1
|
Ben Selma W, Ferjeni S, Farouk A, Marzouk M, Boukadida J. Antimicrobial activity of Cinnamomum zeylanicum essential oil against colistin-resistant gram-negative bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:169-181. [PMID: 38695857 DOI: 10.1080/09603123.2024.2348094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 01/02/2025]
Abstract
In the current study, we evaluated the antimicrobial activity of Cinnamomum zeylanicum Blume essential oil (Cinn-EO) against a group of thirteen clinical colistin-resistant Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The GCMS analysis showed that cinnamaldehyde was the major compound (94.29%) of the Cinn-EO. The diameter of the inhibition zone by Cinn-EO varied from 24 to 37 mm. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values ranged between 0.625 and 5 mg/mL. Interestingly, the MBC/MIC was equal to 1 for most tested bacterial strains, indicating an advanced bactericidal effect of Cinn-EO against colistin-resistant Gram-negative bacteria. The absorption, distribution, metabolism, elimination, and toxicity (ADMET) prediction showed good pharmacokinetic properties of the tested cinnamaldehyde. The results suggest that cinnamaldehyde could be a potential alternative to treat infection caused by colistin-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Walid Ben Selma
- Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Sana Ferjeni
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amr Farouk
- Flavor and Aroma Chemistry Department, National Research Center, Cairo, Egypt
| | - Manel Marzouk
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Jalel Boukadida
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| |
Collapse
|
2
|
Gonawala L, Madhumaali M, Ismail H, Jayasooriya N, Wijekoon N, Rajapakshe S, Erangika H, Amaratunga D, Gunaratna R, W M Steinbusch H, Mohan C, Chiang YC, Paranagama P, de Silva KRD. Phytochemistry and nutraceutical potential of Ceylon Cinnamomum species native to Sri Lanka. Nat Prod Res 2024:1-12. [PMID: 39709632 DOI: 10.1080/14786419.2024.2438269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 12/24/2024]
Abstract
Cinnamon is a spice that is renowned for its several medicinal and cosmetic benefits. The research study examined the essential oil content, antioxidant, and anti-inflammatory properties of seven Cinnamomum species native to Sri Lanka. Cinnamon bark and leaf samples were used to extract essential oils, methanol, and hexane. Essential oil extracts underwent GC-MS analysis, while all extracts were subjected to antioxidant and anti-inflammatory assays. The bark of Sri Vijaya and C. rivulorum, along with the leaves of Sri Vijaya and C. sinharajaense, exhibited remarkable antioxidant properties. The cinnamaldehyde percentage of Sri Gemunu was the highest at 61.63%, while the bark of C. sinharajaense contained 59.19%. The leaves of Sri Gemunu had the highest eugenol content, determining at 91.45%. C. zeylanicum and its strains have been found to exhibit the highest antioxidant and anti-inflammatory properties. C. sinharajaense and C. rivulorum are two wild cinnamon species that show potential for potential medicinal uses. Thus, these species have great potential for further research on their biological properties and their possible applications in various fields, such as pharmaceuticals.
Collapse
Affiliation(s)
- Lakmal Gonawala
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Maheehsa Madhumaali
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Hanouf Ismail
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Nishara Jayasooriya
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Nalaka Wijekoon
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shanuk Rajapakshe
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Harshanie Erangika
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | | | - Rajitha Gunaratna
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Sri Lanka
| | - Harry W M Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, TX, USA
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Taiwan
- Taiwan and Sri Lanka Environmental Change Sciences and Technology Innovation Center (TS/ECSTIC), Department of Zoology, Faculty of applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | | | - K Ranil D de Silva
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
- Taiwan and Sri Lanka Environmental Change Sciences and Technology Innovation Center (TS/ECSTIC), Department of Zoology, Faculty of applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| |
Collapse
|
3
|
Portillo-Rentería G, Del Toro-Equihua M, Sánchez-Meza K, Ríos-Silva M, Alcaraz Siqueiros JC, Uribarren J, Cárdenas Y. Cinnamon ( Cinnamomum zeylanicum) Aqueous Extract Regulates the Parameters of Metabolic Syndrome in a Model of Wistar Rats with a Diet High in Fat and Fructose. J Med Food 2024. [PMID: 39692609 DOI: 10.1089/jmf.2024.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
To identify the effect of Cinnamomum zeylanicum (CZ) aqueous extract on glucose, triglycerides, high-density lipoprotein (HDL) cholesterol, and blood pressure in male Wistar rats, fed with a high-fat and high-fructose diet (HFFD). Twenty-four male Wistar rats were randomized into four groups: Healthy (fed with standard diet), Healthy + CZ (fed with standard diet + CZ extract), HFFD (fed with HFFD), HFFD+CZ, (fed with HFFD + CZ extract). The CZ aqueous extract was administered 100 mg/kg/day by oral gavage to each rat for 8 weeks. Blood samples, blood pressure, and weight were taken at the beginning and end of the experiment. The rats were euthanized after the experiment, according to the Mexican Official Standard NOM-062-ZOOO-1999. The administration of CZ aqueous extract significantly decreased glucose levels (F[1,18]=46.458, P < .001). The interaction between the type of diet and the extract had an effect on triglycerides (F[1,18]=14.93, P = .001), and systolic (F[1,18]=127, P < .001) and diastolic blood pressure levels (F[1,18]=146.13, P < .001) in male Wistar rats. HFFD, plus the administration of CZ aqueous extract over 8 weeks, significantly improved glucose, triglyceride, and systolic and diastolic blood pressure levels, regulating metabolic parameters in male Wistar rats.
Collapse
Affiliation(s)
| | | | | | - Mónica Ríos-Silva
- Biomedical Research University Center, University of Colima, Colima, Mexico
| | | | - Javier Uribarren
- Biomedical Research University Center, University of Colima, Colima, Mexico
| | - Yolitzy Cárdenas
- Biomedical Research University Center, University of Colima, Colima, Mexico
| |
Collapse
|
4
|
Raz I, Weinberg Sibony R, Dor S, Rozenberg A, Yanuv I, Yigdal O, Elul R, Segev O. Curalin supplement as add-on therapy for type 2 diabetes Mellitus. Diabetes Res Clin Pract 2024; 218:111912. [PMID: 39510142 DOI: 10.1016/j.diabres.2024.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
AIMS To examine the efficacy and safety of Curalin, as a supplement to anti-diabetic drugs (ADD). METHODS 135 patients were enrolled in the study. Among them, 109, ages 18-85 years, with HA1c 7.5-10 % under treatment with ADD were randomized 1:1 to receive Curalin supplement or placebo. The primary efficacy endpoint was the change in HbA1c after 3 months. The secondary endpoint was a decrease in HbA1c by more than 0.5 % and by more than 1 %. The exploratory endpoints included the Diabetes Treatment Satisfaction Questionnaire (DTSQ), clinical and laboratory results. RESULTS After 3 months, the mean reduction in HbA1c was 1.30 % (SD = 0.79) in the Curalin group compared to 0.10 % (SD = 0.70) in the placebo group (P < 0.0001). A decrease in HbA1c of ≥ 0.5 % was observed in 90.0 % of Curalin patients versus 19.0 % of placebo patients (P < 0.0001). HbA1c reduction of ≥ 1 % occurred in 64.0 % of Curalin patients and 11.9 % of placebo patients (P < 0.0001). Curalin patients reported higher satisfaction (DTSQ) with no severe adverse events. CONCLUSIONS Curalin treatment significantly reduced HbA1c over a period of 3 months and was well-tolerated.
Collapse
Affiliation(s)
- Itamar Raz
- Faculty of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | | | - Saar Dor
- Faculty of Medicine, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Aliza Rozenberg
- Faculty of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel; Department of Endocrinology and Metabolism, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ilan Yanuv
- Faculty of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel; Department of Endocrinology and Metabolism, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | | - Ron Elul
- CuraLife Company, Tel Aviv, Israel
| | - Omri Segev
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Jaramillo Jimenez BA, Awwad F, Desgagné-Penix I. Cinnamaldehyde in Focus: Antimicrobial Properties, Biosynthetic Pathway, and Industrial Applications. Antibiotics (Basel) 2024; 13:1095. [PMID: 39596788 PMCID: PMC11590939 DOI: 10.3390/antibiotics13111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Trans-cinnamaldehyde (TCA), a major bioactive compound derived from cinnamon (Cinnamomum spp.), has garnered significant attention for its diverse therapeutic properties. Its broad-spectrum antimicrobial activity, targeting both Gram-positive and Gram-negative bacteria as well as various fungi, positions TCA as a potent natural antimicrobial agent. Beyond its antimicrobial effects, TCA demonstrates promising antidiabetic and anti-inflammatory activities, making it a valuable compound in medicinal and cosmetic applications. Recent studies have highlighted its role in disrupting microbial membranes, inhibiting biofilm formation, and modulating key metabolic pathways in pathogens. Furthermore, TCA has gained popularity in cosmetics due to its antimicrobial activity, antioxidant properties, and skin-friendly profile. This review provides a comprehensive overview of TCA's antimicrobial potential, focusing on its mechanisms of action and its market and industrial applications. We also discuss the biosynthetic pathway of TCA, exploring both its natural production in cinnamon and advances in biotechnological production methods. As the demand for sustainable and natural antimicrobial agents grows, TCA emerges as a promising candidate for diverse applications. Finally, this review explores future directions for optimizing TCA production through metabolic engineering and synthetic biology approaches to meet industrial-scale demands.
Collapse
Affiliation(s)
| | | | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (B.A.J.J.); (F.A.)
| |
Collapse
|
6
|
Mottaghi M, Karami P, Hesari Z, Nemati S, Mohammad Rahimi H, Mirjalali H. Evaluation of anti-Toxoplasma effects of solid lipid nanoparticles carrying Cinnamon zeylanicum and Moringa oleifera oil extracts. BMC Complement Med Ther 2024; 24:375. [PMID: 39449016 PMCID: PMC11515455 DOI: 10.1186/s12906-024-04677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The fabrication of anti-Toxoplasma drugs with less side effects and desirable efficacy is one of the important research goals facing with toxoplasmosis. This study aimed to determine the anti-Toxoplasma effects of Cinnamon zeylanicum (CZ), Moringa oleifera (MO) oil encapsulated into solid lipid nanoparticles (SLNs). METHODS Vero cells were cultured with serial concentrations (1 mg/mL to 100 µg/mL) of CZ-SLNs and MO-SLNs in DMEM culture medium. The morphological, physical, and chemical features of nanoparticles were calculated. The cell viability assays and anti-T. gondii effects of CZ-SLNs and MO-SLNs were evaluated. The CC50 and IC50 indices of SLNs-enveloped extracts were calculated. RESULTS The particle sizes of MO-SLNs and CZ-SLNs were 411.5 and 365 nm, while PDI indices were 0.53 and 0.7, respectively. Transmission electron microscopy (TEM) showed that both MO-SLNs and CZ-SLNs were smoothed spherical nanoparticles with rounded edges. The cytotoxicity assay showed the CC50 value of MO-SLNs at concentrations of ˃10 mg/mL. In addition, 60% of T. gondii-infected Vero cells remained alive at the concentrations ≤ 1 mg/ml, while the MO-SLNs killed at least 90% of T. gondii tachyzoites with an IC50 > 1 µg/ml. The cytotoxicity of CZ-SLNs extract showed the CC50 at the concentration 0.1 mg/mL. More than 50% of Vero cells, infected with T. gondii tachyzoites, survived at a concentration less than 0.1 mg/mL (IC50 ˂ 0.1 mg/mL), while the CZ-SLNs killed at least 85% of T. gondii tachyzoites in all concentrations. CONCLUSION The current results represented that the use of SLNs as a nano-carrier for M. oleifera and C. zeylanicum could kill T. gondii tachyzoites with low cytotoxicity, suggesting the effectiveness of these nano-emulsions along with the chemical agents in the treatment of Toxoplasma.
Collapse
Affiliation(s)
- Mahsa Mottaghi
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Karami
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Guilan, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Gura K, Duro D, Pai N, Sandell A, Sankararaman S, Quiros-Tejeira R, Herdes R, Deas J, Wang L. From the kitchen to the medicine cabinet: Examples of functional herbs and spices. J Pediatr Gastroenterol Nutr 2024; 79:473-484. [PMID: 38979686 DOI: 10.1002/jpn3.12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/10/2024]
Abstract
In many cultures, "food as medicine" has existed for centuries as the foundation of health. It is a practice built on the knowledge that food and diet play important roles in disease prevention and management. Foods possessing therapeutic properties are often referred to as functional foods. Many herbs and spices contain numerous nutritional and non-nutritional components that can interact with pharmacologically relevant receptors, either directly or indirectly via their metabolites, to regulate cellular biochemical processes. Although opinions are changing, the concept of food as a therapeutic intervention goes against conventional Western medicine. To provide guidance to clinicians interested in using these products, members of the Food as Medicine working group of the Nutrition Committee NASPGHAN, as part of a two-part review series, have identified frequently used foods, supplements, herbs, and spices that are utilized for therapeutic intent and have created summaries of commonly used indications, doses, and caveats. In this review, the focus is the use of select herbs and spices for medicinal purposes. Gaps in our knowledge in how to effectively use these agents in pediatric patients are discussed. Evidence supporting their use for management of gastrointestinal conditions, especially in the pediatric population, is provided when available. Circumstances in clinical settings and patient indications may require actions different from those recommended in this review and professional judgment should prevail.
Collapse
Affiliation(s)
- Kathleen Gura
- Department of Pharmacy/Division of Gastroenterology, Hepatology, and Nutrition Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Debora Duro
- Pediatric Gastroenterology, Hepatology and Nutrition at Salah Foundation Children Hospital at Broward Health, Fort Lauderdale, Florida, USA
- Clinical Pediatrics at NOVA Southeastern University, Fort Lauderdale FL and Florida International University (FIU), Miami, Florida, USA
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Gastroenterology & Nutrition, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Angela Sandell
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition at University of Rochester Medical Center, Rochester, New York, USA
| | - Senthilkumar Sankararaman
- Division of Pediatric Gastroenterology, Hepatology & Nutrition. UH Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Rubén Quiros-Tejeira
- Pediatric Gatroentoerology, Hepatology & Nutrition, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rachel Herdes
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Stanford University School of Medicine, Stanford, California, USA
| | - Jessica Deas
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Linda Wang
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Asoka AS, Kolikkandy A, Nair B, Kamath AJ, Sethi G, Nath LR. Role of Culinary Indian Spices in the Regulation of TGF-β Signaling Pathway in Inflammation-Induced Liver Cancer. Mol Nutr Food Res 2024; 68:e2300793. [PMID: 38766929 DOI: 10.1002/mnfr.202300793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Indexed: 05/22/2024]
Abstract
SCOPE Hepatocellular carcinoma (HCC) results from various etiologies, such as Hepatitis B and C, Alcoholic and Non-alcoholic fatty liver disorders, fibrosis, and cirrhosis. About 80 to 90% of HCC cases possess cirrhosis, which is brought on by persistent liver inflammation. TGF-β is a multifunctional polypeptide molecule that acts as a pro-fibrogenic marker, inflammatory cytokine, immunosuppressive agent, and pro-carcinogenic growth factor during the progression of HCC. The preclinical and clinical evidence illustrates that TGF-β can induce epithelial-to-mesenchymal transition, promoting progression and hepatocyte immune evasion. Therefore, targeting the TGF-β pathway can be a promising therapeutic option against HCC. METHODS AND RESULTS We carry out a systemic analysis of eight potentially selected culinary Indian spices: Turmeric, Black pepper, Ginger, Garlic, Fenugreek, Red pepper, Clove, Cinnamon, and their bioactives in regulation of the TGF-β pathway against liver cancer. CONCLUSION Turmeric and its active constituent, curcumin, possess the highest therapeutic potential in treating inflammation-induced HCC and they also have the maximum number of ongoing in-vivo and in-vitro studies.
Collapse
Affiliation(s)
- Ajay Sarija Asoka
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Anusha Kolikkandy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Adithya J Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| |
Collapse
|
9
|
Isik B, Suleyman B, Mammadov R, Bulut S, Yavuzer B, Altuner D, Coban TA, Suleyman H. Protective effect of cinnamon extract against cobalt-induced multiple organ damage in rats. Front Pharmacol 2024; 15:1384181. [PMID: 38783942 PMCID: PMC11111945 DOI: 10.3389/fphar.2024.1384181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background The role of oxidative stress and inflammation in cobalt (Co) toxicity has been the focus of previous studies. Cinnamon and its main components have been reported to have protective effects in various tissues with antioxidant and anti-inflammatory effects. Aims In this study, the protective effect of cinnamon extract (CE) against possible Co-induced heart, kidney, and liver damage in rats was investigated biochemically. Methods Eighteen albino Wistar-type male rats were categorized into three groups (n = 6 per group): control (CG), CoCL2-administered (CoCL2), and CE + CoCL2-administered (CE + Co) groups. The CE + CoCL2 group was administered CE (100 mg/kg), and the CoCL2 and CG groups were administered distilled water orally by gavage. One hour after the administration, Co (150 mg/kg) was administered orally to the CE + CoCL2 and CoCL2 groups. This procedure was repeated once daily for 7 days. Then, biochemical markers were studied in the excised heart, kidney, and liver tissues. Results CoCL2 increased oxidants and proinflammatory cytokines and decreased antioxidants in heart, kidney, and liver tissues. Heart, kidney, and liver tissue were affected by Co damage. CE treatment suppressed the CoCL2-induced increase in oxidants and proinflammatory cytokines and decrease in antioxidants in heart, kidney, and liver tissues. CE treatment has been shown to attenuate cardiac damage by reducing serum troponin I (TpI) and creatine kinase-MB (CK-MB), renal damage by reducing creatinine and blood urea nitrogen (BUN), and liver damage by reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Conclusion Co induced the production of oxidants and proinflammatory parameters and antioxidant depletion in heart, kidney, and liver tissues of rats. Our experimental results show that CE protects heart, kidney, and liver tissues against oxidative and inflammatory changes induced by CoCLl2.
Collapse
Affiliation(s)
- Bahar Isik
- Department of Emergency Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bulent Yavuzer
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Taha Abdulkadir Coban
- Department of Medical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| |
Collapse
|
10
|
Sahu U, Chauhan NS, Parihar AKS, Karbhal KS, Inchulkar SR, Gupta PK, Singh RK. Development of Simultaneous HPTLC Method and Validation for the Quality Assessment of Ayurvedic Formulation-Ayush Kvatha Churna by Using Marker Compound Rosmarinic Acid, Trans-Cinnamaldehyde and Piperine. J Chromatogr Sci 2024:bmae019. [PMID: 38706309 DOI: 10.1093/chromsci/bmae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Ayurveda emphasizes the propagation of nature in maintaining health. In the present scenario, we have seen the faith of people in herbal drugs during the Covid 19 outbreak. The raises in the number of peoples have been using herbal drugs to boost immunity against infectious diseases shows the popularity of this ancient system of medicine. The standardization of Ayush Kvatha Churna (AKC), work set out to establish a straightforward, accurate and sensitive HPTLC method for the identification and quantification of marker compounds. The Rosmarinic acid, trans-Cinnamaldehyde and Piperine were used for the estimation of markers in Ayush Kvatha Churna by using HPTLC with a solvent system, consisting of Toluene: Ethyl acetate: Ethyl alcohol: Formic acid (5.6:2.4:2: 0.3 v/v/v/v). The Rf value 0.33 for Rosmarinic Acid, 0.69 for Piperine and 0.77 for trans-Cinnamaldehyde was observed and it is exactly complying with the corresponding bands in Ayush Kvatha Churna. The technique has been effectively verified and validated, enabling it to be used for the standardization or quantitative analysis of Rosmarinic acid, trans-Cinnamaldehyde and piperine in Ayush Kvatha Churna.
Collapse
Affiliation(s)
- Umakant Sahu
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, G.E. Road, Raipur, Chhattisgarh 492010, India
- Department of Medical education, Drugs Testing Laboratory Avam Anusandhan Kendra, Raipur, G.E. Road, Chhattisgarh 492010, India
| | - Nagendra Singh Chauhan
- Department of Medical education, Drugs Testing Laboratory Avam Anusandhan Kendra, Raipur, G.E. Road, Chhattisgarh 492010, India
| | - Arun Kumar Singh Parihar
- Department of Medical education, Drugs Testing Laboratory Avam Anusandhan Kendra, Raipur, G.E. Road, Chhattisgarh 492010, India
| | | | - Shrikant R Inchulkar
- Shri NPA Government Ayurvedic College, Raipur, G.E. Road, Chhattisgarh 492010, India
| | - Prashant Kumar Gupta
- Department of Kaumarabhritya, All India Institute of Ayurveda, Mathura Road, Gautam Puri Sarita Vihar, New Delhi, Delhi 110076, India
| | - Rajesh Kumar Singh
- Shri NPA Government Ayurvedic College, Raipur, G.E. Road, Chhattisgarh 492010, India
| |
Collapse
|
11
|
Pimentel LS, Bastos LM, Goulart LR, Ribeiro LNDM. Therapeutic Effects of Essential Oils and Their Bioactive Compounds on Prostate Cancer Treatment. Pharmaceutics 2024; 16:583. [PMID: 38794244 PMCID: PMC11125265 DOI: 10.3390/pharmaceutics16050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Since prostate cancer (PCa) relies on limited therapies, more effective alternatives are required. Essential oils (EOs) and their bioactive compounds are natural products that have many properties including anticancer activity. This review covers studies published between 2000 and 2023 and discusses the anti-prostate cancer mechanisms of the EOs from several plant species and their main bioactive compounds. It also provides a critical perspective regarding the challenges to be overcome until they reach the market. EOs from chamomile, cinnamon, Citrus species, turmeric, Cymbopogon species, ginger, lavender, Mentha species, rosemary, Salvia species, thyme and other species have been tested in different PCa cell lines and have shown excellent results, including the inhibition of cell growth and migration, the induction of apoptosis, modulation in the expression of apoptotic and anti-apoptotic genes and the suppression of angiogenesis. The most challenging aspects of EOs, which limit their clinical uses, are their highly lipophilic nature, physicochemical instability, photosensitivity, high volatility and composition variability. The processing of EO-based products in the pharmaceutical field may be an interesting alternative to circumvent EOs' limitations, resulting in several benefits in their further clinical use. Identifying their bioactive compounds, therapeutic effects and chemical structures could open new perspectives for innovative developments in the field. Moreover, this could be helpful in obtaining versatile chemical synthesis routes and/or biotechnological drug production strategies, providing an accurate, safe and sustainable source of these bioactive compounds, while looking at their use as gold-standard therapy in the close future.
Collapse
Affiliation(s)
- Leticia Santos Pimentel
- Laboratory of Nanobiotechnology Professor Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Bloco 2E, Sala 248, Uberlândia 38405-302, MG, Brazil
| | | | | | - Lígia Nunes de Morais Ribeiro
- Laboratory of Nanobiotechnology Professor Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Bloco 2E, Sala 248, Uberlândia 38405-302, MG, Brazil
| |
Collapse
|
12
|
Ragupathy S, Thirugnanasambandam A, Vinayagam V, Newmaster SG. Nuclear Magnetic Resonance Fingerprints and Mini DNA Markers for the Authentication of Cinnamon Species Ingredients Used in Food and Natural Health Products. PLANTS (BASEL, SWITZERLAND) 2024; 13:841. [PMID: 38592863 PMCID: PMC10975438 DOI: 10.3390/plants13060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Cinnamomum verum (syn C. zeylanicum) is considered 'true' cinnamon. However, it is reported that less expensive sources of cinnamon from C. cassia (syn C. aromaticum), C. loureiroi, and C. burmannii (toxic coumarin) may be used in the place of C. verum. We lack the quality assurance tools that are required to differentiate C. verum from other cinnamon species when verifying that the correct species is sourced from ingredient suppliers. The current research on cinnamon species authentication using DNA tools is limited to a few species and the use of high-quality DNA extracted from raw leaf materials. The cinnamon bark traded in the supply chain contains much less DNA and poorer-quality DNA than leaves. Our research advances DNA methods to authenticate cinnamon, as we utilized full-length chloroplast genomes via a genome skimming approach for C. burmannii and C. cassia to facilitate the design of optimal mini DNA markers. Furthermore, we developed and validated the use of NMR fingerprints for several commercial cinnamon species, including the quantification of 16 molecules. NMR fingerprints provided additional data that were useful for quality assessment in cinnamon extract powders and product consistency. Both the new mini DNA markers and NMR fingerprints were tested on commercial cinnamon products.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | | | | |
Collapse
|
13
|
Peivandi S, Heydari-latibari S, Ghasemzadeh F, Zamaniyan M, Bahar A, Majidi H, Maleki B. Metabolic and endocrine changes induced by cinnamon in women with polycystic ovarian syndrome: A pilot study. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:242-251. [PMID: 38966626 PMCID: PMC11221764 DOI: 10.22038/ajp.2023.23357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 07/06/2024]
Abstract
Objective Most polycystic ovary syndrome (PCOS) patients have metabolic abnormalities in which insulin resistance (IR) plays a pivotal role. Cinnamon is a herbal medicine with insulinotropic properties. This pilot study aimed to evaluate the effects of cinnamon on ovarian volume, androgenic profile, and metabolic and anthropometric parameters in women with PCOS. Materials and Methods A single-center, double-blind, randomized, placebo-controlled trial was carried out on 39 overweight / obese women with PCOS. For six months, subjects in the cinnamon (500 mg) (n=19) and placebo (n=20) groups were given three capsules daily. Before and after the intervention, the variables were assessed. The data was analyzed using the GraphPad Prism software. Results After the intervention, the two intervention and control groups had significant differences in abdominal subcutaneous fat and ovarian volume, but they did not differ significantly in terms of body mass index (BMI). Also, after the intervention, no significant difference was observed between the two groups in terms of lipid profile and the concentration of androgenic biomarkers of insulin resistance. Conclusion Cinnamon supplementation improves ovarian volume and subcutaneous abdominal fat but has no effect on anthropometric parameters, lipid profile, insulin resistance, or androgen hormones.
Collapse
Affiliation(s)
- Sepideh Peivandi
- Sexual and Reproductive Health Research Center, Department of OB/GYN, IVF Ward, Sari Imam Khomeini Hospital, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahar Heydari-latibari
- Department of OB/GYN, IVF Ward, Sari Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ghasemzadeh
- Department of OB/GYN, IVF Ward, Sari Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Marzieh Zamaniyan
- Diabetic Research Center, Department of OB/GYN, IVF Ward, Sari Imam Khomeini Hospital, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adele Bahar
- Department of Endocrinology, Diabetic Research Center, Sari Imam Khomeini Hospital, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Majidi
- Department of Radiology, Sari Imam Khomeini Hospital, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behnam Maleki
- IVF Ward, Sari Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Al-Jamal H, Idriss S, Roufayel R, Abi Khattar Z, Fajloun Z, Sabatier JM. Treating COVID-19 with Medicinal Plants: Is It Even Conceivable? A Comprehensive Review. Viruses 2024; 16:320. [PMID: 38543686 PMCID: PMC10974729 DOI: 10.3390/v16030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 05/23/2024] Open
Abstract
In 2020, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) challenged the world with a global outbreak that led to millions of deaths worldwide. Coronavirus disease 2019 (COVID-19) is the symptomatic manifestation of this virus, which can range from flu-like symptoms to utter clinical complications and even death. Since there was no clear medicine that could tackle this infection or lower its complications with minimal adverse effects on the patients' health, the world health organization (WHO) developed awareness programs to lower the infection rate and limit the fast spread of this virus. Although vaccines have been developed as preventative tools, people still prefer going back to traditional herbal medicine, which provides remarkable health benefits that can either prevent the viral infection or limit the progression of severe symptoms through different mechanistic pathways with relatively insignificant side effects. This comprehensive review provides scientific evidence elucidating the effect of 10 different plants against SARS-CoV-2, paving the way for further studies to reconsider plant-based extracts, rich in bioactive compounds, into more advanced clinical assessments in order to identify their impact on patients suffering from COVID-19.
Collapse
Affiliation(s)
- Hadi Al-Jamal
- Faculty of Public Health 3, Lebanese University, Tripoli 1100, Lebanon;
| | - Sara Idriss
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Jean-Marc Sabatier
- INP, Inst Neurophysiopathol, Aix-Marseille Université, CNRS, 13385 Marseille, France
| |
Collapse
|
15
|
Nakhaee S, Kooshki A, Hormozi A, Akbari A, Mehrpour O, Farrokhfall K. Cinnamon and cognitive function: a systematic review of preclinical and clinical studies. Nutr Neurosci 2024; 27:132-146. [PMID: 36652384 DOI: 10.1080/1028415x.2023.2166436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cinnamon is the inner bark of trees named Cinnamomum. Studies have shown that cinnamon and its bioactive compounds can influence brain function and affect behavioral characteristics. This study aimed to systematically review studies about the relationship between cinnamon and its key components in memory and learning. Two thousand six hundred five studies were collected from different databases (PubMed, Scopus, Google Scholar, and Web of Science) in September 2021 and went under investigation for eligibility. As a result, 40 studies met our criteria and were included in this systematic review. Among the included studies, 33 were In vivo studies, five were In vitro, and two clinical studies were also accomplished. The main outcome of most studies (n = 40) proved that cinnamon significantly improves cognitive function (memory and learning). In vivo studies showed that using cinnamon or its components, such as eugenol, cinnamaldehyde, and cinnamic acid, could positively alter cognitive function. In vitro studies also showed that adding cinnamon or cinnamaldehyde to a cell medium can reduce tau aggregation, Amyloid β and increase cell viability. For clinical studies, one study showed positive effects, and another reported no changes in cognitive function. Most studies reported that cinnamon might be useful for preventing and reducing cognitive function impairment. It can be used as an adjuvant in the treatment of related diseases. However, more studies need to be done on this subject.
Collapse
Affiliation(s)
- Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Kooshki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Hormozi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Aref Akbari
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Data Science Institute, Southern Methodist University, Dallas, TX, USA
| | - Khadijeh Farrokhfall
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
16
|
Shahrajabian MH, Sun W. The Power of the Underutilized and Neglected Medicinal Plants and Herbs of the Middle East. Rev Recent Clin Trials 2024; 19:159-175. [PMID: 38409705 DOI: 10.2174/0115748871276544240212105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
The Middle east and North Africa harbour many native species with pharmaceutical and nutraceutical potential. Since the beginning of history, food and herbal medicinal plants have been an essential part of human lives and the traditional Middle Eastern healthcare system. The notable medicinal plants that have been mentioned in the Bible, which are common in West Asia and some regions of North Africa, are Aloe vera, anise, balm, cassia, cinnamon, cumin, flax, and fig. Chemical components of Aloe vera are aloin, sinapinic acid, catechin, chromone, myricetin, quercitrin and syringic acid. Anethole, safrole, and estragole are the main chemical components of anise. The chemical components of cassia are coumarin, emodin, cinnamyl alcohol, and cinnamaldehyde. The major chemical ingredients of cumin are terpinene, cuminaldehyde, sabinene, thujene, and thymoquinone. The goal of this article is to review the considerable health benefits and pharmaceutical benefits of medicinal herbs and plants that have been neglected and underutilized in the Middle East and North Africa, as well as to promote their utilization. On the basis of the results, the experimented neglected medicinal plant can offer various advantages when used together with conventional medicinal treatments for various health conditions, such as palliative care in managing the side effects of conventional treatments, access to a wider range of treatments, increased patient satisfaction, and improved emotional and mental well-being. Moreover, consuming medicinal plants may help to manage and prevent diabetes, cancer, and heart disease with notable anti-tumor, and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
17
|
Moridpour AH, Kavyani Z, Khosravi S, Farmani E, Daneshvar M, Musazadeh V, Faghfouri AH. The effect of cinnamon supplementation on glycemic control in patients with type 2 diabetes mellitus: An updated systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2024; 38:117-130. [PMID: 37818728 DOI: 10.1002/ptr.8026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/20/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Although many randomized controlled trials (RCTs) have revealed the benefits of cinnamon on type 2 diabetes mellitus (T2DM), the effects of cinnamon supplementation on glycemic control in patients with T2DM are inconclusive. Therefore, the aim of this meta-analysis of RCTs was to assess the effects of cinnamon supplementation in managing glycemic control in patients with T2DM. Scientific international databases including Scopus, Web of Sciences, PubMed, Embase, and the Cochrane Library were searched till December 2022. For net changes in glycemic control, standard mean differences (SMDs) were calculated using random-effects models. Findings from 24 RCTs revealed that cinnamon supplementation had a statistically significant reduction in fasting blood sugar (SMD: -1.32; 95% CI: -1.77, -0.87, p < 0.001), Homeostatic Model Assessment for Insulin Resistance (SMD: -1.32; 95% CI: -1.77, -0.87, p < 0.001), and hemoglobin A1C (SMD: -0.67; 95% CI: -1.18, -0.15, p = 0.011) compared with the control group in patients with T2DM. Additionally, cinnamon did not change the serum levels of insulin (SMD: -0.17; 95% CI: -0.34, 0.01, p = 0.058) significantly. Our analysis indicated that glycemic control indicators are significantly decreased by cinnamon supplementation. Together, these findings support the notion that cinnamon supplementation might have clinical potential as an adjunct therapy for managing T2DM.
Collapse
Affiliation(s)
| | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaye Khosravi
- Department of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
18
|
Bandaranayake PCG, Naranpanawa N, Chandrasekara CHWMRB, Samarakoon H, Lokuge S, Jayasundara S, Bandaranayake AU, Pushpakumara DKNG, Wijesundara DSA. Chloroplast genome, nuclear ITS regions, mitogenome regions, and Skmer analysis resolved the genetic relationship among Cinnamomum species in Sri Lanka. PLoS One 2023; 18:e0291763. [PMID: 37729154 PMCID: PMC10511092 DOI: 10.1371/journal.pone.0291763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Cinnamomum species have gained worldwide attention because of their economic benefits. Among them, C. verum (synonymous with C. zeylanicum Blume), commonly known as Ceylon Cinnamon or True Cinnamon is mainly produced in Sri Lanka. In addition, Sri Lanka is home to seven endemic wild cinnamon species, C. capparu-coronde, C. citriodorum, C. dubium, C. litseifolium, C. ovalifolium, C. rivulorum and C. sinharajaense. Proper identification and genetic characterization are fundamental for the conservation and commercialization of these species. While some species can be identified based on distinct morphological or chemical traits, others cannot be identified easily morphologically or chemically. The DNA barcoding using rbcL, matK, and trnH-psbA regions could not also resolve the identification of Cinnamomum species in Sri Lanka. Therefore, we generated Illumina Hiseq data of about 20x coverage for each identified species and a C. verum sample (India) and assembled the chloroplast genome, nuclear ITS regions, and several mitochondrial genes, and conducted Skmer analysis. Chloroplast genomes of all eight species were assembled using a seed-based method.According to the Bayesian phylogenomic tree constructed with the complete chloroplast genomes, the C. verum (Sri Lanka) is sister to previously sequenced C. verum (NC_035236.1, KY635878.1), C. dubium and C. rivulorum. The C. verum sample from India is sister to C. litseifolium and C. ovalifolium. According to the ITS regions studied, C. verum (Sri Lanka) is sister to C. verum (NC_035236.1), C. dubium and C. rivulorum. Cinnamomum verum (India) shares an identical ITS region with C. ovalifolium, C. litseifolium, C. citriodorum, and C. capparu-coronde. According to the Skmer analysis C. verum (Sri Lanka) is sister to C. dubium and C. rivulorum, whereas C. verum (India) is sister to C. ovalifolium, and C. litseifolium. The chloroplast gene ycf1 was identified as a chloroplast barcode for the identification of Cinnamomum species. We identified an 18 bp indel region in the ycf1 gene, that could differentiate C. verum (India) and C. verum (Sri Lanka) samples tested.
Collapse
Affiliation(s)
| | - Nathasha Naranpanawa
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Hiruna Samarakoon
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. Lokuge
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. Jayasundara
- Faculty of Agriculture, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya, Sri Lanka
| | - Asitha U. Bandaranayake
- Faculty of Engineering, Department of Computer Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - D. K. N. G. Pushpakumara
- Faculty of Agriculture, Department of Crop Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
19
|
Yang L, Liu X, Lu H, Zhang C, Chen J, Shi Z. Cinnamaldehyde Inhibits Postharvest Gray Mold on Pepper Fruits via Inhibiting Fungal Growth and Triggering Fruit Defense. Foods 2023; 12:3458. [PMID: 37761167 PMCID: PMC10530028 DOI: 10.3390/foods12183458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Gray mold infected with Botrytis cinerea frequently appears on fruits and vegetables throughout the supply chain after harvest, leading to economic losses. Biological control of postharvest disease with phytochemicals is a promising approach. CA (cinnamaldehyde) is a natural phytochemical with medicinal and antimicrobial activity. This study evaluated the effect of CA in controlling B. cinerea on fresh pepper fruit. CA inhibited B. cinerea growth in vitro significantly in a dose- (0.1-0.8 mM) and time-dependent (6-48 h) manner, with an EC50 (median effective concentration) of 0.5 mM. CA induced the collapse and breakdown of the mycelia. CA induced lipid peroxidation resulting from ROS (reactive oxygen species) accumulation in mycelia, further leading to cell leakage, evidenced by increased conductivity in mycelia. CA induced mycelial glycerol accumulation, resulting in osmotic stress possibly. CA inhibited sporulation and spore germination resulting from ROS accumulation and cell death observed in spores. Spraying CA at 0.5 mM induced a defense response in fresh pepper fruits, such as the accumulation of defense metabolites (flavonoid and total phenols) and an increase in the activity of defense enzymes (PAL, phenylalanine ammonia lyase; PPO, polyphenol oxidase; POD, peroxidase). As CA is a type of environmentally friendly compound, this study provides significant data on the activity of CA in the biocontrol of postharvest gray mold in peppers.
Collapse
Affiliation(s)
- Lifei Yang
- Hexian New Countryside Development Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Y.); (X.L.)
| | - Xiaoli Liu
- Hexian New Countryside Development Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Y.); (X.L.)
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| | - Haiyan Lu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| | - Jian Chen
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| | - Zhiqi Shi
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.Z.); (J.C.)
| |
Collapse
|
20
|
Abdelrahman IA, Ahad A, Raish M, Bin Jardan YA, Alam MA, Al-Jenoobi FI. Cinnamon modulates the pharmacodynamic & pharmacokinetic of amlodipine in hypertensive rats. Saudi Pharm J 2023; 31:101737. [PMID: 37638214 PMCID: PMC10458336 DOI: 10.1016/j.jsps.2023.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
The objective of this study was to investigate the effects of cinnamon on the pharmacodynamic (PD) & pharmacokinetic (PK) of amlodipine in hypertensive rats. The hypertensive control group of Wistar rats received L-NAME (40 mg/kg, daily, orally) only. The cinnamon group of rats was treated with cinnamon (200 mg/kg, daily, orally) along with L-NAME. Following 14 days treatment period, blood pressures of rats were monitored at designated intervals over 24 h utilizing a tail-cuff system for measuring blood pressure. To assess the oral PK; amlodipine was administered as a single oral dose of 1 mg/kg to rats and blood samples were collected at specified intervals over 24 h and analysed by UPLC-LC MS/MS. Synergistic decreased in rat's blood pressure was observed in presence of cinnamon + amlodipine. Simultaneous administration of cinnamon ameliorates the Cmax and AUC0-t of amlodipine, the Cmax and AUC0-t was 11.04 ± 1.01 ng/ml and 113.76 ± 5.62 ng h/ml for the cinnamon + amlodipine group as compared to 4.12 ± 0.49 ng/ml and 48.59 ± 4.28 ng h/ml for the amlodipine alone group. The study demonstrates that the use of cinnamon considerably decreases the blood pressure levels and enhances the PK parameters of amlodipine in hypertensive rats.
Collapse
Affiliation(s)
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Dhawan K, Rasane P, Singh J, Kaur S, Kaur D, Avinashe H, Mahato DK, Kumar P, Gunjal M, Capanoglu E, Haque S. Effect of Spice Incorporation on Sensory and Physico-chemical Properties of Matcha-Based Hard Candy. ACS OMEGA 2023; 8:29247-29252. [PMID: 37599978 PMCID: PMC10433358 DOI: 10.1021/acsomega.3c02574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023]
Abstract
The present study was carried out to formulate and determine the sensory, proximate, phytochemical, and antioxidant properties of matcha hard candies incorporated with spices such as ginger (Zingiber officinale Rosc.), cinnamon (Cinnamomum zeylanicum and Cinnamon cassia), and holy basil (tulsi) (Ocimum sanctum L.). Standardized matcha (Camellia sinensis) hard candy was taken as a control, and spices/herbs were incorporated in different concentrations. The best formulation was GC5 (2% ginger powder) for matcha ginger hard candy, CZ10 (0.9% cinnamon powder) for matcha cinnamon hard candy, and TC7 (3% tulsi powder) for matcha tulsi hard candy. These formulations were selected based on the organoleptic evaluation. Furthermore, these selected hard candies were evaluated for the determination of proximate, phytochemical, and antioxidant profiles which exhibited significant results. This study demonstrates the excellent nutritional and phytochemical potential that spiced matcha hard candy has for use as a nutraceutical food product.
Collapse
Affiliation(s)
- Kajal Dhawan
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Prasad Rasane
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jyoti Singh
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sawinder Kaur
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Damanpreet Kaur
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Harshal Avinashe
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dipendra Kumar Mahato
- CASS
Food Research Centre, School of Exercise and Nutrition Science, Deakin University, Burwood, Victoria 3125, Australia
| | - Pradeep Kumar
- Department
of Botany, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Mahendra Gunjal
- School
of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and
Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab
Emirates
| |
Collapse
|
22
|
Thakral S, Yadav A, Singh V, Kumar M, Kumar P, Narang R, Sudhakar K, Verma A, Khalilullah H, Jaremko M, Emwas AH. Alzheimer's disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res Rev 2023; 88:101960. [PMID: 37224884 DOI: 10.1016/j.arr.2023.101960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD), also called senile dementia, is the most common neurological disorder. Around 50 million people, mostly of advanced age, are suffering from dementia worldwide and this is expected to reach 100-130 million between 2040 and 2050. AD is characterized by impaired glutamatergic and cholinergic neurotransmission, which is associated with clinical and pathological symptoms. AD is characterized clinically by loss of cognition and memory impairment and pathologically by senile plaques formed by Amyloid β deposits or neurofibrillary tangles (NFT) consisting of aggregated tau proteins. Amyloid β deposits are responsible for glutamatergic dysfunction that develops NMDA dependent Ca2+ influx into postsynaptic neurons generating slow excitotoxicity process leading to oxidative stress and finally impaired cognition and neuronal loss. Amyloid decreases acetylcholine release, synthesis and neuronal transport. The decreased levels of neurotransmitter acetylcholine, neuronal loss, tau aggregation, amyloid β plaques, increased oxidative stress, neuroinflammation, bio-metal dyshomeostasis, autophagy, cell cycle dysregulation, mitochondrial dysfunction, and endoplasmic reticulum dysfunction are the factors responsible for the pathogenesis of AD. Acetylcholinesterase, NMDA, Glutamate, BACE1, 5HT6, and RAGE (Receptors for Advanced Glycation End products) are receptors targeted in treatment of AD. The FDA approved acetylcholinesterase inhibitors Donepezil, Galantamine and Rivastigmine and N-methyl-D-aspartate antagonist Memantine provide symptomatic relief. Different therapies such as amyloid β therapies, tau-based therapies, neurotransmitter-based therapies, autophagy-based therapies, multi-target therapeutic strategies, and gene therapy modify the natural course of the disease. Herbal and food intake is also important as preventive strategy and recently focus has also been placed on herbal drugs for treatment. This review focuses on the molecular aspects, pathogenesis and recent studies that signifies the potential of medicinal plants and their extracts or chemical constituents for the treatment of degenerative symptoms related to AD.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Alka Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| | - Manoj Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
El-Baz YG, Moustafa A, Ali MA, El-Desoky GE, Wabaidur SM, Faisal MM. An Analysis of the Toxicity, Antioxidant, and Anti-Cancer Activity of Cinnamon Silver Nanoparticles in Comparison with Extracts and Fractions of Cinnamomum Cassia at Normal and Cancer Cell Levels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:945. [PMID: 36903823 PMCID: PMC10005684 DOI: 10.3390/nano13050945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In this work, the extract of cinnamon bark was used for the green synthesis of cinnamon-Ag nanoparticles (CNPs) and other cinnamon samples, including ethanolic (EE) and aqueous (CE) extracts, chloroform (CF), ethyl acetate (EF), and methanol (MF) fractions. The polyphenol (PC) and flavonoid (FC) contents in all the cinnamon samples were determined. The synthesized CNPs were tested for the antioxidant activity (as DPPH radical scavenging percentage) in Bj-1 normal cells and HepG-2 cancer cells. Several antioxidant enzymes, including biomarkers, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and reduced glutathione (GSH), were verified for their effects on the viability and cytotoxicity of normal and cancer cells. The anti-cancer activity depended on apoptosis marker protein levels (Caspase3, P53, Bax, and Pcl2) in normal and cancerous cells. The obtained data showed higher PC and FC contents in CE samples, while CF showed the lowest levels. The IC50 values of all investigated samples were higher, while their antioxidant activities were lower than those of vitamin C (5.4 g/mL). The CNPs showed lower IC50 value (55.6 µg/mL), whereas the antioxidant activity inside or outside the Bj-1 or HepG-2 was found to be higher compared with other samples. All samples execrated a dose-dependent cytotoxicity by decreasing the cells' viability percent of Bj-1 and HepG-2. Similarly, the anti-proliferative potency of CNPs on Bj-1 or HepG-2 at different concentrations was more effective than that of other samples. Higher concentrations of the CNPs (16 g/mL) showed greater cell death in Bj-1 (25.68%) and HepG-2 (29.49%), indicating powerful anti-cancer properties of the nanomaterials. After 48 h of CNPs treatment, both Bj-1 and HepG-2 showed significant increases in biomarker enzyme activities and reduced glutathione compared with other treated samples or untreated controls (p < 0.05). The anti-cancer biomarker activities of Caspas-3, P53, Bax, and Bcl-2 levels were significantly changed in Bj-1 or HepG-2 cells. The cinnamon samples were significantly increased in Caspase-3, Bax, and P53, while there were decreased Bcl-2 levels compared with control.
Collapse
Affiliation(s)
- Y. G. El-Baz
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - A. Moustafa
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - M. A. Ali
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - G. E. El-Desoky
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - S. M. Wabaidur
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M. M. Faisal
- Centre of Materials Physics, Department of Physics, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
24
|
Systematic metabolic engineering of Escherichia coli for the enhanced production of cinnamaldehyde. Metab Eng 2023; 76:63-74. [PMID: 36639020 DOI: 10.1016/j.ymben.2023.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Cinnamaldehyde (CAD) derived from cinnamon bark has received much attention for its potential as a nematicide and food additive. Previously, we have succeeded in developing an Escherichia coli strain (YHP05) capable of synthesizing cinnamaldehyde; however, the production titer (75 mg/L) was not sufficient for commercialization. Herein, to develop an economical and sustainable production bioprocess, we further engineered the YHP05 strain for non-auxotrophic, antibiotic-free, inducer-free hyperproduction of CAD using systematic metabolic engineering. First, the conversion of trans-cinnamic acid (t-CA) to CAD was improved by the co-expression of carboxylic acid reductase and phosphopantetheinyl transferase (PPTase) genes. Second, to prevent the spontaneous conversion of CAD to cinnamyl alcohol, 10 endogenous reductase and dehydrogenase genes were deleted. Third, all expression cassettes were integrated into the chromosomal DNA using an auto-inducible system for antibiotic- and inducer-free production. Subsequently, to facilitate CAD production, available pools of cofactors (NADPH, CoA, and ATP) were increased, and acetate pathways were deleted. With the final antibiotic-, plasmid-, and inducer-free strain (H-11MPmR), fed-batch cultivations combined with in situ product recovery (ISPR) were performed, and the production titer of CAD as high as 3.8 g/L could be achieved with 49.1 mg/L/h productivity, which is the highest CAD titer ever reported.
Collapse
|
25
|
Cinnamaldehyde affects lipid droplets metabolism after adipogenic differentiation of C2C12 cells. Mol Biol Rep 2023; 50:2033-2039. [PMID: 36538173 DOI: 10.1007/s11033-022-08101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/08/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Based on our previous research conducted on cinnamaldehyde (CA) exhibiting its ability to improve the growth performance of fattening pigs and the adipogenesis induction model of C2C12 cells constructed in our laboratory, we explored the effects of CA on the generation and development of lipid droplets (LDs) in adipogenic differentiated C2C12 cells. METHODS AND RESULTS C2C12 cells were treated with either 0.4 mM or 0.8 mM CA. BODIPY staining and triglyceride measurements were conducted to observe the morphology of LDs, and Western blotting was used to measure the expression of their metabolism-related proteins. The results showed that the average number of LDs in the CA treatment groups was more than the control group (P < 0.05), whereas the average LD size and triglyceride content decreased (P < 0.05). Compared with the control group, the expression levels of fusion-related genes in the LDs of the CA treatment group significantly decreased, while decomposition-related genes and autophagy-related genes in the LDs in C2C12 cells significantly increased (P < 0.01). CONCLUSION Cinnamaldehyde promoted the decomposition and autophagy of lipid droplets in C2C12 cells and inhibited the fusion of lipid droplets.
Collapse
|
26
|
Gopalakrishnan S, Dhaware M, Sudharma AA, Mullapudi SV, Siginam SR, Gogulothu R, Mir IA, Ismail A. Chemopreventive Effect of Cinnamon and Its Bioactive Compounds in a Rat Model of Premalignant Prostate Carcinogenesis. Cancer Prev Res (Phila) 2023; 16:139-151. [PMID: 36517462 DOI: 10.1158/1940-6207.capr-22-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cinnamon and its bioactive compounds inhibit prostate cancer cell proliferation in vitro. The aim of the current study was to assess the chemopreventive efficacy of cinnamon (CN) and its bioactive compounds in vivo using N-methyl-N-nitrosourea (MNU) and testosterone (T) to induce prostate carcinogenesis in male Wistar/National Institute of Nutrition rats. Cancer-induced (CI) rats (n = 10) developed prostatic hyperplasia and prostatic intraepithelial neoplasia. These histopathologic changes were diminished in CI rats fed for 4 months with diets supplemented with either CN (n = 20) or its bioactive compounds (cinnamaldehyde, n = 10 and procyanidin B2, n = 10). Androgen receptor (AR) expression was lower in the prostates of CI rats than in control, but the AR target gene, probasin, was robustly upregulated. Treatment of CI rats with CN or its bioactive compounds upregulated AR expression but inhibited the expression of the 5-alpha reductase genes (Srd5a1 and Srd5a2) and did not further increase probasin expression, suggesting blunted transcriptional activity of AR due to the limited availability of dihydrotestosterone. MNU+T induced an altered oxidant status in rat prostate, which was reflected by an increase in lipid peroxidation and DNA oxidation. These changes were completely or partially corrected by treatment with CN or the bioactive compounds. CN and its active components increased the activity of the apoptotic enzymes caspase-8 and caspase-3 in the prostates of CI rats. In conclusion, our data demonstrate that CN and its bioactive compounds have inhibitory effects on premalignant prostate lesions induced by MNU + T and, therefore, may be considered for the chemoprevention of prostate cancer. PREVENTION RELEVANCE The research work presented in this article demonstrates the chemopreventive efficacy of CN and its bioactive compounds in a rat model of premalignant prostate cancer.
Collapse
Affiliation(s)
- Srividya Gopalakrishnan
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Mahamaya Dhaware
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | | | | | | - Ramesh Gogulothu
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Irfan Ahmad Mir
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, Telangana, India
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
27
|
Shirani M, Talebi S, Shojaei M, Askari G, Bagherniya M, Guest PC, Sathyapalan T, Sahebkar A. Spices and Biomarkers of COVID-19: A Mechanistic and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:375-395. [PMID: 37378778 DOI: 10.1007/978-3-031-28012-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In the face of the COVID-19 pandemic, many people around the world have increased their healthy behaviors to prevent transmission of the virus and potentially improve their immune systems. Therefore, the role of diet and food compounds such as spices with bioactive and antiviral properties may be important in these efforts. In this chapter, we review the efficacy of spices such as turmeric (curcumin), cinnamon, ginger, black pepper, saffron, capsaicin, and cumin by investigating the effects of these compounds of COVID-19 disease severity biomarkers.
Collapse
Affiliation(s)
- Masha Shirani
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shokoofeh Talebi
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Molecular Docking Analysis of Cinnamomum zeylanicum Phytochemicals against Secreted Aspartyl proteinase 4-6 of Candida albicans as Anti-Candidiasis Oral. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
29
|
Yan S, Huang Y, Xiao Q, Su Z, Xia L, Xie J, Zhang F, Du Z, Hou X, Deng J, Hao E. Regulation of transient receptor potential channels by traditional Chinese medicines and their active ingredients. Front Pharmacol 2022; 13:1039412. [PMID: 36313301 PMCID: PMC9606675 DOI: 10.3389/fphar.2022.1039412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, activation of thermal transient receptor potential (TRP) ion channels at a range of temperatures has received widespread attention as a target for traditional Chinese medicine (TCM) to regulate body temperature and relieve pain. Discovery of transient receptor potential vanilloid 1 (TRPV1) was awarded a Nobel Prize, reflecting the importance of these channels. Here, the regulatory effects of TCMs and their active ingredients on TRP ion channels are reviewed, and future directions for research on the cold, hot, warm, cool, and neutral natures of TCMs are considered. In herbs with cold, hot, warm, cool, and neutral natures, we found 29 TCMs with regulatory effects on TRP ion channels, including Cinnamomi Cortex, Capsici Fructus, Rhei Radix et Rhizoma, Macleayae cordatae Herba, Menthae Haplocalycis Herba, and Rhodiolae Crenulatae Radix et Rhizoma. Although some progress has been made in understanding the regulation of TRP ion channels by TCMs and their ingredients, the molecular mechanism by which TCMs have this effect remains to be further studied. We hope this review will provide a reference for further research on the cold, hot, warm, cool, and neutral natures of TCMs.
Collapse
Affiliation(s)
- Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yuchan Huang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qian Xiao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lei Xia
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center of Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- *Correspondence: Erwei Hao,
| |
Collapse
|
30
|
Design and Synthesis of Coumarin Derivatives as Cytotoxic Agents through PI3K/AKT Signaling Pathway Inhibition in HL60 and HepG2 Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196709. [PMID: 36235247 PMCID: PMC9571264 DOI: 10.3390/molecules27196709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
In this study, a series of coumarin derivatives, either alone or as hybrids with cinnamic acid, were synthesized and evaluated for their cytotoxicity against a panel of cancer cells using the MTT assay. Then, the most active compounds were inspected for their mechanism of cytotoxicity by cell-cycle analysis, RT-PCR, DNA fragmentation, and Western blotting techniques. Cytotoxic results showed that compound (4) had a significant cytotoxic effect against HL60 cells (IC50 = 8.09 µM), while compound (8b) had a noticeable activity against HepG2 cells (IC50 = 13.14 µM). Compounds (4) and (8b) mediated their cytotoxicity via PI3K/AKT pathway inhibition. These results were assured by molecular docking studies. These results support further exploratory research focusing on the therapeutic activity of coumarin derivatives as cytotoxic agents.
Collapse
|
31
|
Das G, Gonçalves S, Basilio Heredia J, Romano A, Jiménez-Ortega LA, Gutiérrez-Grijalva EP, Shin HS, Patra JK. Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
32
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Wang X, Wang T, Nepovimova E, Long M, Wu W, Kuca K. Progress on the detoxification of aflatoxin B1 using natural anti-oxidants. Food Chem Toxicol 2022; 169:113417. [PMID: 36096290 DOI: 10.1016/j.fct.2022.113417] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022]
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus fungi. The most toxic among them is Aflatoxin B1 (AFB1) which is known to have genotoxic, immunotoxic, teratogenic, carcinogenic, and mutagenic toxic effects (amongst others). The mechanisms responsible for its toxicity include the induction of oxidative stress, cytotoxicity, and DNAdamage. Studies have found that natural anti-oxidants can reduce the damage that AFB1 inflicts on the body by alleviating oxidative stress and inhibiting the biotransformation of AFB1. Therefore, this review outlines the latest progress in research on the use of natural anti-oxidants as antidotes to aflatoxin poisoning and their detoxification mechanisms. It also considers the problems that may possibly arise from their use and their application prospects. Our aim is to provide a useful reference for the prevention and treatment of AFB1 poisoning.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Tiancheng Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
34
|
Abd-Elmonsif NM, El-Zainy MA, Rabea AA, Fathy Mohamed IA. The Prospective Effect of Cinnamon and Chia on Submandibular Salivary Glands After Ciprofloxacin Administration in Albino Rats (Histological, Histochemical, and Ultrastructural Study). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-18. [PMID: 35788256 DOI: 10.1017/s1431927622012119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (CPFX®) is potent fluoroquinolone but has severe side effects. Cinnamon (CIN) and chia seeds are potent antioxidants. The current work aimed to compare the effect of CIN extract and chia seeds on CPFX®-treated submandibular salivary glands (SMGs). Thirty-two male albino rats were divided into four groups: Group 1: received saline. Group 2: received CPFX®. Group 3: received CIN extract after 4 h of CPFX® administration. Group 4: received ground chia seeds after 4 h of CPFX® administration. After 10 days, histological, histochemical, and ultrastructural examinations were done. Different examinations illustrated normal features of SMG in Groups 1 and 3. Group 2 showed degenerative signs. Group 4 showed normal features in some areas. Statistical results illustrated that Group 2 had highest mean vacuolation area%. Highest mean of PAS optical density (OD) was for Group 2. Concerning mercuric bromophenol blue stain OD; Group 1 showed highest mean OD. CPFX® has the deteriorative effect on SMG structure and ultrastructure. It leads to increased levels of glycosaminoglycans (GAGs) and decreased levels of total proteins. CIN extract showed more ameliorative effect compared to chia seeds.
Collapse
Affiliation(s)
| | | | - Amany A Rabea
- Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | | |
Collapse
|
35
|
Wu T, Huang W, He M, Yue R. Effects of cinnamon supplementation on lipid profiles among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis. Complement Ther Clin Pract 2022; 49:101625. [PMID: 35803022 DOI: 10.1016/j.ctcp.2022.101625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND PURPOSE Studies in animals and humans have reported numerous beneficial effects of cinnamon. However, its hypolipidemic efficacy in patients with metabolic syndrome (MetS) and related disorders is still controversial. This meta-analysis aimed to evaluate the lipid-regulating effects and safety of cinnamon in a population with MetS and related disorders. METHODS Studies that met the inclusion criteria were retrieved from PubMed, Embase, Cochrane Library, and Web of Science. Randomized placebo-controlled trials of cinnamon or its extracts in the treatment of MetS and related metabolic diseases were the main eligibility criteria. The Cochrane Handbook was used to guide the study selection, quality assessment, and data analysis. All statistical analyses were performed using Stata 15.0. RESULTS Twelve studies involving 773 subjects were included in the meta-analysis. The overall results showed that cinnamon could significantly reduce total cholesterol (weighted mean difference [WMD]: -0.19 mmol/L [-7.34 mg/dL]; 95% confidence interval [CI]: -0.24, -0.14 [-9.27, -5.41]), triglyceride (WMD: -0.10 mmol/L [-8.85 mg/dL]; 95% CI: -0.16, -0.04 [-14.16, -3.54]), and low-density lipoprotein cholesterol (WMD: -0.16 mmol/L [-6.18 mg/dL]; 95% CI: -0.20, -0.11 [-7.72, -4.25]). In the subgroup analysis, cinnamon did not exhibit a significant effect on lipid profiles in European and American patients. Larger doses of cinnamon tended to exhibit better regulation of lipid profiles and high-dose cinnamon (≥1.5 g/d) significantly increased high-density lipoprotein cholesterol (WMD: 0.07 mmol/L [2.70 mg/dL]; 95% CI: 0.03, 0.11 [1.16, 4.25]). CONCLUSION The current evidence shows that cinnamon can regulate lipid profiles in patients with metabolic disorders.
Collapse
Affiliation(s)
- Tingchao Wu
- Chengdu Second People's Hospital, Chengdu, China.
| | - Wenhui Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mingmin He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
36
|
Alanazi AD, Almohammed HI. Therapeutic Potential and Safety of the Cinnamomum zeylanicum Methanolic Extract Against Chronic Toxoplasma gondii Infection in Mice. Front Cell Infect Microbiol 2022; 12:900046. [PMID: 35755846 PMCID: PMC9218191 DOI: 10.3389/fcimb.2022.900046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background This experimental study determined the in vitro, in vivo, and toxicity effects of Cinnamomum zeylanicum methanolic extract (CZME) against Toxoplasma gondii infection. Methods The in vitro activity of CZME T. gondii tachyzoites was studied by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Infected mice were treated with CZME for two weeks at doses of 20, 40, and 60 mg/kg/day. Then, the therapeutic effects of CZME were evaluated by assessing the mean number and mean size of T. gondii tissue cysts, oxidant-antioxidant enzymes, pro-inflammatory cytokines, and mRNA expression levels of bradyzoite surface antigen 1 (BAG1) by real-time PCR. Results CZME significantly (p <0.001) increased the mortality rate of parasites in a dose- and time-dependent response. The mean number of intracellular tachyzoites was significantly reduced after CZME therapy. The treatment of infected mice with CZME resulted in a significant (p <0.001) downregulation of BAG1 and the level of lipid peroxidation (LPO) and nitric oxide (NO) as oxidative stress markers. However, a considerable rise (p <0.05) was found in the levels of antioxidant markers such as glutathione peroxidase (GPx), catalase enzyme (CAT), and superoxide dismutase enzyme activity (SOD). In a dose-dependent response, after treatment of infected mice with CZME, the level of pro-inflammatory cytokines of IFN-γ, IL-1β, and IL-12 was considerably elevated. CZME had no significant cytotoxicity on Vero cells, with a 50% cytotoxic concentration of 169.5 ± 5.66 μg/ml. Conclusion The findings confirmed the promising therapeutic effects of CZME on chronic toxoplasmosis in mice. Nevertheless, further investigations must confirm these results, elucidate its precise mechanisms, and examine its effectiveness in human volunteers.
Collapse
Affiliation(s)
- Abdullah D Alanazi
- Departmentof Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Hamdan I Almohammed
- Department of Basic Science, Faculty of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Shahin D. H. H, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NSA, Alshammari MK, Alshammari MN, Alsubaie FH, Asdaq SMB, Alotaibi AA, Alamir AA, Imran M, Jomah S. Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review. Curr Issues Mol Biol 2022; 44:2887-2902. [PMID: 35877423 PMCID: PMC9316237 DOI: 10.3390/cimb44070199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide. Hyperglycemia is a major factor in the onset and progression of diabetic nephropathy. Many contemporary medicines are derived from plants since they have therapeutic properties and are relatively free of adverse effects. Glycosides, alkaloids, terpenoids, and flavonoids are among the few chemical compounds found in plants that are utilized to treat diabetic nephropathy. The purpose of this review was to consolidate information on the clinical and pharmacological evidence supporting the use of a variety of medicinal plants to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Haleema Shahin D. H.
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India
- Correspondence: (R.S.); (S.M.B.A.)
| | - Juveriya Farooq
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Umaima Farheen Khaiser
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | | | | | | | - Firas Hamdan Alsubaie
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (M.N.A.); (F.H.A.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (R.S.); (S.M.B.A.)
| | - Abdulmueen A. Alotaibi
- Department of Anaesthesia Technology, College of Applied Sciences, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia;
| | - Abdulrhman ahmed Alamir
- Department of Emergency Medicine, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
38
|
The Use of Cinnamon Essential Oils in Aquaculture: Antibacterial, Anesthetic, Growth-Promoting, and Antioxidant Effects. FISHES 2022. [DOI: 10.3390/fishes7030133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cinnamon essential oils (EOs) are widely known for their pharmaceutical properties; however, studies investigating the use of these EOs in aquaculture are scarce. The aims of this study were to evaluate the anesthetic effect of bathing silver catfish (Rhamdia quelen) with Cinnamomum cassia EO (CCEO) and its nanoemulsion (NCCEO); the growth-promoting and antioxidant effects of dietary supplementation with CCEO in silver catfish; and the in vitro antibacterial effect of CCEO, NCCEO, and Cinnamomum zeylanicum EO (CZEO) against bacteria isolated from diseased silver catfish. The two cinnamon EOs showed promising antibacterial activity, which was potentiated by the nanoemulsion. CCEO showed satisfactory anesthetic activity in silver catfish, and its nanoemulsion intensified the sedative activity. Supplementation of 1.0 mL CCEO per kg of diet for 60 days increased weight, length, and weight gain when compared to the control group, evidencing the growth-promoting activity of this EO. Dietary supplementation of CCEO for 30 and 60 days also showed an antioxidant effect, as it decreased levels of thiobarbituric acid reactive species and increased the superoxide dismutase activity in the liver of silver catfish. Therefore, cinnamon EOs have a promising use in aquaculture.
Collapse
|
39
|
Ahmad R, Shaaban H, Issa SY, Alsaad A, Alghamdi M, Hamid N, Osama R, Algarni S, Mostafa A, Alqarni AM, Aldholmi M, Riaz M. ICP-MS determination of elemental abundance in traditional medicinal plants commonly used in the Kingdom of Saudi Arabia. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:129-141. [PMID: 35320694 DOI: 10.1080/19393210.2022.2053591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Medicinal plants are widely used in the Kingdom of Saudi Arabia to treat various ailments in the form of folk medicine. Forty four such medicinal plant samples were collected from local markets and evaluated for the presence of 14 elements (Mn, Cr, Co, Ni, Cu, Mo, Al, Pb, Ba, Zn, Ag, Hg, Bi, Cd). Microwave-assisted digestion with inductively coupled plasma-mass spectrometry (ICP-MS) was applied to determine the elemental composition in these medicinal plants. Widespread occurrence of these elements was observed in all plant samples, except for Bi and Co where the lowest mean values of 0.03 ± 0.04 and 0.03 ± 0.15 were observed, respectively. The descending order for mean (μg/g) elemental occurrence observed was as follows: Ba > Al > Zn > Ni > Mn > Ba > Hg > Mo > Cu > Cr > Ag > Cd > Co > Bi, whereas the range for these elements in the 44-medicinal plants was as follows: Pb > Al > Zn > Ni > Mn > Cu > Mo > Ag > Ba > Hg > Co > Cd > Cr > Bi. Pb, Hg and Cd were found beyond the maximum limits in these medicinal plants, while the remaining elements were found well within the range of maximum limits. A number of medicinal plants showed high amounts of these elements. Some plants contained more than one element, such as Foeniculum vulgare Mill (Pb, Hg, Cd), Ricinus communis (Pb, Cd), Vigna radiata (Pb, Cd) and Sesamum indicum (Pb, Hg). The data matrix was validated through the statistical tools of principal component analysis (X2 = 160.44, P = .00), Pearson's correlation (P = .01 and 0.05), and K-mean cluster analysis (F = 104.55, P = .00). The findings of the study provide baseline data for the comparative analysis of these medicinal plants, which may help select safe medicinal plants in terms of consumer-based use and its utilisation for the treatment of various ailments.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Heba Shaaban
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sahar Y Issa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Anwar Alsaad
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Majd Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Njoud Hamid
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rand Osama
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sara Algarni
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed Mostafa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Aldholmi
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal Dir Upper Khyber Pakhtun Khwa, Pakistan
| |
Collapse
|
40
|
Esmaeili F, Zahmatkeshan M, Yousefpoor Y, Alipanah H, Safari E, Osanloo M. Anti-inflammatory and anti-nociceptive effects of Cinnamon and Clove essential oils nanogels: an in vivo study. BMC Complement Med Ther 2022; 22:143. [PMID: 35596157 PMCID: PMC9123718 DOI: 10.1186/s12906-022-03619-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cinnamon (Cinnamomum zeylanicum) and Clove (Syzygium aromaticum) essential oils are two medicinally important plant-derived substances with a wide range of biological properties. Besides, nanoemulsion-based gels have been widely used to increase topical drug delivery and effectiveness. METHODS This study aimed to explore the anti-inflammatory effect (paw edema test) and the anti-nociceptive effect (hot plate and formalin test) of nanoemulsion-based gels containing the essential oils in the animal model. Cinnamon and Clove essential oils nanoemulsions with droplet sizes of 28 ± 6 nm and 12 ± 3 nm were first prepared. By adding carboxymethylcellulose (3.5% w/v), the nanoemulsions were then gelified. Finally, the nanogels were characterized by ATR-FTIR analysis and were used as topical pre-treatment before induction of inflammation or pain in acute and chronic analgesic experimental studies. RESULTS The paw edema and formalin findings showed that the nanogels formulations possess significant anti-nociceptive and anti-inflammatory effects. CONCLUSION The prepared nanogels could be considered as analgesic drugs for inhibiting the inflammation and pain of diseases.
Collapse
Affiliation(s)
- Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Yousefpoor
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ehsan Safari
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
41
|
Bukhari S, Siddique MH, Naeem A, Khan I, Ali Z, Essa A, Fazal F, Anis RA, Moran L, Sultan A, Murtaza I, Vanhara P, Anees M. Combined efficacy of Cinnamomum zeylanicum and doxorubicin against leukemia through regulation of TRAIL and NF-kappa B pathways in rat model. Mol Biol Rep 2022; 49:6495-6507. [PMID: 35579734 DOI: 10.1007/s11033-022-07478-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent discoveries in cancer therapeutics have proven combination therapies more effective than individual drugs. This study describes the efficacy of the combination of Cinnamomum zeylanicum and doxorubicin against benzene-induced leukemia. METHODS AND RESULTS Brine shrimp assay was used to assess the cytotoxicity of C. zeylanicum, doxorubicin and their combination. After AML induction in Sprague Dawley rats, the same drugs were given to rat groups. Changes in organ weight, haematological profile, and hepatic enzymes were determined. Real-time PCR was used to elucidate the effect on the expression of STMN1, GAPDH, P53 and various TRAIL and NF-kappaB components. C. zeylanicum reduced the cytotoxicity of doxorubicin. The combination treatment showed better anti-leukemic results than any of the individual drugs as evident from STMN1 expression (p < 0.001). It was particularly effective in reducing total white blood cell counts and recovering lymphocytes, monocytes and eosinophils along with hepatic enzymes ALT and AST (p < 0.001). All doses recovered relative organ weights and improved blood parameters. The combination therapy was particularly effective in inducing apoptosis, inhibition of proliferation marker GAPDH (p < 0.001) and NF-kappaB pathway components Rel-A (p < 0.001) and Rel-B (p < 0.01). Expressions of TRAIL components c-FLIP (p < 0.001), TRAIL ligand (p < 0.001) and caspase 8 (p < 0.01) were also altered. CONCLUSION Cinnamomum zeylanicum in combination with doxorubicin helps to counter benzene-induced cellular and hepatic toxicity and improves haematological profile. The anti-leukemic effects are potentially due to inhibition of GAPDH and NF-kappa B pathway, and through regulation of TRAIL pathway. Our data suggests the use of C. zeylanicum with doxorubicin to improve anti-leukemic therapeutic regimes.
Collapse
Affiliation(s)
- Sidra Bukhari
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Anum Naeem
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - InamUllah Khan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zain Ali
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Asiya Essa
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Falak Fazal
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riffat Aysha Anis
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Pakistan
| | - Lukas Moran
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aneesa Sultan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Petr Vanhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Mariam Anees
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
42
|
Man A, Mare AD, Mares M, Ruta F, Pribac M, Maier AC, Cighir A, Ciurea CN. Antifungal and anti-virulence activity of six essential oils against important Candida species - a preliminary study. Future Microbiol 2022; 17:737-753. [PMID: 35531749 DOI: 10.2217/fmb-2021-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opportunistic infections with Candida species are becoming more problematic, considering their increasing virulence and resistance to antifungal drugs. AIM To assess the antifungal and anti-virulence activity of basil, cinnamon, clove, melaleuca, oregano and thyme essential oils (EOs) on five Candida species (C. albicans, C. auris, C. krusei C. parapsilosis and C. guillermondii). METHODS The MIC, growth rate, antibiofilm activity, regulation of gene expression (ALS3, SAP2, HSP70) and germ-tube formation were evaluated by specific methods. RESULTS Most EOs inhibited Candida species growth and reduced the expression of some virulence factors. Cinnamon and clove EO showed the most significant inhibitory effects. CONCLUSIONS The tested EOs are promising agents for facilitating the management of some Candida infections.
Collapse
Affiliation(s)
- Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Anca-Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Ion Ionescu de la Brad University of Life Sciences of Iași, Iași, 700490, Romania
| | - Florina Ruta
- Department of Community Nutrition & Food Safety, George Emil Palade University of Medicine, Pharmacy, Science, & Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Mirela Pribac
- Nutrition & Holistic Health, Holomed, Târgu Mureș, 540272, Romania
| | - Adrian-Cornel Maier
- Department of Urology, "Dunarea de Jos" University of Galați, Galați, 800008, Romania
| | - Anca Cighir
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania.,Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, & Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Cristina-Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania.,Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, & Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| |
Collapse
|
43
|
Sabahi S, Abbasi A, Ali Mortazavi S. Characterization of cinnamon essential oil and its application in
Malva sylvestris
seed mucilage edible coating to the enhancement of the microbiological, physicochemical, and sensory properties of lamb meat during storage. J Appl Microbiol 2022; 133:488-502. [DOI: 10.1111/jam.15578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Sahar Sabahi
- Department of Food Science and Technology Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | - Amin Abbasi
- Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Science and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyed Ali Mortazavi
- Department of Food Science and Technology Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
44
|
Niewiadomska J, Gajek-Marecka A, Gajek J, Noszczyk-Nowak A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. BIOLOGY 2022; 11:biology11040559. [PMID: 35453758 PMCID: PMC9029039 DOI: 10.3390/biology11040559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
Metabolic syndrome (MetS) is a disease that has a complex etiology. It is defined as the co-occurrence of several pathophysiological disorders, including obesity, hyperglycemia, hypertension, and dyslipidemia. MetS is currently a severe problem in the public health care system. As its prevalence increases every year, it is now considered a global problem among adults and young populations. The treatment of choice comprises lifestyle changes based mainly on diet and physical activity. Therefore, researchers have been attempting to discover new substances that could help reduce or even reverse the symptoms when added to food. These attempts have resulted in numerous studies. Many of them have investigated the bioactive potential of polyphenols as a "possible remedy", stemming from their antioxidative and anti-inflammatory effects and properties normalizing carbohydrate and lipid metabolism. Polyphenols may be supportive in preventing or delaying the onset of MetS or its complications. Additionally, the consumption of food rich in polyphenols should be considered as a supplement for antidiabetic drugs. To ensure the relevance of the studies on polyphenols' properties, mechanisms of action, and potential human health benefits, researchers have used laboratory animals displaying pathophysiological changes specific to MetS. Polyphenols or their plant extracts were chosen according to the most advantageous mitigation of pathological changes in animal models best reflecting the components of MetS. The present paper comprises an overview of animal models of MetS, and promising polyphenolic compounds whose bioactive potential, effect on metabolic pathways, and supplementation-related benefits were analyzed based on in vivo animal models.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Doctoral School of Wroclaw, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence:
| | | | - Jacek Gajek
- Department of Emergency Medical Service, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
45
|
Keramati M, Musazadeh V, Malekahmadi M, Jamilian P, Jamilian P, Ghoreishi Z, Zarezadeh M, Ostadrahimi A. Cinnamon, an effective anti-obesity agent: Evidence from an umbrella meta-analysis. J Food Biochem 2022; 46:e14166. [PMID: 35365881 DOI: 10.1111/jfbc.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
The evidence provided by meta-analyses on the beneficial impacts of cinnamon supplementation on anthropometric indices are still conflicting. Present study's aim was to evaluate the effects of cinnamon on obesity indices by an umbrella meta-analysis. The electronic databases including Web of Science, PubMed, EMBASE, Scopus were systematically searched up to March 2021. Data for the effects of cinnamon on anthropometric indices were collected from the meta-analyses. An umbrella meta-analysis was carried out using a random-effects model. The pooled effects of 7 meta-analyses showed that cinnamon supplementation significantly reduced body weight (ES: -0.67 kg; 95% CI: -0.99, -0.35, p ˂ .001), body mass index (ES: -0.45 kg/m2 ; 95% CI: -0.57, -0.33, p ˂ .001) in comparison to control group. However, the effects of cinnamon on waist circumference (ES: -1.05 cm; 95% CI: -2.26, 0.15, p = .087) were not considerable. According to results, cinnamon could be suggested as a complementary weight loss agent. Favorable results were obtained at a dose of ≥3 g/day. In this study, a comprehensive study was performed on meta-analyses performed on the effect of cinnamon on anthropometric indices. This study could be considered as a final conclusion about the effect of cinnamon on anthropometric indices. The results of this study showed that supplementation with cinnamon significantly reduces BMI and body weight. The impacts were greater in doses of ≥3 g/day and in PCOS patients. PRACTICAL APPLICATIONS: In this study, a comprehensive study was performed on meta-analyses performed on the effect of cinnamon on anthropometric indices. This study could be considered as a final conclusion about the effect of cinnamon on anthropometric indices. The results of this study showed that supplementation with cinnamon significantly reduces BMI and body weight. The impacts were greater in doses of ≥3 g/day and in PCOS patients.
Collapse
Affiliation(s)
- Majid Keramati
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Parmida Jamilian
- School of Pharmacy and Bio Engineering, Keele University, Keele, UK
| | - Parsa Jamilian
- Keele University School of Medicine, Keele University, Keele, UK
| | - Zohre Ghoreishi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Saher T, Manzoor R, Abbas K, Mudassir J, Wazir MA, Ali E, Ahmad Siddique F, Rasul A, Qadir MI, Aleem A, Qaiser N, Usman A, Romman M, Ali MS. Analgesic and Anti-Inflammatory Properties of Two Hydrogel Formulations Comprising Polyherbal Extract. J Pain Res 2022; 15:1203-1219. [PMID: 35502403 PMCID: PMC9056049 DOI: 10.2147/jpr.s351921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tayyba Saher
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Rizwana Manzoor
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Khizar Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Correspondence: Khizar Abbas, Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan, Tel +923228832872, Email
| | - Jahanzeb Mudassir
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - M Asif Wazir
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical sciences,University of Karachi, Karachi, Pakistan
| | - Ejaz Ali
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | | | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical sciences, GC University, Faisalabad, Pakistan
| | - Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Ambreen Aleem
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Naeem Qaiser
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Adeel Usman
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical sciences,University of Karachi, Karachi, Pakistan
| | - Muhammad Romman
- Pharmacognosy Lab,Department of Botany, University of Chitral, Chitral, KPK, Pakistan
| | - Muhammad Sajid Ali
- Akson College of Pharmacy, Mirpur University of Science & Technology (MUST), Mirpur, AJ&K, Pakistan
| |
Collapse
|
47
|
Nair KR, V.S A, S.K. K, P. UD. Spices and Hypertension: An Insight for Researchers. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666211122144827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Hypertension is a global public health concern since it can lead to complications like
stroke, heart disease, and kidney failure. These complications can add to a disability, increase
healthcare costs, and can even result in mortality. In spite of the availability of a large number of
anti-hypertensive drugs, the control of blood pressure is suboptimal in many patients. Spices have
been used as flavouring agents and in treating diseases in folk medicine since they are considered
to be rich sources of phytochemicals, especially polyphenols. Hence, during recent years, there has
been renewed interest among researchers in exploring natural sources, especially spices, in an attempt
to find cheaper alternatives with fewer side effects. Our aim is to review the relevant preclinical
and clinical studies focused on the potential use of spices in the management of hypertension.
Studies conducted on the most common spices, such as celery, cinnamon, cardamom, garlic, ginger,
saffron, and turmeric, have been elaborated in this review. These spices may lower blood pressure
via several possible mechanisms, including antioxidant effect, increase in nitric oxide production,
reduction in calcium ion concentration, modulation of the renin-angiotensin pathway, etc.
Collapse
Affiliation(s)
- Kavyanjana R. Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS-Kochi - 682041,
Kerala, India
| | - Arya V.S
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS-Kochi - 682041,
Kerala, India
| | - Kanthlal S.K.
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS-Kochi - 682041,
Kerala, India
| | - Uma Devi P.
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS-Kochi - 682041,
Kerala, India
| |
Collapse
|
48
|
Antimicrobial and Cytotoxicity Activities of Medicinal Plants against Salmonella gallinarum Isolated from Chickens. Vet Med Int 2022; 2022:2294120. [PMID: 35265313 PMCID: PMC8901331 DOI: 10.1155/2022/2294120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Medicinal plants have been the good source of treatment for different ailments of humans as well as animals for centuries. However, in Tanzania, few plants were investigated for their efficacy against various diseases of chickens. In the present study, four medicinal plants were investigated against Salmonella gallinarum isolated from chickens. The minimum inhibitory concentration (MIC) using the broth microdilution methods and minimum bactericidal concentration (MBCs) were used to evaluate the activities of plants against chicken salmonellosis. For the safety of chickens against the toxicity of plants, the cytotoxicity assay was determined using a brine shrimp lethality test. Aloe secundiflora leaf ethyl acetate (ALEA), Aloe rabaiensis leaf methanolic (ArM), Aloe rabaiensis leaf ethyl acetate (ArLEA), and Punica granatum leaf ethyl acetate (PGLEA) extracts exhibited the highest MIC (0.3906 mg/mL) and MBC (3.125 mg/mL), respectively. The Dolichos kilimandscharicus tuber ethyl acetate (DTEA) and Dolichos kilimandscharicus tuber pet ether (DTPE) extracts displayed MIC of 1.563 mg/mL and 12.50 mg/mL and MBC of 12.50 mg/mL and 25.50 mg/mL, respectively. The highest LC50 values exhibited in Dolichos kilimandscharicus ranged from 7.937 × 10−4 mg/mL to 7.242 × 10−2 mg/mL for pet ether and methanolic extracts, respectively, while ALEA extract exhibited LC50 of 7.645 × 10−3 mg/mL. Generally, the extracts with MIC 0.3906 mg/mL and MBC 3.125 mg/mL demonstrated the highest antibacterial activity with low toxicity efficient to manage chicken salmonellosis. Dolichos kilimandscharicus, which exhibited higher toxicity, warrants further investigation on insecticidal and anticancer agents.
Collapse
|
49
|
Knapik JJ, Trone DW, Steelman RA, Farina EK, Lieberman HR. Adverse effects associated with use of specific dietary supplements: The US Military Dietary Supplement Use Study. Food Chem Toxicol 2022; 161:112840. [PMID: 35093428 DOI: 10.1016/j.fct.2022.112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
Dietary supplements (DSs) are used by 50% of Americans and 70% of United States military service members (SMs); some have adverse effects (AEs). This cross-sectional investigation examined AEs associated with specific DSs. A stratified random sample of SMs from the Air Force, Army, Marine Corps, and Navy was obtained. Volunteers completed a questionnaire reporting AEs for 96 generic and 62 specific DSs. The highest prevalence (≥1 AE) in specific DS categories was 35% prohormones, 33% weight loss supplements, 26% pre/post workout supplements, 14% herbal products, 12% multivitamin/multiminerals, 11% protein/amino acids, 9% muscle building supplements, 7% other DSs, 6% joint health products, and 5% individual vitamins/minerals. Specific DSs of concern (with proportion reporting AEs) included: Libido Max® (35%), Hydroxycut Hardcore® (33%), OxyElite® (33%), Roxylean® (31%), Growth Factor 9® (30%), Super HD® (29%), Hydroxycut Advanced® (29%), Lipo 6® (28%), The Ripper® (27%), Test Booster® (27%), Xenadrine Xtreme Thermogenic® (27%), C4 Extreme® (26%), and C4 Origional® (25%). Products marketed for weight loss, use before/after workout, and prohormones had the highest AE prevalence. DSs can contain substances with independent/additive AEs and/or interact with other ingredients or prescribed medications. Methods described here could provide a continuous surveillance system detecting dangerous DSs entering the market.
Collapse
Affiliation(s)
- Joseph J Knapik
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA.
| | - Daniel W Trone
- Naval Health Research Center, Building 329, Ryne Rd, San Diego, CA, 92152, USA
| | - Ryan A Steelman
- Army Public Health Center, 8252 Blackhawk Rd, Aberdeen Proving Ground, MD, 21010, USA
| | - Emily K Farina
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| | - Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| |
Collapse
|
50
|
Devan AR, Nair B, Kumar AR, Gorantla JN, T S A, Nath LR. Unravelling the Immune Modulatory Effect of Indian Spices to Impede the Transmission of COVID-19: A Promising Approach. Curr Pharm Biotechnol 2022; 23:201-220. [PMID: 33593256 DOI: 10.2174/1389201022666210216144917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Months after WHO declared COVID-19 as a Global Public Health Emergency of International Concern, it does not seem to be flattening the curve as we are still devoid of an effective treatment modality and vaccination is in the first phase in many countries. Amid such uncertainty, being immune is the best strategy to defend against corona attacks. As the whole world is referring back to immune-boosting traditional remedies, interest is rekindled in the Indian system of Medicine, which is gifted with an abundance of herbal medicines as well as remedies. Among them, spices (root, rhizome, seed, fruit, leaf, bud, and flower of various plants used to add taste and flavors to food) are bestowed with immense medicinal potential. A plethora of clinical as well as preclinical studies reported the effectiveness of various spices for various ailments. The potential immune-boosting properties together with their excellent safety profiles are making spices the current choice of phytoresearch as well as the immune-boosting home remedies during these sceptical times. The present review critically evaluates the immune impact of various Indian spices and their potential to tackle the novel coronavirus, with comments on the safety and toxicity aspects of spices.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Jaggaiah N Gorantla
- Department of Chemistry, Wayne State University, Detroit, 48201, Michigan, USA
| | - Aishwarya T S
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| |
Collapse
|