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Gynura divaricata (L.) DC (Compositae) (GD) could be found in various parts of Asia. It has been used as a traditional medicine to treat diabetes, high blood pressure, and other diseases, but its effects have not yet been scientifically confirmed. Therefore, we aimed at determining whether GD could affect renal function regulation, blood pressure, and the renin-angiotensin-aldosterone system (RAAS). Cardio-renal syndrome (CRS) is a disease caused by the interaction between the kidney and the cardiovascular system, where the acute or chronic dysfunction in one organ might induce acute or chronic dysfunction of the other. This study investigated whether GD could improve cardio-renal mutual in CRS type 4 model animals, two-kidney one-clip (2K1C) renal hypertensive rats. The experiments were performed on the following six experimental groups: control rats (CONT); 2K1C rats (negative control); OMT (Olmetec, 10 mg/kg/day)-treated 2K1C rats (positive control); and 2K1C rats treated with GD extracts in three different doses (50, 100, and 200 mg/kg/day) for three weeks by oral intake. Each group consisted of 10 rats. We measured the systolic blood pressure weekly using the tail-cuff method. Urine was also individually collected from the metabolic cage to investigate the effect of GD on the kidney function, monitoring urine volume, electrolyte, osmotic pressure, and creatinine levels from the collected urine. We observed that kidney weight and urine volume, which would both display typically increased values in non-treated 2K1C animals, significantly decreased following the GD treatment (###p < 0.001 vs. 2K1C). Osmolality and electrolytes were measured in the urine to determine how renal excretory function, which is reduced in 2K1C rats, could be affected. We found that the GD treatment improved renal excretory function. Moreover, using periodic acid-Schiff staining, we confirmed that the GD treatment significantly reduced fibrosis, which is typically increased in 2K1C rats. Thus, we confirmed that the GD treatment improved kidney function in 2K1C rats. Meanwhile, we conducted blood pressure and vascular relaxation studies to determine if the GD treatment could improve cardiovascular function in 2K1C rats. The heart weight percentages of the left atrium and ventricle were significantly lower in GD-treated 2K1C rats than in non-treated 2K1C rats. These results showed that GD treatment reduced cardiac hypertrophy in 2K1C rats. Furthermore, the acetylcholine-, sodium nitroprusside-, and atrial natriuretic peptide-mediated reduction of vasodilation in 2K1C rat aortic rings was also ameliorated by GD treatment (GD 200 mg/kg/day; p < 0.01, p < 0.05, and p < 0.05 vs. 2K1C for vasodilation percentage in case of each compound). The mRNA expression in the 2K1C rat heart tissue showed that the GD treatment reduced brain-type natriuretic peptide and troponin T levels (p < 0.001 and p < 0.001 vs. 2K1C). In conclusion, this study showed that GD improved the cardiovascular and renal dysfunction observed in an innovative hypertension model, highlighting the potential of GD as a therapeutic agent for hypertension. These findings indicate that GD shows beneficial effects against high blood pressure by modulating the RAAS in the cardio-renal syndrome. Thus, it should be considered an effective traditional medicine in hypertension treatment.
Collapse
Affiliation(s)
- Mi Hyeon Hong
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Xian Jun Jin
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
| | - Jung Joo Yoon
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Yun Jung Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Hyun Cheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea;
| | - Ho Sub Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Hye Yoom Kim
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Dae Gill Kang
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| |
Collapse
|
12
|
Rahman MM, Ferdous KU, Roy S, Nitul IA, Mamun F, Hossain MH, Subhan N, Alam MA, Haque MA. Polyphenolic compounds of amla prevent oxidative stress and fibrosis in the kidney and heart of 2K1C rats. Food Sci Nutr 2020; 8:3578-3589. [PMID: 32724620 PMCID: PMC7382108 DOI: 10.1002/fsn3.1640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Amla (Emblica officinalis Gaertn.) is a natural source of antioxidants and possesses valuable medicinal properties. However, the protective effect of amla in the kidney of two-kidneys-one-clip (2K1C) rats has not been explained sufficiently. This study was performed to evaluate the renoprotective effect of amla fruit powder (2.5% W/W) supplementation in kidneys of 2K1C rats. 2K1C rats increased the remnant kidney wet weight and also increased plasma creatinine and uric acid concentration compared to the control. Amla supplementation ameliorates elevated creatinine and uric acid concentration in plasma of 2K1C rats. Various oxidative stress indicators such as malondialdehyde, nitric oxide (NO), and advanced protein oxidation product (APOP) were also increased in plasma, heart, and kidney tissues in 2K1C rats that were also significantly brought down to normal level by amla supplementation. Moreover, the inflammatory cells entry and fibrosis in the 2K1C rat's tissues were prevented by amla supplementation. These research results suggest that amla may restore plasma antioxidant capacities and prevents oxidative stress, inflammation, and fibrosis in 2K1C rats. Taken these results as a base, clinical supplementation of dried amla powder in diet or juice to the CKD patients would be beneficial.
Collapse
Affiliation(s)
- Md. Mizanur Rahman
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
| | | | - Shraboni Roy
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
| | - Iffat Ara Nitul
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
| | - Fariha Mamun
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
| | - Md. Hemayet Hossain
- BCSIR LaboratoriesBangladesh Council of Scientific and Industrial ResearchDhakaBangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
| | - Md. Areeful Haque
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
- Drug and Herbal Research Centre, Faculty of PharmacyUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| |
Collapse
|
13
|
Lian FZ, Cheng P, Ruan CS, Ling XX, Wang XY, Pan M, Chen ML, Shen AZ, Gao S. Xin-Ji-Er-Kang ameliorates kidney injury following myocardial infarction by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats. Biomed Pharmacother 2019; 117:109124. [DOI: 10.1016/j.biopha.2019.109124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
|
14
|
Protective effect of Xin-Ji-Er-Kang on cardiovascular remodeling in high-salt induced hypertensive mice: Role ofoxidative stress and endothelial dysfunction. Biomed Pharmacother 2019; 115:108937. [DOI: 10.1016/j.biopha.2019.108937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 11/18/2022] Open
|
15
|
Xin-Ji-Er-Kang Alleviates Myocardial Infarction-Induced Cardiovascular Remodeling in Rats by Inhibiting Endothelial Dysfunction. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4794082. [PMID: 31341899 PMCID: PMC6614977 DOI: 10.1155/2019/4794082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 12/17/2022]
Abstract
The present study was designed to elucidate the beneficial effects of XJEK on myocardial infarction (MI) in rats, especially through the amelioration of endothelial dysfunction (ED). 136 Sprague-Dawley rats were randomized into 13 groups: control group for 0wk (n = 8); sham groups for 2, 4, and 6 weeks (wk); MI groups for 2, 4, and 6 wk; MI+XJEK groups for 2, 4, and 6w k; MI+Fosinopril groups for 2, 4, and 6 wk (n = 8~10). In addition, 8 rats were treated for Evans blue staining and Tetrazolium chloride (TTC) staining to determine the infarct size. Cardiac function, ECG, and cardiac morphological changes were examined. Colorimetric analysis was employed to detect nitric oxide (NO), and enzyme-linked immunosorbent assay (ELISA) was applied to determine N-terminal probrain natriuretic peptide (NT-ProBNP), endothelin-1 (ET-1), angiotensin II (Ang II), asymmetric dimethylarginine (ADMA), tetrahydrobiopterin (BH4), and endothelial NO synthase (eNOS) content. The total eNOS and eNOS dimer/(dimer+monomer) ratios in cardiac tissues were detected by Western blot. We found that administration of XJEK markedly ameliorated cardiovascular remodeling (CR), which was manifested by decreased HW/BW ratio, CSA, and less collagen deposition after MI. XJEK administration also improved cardiac function by significant inhibition of the increased hemodynamic parameters in the early stage and by suppression of the decreased hemodynamic parameters later on. XJEK also continuously suppressed the increased NT-ProBNP content in the serum of MI rats. XJEK improved ED with stimulated eNOS activities, as well as upregulated NO levels, BH4 content, and eNOS dimer/(dimer+monomer) ratio in the cardiac tissues. XJEK downregulated ET-1, Ang II, and ADMA content obviously compared to sham group. In conclusion, XJEK may exert the protective effects on MI rats and could continuously ameliorate ED and reverse CR with the progression of MI over time.
Collapse
|
16
|
Ding L, Cheng P, Wang L, Hu J, Zhang YX, Cai GW, Huang GY, Gao S. The protective effects of polysaccharide extract from Xin-Ji-Er-Kang formula on Ang II-induced HUVECs injury, L-NAME-induced hypertension and cardiovascular remodeling in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:127. [PMID: 31196042 PMCID: PMC6567637 DOI: 10.1186/s12906-019-2539-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/03/2019] [Indexed: 11/12/2022]
Abstract
Background Xin-Ji-Er-Kang (XJEK) is a Chinese herbal formula, which has been reported to exert effective protection against cardiovascular diseases, including hypertension and myocarditis. Methods Cultured human umbilical vascular endothelial cells (HUVECs) were treated with angiotensin II (Ang II) and different concentrations of aqueous layer extracts (AqE). Subsequently nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) expression levels were detected. In addition, fifty Kunming mice were randomized into control, Nω-nitro-L-arginine methyl ester (L-NAME), L-NAME+AqE, L-NAME+XJEK and L-NAME+fosinopril treatment groups. Following 8 weeks of treatment, the cardiac hemodynamic index was measured, relaxation of the aorta was examined and pathological changes were observed. Colorimetric analysis and enzyme linked immunosorbent assay (ELISA) were applied to determine the relevant indicators in plasma and cardiac tissues. Results The in vitro study results demonstrated that AqE could preserve endothelial function (NO, 21.05 ± 2.03 vs. 8.64 ± 0.59; eNOS, 1.08 ± 0.17 vs.0.73 ± 0.06). In addition, the in vivo results demonstrated that compared with the control group, treatment with AqE could enhance a high hemodynamic state (left ventricular systolic pressure, 116.76 ± 9.96 vs.114.5 ± 15.16), improve endothelial function (NO, 7.98 ± 9.64 vs. 1.66 ± 3.11; eNOS, 19.78 ± 3.18 vs.19.38 ± 3.85), suppress oxidative stress (OS) (superoxide dismutase, 178.17 ± 13.78 vs. 159.38 ± 18.86; malondialdehyde, 0.77 ± 0.13 vs.1.25 ± 0.36) and reverse cardiovascular remodeling. Conclusion Polysaccharide from XJEK exerts protective effects against Ang II-induced injury in HUVECs and L-NAME-induced hypertension in mice and the underlying mechanism may be attributed to improving endothelial dysfunction, OS and the inflammation status in mice.
Collapse
|
17
|
Alteration of the Gut Microbiota and Its Effect on AMPK/NADPH Oxidase Signaling Pathway in 2K1C Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8250619. [PMID: 31240226 PMCID: PMC6556358 DOI: 10.1155/2019/8250619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023]
Abstract
Background The purpose of this study was to evaluate the alteration of the gut microbiota and its effect on adenosine monophosphate-activated protein kinase (AMPK)/nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) signaling pathway in two-kidney one-clip (2K1C) rats. Methods The 2K1C rat models were established. The rats were randomly divided into the following 2 groups: 2K1C group and sham group. Alterations of the gut microbiota were analyzed based on the high throughput sequencing method. Plasma concentrations of short chain fatty acids (SCFAs) were measured by chromatography. The protein expression of phosphorylated AMPK and acetyl-CoA carboxylase (ACC) was determined by western blotting. NADPH oxidase activity was measured by a luminometer. Results Microbial community analyses revealed that the structure and composition of the gut microbiota were significantly disrupted in 2K1C rats when compared to sham rats. This disruption was associated with the drastic increase in relative abundance of the genera Prevotella and the decrease in SCFA-producing bacterial population. We further confirm that SCFAs produced by the gut microbiota influence NADPH oxidase activity through AMPK. Conclusions Our data implicated the important role of gut microbiota in the regulation of AMPK/NADPH oxidase signaling pathway.
Collapse
|
18
|
Ye F, Wu Y, Chen Y, Xiao D, Shi L. Impact of moderate- and high-intensity exercise on the endothelial ultrastructure and function in mesenteric arteries from hypertensive rats. Life Sci 2019; 222:36-45. [PMID: 30825543 DOI: 10.1016/j.lfs.2019.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress (OS) influences vascular function and structure in spontaneously hypertensive rats (SHRs). It is also responsible for the decreased nitric oxide (NO) bioavailability that influences endothelial vasodilation. The effects of high-intensity exercise on endothelial function and ultrastructure in hypertension remain unknown. Thus, this study investigated the effects of moderate- and high-intensity exercise on hypertension-associated endothelial dysfunction and ultrastructural remodeling. Moderate-intensity (SHR-M) and high-intensity (SHRH) aerobic exercise training groups were compared in age-matched sedentary SHRs (SHRC) and normotensive Wistar-Kyoto rats (WKY-C). The results showed that the endothelial ultrastructure was impaired in the SHR-H and SHR-C groups. Glutathione peroxidase levels were significantly increased in the SHR-M group compared to the SHR-C group. MDA content was higher in the SHR-H group than in the SHR-C group, but the levels of antioxidant enzymes did not increase accordingly. Apocynin scavenging reactive oxygen species (ROS) ameliorated endothelium-dependent vasodilator function in the SHR-H group. However, the SHR-M and WKY-C groups abolished the increased vasodilation induced by apocynin. L-NAME, a NO synthase inhibitor, was applied to isolated mesenteric arteries (MAs) to evaluate NO contribution. Moderate-intensity exercise reversed the decreased NO contribution to MAs in hypertension, and high-intensity exercise aggravated this change. These data suggest that moderate-intensity exercise ameliorated adverse remodeling of the endothelial ultrastructure and function in hypertension by decreasing oxidative stress and increasing NO contribution. However, high-intensity exercise exacerbated all of these changes by increasing OS and ROS contribution, and decreasing NO contribution.
Collapse
Affiliation(s)
- Fang Ye
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
19
|
Protective effect of Xin-Ji-Er-Kang on cardiovascular remodeling in high salt-induced hypertensive mice. Exp Ther Med 2018; 17:1551-1562. [PMID: 30783421 PMCID: PMC6364186 DOI: 10.3892/etm.2018.7105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the effects of Xin-Ji-Er-Kang (XJEK) on high salt-induced hypertensive mice. Mice with high-salt diet-induced hypertension were divided into four groups: Control (standard diet alone for 8 weeks), model (diet containing 8% NaCl for 8 weeks and intragastric administration of distilled water for the last 4 weeks), XJEK + high-salt-treated (diet containing 8% NaCl for 8 weeks and intragastric administration of XJEK for the last 4 weeks) and irbesartan + high-salt-treated (diet containing 8% NaCl for 8 weeks with intragastric administration of irbesartan for the last 4 weeks). The hemodynamic index and cardiac pathological changes in the hypertensive mice were then examined. An aortic ring apparatus was used to detect acetylcholine-dependent endothelium relaxation function. Colorimetric analysis was applied to determine serum nitric oxide (NO), superoxide dismutase activity and malondialdehyde content; ELISA was employed to measure brain natriuretic peptide, serum angiotensin II (Ang II), endothelin-1 content and aldosterone; and immunohistochemistry was used to detect the expression of endothelial nitric oxide synthase (eNOS), interleukin (IL)-1β, IL-10 and tumor necrosis factor (TNF)-α in cardiac tissues. XJEK improved the heart systolic and diastolic function, ameliorated hemodynamic parameters and cardiovascular remodeling indices, blunted the cardiac pathological changes and improved endothelial dysfunction (ED) via boosting eNOS activity, promoting NO bioavailability and decreasing serum Ang II content. Furthermore, treatment with XJEK inhibited the increase of IL-1β and TNF-α expression and the decrease of IL-10 expression in cardiac tissues, and ameliorated oxidative stress status. Therefore, XJEK exerted protective effects against high salt-induced hypertension and cardiovascular remodeling in mice via improving ED, restoring pro- and anti-inflammatory factor balance and decreasing oxidative stress.
Collapse
|
20
|
Zhu FQ, Hu J, Lv FH, Cheng P, Gao S. Effects of oligomeric grape seed proanthocyanidins on L-NAME-induced hypertension in pregnant mice: Role of oxidative stress and endothelial dysfunction. Phytother Res 2018; 32:1836-1847. [PMID: 29851183 DOI: 10.1002/ptr.6119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/26/2023]
Abstract
The aim of this study was to investigate the effects of Grape Seed Proanthocyanidins (GSP) on Nω-Nitro-L-arginine methyl ester-induced hypertension in pregnant mice. Fifty Kunming mice were randomized into control, control + GSP, model, and model + GSP. Three weeks later, the artery systolic blood pressure was examined and the related pathological changes were detected. Aorta relaxation function was assessed by aorta ring apparatus. Blood urea nitrogen and serum creatinine were measured by an automatic biochemistry analyzer. Colorimetric analysis, enzyme-linked immunosorbent assay, immunofluorescence, and western blot were applied to detect related indicator in serum, cardiac, and kidney tissues. The results showed that GSP treatment for 3 weeks could improve cardiovascular and kidney remodeling indexes and decrease blood urea nitrogen and serum creatinine content in serum, as well as could ameliorate oxidative stress status and endothelial dysfunction. Therefore, it is for the first time found that GSP exerts protective effect against Nω-Nitro-L-arginine methyl ester-induced hypertension in pregnant mice, which provided a theoretical basis for potential application in the clinic.
Collapse
Affiliation(s)
- Feng-Qin Zhu
- Dept of Obstetrics and Gynecology, the Second Peoples Hospital of Hefei, Affiliated Hefei Hospital of Anhui Medical University, Hefei, 230011, China
| | - Juan Hu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Fa-Hui Lv
- Dept of Obstetrics and Gynecology, the Second Peoples Hospital of Hefei, Affiliated Hefei Hospital of Anhui Medical University, Hefei, 230011, China
| | - Pan Cheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
21
|
Hu J, Cheng P, Huang GY, Cai GW, Lian FZ, Wang XY, Gao S. Effects of Xin-Ji-Er-Kang on heart failure induced by myocardial infarction: Role of inflammation, oxidative stress and endothelial dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:245-257. [PMID: 29655692 DOI: 10.1016/j.phymed.2018.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Xin-Ji-Er-Kang (XJEK) is a Chinese herbal formula, which has been reported to exert effective protection on cardiovascular diseases like hypertension and myocarditis. PURPOSE To elucidate the protective effects of XJEK on heart failure (HF) induced by myocardial infarction (MI) through the amelioration of inflammation, oxidative stress (OS) and endothelial dysfunction(ED). MATERIALS AND METHODS Fifty-seven male KM mice were randomized into the following six groups (n = 9-10 for each): control group, model group, MI+XJEK low dose group(XJEKL) group, MI+XJEK middle dose group(XJEKM), MI+XJEK high dose group(XJEKH), and MI+fosinopril group (positive control group). After treatment for four weeks, electrocardiography (ECG) and haemodynamics were recorded. Serum and tissues were collected for further analysis. Endothelium-dependent relaxation induced by acetylcholine was assessed in isolated thoracic aorta ring experiment. Hematoxylin and eosin (HE) and Van Gieson (VG) staining were used to detect the pathological changes of heart and thoracic aorta. Colorimetric analysis was employed to determine serum nitric oxide level (NO), malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity. ELISA was used to detect serum B-type natriuretic peptide (BNP) and serum inflammatory cytokines, as well as endothelial NO synthetase (eNOS), angiotensinII (Ang II) and endothelin-1(ET-1) concentration in both serum and cardiac tissues. Immunohistochemistry and Western blotting (WB) were employed to detect eNOS and inflammatory cytokine expressions in cardiac tissues. RESULTS XJEK administration markedly ameliorated cardiac dysfunction and abnormal ECG manifested by decreased weight/body weight (HW/BW) ratio, BNP and remedied hypertrophy of cardiomyocytes and deposition of collagen, which might be in part attributed to the increased SOD and decreased MDA in serum. Furthermore, XJEK administration improved ED with boosted eNOS activities in serum and cardiac tissues, as well as up-regulated NO levels in serum, down-regulated Ang II and ET-1 content in serum and cardiac tissues. Lastly, protein expression of pro-inflammation cytokines significantly decreased, and anti-inflammatory cytokine was significantly enhanced in serum and cardiac tissues compared to model group. CONCLUSION XJEK may exert beneficial effects on HF induced by MI in mice, and the underlying mechanism may be attributable to the amelioration of ED, anti-OS and anti-inflammation effects.
Collapse
Affiliation(s)
- Juan Hu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Pan Cheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guang-Yao Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guo-Wei Cai
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Feng-Zhen Lian
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yun Wang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
22
|
Zhao J, Yue Y, Xie Y, Liu L, Cao F, Gao S, Wang Y. Radix Cyathula officinalis Kuan inhibits arterial remodeling in spontaneously hypertensive rats. Exp Ther Med 2017; 14:5395-5400. [PMID: 29285068 PMCID: PMC5740529 DOI: 10.3892/etm.2017.5218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
There is still no resolution for arterial remodeling related with hypertension, though hypertension treatment has access to a number of pharmacological agents. The present study aimed at investigating the prevention of Cyathula officinalis Kuan's roots (C. officinalis Kuan) against in arterial remodeling in vitro. Spontaneously hypertensive rats (SHRs) were intragastrically administered 3, 6 or 12 g/kg C. officinalis Kuan or normal saline or enalapril (2.5 mg/kg) once a day for 8 weeks. Hematoxylin and eosin were used to measure blood pressure and stain carotid and arota. The serum concentration of nitric oxide (NO) was measured by NO assay kit (nitrate reductase method). The endothelin-1 transcriptional level, endothelial NO synthase of endothelium as well as angiotensin II receptor type 1 (AT1R) of aorta and carotid was tested by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and the protein level in aorta was also measured by western blotting. The blood pressure in SHR+enalapril, SHR+3 g/kg, SHR+6 g/kg and SHR+12 g/kg C. officinalis Kuan groups was significantly decreased at 4, 6 and 8 weeks post-treatment compared with SHR group. Different doses of C. officinalis Kuan and enalapril treatment showed aortic wall thinness and strengthened NO serum level, but made no impact on the transcriptional level of AT1R in aorta or endothelial NO synthase in carotid. It is suggested by such results that therapy by C. officinalis Kuan is able to fight against arterial remodeling, thus may provide a new means to treat arterial remodeling caused by hypertension.
Collapse
Affiliation(s)
- Jiajing Zhao
- Department of Traditional Chinese Medicine, Shanghai Putuo People's Hospital, Shanghai 200060, P.R. China
| | - Yaohan Yue
- Department of Traditional Chinese Medicine, Shanghai Putuo People's Hospital, Shanghai 200060, P.R. China
| | - Yun Xie
- Department of Traditional Chinese Medicine, Shanghai Putuo People's Hospital, Shanghai 200060, P.R. China
| | - Liwen Liu
- Department of Traditional Chinese Medicine, Shanghai Putuo People's Hospital, Shanghai 200060, P.R. China
| | - Fei Cao
- Department of Traditional Chinese Medicine, Shanghai Putuo People's Hospital, Shanghai 200060, P.R. China
| | - Shurong Gao
- Department of Traditional Chinese Medicine, Shanghai Putuo People's Hospital, Shanghai 200060, P.R. China
| | - Yingjue Wang
- Department of Traditional Chinese Medicine, Shanghai Putuo People's Hospital, Shanghai 200060, P.R. China
| |
Collapse
|
23
|
Hu J, Zhang YX, Wang L, Ding L, Huang GY, Cai GW, Gao S. Protective effects of Xinji'erkang on myocardial infarction induced cardiac injury in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:338. [PMID: 28651598 PMCID: PMC5485507 DOI: 10.1186/s12906-017-1846-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is a major risk factor responsible for morbidity and mortality. Xinji'erkang (XJEK) has been clinically used as an effective medication in the treatment of coronary heart disease and myocarditis. The purpose of this study was to investigate the cardioprotective effect of Xinji'erkang on MI mice. METHODS Forty male mice were randomly assigned into four groups as follows (n = 10): sham, model, MI with administration of XJEK and fosinopril for four weeks. At the end of studies, hemodynamic parameters and electrocardiography (ECG) were recorded. Heart and body mass were measured and heart weight/body weight (HW/BW) ratio was calculated as index of hypertrophy. The hypertrophy of heart and aorta was examined using the hematoxylin and eosin (HE) staining, and the collagen deposition was evaluated using Van Gieson (VG) staining. Serum nitric oxide level (NO), superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration were assayed by colorimetric analysis. The expressions of endothelial NO synthetase (eNOS) expression in serum and cardiac tissues were determined using ELISA assay and immunohistochemistry. Angiotensin II (Ang II) in serum and cardiac tissues was measured using ELISA assay. Besides, tumor necrosis factor-α (TNF-α), interleukin1β (IL-1β) and interleukin10 (IL-10) were observed in cardiac tissues with ELISA assay as well. RESULTS The administration of XJEK significantly improved cardiac dysfunction and abnormal ECG with reduced HW/BW ratio and ameliorated cardiomyocyte hypertrophy and collagen deposition compared to MI, which was partly due to the decreased SOD and increased MDA in serum. Moreover, XJEK treatment also improved endothelial dysfunction (ED) with not only enhanced eNOS activities in serum and cardiac tissues and elevated NO levels in serum, but also decreased Ang II content in serum and cardiac tissues. Finally, protein expressions of pro-inflammation cytokines, TNF-α and IL-1β in the cardiac tissues with XJEK treatment were significantly decreased compared to model. On the contrary, IL-10, an anti-inflammatory cytokine concentrated in cardiac tissues was significantly enhanced compared to model. CONCLUSION Xinji'erkang exerts cardioprotective effect on myocardial infarction in mice, which may be due to the improvement of endothelial dysfunction and the reduction of oxidative stress and inflammation response.
Collapse
Affiliation(s)
- Juan Hu
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Yong-xue Zhang
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Li Wang
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Ling Ding
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Guang-yao Huang
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Guo-wei Cai
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
24
|
2K1C-activated Angiotensin II (Ang II) exacerbates vascular damage in a rat model of arthritis through the ATR/ERK1/2 signaling pathway. Inflamm Res 2017; 66:881-890. [DOI: 10.1007/s00011-017-1069-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 11/27/2022] Open
|
25
|
Huang LL, Pan C, Wang L, Ding L, Guo K, Wang HZ, Xu AM, Gao S. Protective effects of grape seed proanthocyanidins on cardiovascular remodeling in DOCA-salt hypertension rats. J Nutr Biochem 2015; 26:841-9. [PMID: 25937175 DOI: 10.1016/j.jnutbio.2015.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/25/2015] [Accepted: 03/06/2015] [Indexed: 11/26/2022]
Abstract
Cardiovascular remodeling, as a hallmark of hypertension-induced pathophysiology, causes substantial cardiovascular morbidity and mortality. There is increasing evidence that has demonstrated a broad spectrum of pharmacological and therapeutic benefits of grape seed proanthocyanidins (GSP) against oxidative stress and cardiovascular diseases. In this study, 180- to 200-g SD rats treated with DOCA (120 mg/week sc with 1% NaCl and 0.2% KCl in drinking water) and GSP (150, 240, 384 mg/kg) or amlodipine (ALM) (5 mg/kg) for 4 weeks were recruited. The protective effects of GSP on blood pressure and cardiovascular remodeling in rats with DOCA-salt-induced hypertension were investigated. Our results indicated that DOCA-salt could induce hypertension, cardiovascular remodeling and dysfunction, oxidative stress and the release of endothelin-1 (ET-1) and could increase JNK1/2 and p38MAPK phosphorylation. GSP or ALM treatments significantly improved hypertension, cardiovascular remodeling and dysfunction and oxidative stress, restrained the release of ET-1 and down-regulated the JNK1/2 and p38MAPK phosphorylation. These findings demonstrate that GSP has protective effects against increase of blood pressure induced by DOCA-salt hypertension and cardiovascular remodeling by inhibiting the reactive oxygen species/mitogen-activated protein kinase pathway via restraining the release of ET-1.
Collapse
Affiliation(s)
- Ling-ling Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China; Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chen Pan
- Department of Clinical Pharmacy, Lishui People's Hospital, Zhejiang 323000, China
| | - Li Wang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Ling Ding
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Kun Guo
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Hong-zhi Wang
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - A-Man Xu
- Department of General Surgery, the Fourth Affiliated Hospital, Anhui Medical University, Hefei 230032, China.
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
26
|
β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:726012. [PMID: 25945342 PMCID: PMC4405227 DOI: 10.1155/2015/726012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/13/2023]
Abstract
The mechanism of hypertension-induced renal fibrosis is not well understood, although it is established that high levels of angiotensin II contribute to the effect. Since β-catenin signal transduction participates in fibrotic processes, we evaluated the contribution of β-catenin-dependent signaling pathway in hypertension-induced renal fibrosis. Two-kidney one-clip (2K1C) hypertensive rats were treated with lisinopril (10 mg/kg/day for four weeks) or with pyrvinium pamoate (Wnt signaling inhibitor, single dose of 60 ug/kg, every 3 days for 2 weeks). The treatment with lisinopril reduced the systolic blood pressure from 220 ± 4 in 2K1C rats to 112 ± 5 mmHg (P < 0.05), whereas the reduction in blood pressure with pyrvinium pamoate was not significant (212 ± 6 in 2K1C rats to 170 ± 3 mmHg, P > 0.05). The levels of collagen types I and III, osteopontin, and fibronectin decreased in the unclipped kidney in both treatments compared with 2K1C rats. The expressions of β-catenin, p-Ser9-GSK-3beta, and the β-catenin target genes cyclin D1, c-myc, and bcl-2 significantly decreased in unclipped kidney in both treatments (P < 0.05). In this study we provided evidence that β-catenin-dependent signaling pathway participates in the renal fibrosis induced in 2K1C rats.
Collapse
|
27
|
Santuzzi CH, Tiradentes RV, Mengal V, Claudio ERG, Mauad H, Gouvea SA, Abreu GR. Combined aliskiren and L-arginine treatment has antihypertensive effects and prevents vascular endothelial dysfunction in a model of renovascular hypertension. ACTA ACUST UNITED AC 2014; 48:65-76. [PMID: 25493385 PMCID: PMC4288495 DOI: 10.1590/1414-431x20144191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/09/2014] [Indexed: 02/07/2023]
Abstract
Angiotensin II is a key player in the pathogenesis of renovascular hypertension, a
condition associated with endothelial dysfunction. We investigated aliskiren (ALSK)
and L-arginine treatment both alone and in combination on blood pressure (BP), and
vascular reactivity in aortic rings. Hypertension was induced in 40 male Wistar rats
by clipping the left renal artery. Animals were divided into Sham, 2-kidney, 1-clip
(2K1C) hypertension, 2K1C+ALSK (ALSK), 2K1C+L-arginine (L-arg), and
2K1C+ALSK+L-arginine (ALSK+L-arg) treatment groups. For 4 weeks, BP was monitored and
endothelium-dependent and independent vasoconstriction and relaxation were assessed
in aortic rings. ALSK+L-arg reduced BP and the contractile response to phenylephrine
and improved acetylcholine relaxation. Endothelium removal and incubation with
N-nitro-L-arginine methyl ester (L-NAME) increased the response to phenylephrine in
all groups, but the effect was greater in the ALSK+L-arg group. Losartan reduced the
contractile response in all groups, apocynin reduced the contractile response in the
2K1C, ALSK and ALSK+L-arg groups, and incubation with superoxide dismutase reduced
the phenylephrine response in the 2K1C and ALSK groups. eNOS expression increased in
the 2K1C and L-arg groups, and iNOS was increased significantly only in the 2K1C
group compared with other groups. AT1 expression increased in the 2K1C
compared with the Sham, ALSK and ALSK+L-arg groups, AT2 expression
increased in the ALSK+L-arg group compared with the Sham and L-arg groups, and
gp91phox decreased in the ALSK+L-arg group compared with the 2K1C and ALSK groups. In
conclusion, combined ALSK+L-arg was effective in reducing BP and preventing
endothelial dysfunction in aortic rings of 2K1C hypertensive rats. The responsible
mechanisms appear to be related to the modulation of the local renin-angiotensin
system, which is associated with a reduction in endothelial oxidative stress.
Collapse
Affiliation(s)
- C H Santuzzi
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - R V Tiradentes
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - V Mengal
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - E R G Claudio
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - H Mauad
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - S A Gouvea
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - G R Abreu
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| |
Collapse
|
28
|
Huang LL, Pan C, Yu TT, Guo K, Wang XH, Zhang JY, Wang HZ, Gao S. Benefical therapeutic effect of Chinese Herbal Xinji'erkang formula on hypertension-induced renal injury in the 2-kidney-1-clip hypertensive rats. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2014; 11:16-27. [PMID: 25395699 PMCID: PMC4202512 DOI: 10.4314/ajtcam.v11i5.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Increase in evidence shows that the role of kidney injury in hypertension is important. Xinji'erkang (XJEK), a Chinese herbal formula, has been identified as an effective preparation in the treatment of coronary heart disease and myocarditis. We have previously demonstrated that XJEK attenuate oxidative stress and hypertension target organ damage. The aim of this study was to assess the renal protective function of XJEK. MATERIALS AND METHODS Two Kidney One Clip (2K1C) model was adopted to induce hypertension in rats. We submitted male Sprague Dawley (150-180) g rats to either renal artery clipping or sham operation. Renal hypertension was established after four weeks of surgery. Rats were randomized divided into the four groups: sham-operated group (Sh-Op) (n=10), two-kidney, one-clip hypertension group (2K1C) (n=10), Xinji'erkang treatment group (XJEK) (n=10) and Fosinopril (n=10) treatment group. Drugs were administered orally daily for four weeks. Systolic pressures were measured every week using the tail-cuff apparatus. 24h before death, urine samples were collected for detect of urinary proteins. The kidney weight (KW) index was expressed as kidney weight/body weight (KW/BW). The histological changes were investigated by hematoxylin and eosin and Van Gieson staining. Immunohistochemical assay was employed to observe the intra-renal transforming growth factor-β1 (TGF-β1) protein expression. Serum creatinine (SCR) and blood urea nitrogen (BUN) were assayed by automatic biochemical analyzer. ELISA kit was used to assay Angiotensin II (Ang II) and TGF-β1 content in serum. RESULTS Administration of XJEK markedly alleviated the rise in blood pressure and declined LKW/BW ratio. Histo-pathological injuries including hypertrophic glomerular, glomerular sclerosis, glomerular and interstitial fibrosis were attenuated. XJEK also decreased SCR, BUN, urinary proteins in 24h urine, serum Ang II and TGF-β1 concentrations and the intra-renal TGF-β1 protein expression. CONCLUSION XJEK therapy in the 2K1C hypertensive rats affects the rise in blood pressure and ameliorates the severity of kidney injury. The protective effect is most likely due to the ability of XJEK to affect the Renin-Angiotensin-Aldosterone System (RAAS) and the TGF-β systems.
Collapse
Affiliation(s)
- Ling-Ling Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, China
| | - Chen Pan
- Department of Clinical of Pharmacy, Lishui People's Hospital, Zhe Jiang 323000, China
| | - Ting-ting Yu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Kun Guo
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Xing-hui Wang
- Department of Pharmacy, the Second People's Hospital of Hefei, Hefei 230011, China
| | - Jun-Yan Zhang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Hong-zhi Wang
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
29
|
Li X, Xing W, Wang Y, Mi C, Zhang Z, Ma H, Zhang H, Gao F. Upregulation of caveolin-1 contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in type 1 diabetic rats. Life Sci 2014; 113:31-9. [PMID: 25086377 DOI: 10.1016/j.lfs.2014.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 01/03/2023]
Abstract
AIMS Endothelial dysfunction and hypertension is more common in individuals with diabetes than in the general population. This study was aimed to investigate the underlying mechanisms responsible for endothelial dysfunction of type 1 diabetic rats fed with high-salt diet. MAIN METHODS Type 1 diabetes (DM) was induced by intraperitoneal injection of streptozotocin (70 mg·kg(-1)). Normal or diabetic rats were randomly fed high-salt food (HS, 8% NaCl) or standard food (CON) for 6 weeks. KEY FINDINGS Both HS (143±10 mmHg) and DM+HS (169±11 mmHg) groups displayed significantly higher systolic blood pressure than those in the CON group (112±12 mmHg, P<0.01). DM+HS rats exhibited more pronounced impairment of vasorelaxation to acetylcholine and insulin compared with either DM or HS. Akt/endothelial nitric oxide synthase (eNOS) phosphorylation levels and nitric oxide (NO) concentration in DM+HS were significantly lower than in DM. The levels of caveolin-1 (cav-1) in DM+HS were significantly higher than that in DM and HS. Co-immunoprecipitation results showed increased interaction between cav-1 and eNOS in the DM+HS group. In the presence of cav-1 small interfering RNA (siRNA), eNOS phosphorylations in human umbilical vein endothelial cells (HUVEC) were significantly increased compared with control siRNA. Cav-1 was slightly but not significantly lower in HUVEC cultured with high glucose and high-salt buffer solution and pretreated with wortmannin or l-nitro-arginine methyl ester. SIGNIFICANCE Impaired endothelial Akt activation and increased cav-1 expression and resultant decreased eNOS activation contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in DM rats.
Collapse
Affiliation(s)
- Xu Li
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China; Department of Physiology, Renji College, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Wang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Chunjuan Mi
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhengrui Zhang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Heng Ma
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
30
|
Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc Pathol 2014; 23:298-305. [PMID: 25087597 DOI: 10.1016/j.carpath.2014.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION It is well known that exercise alleviates aortic remodeling and preserves endothelial function in spontaneously hypertensive rats (SHRs). However, the underlying molecular mechanism remains unclear. This study aimed to investigate the role of renin-angiotensin system (RAS) components in exercise-induced attenuation of aortic remodeling and improvement of endothelial function in an animal model of human essential hypertension. METHODS The 10-week-old male SHR and age-matched normotensive Wistar-Kyoto rats were given moderate-intensity exercise for 12weeks (four groups, n=80-86 in each group). RESULTS In this work, exercise training reduced blood pressure and effectively attenuated aortic remodeling, marked by a reduction in aortic weight/length, wall thickness, and aortic levels of elastin and hydroxyproline, and improved endothelium-mediated vascular relaxations of aortas in response to acetylcholine. Exercise training in SHR reduced angiotensin II (AngII) levels and enhanced Ang-(1-7) levels in aortas. Exercise training in SHR suppressed aortic angiotensin-converting enzyme (ACE) and AngII type 1 receptor (AT1R) messenger RNA (mRNA) levels and protein expression and up-regulated ACE2, AngII type 2 receptor, and Mas mRNA levels and protein expression. In addition, exercise training in SHR increased levels of microRNA-27a (targeting ACE) and microRNA-155 (targeting AT1R) and decreased levels of microRNA-143 (targeting ACE2) in the aortas. CONCLUSION Chronic aerobic exercise training improved RAS balance in the aortas, which may in part explain the protective effect of exercise on aortic function and structure. SUMMARY Chronic aerobic exercise training improved RAS balance in the aortas, which may explain the protective effect of exercise on aortic function and structure, at least in part.
Collapse
|