1
|
Gonzalez-Morena JM, Escudeiro-Lopes S, Ferreira-Mendes JM, Jakoube P, Cutano V, Vinaixa-Forner J, Kralova Viziova P, Hartmanova A, Sedlacek R, Machado S, Malcekova B, Keckesova Z. LACTB induces cancer cell death through the activation of the intrinsic caspase-independent pathway in breast cancer. Apoptosis 2023; 28:186-198. [PMID: 36282364 PMCID: PMC9950249 DOI: 10.1007/s10495-022-01775-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND LACTB was recently identified as a mitochondrial tumour suppressor that negatively affects cancer cell proliferation by inducing cell death and/or differentiation, depending on the cell type and tissue. However, the detailed mechanism underlying the LACTB-induced cancer cell death is largely unknown. METHODS We used cell-based, either in 2D or 3D conditions, and in vivo experiments to understand the LACTB mechanisms. In this regard, protein array followed by an enrichment analysis, cell proliferation assays using different compounds, western blot analysis, flow cytometry and immunofluorescence were performed. Differences between quantitative variables following normal distribution were valuated using Student t test for paired or no-paired samples according to the experiment. For in vivo experiments differences in tumour growth were analyzed by 2-way ANOVA. RESULTS We show, that LACTB expression leads to cell cycle arrest in G1 phase and increase of DNA oxidation that leads to activation of intrinsic caspase-independent cell death pathway. This is achieved by an increase of mitochondrial reactive oxygen species since early time points of LACTB induction. CONCLUSION Our work provides a deeper mechanistic insight into LACTB-mediated cancer-cell death and shows the dynamics of the cellular responses a particular tumor suppressive stimulus might evoke under different genetic landscapes.
Collapse
Affiliation(s)
- Juan M Gonzalez-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Escudeiro-Lopes
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Judith Vinaixa-Forner
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Kralova Viziova
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Andrea Hartmanova
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Susana Machado
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Beata Malcekova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Ruellia tuberosa Ethyl Acetate Leaf Extract Induces Apoptosis and Cell Cycle Arrest in Human Breast Cancer Cell Line, MCF-7. Sci Pharm 2022. [DOI: 10.3390/scipharm90030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ruellia tuberosa L. has been previously shown to possess antioxidant and antiproliferative activities on cancer cells but its underlying mechanisms are largely unknown. This study aimed to elucidate the mode of action underlying this inhibitory effect on MCF-7 using ethyl acetate extract obtained after liquid-liquid partition of methanol crude extract. Antiproliferative effect of R. tuberosa ethyl acetate leaf extract (RTEAL) was evaluated using MTT assay. Its ability to induce apoptosis was assessed by DNA ladder formation, JC-1, Annexin V, and methylene blue staining assays. Perturbation of cell cycle progression was determined using flow cytometry. RTEAL was found to selectively inhibit the proliferation of MCF-7 cells with the IC50 value of 28 µg/mL. Morphological changes such as nuclear fragmentation and chromatin condensation were observed although DNA laddering was undetected in agarose gel. RTEAL-induced apoptotic pathways by inhibiting the expression of anti-apoptotic BCL-2 while upregulating pro-apoptotic BAX, caspase 7 and caspase 8. RTEAL also caused cell cycle arrests at the S and G2/M phase and dysregulation of cell cycle regulators. These findings collectively demonstrate that RTEAL extract inhibited cell growth by inducing apoptosis and cell cycle arrest, suggesting its therapeutic potential against breast cancer.
Collapse
|
3
|
Mohammed MR, El-Bahkery AM, Shedid SM. The Influence of Different γ-Irradiation Patterns on Factors that May Affect Cell Cycle Progression in Male Rats. Dose Response 2022; 20:15593258221117898. [PMID: 35982824 PMCID: PMC9379971 DOI: 10.1177/15593258221117898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most studies of the biological effects of ionizing radiation have been done on a
single acute dose, while clinically and environmentally exposures occur under
chronic/repetitive conditions. It is important to study effects of different
patterns of ionizing radiation. In this study, a rat model was used to compare
the effects of repetitive and acute exposure. Groups: (I) control, (II, III)
were exposed to fractionated doses (1.5 GyX4) and (2 GyX4), respectively/24h
interval, and (IV, V) were exposed to 6 Gy and 8 Gy of whole-body gamma
irradiation, respectively. The gene expression of MAPT and tau phosphorylation
increased in all irradiated groups but the gene expression of PKN not affected.
TGFβ% increased at dose of 2 GyX4 only. In addition, the cell cycle was arrested
in S phase. Micronucleus (MN) increased and cell proliferation decreased. In
conclusion, the dose and pattern of ionizing radiation do not affect the MAPT
and PKN gene expression, but TGF-β, p-tau, MN assay and cell proliferation are
significantly affected. The dose of 2 GyX4 showed distinctive effect. Repetitive
exposure may increase TGF-β%, which causes radio-resistance and, G2/M delay.
Thus, the cell cycle could be regulated in a different manner according to the
dose and pattern of irradiation.
Collapse
|
4
|
Askar MA, El-Nashar HA, Al-Azzawi MA, Rahman SSA, Elshawi OE. Synergistic Effect of Quercetin Magnetite Nanoparticles and Targeted Radiotherapy in Treatment of Breast Cancer. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234221086728. [PMID: 35359610 PMCID: PMC8961357 DOI: 10.1177/11782234221086728] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/17/2022] [Indexed: 01/16/2023] Open
Abstract
Quercetin is a potent cancer therapeutic agent present in fruits and vegetables. The pharmaceutical uses of quercetin are limited due to many problems associated with low solubility, bioavailability, permeability, and instability. In addition, the high doses of quercetin show toxic effects in clinical and experimental studies. Therefore, a new strategy is warranted to overcome these problems without the use of toxic doses. The iron oxide nanoparticles can be used as a drug delivery system. This study aimed to prepare quercetin-conjugated magnetite nanoparticles (QMNPs) using biological simple nanoprecipitation and mediated by fungus Aspergillus oryzae. Also, we initiated in vitro and in vivo studies to determine whether QMNPs might sensitize breast cancer to radiotherapy treatment. The structural, morphological, and magnetic properties of the prepared nanoparticles were studied. The results indicated that QMNPs were spherical in shape and 40 nm in diameter. The in vitro studies showed that the incubation of MCF-7, HePG-2, and A459 cancer cells with QMNPs for 24 h effectively inhibited the growth of cancer cell lines in a concentration-dependent manner with IC50 values of 11, 77.5, and104 nmol/mL, respectively. The combination of QMNPs with irradiation (IR) potently blocked MCF-7 cancer cell proliferation and showed significant changes in the morphology of these cells as observed by bright-field inverted light microscopy. Focusing on the long-term toxicity of QMNPs (20 ml/kg), the assessment of hematological, hepatic, and renal markers indicated no toxic effect. Besides, QMNPs inhibited tumor growth and potently enhanced the lateral radiotherapy treatment in N-methyl-N-nitrosourea (MNU)-induced breast cancer in female white albino rats. These anticancer and radiosensitizing activities were ascribed to cytotoxicity, cell cycle arrest, immunomodulation, and efficiency through induction of apoptosis. In a conclusion, these observations suggest that the QMNPs combined with LRT could act as a potential targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Mostafa A Askar
- Department of Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Heba As El-Nashar
- Department of Pharmacognosy and Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mahmood A Al-Azzawi
- Department of Pathological Analysis Techniques, College of Medical & Health Technologies, Ahl Al Bayt University, Karbala, Iraq
| | - Sahar S Abdel Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Omama E Elshawi
- Department of Health and Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Zabidi NA, Ishak NA, Hamid M, Ashari SE, Mohammad Latif MA. Inhibitory evaluation of Curculigo latifolia on α-glucosidase, DPP (IV) and in vitro studies in antidiabetic with molecular docking relevance to type 2 diabetes mellitus. J Enzyme Inhib Med Chem 2021; 36:109-121. [PMID: 33249946 PMCID: PMC7717572 DOI: 10.1080/14756366.2020.1844680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The inhibition of α-glucosidase and DPP enzymes capable of effectively reducing blood glucose level in the management of type 2 diabetes. The purpose of the present study is to evaluate the inhibitory potential of α-glucosidase and DPP (IV) activity including with the 2-NBDG uptake assay and insulin secretion activities through in vitro studies. The selected of active compounds obtained from the screening of compounds by LC-MS were docked with the targeted enzyme that involved in the mechanism of T2DM. From the results, root extracts displayed a better promising outcome in α-glucosidase (IC50 2.72 ± 0.32) as compared with the fruit extracts (IC50 3.87 ± 0.32). Besides, root extracts also displayed a better activity in the inhibition of DPP (IV), enhance insulin secretion and glucose uptake activity. Molecular docking results revealing that phlorizin binds strongly with α-glucosidase, DPP (IV) and Insulin receptor (IR) enzymes with achieving the lowest binding energy value. The present work suggests several of the compounds have the potential that contribute towards inhibiting α-glucosidase and DPP (IV) and thus effective in lowering post-prandial hyperglycaemia.
Collapse
Affiliation(s)
- Nur Athirah Zabidi
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Akmal Ishak
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Molecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Efliza Ashari
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Alif Mohammad Latif
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
El-Hallouty SM, Soliman AAF, Nassrallah A, Salamatullah A, Alkaltham MS, Kamal KY, Hanafy EA, Gaballa HS, Aboul-Soud MAM. Crude Methanol Extract of Rosin Gum Exhibits Specific Cytotoxicity against Human Breast Cancer Cells via Apoptosis Induction. Anticancer Agents Med Chem 2021; 20:1028-1036. [PMID: 32324522 DOI: 10.2174/1871520620666200423074826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Rosin (Colophony) is a natural resin derived from species of the pine family Pinaceae. It has wide industrial applications including printing inks, photocopying paper, adhesives and varnishes, soap and soda. Rosin and its derivatives are employed as ingredients in various pharmaceutical products such as ointments and plasters. Rosin-based products contain allergens that may exert some occupational health problems such as asthma and contact dermatitis. OBJECTIVE Our knowledge of the pharmaceutical and medicinal properties of rosin is limited. The current study aims at investigating the cytotoxic potential of Rosin-Derived Crude Methanolic Extract (RD-CME) and elucidation of its mode-of-action against breast cancer cells (MCF-7 and MDA-MB231). METHODS Crude methanol extract was prepared from rosin. Its phenolic contents were analyzed by Reversed- Phase High-Performance Liquid Chromatography (RP-HPLC). Antioxidant activity was evaluated by DPPH radical-scavenging assay. Antiproliferation activity against MCF-7 and MDA-MB231 cancerous cells was investigated by MTT assay; its potency compared with doxorubicin as positive control and specificity were assessed compared to two non-cancerous cell lines (BJ-1 and MCF-12F). Selected apoptosis protein markers were assayed by western blotting. Cell cycle analysis was performed by Annexin V-FITC/PI FACS assay. RESULTS RD-CME exhibited significant and selective cytotoxicity against the two tested breast cancer cells (MCF-7 and MDA-MB231) compared to normal cells as revealed by MTT assay. ELISA and western blotting indicated that the observed antiproliferative activity of RD-CME is mediated via the engagement of an intrinsic apoptosis signaling pathway, as judged by enhanced expression of key pro-apoptotic protein markers (p53, Bax and Casp 3) relative to vehicle solvent-treated MCF-7 control cells. CONCLUSION To our knowledge, this is the first report to investigate the medicinal anticancer and antioxidant potential of crude methanolic extract derived from colophony rosin. We provided evidence that RD-CME exhibits strong antioxidant and anticancer effects. The observed cytotoxic activity against MCF-7 is proposed to take place via G2/M cell cycle arrest and apoptosis. Colophony resin has a great potential to join the arsenal of plantderived natural anticancer drugs. Further thorough investigation of the potential cytotoxicity of RD-CME against various cancerous cell lines is required to assess the spectrum and potency of its novel activity.
Collapse
Affiliation(s)
- Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Ahmed A F Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Amr Nassrallah
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| | - Ahmad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Mohammed S Alkaltham
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Khaled Y Kamal
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Sharqia, 44511, Egypt
| | - Eman A Hanafy
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| | - Hanan S Gaballa
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| | - Mourad A M Aboul-Soud
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| |
Collapse
|
7
|
MST2 silencing induces apoptosis and inhibits tumor growth for estrogen receptor alpha-positive MCF-7 breast cancer. Toxicol Appl Pharmacol 2020; 408:115257. [PMID: 33007383 DOI: 10.1016/j.taap.2020.115257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022]
Abstract
Mammalian sterile 20-like kinase 1/2 (MST1/2) plays an important role in cell growth and apoptosis and functions as a tumor suppressor. Previously, we showed that MST2 overexpression activates Estrogen receptor alpha (ERα) in human breast cancer MCF-7 cells in the absence of a ligand. Here, we examined the role of MST2 in the growth of ER-positive MCF-7 cells. Cell cycle, apoptosis, and mammosphere formation assay method were implemented to detect the biological effects of MST2 ablation on the growth of MCF-7 cells in vitro. The effect of MST2-siRNA on MCF-7 cells tumor growth in vivo was studied in tumor-bearing mouse model. Kaplan-Meier plotter analysis was used to determine the effect of MST2 on overall survival in breast cancer patients. MST2 overexpression increased cell viability marginally. The ablation of MST2 using siRNA dramatically suppressed the viability of the MCF-7 cells, but not ER-negative MDA-MB-231 breast cancer cells. Furthermore, MST2 knockdown increased caspase-dependent apoptosis and led to decreased mammosphere formation. Treatment of MCF-7 tumor-bearing mice with MST2 siRNA significantly inhibited tumor growth. The tumor weight was reduced further when tamoxifen was added. Patients with ER-positive breast cancer with low MST2 expression had better overall survival than did those with high MST2 expression in Kaplan-Meier survival analyses using public datasets. Our results provide new insight into the role of MST2, a key component of the Hippo signaling pathway, in mediating breast cancer progression.
Collapse
|
8
|
Erden Y. Capsanthin Stimulates the Mitochondrial Apoptosis-Mediated Cell Death, following DNA Damage in MCF-7 Cells. Nutr Cancer 2020; 73:662-670. [PMID: 32933334 DOI: 10.1080/01635581.2020.1819347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carotenoids found in fruits and vegetables are compounds with significant biological activities. Epidemiological studies report that these compounds have significant anticancer effects, as well reducing the risk of cancer. In the present study, we aimed to determine the effects of capsanthin, an important carotenoid of paprika, on expressions of proteins playing roles in the mitochondrial apoptosis pathway, in addition to its possible cytotoxic and genotoxic effects in MCF-7 cells. Furthermore, possible oxidant/anti-oxidant roles of capsanthin on MCF-7 cells were investigated. The viability of MCF-7 cells was significantly decreased after 24 h of capsanthin application. After Comet analysis, it was determined that the capsanthin caused DNA damage on a dose-dependent manner. Furthermore, Western blot analysis showed that capsanthin application increased p53 and Bax protein expressions and caused a decrease in Bcl-2 protein level. Capsanthin treatment decreased catalase and glutathione levels but increased lipid peroxidation. These results show that the capsanthin causes oxidative stress and DNA damage, and increases mitochondrial apoptotic mechanism-mediated cell death after p53 and Bax protein activations.
Collapse
Affiliation(s)
- Yavuz Erden
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey
| |
Collapse
|
9
|
El Tawiil GA, Noaman EA, Askar MA, El Fatih NM, Mohamed HE. Anticancer and Apoptogenic Effect of Graviola and Low-Dose Radiation in Tumor Xenograft in Mice. Integr Cancer Ther 2020; 19:1534735419900930. [PMID: 32493124 PMCID: PMC7273578 DOI: 10.1177/1534735419900930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Annona muricata (graviola) has been claimed for its potential against various diseases including cancer. Objective: The present study aimed to investigate the anticancer effect of graviola extract on Ehrlich solid tumor (EST) mice along with or without a low dose of γ radiation (LDR). Methods: Mice were treated with graviola 50 mg/kg body weight orally for 30 days after EST induction and exposed to γ-ray (2 Gy/week for 3 weeks). Cell cycle, CD44, TGF-β, Bcl-2, and annexin V were determined in tumor tissue. Results: The result obtained showed a significant decrease (P < .05) of tumor size in 28 graviola-treated EST-bearing mice group (EG) or graviola-treated and irradiated EST-30-bearing mice (EGR) groups versus the EST group. The large number of cells in the sub-G0/G1 population and low cell number at S and M phases signify tumor cell apoptosis and inhibition of cell division in EG or EGR groups. Additionally, significant increases in the expression of CD44 and TGF-β were recorded in EST mice as compared with EG or EGR mice. Furthermore, EST mice exhibited a decrease in the apoptotic marker annexin v and increase in antiapoptotic Bcl-2 compared with EG and EGR mice. Conclusion: It could be suggested that graviola exerts its antitumor effect throughout the regulation of the tumor cell cycle as well as inducing apoptotic signals. The combined treatment of graviola and LDR augments their effect on tumor proliferation.
Collapse
|
10
|
Si L, Fu J, Liu W, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Onodera S, Ikejima T. Silibinin-induced mitochondria fission leads to mitophagy, which attenuates silibinin-induced apoptosis in MCF-7 and MDA-MB-231 cells. Arch Biochem Biophys 2020; 685:108284. [PMID: 32014401 DOI: 10.1016/j.abb.2020.108284] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
We reported previously that higher doses (150-250 μM) of silibinin enhanced fission and inhibited fusion of mitochondria, accompanying apoptosis of double-positive breast cancer cell line MCF-7 cells and triple-negative breast cancer cell line MDA-MB-231 cells. We report here three important questions yet unclarified in the previous study; 1) Whether enhanced fission of mitochondria by the treatment of silibinin leads to mitophagy, 2) Whether mitophagy positively contributes to apoptosis and 3) Whether estrogen receptor-positive (ER+) MCF-7 cells and estrogen receptor-negative (ER-) MDA-MB-231 cells are affected in a different way by silibinin treatment, since silibinin often works through ERs signaling pathway. Mitophagy driven by Pink1/Parkin signaling, plays an important role in eliminating damaged mitochondria. Indeed, increased expression of Pink1 and the recruitment of Parkin and LC3-II to mitochondria by the treatment with silibinin account for silibinin induction of mitophagy. In this study, the effects of mitochondrial division inhibitor 1 (mdivi-1) and small interfering RNA targeting dynamin-related protein 1 (DRP1) were examined to reveal the effect of mitochondrial fission on mitophagy. As expected, mdivi-1 or siRNA targeting DRP1 reversed silibinin-induced mitochondrial fission due to down-regulation in the expression of DRP1. Inhibition of mitochondrial fission by mdivi-1 prevented induction of mitophagy as well as autophagy in both MCF-7 and MDA-MB-231 cells, indicating that silibinin-induced mitochondrial fission leads to mitophagy. Inhibition of mitochondrial fission efficiently prevented silibinin-induced apoptosis in MCF-7 and MDA-MB-231 cells in our previous work, and the second point of the present study, inhibition of mitophagy by Pink1 or Parkin knockdown increased silibinin-induced apoptosis of these cells, respectively, suggesting that the mitophagy induced by silibinin treatment serves as a cytoprotective effect, resulting in reduction of apoptosis of cancer cells in both cells. In the third point, we studied whether estrogen receptors (ERs) played a role in silibinin-induced mitophagy and apoptosis in MCF-7 and MDA-MB-231 cells. ERα and ERβ are not involved in silibinin-induced mitophagic process in MCF-7 and MDA-MB-231 cells. These findings demonstrated that silibinin induced mitochondria fission leads to mitophagy, which attenuates silibinin-induced apoptosis not through ERs-Pink1 or -Parkin pathway in MCF-7 and MDA-MB-231.
Collapse
Affiliation(s)
- Lingling Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Jianing Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Satoshi Onodera
- Medical Research Institute of Curing Mibyo, 1-6-28 Narusedai Machida Tokyo, 194-0042, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China.
| |
Collapse
|
11
|
Hwang SM, Lee HJ, Jung JH, Sim DY, Hwang J, Park JE, Shim BS, Kim SH. Inhibition of Wnt3a/FOXM1/β-Catenin Axis and Activation of GSK3β and Caspases are Critically Involved in Apoptotic Effect of Moracin D in Breast Cancers. Int J Mol Sci 2018; 19:ijms19092681. [PMID: 30201862 PMCID: PMC6164368 DOI: 10.3390/ijms19092681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Although Moracin D derived from Morus alba was known to have anti-inflammatory and antioxidant activities, the underlying antitumor mechanism of Moracin D has not been unveiled thus far. Thus, in the recent study, the apoptotic mechanism of Moracin D was elucidated in breast cancer cells. Herein, Moracin D exerted significant cytotoxicity in MDA-MB-231 and MCF-7 cells. Furthermore, Moracin D increased sub G1 population; cleaved poly (Adenosine diphosphate (ADP-ribose)) polymerase (PARP); activated cysteine aspartyl-specific protease 3 (caspase 3); and attenuated the expression of c-Myc, cyclin D1, B-cell lymphoma 2 (Bcl-2), and X-linked inhibitor of apoptosis protein (XIAP) in MDA-MB231 cells. Of note, Moracin D reduced expression of Forkhead box M1 (FOXM1), β-catenin, Wnt3a, and upregulated glycogen synthase kinase 3 beta (GSK3β) on Tyr216 along with disturbed binding of FOXM1 with β-catenin in MDA-MB-231 cells. Conversely, GSK3β inhibitor SB216763 reversed the apoptotic ability of Moracin D to reduce expression of FOXM1, β-catenin, pro-caspase3, and pro-PARP in MDA-MB-231 cells. Overall, these findings provide novel insight that Moracin D inhibits proliferation and induces apoptosis via suppression of Wnt3a/FOXM1/β-catenin signaling and activation of caspases and GSK3β.
Collapse
Affiliation(s)
- Sung Min Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Jisung Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
12
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
13
|
Reverse cycle S-G2 phase disproportionation theory: Supplementary and reference to “the in vitro anticancer assessments of Annona muricata fractions and in vitro antioxidant profile of fractions and isolated acetogenin (15-acetyl guanacone)”. JOURNAL OF CANCER RESEARCH AND PRACTICE 2018. [DOI: 10.1016/j.jcrpr.2018.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Ong YS, Saiful Yazan L, Ng WK, Abdullah R, Mustapha NM, Sapuan S, Foo JB, Tor YS, How CW, Abd Rahman N, Zakarial Ansar FH. Thymoquinone loaded in nanostructured lipid carrier showed enhanced anticancer activity in 4T1 tumor-bearing mice. Nanomedicine (Lond) 2018; 13:1567-1582. [DOI: 10.2217/nnm-2017-0322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice. Material & methods: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice. Results & conclusion: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Yong Sze Ong
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wei Keat Ng
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Noordin M Mustapha
- Department of Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Sarah Sapuan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chee Wun How
- Department of Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Napsiah Abd Rahman
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fatin Hannani Zakarial Ansar
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Asadi-Samani M, Rafieian-Kopaei M, Lorigooini Z, Shirzad H. A screening of growth inhibitory activity of Iranian medicinal plants on prostate cancer cell lines. Biomedicine (Taipei) 2018; 8:8. [PMID: 29806586 PMCID: PMC5992925 DOI: 10.1051/bmdcn/2018080208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prostate cancer has been known as one of the most common malignancy in the men and it is therefore very important to prevent and treat this cancer. In this study, the anticancer effects of 20 species of medicinal plants in Iran, especially those grown in Chaharmahal and Bakhtiari province, were investigated on prostate cancer cell lines to identify potential natural alternatives for the development of prostate cancer anticancer drugs. METHODS The plants were gathered from Chaharmahal va Bakhtyari and their aerial parts extracted through maceration method using ethanol 70%. Anti-proliferative activity of extracts on PC-3, DU145 and HDF cell lines was evaluated by MTT assay 48 hours after treatment. RESULTS Euphorbia szovitsii Fisch. & C.A.Mey. and Achillea wilhelmsii had anti-proliferative activity more than other plants on PC-3. Also IC50s for Urtica dioica, Euphorbia szovitsii Fisch. & C.A.Mey. and Medicago sativa were lower amount among the examined plants on Du-145. CONCLUSION According to our result, Euphorbia szovitsii Fisch. & C.A.Mey., U. dioica and Medicago sativa with good anti-proliferative activity can serve as an effective source of natural products to develop new antiprostate cancer drugs.
Collapse
Affiliation(s)
- Majid Asadi-Samani
- Student Research Committee, Shahrekord University of Medical Sciences Shahrekord Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences Shahrekord Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences Shahrekord Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
16
|
Ooi DJ, Azmi NH, Imam MU, Alitheen NB, Ismail M. Curculigoside and polyphenol-rich ethyl acetate fraction of Molineria latifolia rhizome improved glucose uptake via potential mTOR/AKT activated GLUT4 translocation. J Food Drug Anal 2018; 26:1253-1264. [PMID: 30249324 PMCID: PMC9298560 DOI: 10.1016/j.jfda.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 02/08/2023] Open
Abstract
Adipose tissue is one of the major organs responsible for rapid restoration of postprandial glucose fluxes. Being the major isoform of glucose transporter in adipose tissue, regulations of insulin-dependent GLUT4 trafficking have always been of research interest. The present study aimed to examine the molecular mechanisms underlying the efficacy of curculigoside and polyphenol-rich ethyl acetate fraction (EAF) of Molineria latifolia rhizome in triggering glucose uptake. We assessed the adipogenic potential and glucose uptake stimulatory activity of curculigoside and EAF by employing a murine 3T3-L1 adipocyte model. The transcriptional and translational expressions of selected intermediates in the insulin signalling pathway were evaluated. While curculigoside neither promoted adipogenesis nor activated peroxisome proliferator activated receptor gamma, treatment with polyphenol-rich EAF resulted otherwise. However, both treatments enhanced insulin-stimulated uptake of glucose. This was coupled with increased availability of GLUT4 at the plasma membrane of the differentiated adipocytes although the total GLUT4 protein level was unaffected. In addition, the treatment increased the phosphorylation of both AKT and mTOR, which have been reported to be associated with GLUT4 translocation. The present findings proposed that curculigoside and EAF increased glucose transport activity of 3T3-L1 adipocytes via GLUT4 translocation as a result of potential mTOR/AKT activation. The more potent efficacy observed with EAF suggested potential synergistic and multi-targeted action.
Collapse
Affiliation(s)
- Der Jiun Ooi
- Nutri-Cosmeceuticals, Nutrigenomics & Nanodelivery Programme, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Hanisah Azmi
- Nutri-Cosmeceuticals, Nutrigenomics & Nanodelivery Programme, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mustapha Umar Imam
- Nutri-Cosmeceuticals, Nutrigenomics & Nanodelivery Programme, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maznah Ismail
- Nutri-Cosmeceuticals, Nutrigenomics & Nanodelivery Programme, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, Mohamad R. Eco-Friendly Formulated Zinc Oxide Nanoparticles: Induction of Cell Cycle Arrest and Apoptosis in the MCF-7 Cancer Cell Line. Genes (Basel) 2017; 8:genes8100281. [PMID: 29053567 PMCID: PMC5664131 DOI: 10.3390/genes8100281] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/24/2017] [Accepted: 10/06/2017] [Indexed: 11/19/2022] Open
Abstract
Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC50) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G1 phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC25, 98.91% at IC50, and 99.44% at IC75. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53, p21, Bax, and JNK were upregulated, whereas anti-apoptotic genes Bcl-2, AKT1, and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.
Collapse
Affiliation(s)
- Amin Boroumand Moghaddam
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Young Research and Elite Club, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran.
| | - Mona Moniri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Young Research and Elite Club, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran.
| | - Susan Azizi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Arbakariya Bin Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohammad Navaderi
- Young Research and Elite Club, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Zhao JX, Zhang QS, Chen Y, Yao SJ, Yan YX, Wang Y, Zhang JX, Wang LA. Iso-suillin from Suillus flavus Induces Apoptosis in Human Small Cell Lung Cancer H446 Cell Line. Chin Med J (Engl) 2017; 129:1215-23. [PMID: 27174331 PMCID: PMC4878168 DOI: 10.4103/0366-6999.181961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: The suillin isoform iso-suillin is a natural substance isolated from a petroleum ether extract of the fruiting bodies of the mushroom Suillus flavus. Previous studies have found its inhibition effect on some cancer cells, and we aimed to study its effects on human small cell lung cancer H446 cell line. Methods: Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cellular morphological changes (apoptosis and necrosis) were evaluated using an electron microscope and Hoechst 33258 staining detected by the inverted microscope. Flow cytometry was used to detect cell apoptosis, cell cycle distribution, and mitochondrial membrane potential. Protein expression was determined by Western blotting analysis. Results: Here, we describe the ability of iso-suillin to inhibit the growth of H446 cells in time- and dose-dependent way. Iso-suillin had no obvious impact on normal human lymphocyte proliferation at low concentrations (9.09, 18.17, or 36.35 μmol/L) but promoted lymphocyte proliferation at a high concentration (72.70 μmol/L). After treatment of different concentrations of iso-suillin (6.82, 13.63, or 20.45 μmol/L), the apoptosis rate of H446 cells increased with increasing concentrations of iso-suillin (16.70%, 35.54%, and 49.20%, respectively, all P < 0.05 compared with the control), and the expression of related apoptotic proteins in the mitochondrial pathway including cytochrome c and caspase-9 were up-regulated compared with the control (all P < 0.05). On the contrary, Bcl-2/Bax ratio was down-regulated compared with the control. Besides, the expression of pro-apoptotic proteins in the death receptor apoptosis pathway, including Fas-associating protein with a novel death domain and caspase-8, and the expression of caspase-3, a downstream regulatory protein of apoptosis, were also increased compared with the control (all P < 0.05). Inhibitors of caspase-9 and caspase-8 reversed the apoptosis process in H446 cells to varying degrees. Conclusions: These results suggest that iso-suillin could induce H446 cell apoptosis through the mitochondrial pathway and the death-receptor pathway. Therefore, iso-suillin might have a potential application as a novel drug for lung cancer treatment.
Collapse
Affiliation(s)
- Jun-Xia Zhao
- Department of Cell Biology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qing-Shuang Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ying Chen
- Department of Bioengineering, College of Biology Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei 050061, China
| | - Sheng-Jie Yao
- Department of Cell Biology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yong-Xin Yan
- Department of Cell Biology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jin-Xiu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Li-An Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
19
|
Sabandar CW, Jalil J, Ahmat N, Aladdin NA. Medicinal uses, chemistry and pharmacology of Dillenia species (Dilleniaceae). PHYTOCHEMISTRY 2017; 134:6-25. [PMID: 27889244 DOI: 10.1016/j.phytochem.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/12/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
The genus Dillenia is comprised of about 100 species of evergreen and deciduous trees or shrubs of disjunct distribution in the seasonal tropics of Madagascar through South and South East Asia, Malaysia, North Australia, and Fiji. Species from this genus have been widely used in medicinal folklore to treat cancers, wounds, jaundice, fever, cough, diabetes mellitus, and diarrhea as well as hair tonics. The plants of the genus also produce edible fruits and are cultivated as ornamental plants. Flavonoids, triterpenoids, and miscellaneous compounds have been identified in the genus. Their extracts and pure compounds have been reported for their antimicrobial, anti-inflammatory, cytotoxic, antidiabetes, antioxidant, antidiarrheal, and antiprotozoal activities. Mucilage from their fruits is used in drug formulations.
Collapse
Affiliation(s)
- Carla W Sabandar
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Norizan Ahmat
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Nor-Ashila Aladdin
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Rahman NA, Yazan LS, Wibowo A, Ahmat N, Foo JB, Tor YS, Yeap SK, Razali ZA, Ong YS, Fakurazi S. Induction of apoptosis and G2/M arrest by ampelopsin E from Dryobalanops towards triple negative breast cancer cells, MDA-MB-231. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:354. [PMID: 27609190 PMCID: PMC5017001 DOI: 10.1186/s12906-016-1328-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/26/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several compounds isolated from Dryobalanops have been reported to exhibit cytotoxic effects to several cancer cell lines. This study investigated the cytotoxic effects, cell cycle arrest and mode of cell death in ampelopsin E-treated triple negative cells, MDA-MB-231. METHODS Cytotoxicity of ampelopsin E, ampelopsin F, flexuosol A, laevifonol, Malaysianol A, Malaysianol D and nepalensinol E isolated from Dryobalanops towards human colon cancer HT-29, breast cancer MDA-MB-231 and MCF-7, alveolar carcinoma HeLa and mouse embryonic fibroblast NIH/3 T3 cells were determined by MTT assay. The cells were treated with the compounds (0.94-30 μM) for 72 h. The mode of cell death was evaluated by using an inverted light microscope and annexin V/PI analysis. Cell cycle analysis was performed by using a flow cytometer. RESULTS Data showed that ampelopsin E was most cytotoxic toward MDA-MB-231 with the IC50 (50 % inhibition of cell viability compared to control) of 14.5 ± 0.71 μM at 72 h. Cell shrinkage, membrane blebbing and formation apoptotic bodies characteristic of apoptosis were observed following treatment with ampelopsin E. The annexin V/PI flow cytometric analysis further confirmed that ampelopsin E induced apoptosis in MDA-MB-231 cells. Cell cycle analysis revealed that ampelopsin E induced G2/M phase cell cycle arrest in the cells. CONCLUSION Ampelopsin E induced apoptosis and cell cycle arrest in MDA-MB-231 cells. Therefore, ampelopsin E has the potential to be developed into an anticancer agent for treatment of triple negative breast cancer.
Collapse
|
21
|
Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, Armania N, Cheah YK, Abdullah R. Dillenia suffruticosa dichloromethane root extract induced apoptosis towards MDA-MB-231 triple-negative breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:195-204. [PMID: 27131434 DOI: 10.1016/j.jep.2016.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dillenia suffruticosa is traditionally used for treatment of cancerous growth including breast cancer in Malaysia. AIM OF THE STUDY Dillenia suffruticosa is a well-known medicinal plant in Malaysia for the treatment of cancer. Nevertheless, no study has been reported the cytotoxicity of this plant towards MDA-MB-231 triple-negative breast cancer cells. The present study was designed to investigate the mode of cell death and signalling pathways of MDA-MB-231 cells treated with dichloromethane Dillenia suffruticosa root extract (DCM-DS). METHODS Extraction of Dillenia suffruticosa root was performed by the use of sequential solvent procedure. The cytotoxicity of DCM-DS was determined by using MTT assay. The mode of cell death was evaluated by using an inverted light microscope and flow cytometry analysis using Annexin-V/PI. Cell cycle analysis and measurement of reactive oxygen species level were performed by using flow cytometry. The cells were treated with DCM-DS and antioxidants α-tocopherol or ascorbic acid to evaluate the involvement of ROS in the cytotoxicity of DCM-DS. Effect of DCM-DS on the expression of antioxidant, apoptotic, growth, survival genes and proteins were analysed by using GeXP-based multiplex system and Western blot, respectively. The cytotoxicity of compounds isolated from DCM-DS was evaluated towards MDA-MB-231 cells using MTT assay. RESULTS DCM-DS induced apoptosis, G2/M phase cell cycle arrest and oxidative stress in MDA-MB-231 cells. The induction of apoptosis in MDA-MB-231 cells by DCM-DS is possibly due to the activation of pro-apoptotic JNK1 and down-regulation of anti-apoptotic ERK1, which in turn down-regulates anti-apoptotic BCL-2 to increase the BAX/BCL-2 ratio to initiate the mitochondrial apoptotic pathway. The cell cycle arrest in DCM-DS-treated MDA-MB-231 cells is possibly via p53-independent but p21-dependent pathway. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM-DS. CONCLUSION The data suggest the potential application of DCM-DS in the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Agustono Wibowo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norsharina Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurdin Armania
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
22
|
Ooi DJ, Chan KW, Sarega N, Alitheen NB, Ithnin H, Ismail M. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent. Molecules 2016; 21:molecules21060682. [PMID: 27322226 PMCID: PMC6273251 DOI: 10.3390/molecules21060682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.
Collapse
Affiliation(s)
- Der Jiun Ooi
- Nutri-Cosmeceuticals, Nutrigenomics & Nanodelivery Programme, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| | - Kim Wei Chan
- Nutri-Cosmeceuticals, Nutrigenomics & Nanodelivery Programme, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| | - Nadarajan Sarega
- Nutri-Cosmeceuticals, Nutrigenomics & Nanodelivery Programme, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| | - Hairuszah Ithnin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| | - Maznah Ismail
- Nutri-Cosmeceuticals, Nutrigenomics & Nanodelivery Programme, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| |
Collapse
|
23
|
Nakamura T, Son A, Umehara Y, Ito T, Kurihara R, Ikemura Y, Tanabe K. Confined Singlet Oxygen in Mesoporous Silica Nanoparticles: Selective Photochemical Oxidation of Small Molecules in Living Cells. Bioconjug Chem 2016; 27:1058-66. [DOI: 10.1021/acs.bioconjchem.6b00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Takuma Nakamura
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Aoi Son
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yui Umehara
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takeo Ito
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ryohsuke Kurihara
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Yuta Ikemura
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Kazuhito Tanabe
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| |
Collapse
|
24
|
Wan Nor Hafiza WAG, Yazan LS, Tor YS, Foo JB, Armania N, Rahman HS. Endoplasmic reticulum stress-induced apoptotic pathway and mitochondrial dysregulation in HeLa cells treated with dichloromethane extract of Dillenia suffruticosa. Pharmacogn Mag 2016; 12:S86-95. [PMID: 27041866 PMCID: PMC4792007 DOI: 10.4103/0973-1296.176107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/18/2014] [Indexed: 01/21/2023] Open
Abstract
Ethyl acetate and dichloromethane extract of Dillenia suffruticosa (EADS and DCMDS, respectively) can be a potential anticancer agent. The effects of EADS and DCMDS on the growth of HeLa cervical cancer cells and the expression of apoptotic-related proteins had been investigated in vitro. Cytotoxicity of the extracts toward the cells was determined by 5-diphenyltetrazolium bromide assay, the effects on cell cycle progression and the mode of cell death were analyzed by flow cytometry technique, while the effects on apoptotic-related genes and proteins were evaluated by quantitative real-time polymerase chain reaction, and Western blot and enzyme-linked immunosorbent assay, respectively. Treatment with DCMDS inhibited (P < 0.05) proliferation and induced apoptosis in HeLa cells. The expression of cyclin B1 was downregulated that led to G2/M arrest in the cells after treatment with DCMDA. In summary, DCMDS induced apoptosis in HeLa cells via endoplasmic reticulum stress-induced apoptotic pathway and dysregulation of mitochondria. The data suggest the potential application of DCMDS in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Wan Abd Ghani Wan Nor Hafiza
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; College of Medical Laboratory Technology, Institute for Medical Research, Jin Pahang, 50588 Kuala Lumpur, Malaysia
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurdin Armania
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Microbiology and Pathology, Faculty of Veterinary Medicine, 43400 UPM Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
25
|
Hu L, Lin X, Nie F, ZexiaoYang, Yao X, Li G, Wu X, Ren M, Wang Y. Simultaneous typing of seven porcine pathogens by multiplex PCR with a GeXP analyser. J Virol Methods 2015; 232:21-8. [PMID: 26706731 DOI: 10.1016/j.jviromet.2015.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
Abstract
A novel high-throughput method was developed for simultaneous detection and differentiation of seven porcine pathogens by multiplex PCR based on a GenomeLab Gene Expression Profiler (GeXP) analyser. The pathogens included in this study were pseudorabies virus (PRV), classical swine fever virus (CSFV), African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), porcine circovirus type 2 (PCV-2) and Japanese encephalitis virus (JEV). Seven pairs of chimeric primers, consisting of a pathogen-specific sequence fused to a universal sequence at the 5' end, were used to initiate the PCR, after which a set of universal primers was used for the subsequent cycles of the PCR. Amplification products were separated by capillary electrophoresis and identified using fluorescence spectrophotometry. The specificity of the GeXP assay was examined with single and mixed pathogen cDNA/DNA templates. The specific DNA product amplification peaks of seven pathogens were observed on the GeXP analyser. Negative controls did not produce DNA products. The sensitivity was evaluated by performing the assay on serial 10-fold dilutions of the plasmids containing the target sequence. Under optimised conditions this assay achieved a sensitivity of 100-1000 copies/μL for a single virus and 1000 copies/μL when all of the seven pre-mixed viral targets were present. Furthermore, the GeXP-PCR assay was 100% specific when 58 clinical samples were tested in comparison with the conventional PCR method. In conclusion, the GeXP assay is a rapid, cost-effective, sensitive, specific and high throughput method for simultaneously detecting seven pathogens that infect swine.
Collapse
Affiliation(s)
- Ling Hu
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Zigong Center for Animal Disease Control and Prevention, Zigong 643000, Sichuan, China
| | - Xingyu Lin
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Fuping Nie
- Chongqing Entry-Exit Inspection and Quarantine Bureau of China, Chongqing 400020, China; Chongqing Import and Export Food Safety Engineering Center, Chongqing 400020, China
| | - ZexiaoYang
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xueping Yao
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guili Li
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xulong Wu
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Meishen Ren
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yin Wang
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611100, Sichuan, China.
| |
Collapse
|
26
|
Radovanovic A. Evaluation Of Potential Cytotoxic Effects Of Herbal Extracts. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2015. [DOI: 10.1515/sjecr-2015-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Herbal medicines have played an important role in treating different diseases since ancient times. Bioactive components of medicinal plants are a good starting point for discovering new drugs such as chemotherapeutics. Currently, there are four classes of plant-derived chemotherapeutic drugs used in clinical practice. However, to discover new potential cytotoxic molecules, the research effort on herbal extracts has not diminished. The aim of this review was to evaluate the chemical constituents of plants that possess cytotoxicity, the signalling pathways responsible for this effect, and the influence of solvent polarity on potential cytotoxic effect and to present the cytotoxic activity of selected herbal extracts. The polyphenolic, anthraquinon, diterpneoid, triterpenoid, flavonoid, betulinic acid and berberine content contributes to cytotoxicity of herbal extracts. The inhibitory effect on cancer cells viability could be a consequence of the non-apoptotic processes, such as cell cycle arrestment, and the apoptotic process in tumour cells through different signalling pathways. The influence of solvent polarity on potential cytotoxic effect of herbal extracts should not be ignored. In general, the best cytotoxic activity was found in nonpolar and moderately polar herbal extracts. The herbal extract with IC50 below 30 μg/ml could be considered a very strong cytotoxic agent. Considering that many antitumor drugs have been discovered from natural products, further research on plants and plant-derived chemicals may result in the discovery of potent anticancer agents.
Collapse
|
27
|
Yazan LS, Ong YS, Zaaba NE, Ali RM, Foo JB, Tor YS. Anti-breast cancer properties and toxicity of Dillenia suffruticosa root aqueous extract in BALB/c mice. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Tor YS, Yazan LS, Foo JB, Wibowo A, Ismail N, Cheah YK, Abdullah R, Ismail M, Ismail IS, Yeap SK. Induction of Apoptosis in MCF-7 Cells via Oxidative Stress Generation, Mitochondria-Dependent and Caspase-Independent Pathway by Ethyl Acetate Extract of Dillenia suffruticosa and Its Chemical Profile. PLoS One 2015; 10:e0127441. [PMID: 26047480 PMCID: PMC4457850 DOI: 10.1371/journal.pone.0127441] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/14/2015] [Indexed: 01/10/2023] Open
Abstract
Dillenia suffruticosa, which is locally known as Simpoh air, has been traditionally used to treat cancerous growth. The ethyl acetate extract of D. suffruticosa (EADs) has been shown to induce apoptosis in MCF-7 breast cancer cells in our previous study. The present study aimed to elucidate the molecular mechanisms involved in EADs-induced apoptosis and to identify the major compounds in the extract. EADs was found to promote oxidative stress in MCF-7 cells that led to cell death because the pre-treatment with antioxidants α-tocopherol and ascorbic acid significantly reduced the cytotoxicity of the extract (P<0.05). DCFH-DA assay revealed that treatment with EADs attenuated the generation of intracellular ROS. Apoptosis induced by EADs was not inhibited by the use of caspase-inhibitor Z-VAD-FMK, suggesting that the cell death is caspase-independent. The use of JC-1 dye reflected that EADs caused disruption in the mitochondrial membrane potential. The related molecular pathways involved in EADs-induced apoptosis were determined by GeXP multiplex system and Western blot analysis. EADs is postulated to induce cell cycle arrest that is p53- and p21-dependent based on the upregulated expression of p53 and p21 (P<0.05). The expression of Bax was upregulated with downregulation of Bcl-2 following treatment with EADs. The elevated Bax/Bcl-2 ratio and the depolarization of mitochondrial membrane potential suggest that EADs-induced apoptosis is mitochondria-dependent. The expression of oxidative stress-related AKT, p-AKT, ERK, and p-ERK was downregulated with upregulation of JNK and p-JNK. The data indicate that induction of oxidative-stress related apoptosis by EADs was mediated by inhibition of AKT and ERK, and activation of JNK. The isolation of compounds in EADs was carried out using column chromatography and elucidated using the nuclear resonance magnetic analysis producing a total of six compounds including 3-epimaslinic acid, kaempferol, kaempferide, protocatechuic acid, gallic acid and β-sitosterol-3-O-β-D-glucopyranoside. The cytotoxicity of the isolated compounds was determined using MTT assay. Gallic acid was found to be most cytotoxic against MCF-7 cell line compared to others, with IC50 of 36 ± 1.7 μg/mL (P<0.05). In summary, EADs generated oxidative stress, induced cell cycle arrest and apoptosis in MCF-7 cells by regulating numerous genes and proteins that are involved in the apoptotic signal transduction pathway. Therefore, EADs has the potential to be developed as an anti-cancer agent against breast cancer.
Collapse
Affiliation(s)
- Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Agustono Wibowo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Norsharina Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Maznah Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, How CW, Armania N, Loh SP, Ismail IS, Cheah YK, Abdullah R. Induction of cell cycle arrest and apoptosis by betulinic acid-rich fraction from Dillenia suffruticosa root in MCF-7 cells involved p53/p21 and mitochondrial signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:270-278. [PMID: 25797115 DOI: 10.1016/j.jep.2015.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer. AIM OF THE STUDY D. suffruticosa root dichloromethane extract (DCM-DS) has been reported to induce G0/G1 phase cell cycle arrest and apoptosis in caspase-3 deficient MCF-7 breast cancer cells. The present study was designed to investigate the involvement of p53/p21 and mitochondrial pathway in DCM-DS-treated MCF-7 cells as well as to identify the bioactive compounds responsible for the cytotoxicity of DCM-DS. MATERIALS AND METHODS Extraction of D. suffruticosa root was performed by the use of sequential solvent procedure. GeXP-based multiplex system was employed to investigate the expression of p53, p21, Bax and Bcl-2 genes in MCF-7 cells treated with DCM-DS. The protein expression was then determined using Western blot analysis. The bioactive compounds present in DCM-DS were isolated by using column chromatography. The structure of the compounds was elucidated by using nuclear magnetic resonance spectroscopy. The cytotoxicity of the isolated compounds towards MCF-7 cells was evaluated by using MTT assay. The percentage of betulinic acid (BA) in DCM-DS was determined by HPLC analysis. RESULTS The expression of p53 was significantly up-regulated at protein level. The expression of p21 at both gene and protein levels was significantly up-regulated upon treatment with DCM-DS, suggesting that the induction of G0/G1 phase cell cycle arrest in MCF-7 cells was via p53/p21 pathway. Bcl-2 protein was down-regulated with no change at the mRNA level, postulating that post-translational modification has occurred resulting in the degradation of Bcl-2 protein. Overall, treatment with DCM-DS increased the ratio of Bax/Bcl-2 that drove the cells to undergo apoptosis. A total of 3 triterpene compounds were isolated from DCM-DS. Betulinic acid appears to be the most major and most cytotoxic compound in DCM-DS. CONCLUSION DCM-DS induced cell cycle arrest and apoptosis in MCF-7 cells via p53/p21 pathway. In addition, DCM-DS induced apoptosis by increasing the ratio of Bax/Bcl-2. Betulinic acid, which is one of the major compounds, is responsible for the cytotoxicity of the DCM-DS. Therefore, BA can be used as a marker for standardisation of herbal product from D. suffruticosa. DCM-DS can also be employed as BA-rich extract from roots of D. suffruticosa for the management of breast cancer.
Collapse
Affiliation(s)
- Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Agustono Wibowo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norsharina Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chee Wun How
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurdin Armania
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Su Peng Loh
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Product, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|