1
|
Don TM, Chen M, Huang YC. Incorporation of ascorbic acid-2-glucoside into ulvan microneedles to enhance its permeation for anti-aging and whitening treatment. Int J Biol Macromol 2025; 292:139250. [PMID: 39733881 DOI: 10.1016/j.ijbiomac.2024.139250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
For anti-aging and whitening treatment, ascorbic acid-2-glucoside (AA2G) was incorporated into a 4.0 % (w/v) ulvan solution at three concentrations (0.5 %, 1.0 %, and 2.0 % w/v) to fabricate ulvan-based microneedles (UMNs) using a spin-casting method, aimed at enhancing AA2G permeation. The in vitro skin insertion study demonstrated that incorporating AA2G into the UMNs improved their insertion capability, increasing from 86.3 % for neat UMNs to 98 % for AA2G-UMNs. Furthermore, in vitro drug permeation profiles revealed that dissolving UMNs significantly enhanced the cumulative permeation of AA2G, achieving 80-90 % within 3 h. In addition to showing good biocompatibility with HaCaT and NIH3T3 cells, AA2G-UMNs exhibited antioxidant activity and protected HaCaT cells from H2O2-induced oxidative stress. Their anti-aging activity was demonstrated by their ability to inhibit elastase and collagenase activity. Moreover, whitening efficacy was confirmed through the inhibition of melanin production and tyrosinase activity. Among the formulations, 2.0 % AA2G-UMNs achieved the greatest reduction in melanin content in B16F10 cells, with a 54.2 % reduction intracellularly and a 61.3 % reduction extracellularly. Tyrosinase activity inhibition by AA2G-UMNs ranged from 42.6 % to 53.4 %. These results suggest that AA2G-UMNs hold significant promise for applications in the pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| | - Michelle Chen
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan.
| |
Collapse
|
2
|
Sangkanu S, Khanansuk J, Phoopha S, Udomuksorn W, Phupan T, Puntarat J, Tungsukruthai S, Dej-adisai S. Utility Assessment of Isolated Starch and Extract from Thai Yam ( Dioscorea hispida Dennst.) for Cosmetic via In Vitro and In Vivo Studies. Life (Basel) 2025; 15:151. [PMID: 40003560 PMCID: PMC11856013 DOI: 10.3390/life15020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
In Thailand, wild yam, or Dioscorea hispida Dennst., is a starchy crop that is usually underutilized in industry. The purpose of this study was to isolate the starch and extract the phytochemical from D. hispida and use them in cosmetics. Starch was used instead of talcum, which can cause pulmonary talcosis in dusting powder formulas (DP 1-5). GC-MS was used to identify the bioactive components present in the ethanolic extract of D. hispida. The main compounds were identified as 9,12-octadecadienoic acid (Z,Z)- (6.51%), stigmasta-5,22-dien-3-ol, (3.beta.,22E)- (6.41%), linoleic acid ethyl ester (5.72%), (Z,Z)-9,12-octadeca-dienoic acid, 2,3-dihydroxy-propyl (3.89%), and campesterol (3.40%). Then, the extract was used as an ingredient in facial sleeping mask gel formulas (SM 1-SM 5). Stability tests, physical characteristics, enzyme inhibitions, and sensitization dermal toxicity tests were used to evaluate the DP and SM formulations. The results showed that the fresh tubers of D. hispida showed a 12.5% w/w starch content. The findings demonstrated that starch powder had a restricted size distribution, ranging from 2 to 4 μm, and a smooth surface that was polygonal. Following stability testing, the color, odor, size, and flowability of all DP formulations did not significantly differ. The SEM investigation revealed that DP particles were homogenous. For the sensitization dermal toxicity test, DP denoted no erythema or skin irritation in the guinea pigs. After stability testing, the colors of the SM formulas were deeper, and their viscosity slightly increased. The pH did not significantly change. After the stability test, SM formulas that contained Glycyrrhiza glabra and D. hispida extracts exhibited stable tyrosinase and elastase inhibitory activities, respectively. In the sensitization dermal toxicity test, guinea pigs showed skin irritation at level 2 (not severe) from SM, indicating that redness developed. All of these findings indicate that D. hispida is a plant that has potential for use in the cosmetics industry. Furthermore, D. hispida starch can be made into a beauty dusting powder, and more research should be conducted to develop an effective remedy for patients or those with skin problems.
Collapse
Affiliation(s)
- Suthinee Sangkanu
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (S.S.); (J.K.); (S.D.)
| | - Jiraporn Khanansuk
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (S.S.); (J.K.); (S.D.)
| | - Sathianpong Phoopha
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (S.P.)
| | - Wandee Udomuksorn
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (W.U.); (T.P.); (J.P.); (S.T.)
| | - Thitiporn Phupan
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (W.U.); (T.P.); (J.P.); (S.T.)
| | - Jirapa Puntarat
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (W.U.); (T.P.); (J.P.); (S.T.)
| | - Sucharat Tungsukruthai
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (W.U.); (T.P.); (J.P.); (S.T.)
| | - Sukanya Dej-adisai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (S.S.); (J.K.); (S.D.)
| |
Collapse
|
3
|
Trinel M, Dubois C, Burger P, Plainfossé H, Azoulay S, Verger‐Dubois G, Fernandez X. Phytochemical Investigation of an Ostrya carpinifolia L. Extract: An Effective Anti-Pollution Cosmetic Active Ingredient. Chem Biodivers 2025; 22:e202402139. [PMID: 39316583 PMCID: PMC11741155 DOI: 10.1002/cbdv.202402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Ostrya carpinifolia L., a member of the Betulaceae family, is a tree endemic to the Mediterranean basin that is well known for the hardness of its wood. In this study, we assess the anti-pollution activities of a hydroalcoholic extract of O. carpinifolia twigs using several judiciously selected in vitro cosmetic bioassays. The extract's capacity to counteract excessive production of reactive oxygen species following a cutaneous exposure to atmospheric pollution was evaluated using a combination of several antioxidant assays: DPPH, FRAP and β-carotene bleaching assays. These antioxidant assays were complemented by anti-elastase, anti-collagenase, anti-hyaluronidase and anti-lipoxygenase assays to evaluate the capacity of the extract to preserve the integrity of the skin. The hydroalcoholic extract of O. carpinifolia demonstrates intriguing biological antioxidant activities, with approximately 50 % inhibition observed in DPPH and β-carotene assays. Furthermore, its anti-lipoxygenase, anti-hyaluronidase, and anti-collagenase activities are noteworthy, exceeding 50 % inhibition. The two major compounds of O. carpinifolia ethanolic extract were isolated and identified as myricitrin (1) and quercitrin (2). Myricitrin and quercitrin exhibit antioxidant and anti-hyaluronidase properties; we explored the correlation of these properties with the activity of the crude hydroalcoholic extract. Notably, these compounds have not been previously described in the Ostrya genus.
Collapse
Affiliation(s)
- Manon Trinel
- Université Côte d'AzurCNRSICNParc Valrose, CEDEX 206108NiceFrance
| | - Camille Dubois
- Université Côte d'AzurCNRSICNParc Valrose, CEDEX 206108NiceFrance
| | - Pauline Burger
- NissActivePépinière InnovagrasseEspace Jacques-Louis Lions4 traverse Dupont06130GrasseFrance
| | - Hortense Plainfossé
- NissActivePépinière InnovagrasseEspace Jacques-Louis Lions4 traverse Dupont06130GrasseFrance
| | - Stéphane Azoulay
- Université Côte d'AzurCNRSICNParc Valrose, CEDEX 206108NiceFrance
| | | | - Xavier Fernandez
- Université Côte d'AzurCNRSICNParc Valrose, CEDEX 206108NiceFrance
- NissActivePépinière InnovagrasseEspace Jacques-Louis Lions4 traverse Dupont06130GrasseFrance
| |
Collapse
|
4
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
5
|
Jakubczyk K, Szymczykowska K, Melkis K, Maciejewska-Markiewicz D, Nowak A, Muzykiewicz-Szymańska A, Skonieczna-Żydecka K. The Role of Light in Enhancing the Nutritional and Antioxidant Qualities of Basil, Mint and Lemon Balm. Foods 2024; 13:3954. [PMID: 39683026 DOI: 10.3390/foods13233954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Mint (Mentha L.), basil, (Ocimum basilicum) and Melissa (Melissa officinalis L.) are herbaceous plants from the Lamiaceae family. They have a wide range of health benefits and flavour properties which are highly valued around the world. Alternative methods of growing plants to minimise greenhouse gas emissions during autumn and winter are being sought in the face of increasing climate change. One way to achieve this is to switch from HPS to LED lighting. LED lighting has a longer lifespan and higher efficiency while using less energy and better matching the colour of the light to the needs of the herbs. This study tested the hypothesis that the type of illumination (solar, HPS, and LED) significantly impacts the antioxidant and nutritional qualities of herbs. The results indicated that LED lighting enhanced biochemical properties, supporting its adoption for sustainable plant cultivation.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Kinga Szymczykowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Klaudia Melkis
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, 70-111 Szczecin, Poland
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, 70-111 Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Research, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| |
Collapse
|
6
|
Marijan M, Jakupović L, Vujić L, Jurić M, Končić MZ. Urban parks biowaste as a sustainable source of new antidiabetics. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:613-633. [PMID: 39787626 DOI: 10.2478/acph-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
Biowaste produced in urban parks is composed of large masses of organic matter that is only occasionally used economically. In this work, extracts of six plants widely distributed in urban parks in Central Europe (Achillea millefolium, Cichorium intybus, Malva sylvestris, Medicago sativa, Plantago lanceolata, and Trifolium pratense), prepared using 10 % and 50 % ethanol, were screened for their antidiabetic and related properties. HPLC and UV-Vis analysis revealed the presence of caffeic acid, quercetin, luteolin, and apigenin derivatives. The extracts were active in DPPH antiradical, .-carotene-linoleic acid, ORAC, and reducing power assay. They inhibited lipoxygenase, collagenase, as well as heat-induced ovalbumin coagulation. They were also able to hinder carbohydrate degradation. For example, IC 50 of anti-α-amylase activity of 10 % and 50 % ethanol extract of M. sativa extracts (204.10 ± 2.11 µg mL-1 and 78.27 ± 0.99 µg mL-1, respectively) did not statistically differ from the activity of the positive control, acarbose (284.74 ± 3.81 µg mL-1). Similar results were observed for their anti-.-glucosidase activity. In most assays, the use of 50 % ethanol was shown to be better suited for the extraction of active metabolites. The results indicate that the biowaste obtained from urban parks represents a potential source of plant material for the preparation of high-value antidiabetic products.
Collapse
Affiliation(s)
- Marijan Marijan
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy 10000 Zagreb, Croatia
| | - Lejsa Jakupović
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy 10000 Zagreb, Croatia
| | - Lovorka Vujić
- University of Zagreb Faculty of Pharmacy and Biochemistry Department of Nutrition and Dietetics, 10000 Zagreb Croatia
| | - Marina Jurić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy 10000 Zagreb, Croatia
| | - Marijana Zovko Končić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy 10000 Zagreb, Croatia
| |
Collapse
|
7
|
de Sousa FFO, Hafidi Z, García MT, Moran MDC, Vazquez S, Pérez L. Antimicrobial Nanoparticles Composed of Zein and Arginine-Phenylalanine-Based Surfactants for Wound Related Infections: Antioxidant and Skin-Related Anti-Enzymatic Activities and Toxicity. Antibiotics (Basel) 2024; 13:1149. [PMID: 39766539 PMCID: PMC11672429 DOI: 10.3390/antibiotics13121149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Cationic surfactants are potential antimicrobial candidates. Even so, they are the foremost irritative and incompatible group, which limits their usage. The incorporation of surfactants in biopolymer-based nanoparticles is a feasible strategy to improve their efficacy and reduce those drawbacks. Methods: Surfactants with one amino acid on the polar head (lauroyl arginine methyl ester-LAM and phenylalanine dodecyl amide-PNHC12) and surfactants with two amino acids on the polar heads, arginine-phenylalanine (Lauroyl phenylalanine arginine methyl esther-C12PAM and phenylalanine-arginine dodecyl amide-PANHC12) were loaded to zein nanoparticles. Their antimicrobial and antibiofilm activities were evaluated. Also, the inhibitory activities of the surfactants and nanoparticles over skin-related enzymes were accessed in silico and in vitro, while their cytotoxicity was determined comparatively over immortal human keratinocytes (HaCaT) and human fibroblasts (3T3). Finally, the Vibrio fisheri luminescence reduction test was used to detect its ecotoxicity. Results: The nanoparticles were obtained successfully and exhibited good biocide activity against a wide range of pathogenic bacteria and yeasts. The surfactants were found active over the enzymes assayed: elastase > tyrosinase > collagenase > lipoxygenase, while the inhibitory activity was superior when nanoencapsulated over the enzymes tyrosinase and lipoxygenase. The surfactants and their corresponding nanoparticles presented acceptable cytotoxic levels, except for PNHC12 in both forms, while their ecotoxicity was limited and acceptable. Conclusions: Accordingly, the nanoencapsulation of the arginine-phenylalanine surfactants loaded to zein nanoparticles was found to be a smart strategy to enhance the antimicrobial activity and improve their selectivity over representative skin and connective tissues cell lines. These biological properties render the arginine-phenylalanine surfactant nanoparticles as promising candidates for antimicrobial and tissue repairing applications in wound treatments.
Collapse
Affiliation(s)
- Francisco Fábio Oliveira de Sousa
- Laboratory of Quality Control, Bromatology & Microbiology, School of Pharmacy, Department of Biological & Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitscheck, km 02, Macapa 68903-419, Brazil
| | - Zakaria Hafidi
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (Z.H.); (M.T.G.); (S.V.)
| | - María Teresa García
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (Z.H.); (M.T.G.); (S.V.)
| | - Maria del Carmen Moran
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institut de Nanociència i Nanotecnologia—IN2UB, Universitat de Barcelona, Avda. Diagonal, 645, 08028 Barcelona, Spain
| | - Sergio Vazquez
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (Z.H.); (M.T.G.); (S.V.)
| | - Lourdes Pérez
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (Z.H.); (M.T.G.); (S.V.)
| |
Collapse
|
8
|
Yilmaz A, Toraman MN, Mataraci Karakas S, Ozden Z, Pinarbas E, Mercantepe T. Effect of White Tea on Leptin and Asprosin Levels in Rats Feeding a High-Fat Diet. Life (Basel) 2024; 14:1548. [PMID: 39768256 PMCID: PMC11679257 DOI: 10.3390/life14121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Currently, obesity affects over 600 million individuals and is responsible for numerous severe health conditions, particularly diabetes and metabolic syndrome. The objective of our study was to examine the impact of white tea, known for its potent antioxidant properties, on the reduction in body weight as well as the levels of leptin and asprosin. METHODS A total of 72 male Sprague-Dawley rats were randomly assigned to 9 groups, with each group consisting of 8 rats. The groups were partitioned into two in order to examine the preventative and therapeutic effects of white tea on obesity. During this study, the case groups were administered white tea together with a high-fat diet, whereas the positive control group was administered orlistat along with a high-fat diet through oral gavage. After the experiment concluded, the levels of leptin, asprosin, and insulin hormones were evaluated in serum samples collected from rats using the ELISA method. RESULTS The findings demonstrated that the administration of white tea led to a significant decrease in body weight, serum leptin, and asprosin levels, as well as oxidative stress indicators, in rats that were fed a high-fat diet. CONCLUSIONS Utilizing natural chemicals, such as white tea, which possess minimal side effects and have powerful antioxidant activity, can mitigate the detrimental consequences associated with obesity.
Collapse
Affiliation(s)
- Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Merve Nur Toraman
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Sibel Mataraci Karakas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Zulkar Ozden
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (Z.O.); (T.M.)
| | - Esra Pinarbas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (Z.O.); (T.M.)
| |
Collapse
|
9
|
Stefanowicz-Hajduk J, Nowak A, Hering A, Kucharski Ł, Graczyk P, Kowalczyk M, Sulikowski T, Muzykiewicz-Szymańska A. Antiaging Properties of Kalanchoe blossfeldiana Ethanol Extract-Ex Vivo and In Vitro Studies. Molecules 2024; 29:5548. [PMID: 39683708 DOI: 10.3390/molecules29235548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine, linked to their remarkable medical properties. These species include Kalanchoe blossfeldiana succulents, which grow in tropical regions. Despite the great interest in this plant, there are no reports about its therapeutic effects on the skin. In this study, the antioxidant properties of K. blossfeldiana ethanol extracts and the skin permeation of a topical hydrogel containing the extract (HKB) were assessed. Additionally, the content of active compounds in the K. blossfeldiana extract was evaluated by UHPLC-MS and HPLC-UV. The extract was analyzed with three antioxidant assays: ABTS, DPPH, and FRAP. Furthermore, the antielastase and antihialuronidase properties of the tested extract were assessed. Ex vivo penetration studies were performed using the Franz diffusion cells. The estimation of the cytotoxicity of HKB was performed by using an MTT assay ((4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) on the human fibroblasts HFF-1. The results obtained show that the antioxidant properties of K. blossfeldiana extract were similar to those of ascorbic acid, while antielastase and antihialuronidase tests indicated the strong antiaging and anti-inflammatory activity of the extract (IC50 was 26.8 ± 0.13 and 77.31 ± 2.44 µg/mL, respectively). Moreover, active ingredients contained in K. blossfeldiana extract penetrated through the human skin and accumulated in it. The cytotoxicity test showed that HKB had no significant effect on human fibroblasts at a concentration up to 0.5%. In conclusion, the hydrogel containing the K. blossfeldiana extract can be considered as an interesting and new alternative to dermatologic and cosmetic preparations.
Collapse
Affiliation(s)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Piotr Graczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Pulawy, Poland
| | - Tadeusz Sulikowski
- Clinic of General, Minimally Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Del Angelo GL, de Oliveira IS, de Albuquerque BR, Kagueyama SS, Vieira da Silva TB, dos Santos Filho JR, Dias MI, Pereira C, Calhelha RC, Alves MJ, Ferrari A, Yamaguchi NU, Ferreira Zielinski AA, Bracht A, Peralta RM, Corrêa RCG. Jatoba ( Hymenaea courbaril L.) Pod Residue: A Source of Phenolic Compounds as Valuable Biomolecules. PLANTS (BASEL, SWITZERLAND) 2024; 13:3207. [PMID: 39599418 PMCID: PMC11598652 DOI: 10.3390/plants13223207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
This study aimed at investigating the chemical composition and a selected group of bioactivities of jatoba (Hymenaea courbaril L.) pod residue. An aqueous extract (deionized water; AE) and a hydroethanolic extract (ethanol: deionized water, 70:30 v/v; ETOH) were obtained via maceration. Ten phenolic compounds were characterized via LC-DAD-ESI/MSn: seven procyanidins, two quercetin derivatives and one taxifolin derivative, with dimers and trimers of procyanidins being the main components of both extracts. Total phenolic compound levels of 2.42 ± 0.06 and 11 ± 1 mg/g were found in AE and ETOH, respectively; however, only seven compounds were identified in ETOH. The jatoba pod residue extracts showed notable antioxidant activities: ETOH had greater antioxidant potential in the OxHLIA and DPPH assays (IC50 = 25.4 μg/mL and 0.71 μg/mL, respectively); however, EA demonstrated greater potential in the FRAP system (IC50 = 2001.0 µM TE/mg). Only AE showed antiproliferative potential, being effective against cell lines of gastric (GI50 = 35 ± 1 µg/mL) and breast (GI50 = 89 ± 4 µg/mL) adenocarcinomas. Likewise, only AE showed modest anti-inflammatory potential (IC50 = 225 ± 2 µg/mL) in mouse macrophages. Bacteriostatic effects against bacteria were exerted by both extracts. Enterococcus faecalis and Listeria monocytogenes (MICs = 2.5 mg/mL) were especially sensitive to the ETOH extract. Taken together, the results suggest potential for jatoba pod residue as a source of molecules with biological activities and with possible industrial applications.
Collapse
Affiliation(s)
- Gabriela Lucca Del Angelo
- Postgraduate Program in Clean Technologies, Cesumar University—UNICESUMAR, Maringa 87050-390, PR, Brazil; (G.L.D.A.); (I.S.d.O.)
| | - Isabela Silva de Oliveira
- Postgraduate Program in Clean Technologies, Cesumar University—UNICESUMAR, Maringa 87050-390, PR, Brazil; (G.L.D.A.); (I.S.d.O.)
| | - Bianca Rodrigues de Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.d.A.); (M.I.D.); (C.P.); (R.C.C.); (M.J.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Samanta Shiraishi Kagueyama
- Department of Biochemistry, State University of Maringá, Maringa 87020-900, SP, Brazil; (S.S.K.); (T.B.V.d.S.); (J.R.d.S.F.); (A.B.); (R.M.P.)
| | - Tamires Barlati Vieira da Silva
- Department of Biochemistry, State University of Maringá, Maringa 87020-900, SP, Brazil; (S.S.K.); (T.B.V.d.S.); (J.R.d.S.F.); (A.B.); (R.M.P.)
| | - José Rivaldo dos Santos Filho
- Department of Biochemistry, State University of Maringá, Maringa 87020-900, SP, Brazil; (S.S.K.); (T.B.V.d.S.); (J.R.d.S.F.); (A.B.); (R.M.P.)
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.d.A.); (M.I.D.); (C.P.); (R.C.C.); (M.J.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.d.A.); (M.I.D.); (C.P.); (R.C.C.); (M.J.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.d.A.); (M.I.D.); (C.P.); (R.C.C.); (M.J.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.d.A.); (M.I.D.); (C.P.); (R.C.C.); (M.J.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ariana Ferrari
- Postgraduate Program in Health Promotion, Cesumar University—UNICESUMAR, Maringa 87050-390, PR, Brazil;
- Cesumar Institute of Science, Technology and Innovation—ICETI, Maringa 87050-390, PR, Brazil
| | - Natalia Ueda Yamaguchi
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá 88905-120, SC, Brazil;
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, C.P. 476, Florianópolis 88040–900, SC, Brazil;
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Maringa 87020-900, SP, Brazil; (S.S.K.); (T.B.V.d.S.); (J.R.d.S.F.); (A.B.); (R.M.P.)
| | - Rosane Marina Peralta
- Department of Biochemistry, State University of Maringá, Maringa 87020-900, SP, Brazil; (S.S.K.); (T.B.V.d.S.); (J.R.d.S.F.); (A.B.); (R.M.P.)
| | - Rúbia Carvalho Gomes Corrêa
- Postgraduate Program in Clean Technologies, Cesumar University—UNICESUMAR, Maringa 87050-390, PR, Brazil; (G.L.D.A.); (I.S.d.O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.d.A.); (M.I.D.); (C.P.); (R.C.C.); (M.J.A.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Cesumar Institute of Science, Technology and Innovation—ICETI, Maringa 87050-390, PR, Brazil
| |
Collapse
|
11
|
Jafernik K, Kokotkiewicz A, Dziurka M, Kruk A, Hering A, Jędrzejewski K, Waligórski P, Graczyk P, Kubica P, Stefanowicz-Hajduk J, Granica S, Łuczkiewicz M, Szopa A. Phytochemical Profiling and Biological Activities of Extracts from Bioreactor-Grown Suspension Cell Cultures of Schisandra henryi. Molecules 2024; 29:5260. [PMID: 39598649 PMCID: PMC11596403 DOI: 10.3390/molecules29225260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Plant biotechnology creates opportunities for the cultivation of plants regardless of their natural habitats, which are often protected or difficult to access. Maintaining suspension cell cultures in bioreactors is an advanced part of biotechnological research that provides possibilities for obtaining plant tissue on a large scale. In this study, the suspension culture cultivation of a Chinese endemic plant, Schisandra henryi, in a stirred tank bioreactor was elaborated for the first time. The phytochemical profile of the tissue extracts was determined with UHPLC-MS/MS for the lignans (fifteen dibenzocyclooctadiene lignans, one aryltetralin lignan, and two neolignans) and UHPLC-DAD-ESI-MS3 for the phenolic compounds (procyanidins and their derivatives and catechin). The maximum total lignan content of 1289 µg/100 g DW was detected for the extracts from suspensions cultured in a bioreactor for over 10 days. For the phenolic compounds, catechin was the dominant compound (390.44 mg/100 g DW). The biological activity of the extracts was tested too. To determine antioxidant potential we used DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), Molybdenum reduction, and β-carotene bleaching tests. The inhibition activity of the S. henryi extract on the enzymes responsible for skin aging, hyaluronidase and tyrosinase, was assessed with spectrophotometry. The cytotoxic activity of the extracts was estimated on human ovarian SKOV-3, cervical HeLa, and gastric AGS cancer cells and non-cancer, normal fibroblasts by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results showed the great potential of the obtained cell biomass extracts. The results of the antioxidant tests indicated their strong ability to reduce the level of free radicals, similarly to that of ascorbic acid, as well as the weak capacity to protect lipids from oxidation. Moreover, anticancer potential, particularly on the cervical and gastric cancer cells, was confirmed too.
Collapse
Affiliation(s)
- Karolina Jafernik
- Department of Medicinal Plant and Mushroom Biotechnology, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (K.J.); (P.K.)
| | - Adam Kokotkiewicz
- Department of Pharmacognosy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.K.); (K.J.); (M.Ł.)
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.W.)
| | - Aleksandra Kruk
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, ul. Banacha 1, 02-097 Warszawa, Poland; (A.K.); (S.G.)
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (P.G.); (J.S.-H.)
| | - Krzysztof Jędrzejewski
- Department of Pharmacognosy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.K.); (K.J.); (M.Ł.)
| | - Piotr Waligórski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.W.)
| | - Piotr Graczyk
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (P.G.); (J.S.-H.)
| | - Paweł Kubica
- Department of Medicinal Plant and Mushroom Biotechnology, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (K.J.); (P.K.)
| | - Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (P.G.); (J.S.-H.)
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, ul. Banacha 1, 02-097 Warszawa, Poland; (A.K.); (S.G.)
| | - Maria Łuczkiewicz
- Department of Pharmacognosy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.K.); (K.J.); (M.Ł.)
| | - Agnieszka Szopa
- Department of Medicinal Plant and Mushroom Biotechnology, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (K.J.); (P.K.)
| |
Collapse
|
12
|
Balewski Ł, Gdaniec M, Hering A, Furman C, Ghinet A, Kokoszka J, Ordyszewska A, Kornicka A. Synthesis and Structure of Novel Hybrid Compounds Containing Phthalazin-1(2 H)-imine and 4,5-Dihydro-1 H-imidazole Cores and Their Sulfonyl Derivatives with Potential Biological Activities. Int J Mol Sci 2024; 25:11495. [PMID: 39519047 PMCID: PMC11546079 DOI: 10.3390/ijms252111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
A novel hybrid compound-2-(4,5-dihydro-1H-imidazol-2-yl)phthalazin-1(2H)-imine (5) was synthesized and converted into di-substituted sulfonamide derivatives 6a-o and phthalazine ring opening products-hydrazonomethylbenzonitriles 7a-m. The newly prepared compounds were characterized using elemental analyses, IR and NMR spectroscopy, as well as mass spectrometry. Single crystal X-ray diffraction data were collected for the representative compounds 5, 6c, 6e, 7g, and 7k. The antiproliferative activity of compound 5, sulfonyl derivatives 6a-o and benzonitriles 7a-m was evaluated on approximately sixty cell lines within nine tumor-type subpanels, including leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast. None of the tested compounds showed any activity against the cancer cell lines used. The antioxidant properties of all compounds were assessed using the DPPH, ABTS, and FRAP radical scavenging methods, as well as the β-carotene bleaching test. Antiradical tests revealed that among the investigated compounds, a moderate ABTS antiradical effect was observed for sulfonamide 6j (IC50 = 52.77 µg/mL). Benzonitrile 7i bearing two chlorine atoms on a phenyl ring system showed activity in a β-carotene bleaching test (IC50 = 86.21 µg/mL). Finally, the interaction AGE/RAGE in the presence of the selected phthalazinimines 6a, 6b, 6g, 6m, and hydrazonomethylbenzonitriles 7a, 7c-g, and 7i-k was determined by ELISA assay. A moderate inhibitory potency toward RAGE was found for hydrazonomethylbenzonitriles-7d with an electron-donating methoxy group (R = 3-CH3O-C6H4) and 7f, 7k with an electron-withdrawing substituent (7f, R = 2-Cl-C6H4; 7k, R = 4-NO2-C6H4).
Collapse
Affiliation(s)
- Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Christophe Furman
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167—RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France; (C.F.); (A.G.)
| | - Alina Ghinet
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167—RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France; (C.F.); (A.G.)
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
13
|
Findik BT, Yildiz H, Akdeniz M, Yener I, Yilmaz MA, Cakir O, Ertas A. Phytochemical profile, enzyme inhibition, antioxidant, and antibacterial activity of Rosa pimpinellifolia L.: A comprehensive study to investigate the bioactivity of different parts (whole fruit, pulp, and seed part) of the fruit. Food Chem 2024; 455:139921. [PMID: 38843718 DOI: 10.1016/j.foodchem.2024.139921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
The pharmaceutical and nutraceutical potentials of whole fruit, pulp and seeds of Rosa pimpinellifolia L. were evaluated. Forty-two phenolic compounds and two triterpenoids were identified in extracts by LC-MS/MS and GC-MS, respectively. The most prominent compounds were ellagic acid, catechin, epicatechin, tannic acid, quercetin, oleanolic acid, and ursolic acid. The highest enzyme inhibitory activities of the extracts (94.83%) were obtained against angiotensin-converting enzyme and were almost equal to those of the commercial standard (lisinopril, 98.99%). Whole fruit and pulp extracts (IC50:2.47 and 1.52 μg DW/mL) exhibited higher antioxidant capacity than the standards (α-tocopherol, IC50:9.89 μg DW/mL). The highest antibacterial activity was obtained against Bacillus cereus (MIC: 256 μg/mL) for the whole fruit extract. Correlation analyses were conducted to find the correlation between individual phenolics and enzyme inhibitory activities. The results showed the remarkable future of not only the edible part but also the seeds of black rose hips in phytochemical and functional aspects.
Collapse
Affiliation(s)
- Bahar Tuba Findik
- Nevsehir Hacı Bektas Veli University, Faculty of Arts and Sciences, Department of Chemistry, 50300 Nevsehir, Turkiye.
| | - Hilal Yildiz
- Nevsehir Hacı Bektas Veli University, Faculty of Engineering and Architecture, Department of Food Engineering, 50300 Nevsehir, Turkiye.
| | - Mehmet Akdeniz
- The Council of Forensic Medicine, Diyarbakir Group Chairmanship, 21280 Diyarbakir, Turkiye
| | - Ismail Yener
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye.
| | - Mustafa Abdullah Yilmaz
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| | - Ozlem Cakir
- Bayburt University, Faculty of Engineering, Department of Food Engineering, 69000 Bayburt, Turkiye.
| | - Abdulselam Ertas
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| |
Collapse
|
14
|
Farooqi MA, Bae S, Kim S, Bae S, Kausar F, Farooqi HMU, Hyun CG, Kang CU. Eco-friendly synthesis of bioactive silver nanoparticles from black roasted gram (Cicer arietinum) for biomedical applications. Sci Rep 2024; 14:22922. [PMID: 39358402 PMCID: PMC11447251 DOI: 10.1038/s41598-024-72356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Green synthesis leverages biological resources such as plant extracts to produce cost-effectively and environmentally friendly NPs. In our study, silver nanoparticles (AgNPs) are biosynthesized using blank roasted grams (Cicer arietinum) as reducing agents. CA-AgNPs were characterized by a characteristic surface plasmon resonance (SPR) peak at 224 nm in the UV-Vis spectrum. FTIR analysis revealed functional groups with O-H stretching at 3410 cm-1, C-H stretching at 2922 cm-1, and C=O stretching at 1635 cm-1. XRD patterns exhibited sharp peaks at 33.2°, 38.4°, 55.7°, and 66.6°, confirming high crystallinity. Morphological analysis through FESEM indicated spherical CA-AgNPs averaging 500 nm in size, with EDS revealing Ag at 97.51% by weight. Antimicrobial assays showed zones of inhibition of 14 mm against Candida albicans, 18 mm against Escherichia coli., and 12 mm against Propionibacterium acnes. The total phenolic content of CA-AgNPs was 26.17 ± 13.54 mg GAE/g, significantly higher than the 11.85 ± 9.57 mg GAE/g in CA extract. The ABTS assay confirmed the antioxidant potential with a lower IC50 value of 1.73 ± 0.41 µg/mL, indicating enhanced radical scavenging activity. Anti-melanogenesis was validated through tyrosinase, showing inhibition rates of 97.97% at the highest concentrations. The anti-inflammatory was evaluated by western blot, which showed decreased expression of iNOS and COX-2. This study demonstrates the green synthesis of CA-AgNPs and its potential biomedical applications. The results of this study demonstrate that biosynthesized CA-AgNPs have key biological applications.
Collapse
Affiliation(s)
- Muhammad Awais Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea
| | - Sungmin Bae
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Republic of Korea
| | - Sehui Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sungeun Bae
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Republic of Korea
| | - Farzana Kausar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hafiz Muhammad Umer Farooqi
- Laboratory of Energy Metabolism, Division of Metabolic Disoders, Children's Hospital of Orange County, Los Angeles, CA, USA.
| | - Chang Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Republic of Korea.
| | - Chul Ung Kang
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea.
| |
Collapse
|
15
|
Silva MJA, Acho LDR, Carneiro SB, Guimarães AC, Lima ES. Cosmetic application of the stem-bark extract of Bertholletia excelsa H.B.K. Int J Cosmet Sci 2024; 46:643-656. [PMID: 38229481 DOI: 10.1111/ics.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/08/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
OBJECTIVE The Amazon has a rich biodiversity where many different plant species can be found. This diversity is an important source of bioactive substances, mainly due to the different structural components of their phytometabolites. Research for natural products is a strategy for the development of new agents in therapeutic applications, especially cosmetic applications, that have better pharmacological potential. Within this perspective, the objective of the study was to investigate the cosmetic application (anti-aging potential) of the stem-bark extract of Bertholletia excelsa H.B.K - (SBEBE), popularly known as the Brazil nut tree, here called SBEBE, a noble plant species of the Amazon that is rich in selenium. METHODS Enzymatic, glycation, proliferation, cell-healing, collagen quantification, toxicity and genotoxicity assays were used. RESULTS Among the enzymes involved in the extracellular matrix of the skin, SBEBE was able to inhibit only elastase (62.67 ± 3.75) when compared to the standard sivelestat (89.04 ± 0.53), and the extract was also able to inhibit both the oxidative and the non-oxidative pathway. When cell toxicity in fibroblasts (MRC-5) and keratinocytes (HACAT) was evaluated, SBEBE did not present toxicity in 24 h of incubation. After this period, the extract showed average cytotoxicity in 48 and 72 h, but not enough to reach the concentration of 50% of MRC-5 fibroblasts. In the trypan blue assay, the extract promoted fibroblast proliferation in 24, 48 and 72 h of incubation, which was evaluated through exponential cell growth, with emphasis mainly on the lowest concentration with results higher than the standard. When the cell healing capacity was evaluated, in 48 h of exposure to fibroblast, SBEBE was able to induce a cell carpet (cell film) in the cell monolayer scratch assay. CONCLUSIONS SBEBE stimulated collagen production at all concentrations tested. In the alkaline comet assay, at the lowest concentration, the extract did not induce DNA damage when compared to the reference drug doxorubicin. This study proved that SBEBE extract can be considered an ally in the treatment of skin anti-ageing as a possible biotechnological, phytocosmetic product.
Collapse
Affiliation(s)
- Márcia J A Silva
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Brazil
| | - Leonard D R Acho
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Brazil
| | - Simone B Carneiro
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Brazil
| | - Anderson C Guimarães
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas - UFAM, Manaus, Brazil
| | - Emerson S Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas - UFAM, Manaus, Brazil
| |
Collapse
|
16
|
Liang CC, Zhang FQ, Chen J. Screening and characterization of cosmetic efficacy components of Terminalia chebula based on biological activity-guided methodology. Biomed Chromatogr 2024; 38:e5974. [PMID: 39090681 DOI: 10.1002/bmc.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Terminalia chebula exhibits a high level of antioxidant capacity and is highly valued in medicine and cosmetics. However, its main efficacy and active ingredients related to antioxidant, whitening, and anti-aging are still unclear. In this study, the active site responsible for its cosmetic efficacy was specified by the biological activity-guided method and further characterized by using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS). T. chebula was ultrasonically extracted by five solvents, and 30% ethanol extract was screened out for subsequent purification by 1,1-D-iphenyl-2-picrylhydrazyl radical (DPPH), 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS), hydroxyl, and superoxide anion free radical scavenging assays. Five elution fractions were obtained by column chromatography on D101 macroporous adsorbent resin eluted by an increased proportion of ethanol. The 30% ethanol elution fraction was specified as the enrichment site of active ingredients showing good antioxidant capacity and potent inhibitory activity against tyrosinase and elastase. A total of 30 compounds were identified by UHPLC-QTOF-MS/MS in the 30% ethanol elution fraction, including 11 gallotannins, 14 ellagitannins, and 5 other compounds, and these compounds may be the key ingredients in cosmetics beneficial for the skin. Such a biological activity-guided method has provided a simple and rapid venue for specifying the components of medicinal herbs responsible for cosmetic efficacy.
Collapse
Affiliation(s)
- Cai-Cai Liang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
El Jemli M, Ezzat SM, Kharbach M, Mostafa ES, Radwan RA, El Jemli Y, El-Guourrami O, Ahid S, Cherrah Y, Zayed A, Alaoui K. Bioassay-guided isolation of anti-inflammatory and antinociceptive metabolites among three Moroccan Juniperus leaves extract supported with in vitro enzyme inhibitory assays. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118285. [PMID: 38703873 DOI: 10.1016/j.jep.2024.118285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbs of the genus Juniperus (family Cupressaceae) have been commonly used in ancestral folk medicine known as "Al'Araar" for treatment of rheumatism, diabetes, inflammation, pain, and fever. Bioassay-guided isolation of bioactives from medicinal plants is recognized as a potential approach for the discovery of novel drug candidates. In particular, non-addictive painkillers are of special interest among herbal phytochemicals. AIM OF THE STUDY The current study aimed to assess the safety of J. thurifera, J. phoenicea, and J. oxycedrus aqueous extracts in oral treatments; validating the traditionally reported anti-inflammatory and analgesic effects. Further phytochemical investigations, especially for the most bioactive species, may lead to isolation of bioactive metabolites responsible for such bioactivities supported with in vitro enzyme inhibition assays. MATERIALS AND METHODS Firstly, the acute toxicity study was investigated following the OECD Guidelines. Then, the antinociceptive, and anti-inflammatory bioactivities were evaluated based on chemical and mechanical trauma assays and investigated their underlying mechanisms. The most active J. thurifera n-butanol fraction was subjected to chromatographic studies for isolating the major anti-inflammatory metabolites. Moreover, several enzymatic inhibition assays (e.g., 5-lipoxygenase, protease, elastase, collagenase, and tyrosinase) were assessed for the crude extracts and isolated compounds. RESULTS The results showed that acute oral administration of the extracts (300-500 mg/kg, p. o.) inhibited both mechanically and chemically triggered inflammatory edema in mice (up to 70% in case of J. thurifera) with a dose-dependent antinociceptive (tail flick) and anti-inflammatory pain (formalin assay) activities. This effect was partially mediated by naloxone inhibition of the opioid receptor (2 mg/kg, i. p.). In addition, 3-methoxy gallic acid (1), quercetin (2), kaempferol (3), and ellagic acid (4) were successfully identified being involved most likely in J. thurifera extract bioactivities. Nevertheless, quercetin was found to be the most potent against 5-LOX, tyrosinase, and protease with IC50 of 1.52 ± 0.01, 192.90 ± 6.20, and 399 ± 9.05 μM, respectively. CONCLUSION J. thurifera extract with its major metabolites are prospective drug candidates for inflammatory pain supported with inhibition of inflammatory enzymes. Interestingly, antagonism of opioid and non-opioid receptors is potentially involved.
Collapse
Affiliation(s)
- Meryem El Jemli
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco; Faculty of Pharmacy, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October 12451, Egypt.
| | - Mourad Kharbach
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco; Circular Economy/Sustainable Solutions, LAB University of Applied Sciences, Mukkulankatu 19, 15101 Lahti, Finland
| | - Eman Sherien Mostafa
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October 12451, Egypt
| | - Rasha Ali Radwan
- Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Regional Ring Road, East Cairo, New Administrative Capital, Egypt
| | | | - Otman El-Guourrami
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Samir Ahid
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco; Faculty of Pharmacy, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Yahia Cherrah
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Ahmed Zayed
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, El Guish Street, Medical Campus, 31527, Tanta, Egypt
| | - Katim Alaoui
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
18
|
Maurício EM, Branco P, Araújo ALB, Roma-Rodrigues C, Lima K, Duarte MP, Fernandes AR, Albergaria H. Evaluation of Biotechnological Active Peptides Secreted by Saccharomyces cerevisiae with Potential Skin Benefits. Antibiotics (Basel) 2024; 13:881. [PMID: 39335054 PMCID: PMC11429205 DOI: 10.3390/antibiotics13090881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Biotechnological active peptides are gaining interest in the cosmetics industry due to their antimicrobial, anti-inflammatory, antioxidant, and anti-collagenase (ACE) effects, as well as wound healing properties, making them suitable for cosmetic formulations. The antimicrobial activity of peptides (2-10 kDa) secreted by Saccharomyces cerevisiae Ethanol-Red was evaluated against dermal pathogens using broth microdilution and challenge tests. ACE was assessed using a collagenase activity colorimetric assay, antioxidant activity via spectrophotometric monitoring of nitrotetrazolium blue chloride (NBT) reduction, and anti-inflammatory effects by quantifying TNF-α mRNA in lipopolysaccharides (LPS)-exposed dermal fibroblasts. Wound healing assays involved human fibroblasts, endothelial cells, and dermal keratinocytes. The peptides (2-10 kDa) exhibited antimicrobial activity against 10 dermal pathogens, with the Minimum Inhibitory Concentrations (MICs) ranging from 125 µg/mL for Staphylococcus aureus to 1000 µg/mL for Candida albicans and Streptococcus pyogenes. In the challenge test, peptides at their MICs reduced microbial counts significantly, fulfilling ISO 11930:2019 standards, except against Aspergillus brasiliensis. The peptides combined with MicrocareⓇ SB showed synergy, particularly against C. albicans and A. brasilensis. In vitro, the peptides inhibited collagenase activity by 41.8% and 94.5% at 250 and 1000 µg/mL, respectively, and demonstrated antioxidant capacity. Pre-incubation with peptides decreased TNF-α expression in fibroblasts, indicating anti-inflammatory effects. The peptides do not show to promote or inhibit the angiogenesis of endothelial cells, but are able to attenuate fibrosis, scar formation, and chronic inflammation during the final phases of the wound healing process. The peptides showed antimicrobial, antioxidant, ACE, and anti-inflammatory properties, highlighting their potential as multifunctional bioactive ingredients in skincare, warranting further optimization and exploration in cosmetic applications.
Collapse
Affiliation(s)
- Elisabete Muchagato Maurício
- BIORG-Bioengineering and Sustainability Research Group, Faculdade de Engenharia, Universidade Lusófona, Av. Campo Grande 376, 1749-024 Lisbon, Portugal
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisbon, Portugal
- Elisa Câmara, Lda, Dermocosmética, Centro Empresarial de Talaíde, n°7 e 8, 2785-723 Lisbon, Portugal
| | - Patrícia Branco
- BIORG-Bioengineering and Sustainability Research Group, Faculdade de Engenharia, Universidade Lusófona, Av. Campo Grande 376, 1749-024 Lisbon, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
- Unit of Bioenergy and Biorefinary, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar, 22, 1649-038 Lisbon, Portugal
| | - Ana Luiza Barros Araújo
- BIORG-Bioengineering and Sustainability Research Group, Faculdade de Engenharia, Universidade Lusófona, Av. Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO-Applied Molecular Biosciences Unit, Department Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria Paula Duarte
- The Mechanical Engineering and Resource Sustainability Center (MEtRICs), Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO-Applied Molecular Biosciences Unit, Department Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Helena Albergaria
- Unit of Bioenergy and Biorefinary, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar, 22, 1649-038 Lisbon, Portugal
| |
Collapse
|
19
|
Chen Z, Hong N, Xu N, Yan C, Cao P, Yao H. In vitro efficacy of Rosa damascena solid state fermentation liquid and water extract on skin care. Skin Res Technol 2024; 30:e13869. [PMID: 39171844 PMCID: PMC11339857 DOI: 10.1111/srt.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND As a medicinal and food homologous plant, Rosa damascena is not only highly ornamental, but also rich in a variety of active ingredients such as polyphenols and flavonoids. It is widely used in cosmetics, food and pharmaceutical industries. OBJECTIVE To study the in vitro efficacy of Rosa damascena solid state fermentation liquid (RDF) and water extract (RDE). METHODS Firstly, the effect of RDF and RDE on the proliferation rate of B16F10 cells was detected by CCK-8 method, and the melanin content was measured by sodium hydroxide lysis method to evaluate the whitening effect of them. Finally, the antioxidant, anti-wrinkling and soothing effects of RDF and RDE were evaluated by biochemical methods in vitro. RESULTS RDF and RDE within a certain concentration range (0.05%-0.5%) had no effect on the proliferation of B16F10 cells. Compared with Rosa damascena extract (RDE), RDF showed significant effects on bleaching, antioxidant, anti-wrinkling and soothing, among which 0.5% RDF showed the best effect. CONCLUSION Both RDF and RDE at a certain concentration have effect on skin care in vitro, but the effect of RDF is more significant than that of RDE.
Collapse
Affiliation(s)
| | - Ni Hong
- Huzhou Jiaheng Industrial Co., Ltd.HuzhouChina
| | - Nuo Xu
- College of Biotechnology and BioengineeringZhejiang UniversityHangzhouChina
| | - Cui Yan
- Huzhou Jiaheng Industrial Co., Ltd.HuzhouChina
| | - Ping Cao
- Huzhou Jiaheng Industrial Co., Ltd.HuzhouChina
| | - Hong Yao
- Huzhou Jiaheng Industrial Co., Ltd.HuzhouChina
| |
Collapse
|
20
|
Gayathrie B, Krishnan M, Srinivasan S, Raza FB, Muthukumar B. Comparison of microtensile bond strength of prepared teeth treated with proanthocyanidin, Camellia sinensis - Polyphenols, and metal crowns luted with resin-modified glass ionomer cement: An in vitro study. J Indian Prosthodont Soc 2024; 24:279-283. [PMID: 38946512 PMCID: PMC11321478 DOI: 10.4103/jips.jips_127_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
AIM The aim of this study was to evaluate the effect of proanthocyanidin and C. sinensis-polyphenols on microtensile bonding properties of prepared teeth with resin-modified glass ionomer cement (GIC). SETTING AND DESIGN This was an in vitro study. MATERIALS AND METHODS Seventy-eight maxillary premolars were selected and mounted into auto-polymerizing acrylic resin blocks. The samples were prepared and metal crowns were fabricated. The samples were randomly divided into three groups. Samples under Group 1 were not treated with any of the extracts and followed conventional bonding protocol. Samples under Group 2 and Group 3 were treated with proanthocyanidin and C. sinensis-polyphenols, respectively. After dentin treatment, these samples were luted to metal crowns using resin-modified GIC. Universal testing machine was used to measure the load at which the crowns were debonded and microtensile bond strength in MPa was calculated. STATISTICAL ANALYSIS The results were statistically analyzed using one-way ANOVA and post hoc Tukey HSD. RESULTS Samples treated with C. sinensis polyphenols (Group 3) had maximum bond strength followed by Group 2, where the samples were treated with proanthocyanidin. CONCLUSION C. sinensis polyphenols due to their anti-proteolytic and antioxidant properties showed improved bond strength compared to proanthocyanidin, a cross-linking agent, followed by conventional bonding protocol.
Collapse
Affiliation(s)
- B Gayathrie
- Department of Prosthodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Murugesan Krishnan
- Department of Prosthodontics, Priyadarshini Dental College and Hospital, Pandur, India
| | | | - Fathima Banu Raza
- Department of Prosthodontics, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai, Tamil Nadu, India
| | | |
Collapse
|
21
|
Amnuaykan P, Juntrapirom S, Kanjanakawinkul W, Chaiyana W. Enhanced Antioxidant, Anti-Aging, Anti-Tyrosinase, and Anti-Inflammatory Properties of Vanda coerulea Griff. Ex Lindl. Protocorm through Elicitations with Chitosan. PLANTS (BASEL, SWITZERLAND) 2024; 13:1770. [PMID: 38999610 PMCID: PMC11243638 DOI: 10.3390/plants13131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
This study aimed to investigate the effects of elicitors on Vanda coerulea Griff. Ex Lindl. protocorms to enhance bioactive compound production and evaluate their biological activities relevant to cosmeceutical applications. The protocorms were developed from the callus treated with different elicitors, including 6-benzylaminopurine (BA), methyl jasmonate (MeJA), and chitosan. Both the adult plant and protocorms were extracted by maceration in 80% methanol and investigated for their chemical compositions using high-performance liquid chromatography. The extracts were evaluated for antioxidant, anti-collagenase, anti-elastase, and anti-tyrosinase activities. In addition, anti-inflammatory properties were assessed using a real-time polymerase chain reaction. The irritation potency was evaluated using the hen's egg test-chorioallantoic membrane test. The findings revealed that protocorms treated with BA and chitosan developed a greener color, while those treated with MeJA exhibited a distinct darker coloration. Elicitation with BA and chitosan resulted in protocorms with comparable or higher levels of syringic acid, rutin, and quercin compared with the adult plant, with rutin being the most prominent identified compound. Furthermore, rutin was reported as the compound responsible for all biological activities. The chitosan-treated protocorm extract exhibited potent inhibition against oxidation, collagenase, elastase, tyrosinase, and inflammatory cytokines, along with a nonirritating effect, making it a promising candidate for cosmeceutical applications.
Collapse
Affiliation(s)
- Piyatida Amnuaykan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saranya Juntrapirom
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
22
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
23
|
Yin Q, Zhang H, Huang T, Liu B, Negm S, El-Kott AF. Anti-collagenase, Anti-elastase, Anti-urease, and Anti-cancer Potentials of Isokaempferide as Natural Compound: In vitro and in silico Study. J Oleo Sci 2024; 73:187-199. [PMID: 38311409 DOI: 10.5650/jos.ess23176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
One of the main goals of medicinal chemistry in recent years has been the development of new enzyme inhibitors and anti-cancer medicines. The isokaempferide' ability to inhibit the enzymes urease, elastase, and collagenase were also studied. The results showed that isokaempferide was the most effective compound against the assigned enzymes, with IC 50 values of 23.05 µM for elastase, 12.83 µM for urease, and 33.62 µM for collagenase respectively. It should be emphasized that natural compound was more effective at inhibiting some enzymes. Additionally, the compound was tested for their anti-cancer properties using colon, lung, breast cancer cell lines. The chemical activities of isokaempferide against urease, collagenase, and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compound were evaluated against lung cancer cells such as SPC-A-1, SK-LU-1, 95D, breast cancer cells like MCF7, Hs 578Bst, Hs 319.T, and UACC-3133 cell lines, and colon cancer cell lines like CL40, SW1417, LS1034, and SW480. The chemical activities of isokaempferide against some of the expressed surface receptor proteins (EGFR, estrogen receptor, CD47, progesterone receptor, folate receptor, CD44, HER2, CD155, CXCR4, CD97, and endothelin receptor) in the mentioned cell lines were assessed using the molecular docking calculations. The results showed the probable interactions and their characteristics at an atomic level. The docking scores revealed that isokaempferide has a strong binding affinity to the enzymes and proteins. In addition, the compound formed powerful contact with the enzymes and receptors. Thus, isokaempferide could be potential inhibitor for enzymes and cancer cells.
Collapse
Affiliation(s)
- Qian Yin
- Department of Pathology, The Third Clinical Medical College of China Three Gorges University·Gezhouba Central Hospital of Sinopharm
| | - Hao Zhang
- Department of Endocrinology, The Third Clinical Medical College of China Three Gorges University·Gezhouba Central Hospital of Sinopharm
| | - Ting Huang
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry
| | - Bin Liu
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University
- Department of Zoology, Faculty of Science, Damanhour University
| |
Collapse
|
24
|
Salvatore L, Russo F, Natali ML, Rajabimashhadi Z, Bagheri S, Mele C, Lionetto F, Sannino A, Gallo N. On the effect of pepsin incubation on type I collagen from horse tendon: Fine tuning of its physico-chemical and rheological properties. Int J Biol Macromol 2024; 256:128489. [PMID: 38043667 DOI: 10.1016/j.ijbiomac.2023.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Collapse
Affiliation(s)
- Luca Salvatore
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy.
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | - Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Sonia Bagheri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Nunzia Gallo
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy; Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
25
|
Bułakowska A, Sławiński J, Hering A, Gucwa M, Ochocka JR, Hałasa R, Balewski Ł, Stefanowicz-Hajduk J. New Chalcone Derivatives Containing 2,4-Dichlorobenzenesulfonamide Moiety with Anticancer and Antioxidant Properties. Int J Mol Sci 2023; 25:274. [PMID: 38203445 PMCID: PMC10778824 DOI: 10.3390/ijms25010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Chalcones and their derivatives, both natural and synthetic, exhibit diverse biological activities. In this study, we focused on designing and synthesizing (E)-2,4-dichloro-N-(4-cinnamoylphenyl)-5-methylbenzenesulfonamides 4-8 with the following two pharmacophore groups: 2,4-dichlorobenzenesulfonamide and chalcone. The obtained compounds displayed notable anticancer effects on various human cancer cells, such as cervical HeLa, acute promyelocytic leukemia HL-60, and gastric adenocarcinoma AGS, when assessed with the MTT test. The activity of all compounds against cancer cells was significant, and the obtained IC50 values were in the range of 0.89-9.63 µg/mL. Among all the tested compounds, derivative 5 showed the highest activity on the AGS cell line. Therefore, it was tested for cell cycle inhibition, induction of mitochondrial membrane depolarization, and activation of caspase-8 and -9. These results showed that this compound strongly arrested the cell cycle in the subG0 phase, depolarized the mitochondrial membrane, and activated caspase-8 and -9. Similar to the anticancer effects, all the obtained compounds 4-8 were also assessed for their antioxidant activity. The highest antiradical effect was demonstrated for derivative 5, which was able to inhibit DPPH and ABTS radicals. All examined compounds showed dose-dependent activity against neutrophil elastase. Notably, derivatives 7 and 8 demonstrated inhibitory properties similar to oleanolic acid, with IC50 values of 25.61 ± 0.58 and 25.73 ± 0.39 µg/mL, respectively. To determine the antibacterial activity of derivatives 4-8, the minimum bacteriostatic concentration (MIC) values were estimated (>500 µg/mL for all the tested bacterial strains). The findings demonstrate the substantial potential of sulfonamide-based chalcone 5 as a promising drug in anticancer therapy.
Collapse
Affiliation(s)
- Anita Bułakowska
- Department of Organic Chemistry, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Łukasz Balewski
- Department of Chemical Technology of Drugs, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| |
Collapse
|
26
|
Kotb EA, El-Shiekh RA, Abd-Elsalam WH, El Sayed NSED, El Tanbouly N, El Senousy AS. Protective potential of frankincense essential oil and its loaded solid lipid nanoparticles against UVB-induced photodamage in rats via MAPK and PI3K/AKT signaling pathways; A promising anti-aging therapy. PLoS One 2023; 18:e0294067. [PMID: 38127865 PMCID: PMC10735031 DOI: 10.1371/journal.pone.0294067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023] Open
Abstract
Frankincense oil has gained increased popularity in skin care, yet its anti-aging effect remains unclear. The current study aimed to investigate the anti-photoaging effect of frankincense (Boswellia papyrifera (Del.) Hochst., Family Burseraceae) essential oil in an in vivo model. The oil was initially extracted by two methods: hydro-distillation (HD) and microwave-assisted hydro-distillation (MAHD). GC/MS analysis revealed the dominance of n-octyl acetate, along with other marker compounds of B. papyrifera including octanol and diterpene components (verticilla 4(20) 7, 11-triene and incensole acetate). Thereafter, preliminary investigation of the anti-collagenase and anti-elastase activities of the extracted oils revealed the superior anti-aging effect of HD-extracted oil (FO), comparable to epigallocatechin gallate. FO was subsequently formulated into solid lipid nanoparticles (FO-SLNs) via high shear homogenization to improve its solubility and skin penetration characteristics prior to in vivo testing. The optimimal formulation prepared with 0.5% FO, and 4% Tween® 80, demonstrated nanosized spherical particles with high entrapment efficiency percentage and sustained release for 8 hours. The anti-photoaging effect of FO and FO-SLNs was then evaluated in UVB-irradiated hairless rats, compared to Vitamin A palmitate as a positive standard. FO and FO-SLNs restored the antioxidant capacity (SOD and CAT) and prohibited inflammatory markers (IL6, NFκB p65) in UVB-irradiated rats via downregulation of MAPK (pERK, pJNK, and pp38) and PI3K/AKT signaling pathways, alongside upregulating TGF-β expression. Subsequently, our treatments induced Procollagen I synthesis and downregulation of MMPs (MMP1, MMP9), where FO-SLNs exhibited superior anti-photoaging effect, compared to FO and Vitamin A, highlighting the use of SLNs as a promising nanocarrier for FO. In particular, FO-SLNs revealed normal epidermal and dermal histological structures, protected against UVβ-induced epidermal thickness and dermal collagen degradation. Our results indicated the potential use of FO-SLNs as a promising topical anti-aging therapy.
Collapse
Affiliation(s)
- Eman A. Kotb
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Wessam H. Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Nebal El Tanbouly
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
27
|
Carvalho MJ, Pedrosa SS, Mendes A, Azevedo-Silva J, Fernandes J, Pintado M, Oliveira ALS, Madureira AR. Anti-Aging Potential of a Novel Ingredient Derived from Sugarcane Straw Extract (SSE). Int J Mol Sci 2023; 25:21. [PMID: 38203191 PMCID: PMC10778757 DOI: 10.3390/ijms25010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Natural and sustainable anti-aging ingredients have gained attention from the cosmetic industry. This study evaluated the anti-aging potential of a sugarcane straw extract-based (SSE) cosmetic ingredient. First, cytotoxicity tests were assessed in keratinocytes and fibroblast cell lines, and sensitization was carried out through the direct peptide reactivity assay. Subsequently, various anti-aging properties were investigated, including inhibiting skin aging-related enzymes, promoting elastin and hyaluronic acid synthesis, and anti-pollution activity. Finally, a permeability assay using a synthetic membrane resembling skin was conducted. The results demonstrated that the SSE ingredient effectively inhibited elastase (55%), collagenase (25%), and tyrosinase (47%) while promoting hyaluronic acid production at non-cytotoxic and low-sensitizer concentrations. Moreover, it reduced the inflammatory response provoked by urban pollution, as evidenced by decreased levels of IL1-α and IL-6. However, it was observed that the phenolic compounds predominantly reached the skin's surface, indicating a limited ability to penetrate deeper layers of the skin. Therefore, it can be concluded that the SSE ingredient holds anti-aging properties, albeit with limited penetration into deeper skin layers. Further research and formulation advancements are needed to optimize the ingredient's ability to reach and exert its effects in deeper skin layers.
Collapse
Affiliation(s)
- Maria João Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Sílvia Santos Pedrosa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Adélia Mendes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - João Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| |
Collapse
|
28
|
Tammasorn P, Charoensup W, Bunrod A, Kanjanakawinkul W, Chaiyana W. Promising Anti-Wrinkle Applications of Aromatic Extracts of Hedychium coronarium J. Koenig via Antioxidation and Collagenase Inhibition. Pharmaceuticals (Basel) 2023; 16:1738. [PMID: 38139864 PMCID: PMC10748308 DOI: 10.3390/ph16121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to extract aromatic compounds from the rhizomes, leaf sheaths, and leaves of Hedychium coronarium and investigate their chemical compositions, cosmetic/cosmeceutical activities, and irritation potency. The chemical compositions were investigated via gas chromatography-mass spectrometry. The antioxidant activities were evaluated via spectrophotometry. The anti-skin wrinkle properties were investigated via collagenase, elastase, and hyaluronidase inhibition. The irritation potency was observed via a hen's egg-chorioallantoic membrane test. Eucalyptol was detected as a major component in the rhizomes and leaf sheaths, while β-caryophyllene was predominant in the leaves. The absolutes from the rhizomes were the strongest antioxidants, with ABTS scavenging properties similar to L-ascorbic acid. Interestingly, the equivalent concentration (EC1) of the absolute from the rhizome was 0.82 ± 0.01 µg FeSO4/g extract, which was significantly more potent than L-ascorbic acid (0.43 ± 0.03 µg FeSO4/g extract). The rhizome-derived absolute was the most effective against collagenase, while the concretes from the rhizomes and leaf sheaths showed promising anti-hyaluronidase activity with inhibitions of 90.5 ± 1.6% and 87.4 ± 5.1%, respectively. The irritability of the aromatic extracts was not different from that of the vehicle control, proving their safety. Therefore, the Hedychium coronarium rhizome-derived absolute was an attractive and potent antioxidant with anti-collagenase activities, indicating its potential for use in anti-aging formulations.
Collapse
Affiliation(s)
- Pattiya Tammasorn
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (W.C.)
| | - Wannaree Charoensup
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (W.C.)
| | - Anurak Bunrod
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (W.C.)
| |
Collapse
|
29
|
Preedalikit W, Chittasupho C, Leelapornpisid P, Potprommanee S, Kiattisin K. Comparison of Biological Activities and Protective Effects on PAH-Induced Oxidative Damage of Different Coffee Cherry Pulp Extracts. Foods 2023; 12:4292. [PMID: 38231740 DOI: 10.3390/foods12234292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the main toxic components of ambient air particulate matter (PM), causing oxidative damage to the skin and ultimately resulting in skin aging. This study was conducted to determine the anti-oxidant, anti-aging properties and protective effects of the extracts of coffee cherry pulp (Coffea arabica L.), which is a by-product of the coffee industry, against the oxidative damage induced by PAH exposure in human epidermal keratinocytes (HaCaT). Three different techniques were used to extract the coffee cherry pulp: maceration, Soxhlet and ultrasonication to obtain CCM, CCS and CCU extract, respectively, which were then compared to investigate the total phenolic content (TPC) and total flavonoid content (TFC). The chemical compositions were identified and quantified using high-performance liquid chromatography (HPLC). The results demonstrated that Soxhlet could extract the highest content of chlorogenic acid, caffeine and theophylline. CCS showed the significantly highest TPC (324.6 ± 1.2 mg GAE/g extract), TFC (296.8 ± 1.2 mg QE/g extract), anti-radical activity against DPPH free radicals (98.2 ± 0.8 µM Trolox/g extract) and lipid peroxidation inhibition (136.6 ± 6.2 µM Trolox/g extract). CCS also showed the strongest anti-aging effects based on collagenase, elastase, hyaluronidase and tyrosinase inhibitory enzymes. In addition, CCS can protect human keratinocyte cells from PAH toxicity by increasing the cellular anti-oxidant capacity. This study suggests that CCS has the potential to be used as a cosmetic material that helps alleviate skin damage caused by air pollution.
Collapse
Affiliation(s)
- Weeraya Preedalikit
- Doctor of Philosophy Program in Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
30
|
Nutho B, Tungmunnithum D. Exploring Major Flavonoid Phytochemicals from Nelumbo nucifera Gaertn. as Potential Skin Anti-Aging Agents: In Silico and In Vitro Evaluations. Int J Mol Sci 2023; 24:16571. [PMID: 38068894 PMCID: PMC10706394 DOI: 10.3390/ijms242316571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Nelumbo nucifera Gaertn., an aquatic medicinal plant (Nelumbonaceae family), has a history of use in traditional medicine across various regions. Our previous study demonstrated the skin anti-aging potential of its stamen ethanolic extract by effectively inhibiting collagenase and tyrosinase enzymes. While the major constituents of this extract are well documented, there is a lack of research on the individual compounds' abilities to inhibit skin aging enzymes. Therefore, this study aimed to evaluate the anti-aging potential of the primary flavonoids found in N. nucifera using both in silico and in vitro approaches. Our initial step involved molecular docking to identify compounds with the potential to inhibit collagenase, elastase, and tyrosinase. Among the seven flavonoids studied, kaempferol-3-O-robinobioside (Kae-3-Rob) emerged as the most promising candidate, exhibiting the highest docking scores for three skin aging-related enzymes. Subsequent enzyme-based inhibition assays confirmed that Kae-3-Rob displayed robust inhibitory activity against collagenase (58.24 ± 8.27%), elastase (26.29 ± 7.16%), and tyrosinase (69.84 ± 6.07%). Furthermore, we conducted extensive 200-ns molecular dynamics (MD) simulations, revealing the stability of the complexes formed between Kae-3-Rob and each enzyme along the MD simulation time. MM/PBSA-based binding free energy calculations indicated the considerably stronger binding affinity of Kae-3-Rob for collagenase and tyrosinase compared to elastase, which was related to the greater percentage of hydrogen bond occupations. These computational findings were consistent with the relatively high inhibitory activity of Kae-3-Rob against collagenase and tyrosinase observed in our in vitro experiment. In conclusion, the results obtained from this comprehensive study suggest that Kae-3-Rob, a key flavonoid from N. nucifera, holds significant potential as a source of bioactive compounds for anti-aging cosmeceutical and other phytopharmaceutical application.
Collapse
Affiliation(s)
- Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
31
|
Zagórska-Dziok M, Ziemlewska A, Mokrzyńska A, Nizioł-Łukaszewska Z, Wójciak M, Sowa I. Evaluation of the Biological Activity of Hydrogel with Cornus mas L. Extract and Its Potential Use in Dermatology and Cosmetology. Molecules 2023; 28:7384. [PMID: 37959803 PMCID: PMC10648276 DOI: 10.3390/molecules28217384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Due to the growing popularity of herbal extract-loaded hydrogels, this study assessed the biological activity of extracts and hydrogels containing three types (water (WE), water-ethanol (EE) and water-glycerin (GE)) of Cornus mas L. (dogwood) extracts. The content of biologically active compounds in the extracts was assessed using the UPLC-DAD-MS technique. Antioxidant properties were assessed by using DPPH and ABTS radicals and measuring the intracellular level of reactive oxygen species. Alamar Blue and Neutral Red tests were used to measure the cytotoxicity of the tested samples on skin cells-fibroblasts and keratinocytes. Cell migration and the anti-aging activity of the tested extracts and hydrogels were assessed. Transepidermal water loss and skin hydration after applying the hydrogels to the skin were also determined. A chromatographic analysis revealed that the extracts contained polyphenols, including gallic, caftaric, protocatechuic, chlorogenic, ellagic and p-coumaroylquinic acids, as well as iridoids, with loganic acid as the predominant component. Additionally, they contained cyanidin 3-O-galactoside, pelargonidin 3-O-glucoside and quinic acid. The obtained results show that the tested extracts and hydrogels had strong antioxidant properties and had a positive effect on the viability of skin cells in vitro. Additionally, it was shown that they stimulated the migration of these cells and had the ability to inhibit the activity of collagenase and elastase. Moreover, the tested hydrogels increased skin hydration and prevented transepidermal water loss. The obtained results indicate that the developed hydrogels may be effective delivery systems for phytochemicals contained in dogwood extracts.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Agnieszka Mokrzyńska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
32
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
33
|
Dymek M, Olechowska K, Hąc-Wydro K, Sikora E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics 2023; 15:2485. [PMID: 37896245 PMCID: PMC10610410 DOI: 10.3390/pharmaceutics15102485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Liposomes are self-assembled spherical systems composed of amphiphilic phospholipids. They can be used as carriers of both hydrophobic and hydrophilic substances, such as the anti-aging and wound-healing copper-binding peptide, GHK-Cu (glycyl-L-histidyl-L-lysine). Anionic (AL) and cationic (CL) hydrogenated lecithin-based liposomes were obtained as GHK-Cu skin delivery systems using the thin-film hydration method combined with freeze-thaw cycles and the extrusion process. The influence of total lipid content, lipid composition and GHK-Cu concentration on the physicochemical properties of liposomes was studied. The lipid bilayer fluidity and the peptide encapsulation efficiency (EE) were also determined. Moreover, in vitro assays of tyrosinase and elastase inhibition were performed. Stable GHK-Cu-loaded liposome systems of small sizes (approx. 100 nm) were obtained. The bilayer fluidity was higher in the case of cationic liposomes. As the best carriers, 25 mg/cm3 CL and AL hydrated with 0.5 mg/cm3 GHK-Cu were selected with EE of 31.7 ± 0.9% and 20.0 ± 2.8%, respectively. The obtained results confirmed that the liposomes can be used as carriers for biomimetic peptides such as copper-binding peptide and that the GHK-Cu did not significantly affect the tyrosinase activity but led to 48.90 ± 2.50% elastase inhibition, thus reducing the rate of elastin degeneration and supporting the structural integrity of the skin.
Collapse
Affiliation(s)
- Michał Dymek
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Karolina Olechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.O.); (K.H.-W.)
| | - Katarzyna Hąc-Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.O.); (K.H.-W.)
| | - Elżbieta Sikora
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| |
Collapse
|
34
|
Decot H, Sudhakaran M, Boismier E, Schilmiller A, Claucherty E, Doseff AI, Aliakbarian B. Tart Cherry ( Prunus cerasus L.) Pit Extracts Protect Human Skin Cells against Oxidative Stress: Unlocking Sustainable Uses for Food Industry Byproducts. Foods 2023; 12:3748. [PMID: 37893640 PMCID: PMC10606708 DOI: 10.3390/foods12203748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Industrial processing of tart cherries (Prunus cerasus L.) produces bioproducts like cherry pits (CP), which contribute to adverse environmental effects. To identify sustainable strategies to minimize the environmental impact of cherry processing, we investigated their potential value as antioxidants for prospective utilization within cosmeceutical applications. Untargeted metabolomic analyses of water and water: ethanol CP extracts using an eco-friendly technique revealed significant enrichment in coumaroyl derivatives and flavonoids with congruent metabolite representation regardless of the extraction solvent. The antioxidant activity of tart CP extracts was evaluated on human skin cells exposed to H2O2 or LPS, modeling environmentally induced oxidants. Notably, both CP extracts provide antioxidant activity by reducing H2O2 or LPS-induced ROS in human skin keratinocytes without affecting cell viability. The CP extracts increased the expression of CAT and SOD1 genes encoding antioxidant regulatory enzymes while decreasing the expression of NOS2, a pro-oxidant regulator. These findings reveal the antioxidant properties of tart CP, offering new opportunities to produce natural-based skin care products and adding economic value while providing sustainable options to reduce the environmental impact of food byproducts.
Collapse
Affiliation(s)
- Hannah Decot
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA; (H.D.); (M.S.)
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Meenakshi Sudhakaran
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA; (H.D.); (M.S.)
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Emma Boismier
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Anthony Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, 603 Wilson Rd., East Lansing, MI 48824, USA;
| | - Ethan Claucherty
- The Axia Institute, Michigan State University, 1910 W. St. Andrews Rd., Midland, MI 49640, USA;
| | - Andrea I. Doseff
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue St., East Lasing, MI 48824, USA
| | - Bahar Aliakbarian
- The Axia Institute, Michigan State University, 1910 W. St. Andrews Rd., Midland, MI 49640, USA;
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Phumat P, Chaichit S, Potprommanee S, Preedalikit W, Sainakham M, Poomanee W, Chaiyana W, Kiattisin K. Influence of Benincasa hispida Peel Extracts on Antioxidant and Anti-Aging Activities, including Molecular Docking Simulation. Foods 2023; 12:3555. [PMID: 37835208 PMCID: PMC10573066 DOI: 10.3390/foods12193555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Benincasa hispida peel, a type of postconsumer waste, is considered a source of beneficial phytochemicals. Therefore, it was subjected to investigation for biological activities in this study. B. hispida peel was extracted using 95% v/v, 50% v/v ethanol and water. The obtained extracts were B95, B50 and BW. B95 had a high flavonoid content (212.88 ± 4.73 mg QE/g extract) and phenolic content (131.52 ± 0.38 mg GAE/g extract) and possessed high antioxidant activities as confirmed by DPPH, ABTS and lipid peroxidation inhibition assays. Moreover, B95 showed inhibitory effects against collagenase and hyaluronidase with values of 41.68 ± 0.92% and 29.17 ± 0.66%, which related to anti-aging activities. Via the HPLC analysis, one of the potential compounds found in B95 was rutin. Molecular docking has provided an understanding of the molecular mechanisms underlying the interaction of extracts with collagenase and hyaluronidase. All extracts were not toxic to fibroblast cells and did not irritate the hen's egg chorioallantoic membrane, which indicated its safe use. In conclusion, B. hispida peel extracts are promising potential candidates for further use as antioxidant and anti-aging agents in the food and cosmetic industries.
Collapse
Affiliation(s)
- Pimpak Phumat
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (S.C.); (S.P.)
| | - Siripat Chaichit
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (S.C.); (S.P.)
| | - Siriporn Potprommanee
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (S.C.); (S.P.)
| | - Weeraya Preedalikit
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.S.); (W.P.); (W.C.)
| | - Worrapan Poomanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.S.); (W.P.); (W.C.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.S.); (W.P.); (W.C.)
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.S.); (W.P.); (W.C.)
| |
Collapse
|
36
|
Massei K, Michel T, Obersat GI, Al-Harrasi A, Baldovini N. Phytochemical study of Boswellia dalzielii oleo-gum resin and evaluation of its biological properties. PHYTOCHEMISTRY 2023; 213:113751. [PMID: 37307887 DOI: 10.1016/j.phytochem.2023.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Boswellia dalzielii is a resin-producing tree endemic to West and Central Africa, used by local populations for various medicinal purposes. In this study, B. dalzielii gum resin was analyzed by GC-MS and UHPLC-MS to identify and quantify volatile and non-volatile compounds. Its main volatile constituents were α-pinene (54.9%), followed by α-thujene (4.4%) and α-phellandren-8-ol (4.0%). Pentacyclic triterpenoids such as β-boswellic acids and their derivatives were quantified by UHPLC-MS and their content was shown to reach around 22% of the gum resin. Since some of the volatile and non-volatile compounds identified in this work are known to possess biological effects, the bioactivities of B. dalzielii ethanolic extract, essential oil, as well as fractions of the oil and extract were evaluated. Some of these samples exhibited interesting anti-inflammatory properties, and their antioxidant, anti-ageing and skin-bleaching activities were also tested.
Collapse
Affiliation(s)
- Kimberley Massei
- Institut de Chimie de Nice, Université Côte D'azur, 28 Avenue Valrose, 06108, Nice, France
| | - Thomas Michel
- Institut de Chimie de Nice, Université Côte D'azur, 28 Avenue Valrose, 06108, Nice, France
| | - Girma Ilayas Obersat
- Nature Is Unique, Girma-Ilayas Obersat, Koepenicker Str. 16 10997, Berlin, Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Oman
| | - Nicolas Baldovini
- Institut de Chimie de Nice, Université Côte D'azur, 28 Avenue Valrose, 06108, Nice, France.
| |
Collapse
|
37
|
Zych M, Urbisz K, Kimsa-Dudek M, Kamionka M, Dudek S, Raczak BK, Wacławek S, Chmura D, Kaczmarczyk-Żebrowska I, Stebel A. Effects of Water-Ethanol Extracts from Four Sphagnum Species on Gene Expression of Selected Enzymes in Normal Human Dermal Fibroblasts and Their Antioxidant Properties. Pharmaceuticals (Basel) 2023; 16:1076. [PMID: 37630991 PMCID: PMC10458669 DOI: 10.3390/ph16081076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mosses (Bryophyta), particularly species of the genus Sphagnum, which have been used for centuries for the treatment of skin diseases and damage, are still not explored enough in terms of their use in cosmetics. The purpose of this study was to determine the antioxidant properties of water-ethanol extracts from four selected species of the genus Sphagnum (S. girgenshonii Russow, S. magellanicum Brid., S. palustre L., and S. squarrosum Crome) and their impact on the expression of genes encoding key enzymes for the functioning of the skin. In this study, the effects of Sphagnum extracts on the expression of genes encoding tyrosinase, collagenase, elastase, hyaluronidase and hyaluronic acid synthase in human dermal fibroblasts were determined for the first time in vitro. The extracts inhibited tyrosinase gene expression and showed antioxidant activity. The experiment showed an increase in the expression of some genes encoding collagenase (MMP1) or hyaluronidase (HYAL2, HYAL3 and HYAL4) and a decrease in the hyaluronan synthase (HAS1, HAS2 and HAS3) genes expression by the tested extracts. The obtained results suggest that using extracts from the tested Sphagnum species in anti-aging cosmetics does not seem beneficial. Further studies are needed to clarify their impact on the skin.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Katarzyna Urbisz
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Maria Kamionka
- Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (M.K.); (A.S.)
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Barbara Klaudia Raczak
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec, Czech Republic; (B.K.R.)
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec (TUL), 46117 Liberec, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec, Czech Republic; (B.K.R.)
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec (TUL), 46117 Liberec, Czech Republic
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland;
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Adam Stebel
- Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (M.K.); (A.S.)
| |
Collapse
|
38
|
Vareltzis P, Stergiou A, Kalinderi K, Chamilaki M. Antioxidant Potential of Spray- and Freeze-Dried Extract from Oregano Processing Wastes, Using an Optimized Ultrasound-Assisted Method. Foods 2023; 12:2628. [PMID: 37444366 DOI: 10.3390/foods12132628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Origanum vulgare is recognized worldwide for its numerous applications, in the food industry and beyond. However, the extraction of its essential oils generates a significant amount of waste. The aim of this research was to achieve the valorization of solid waste from oregano hydro-distillation, by (i) optimizing the ultrasound extraction of antioxidants, (ii) evaluating the effect of spray and freeze drying on the extract's physicochemical properties, and (iii) characterizing the obtained powder by its antioxidant capacity. A central composite design of experiments was used to optimize the sample/solvent ratio, ethanol/water ratio, and extraction time. The extract was analyzed for its antioxidant potential by determining the percentage of DPPH inhibition, FRAP, and total phenolic content (TPC). The GAB model best fit the data for the moisture sorption isotherm of the resulting powder. The antioxidant activity of the powders was tested in a ground-beef food system. The TPC was maximized at times longer than 58 min, a sample/solvent ratio between 0.058 and 0.078, and a ratio of ethanol/water around 1. Neither drying method significantly affected the antioxidant properties of the extract, even though the resulting powders from each showed a different morphology (determined using SEM). Encapsulation with maltodextrin protected the spray-dried extract during a 6-month storage period. Powders from both drying methods equally retarded lipid oxidation, and were comparable to the synthetic antioxidant BHT. It is concluded that oregano processing waste is a potent source of antioxidants, and that its dried extract, via an ultrasound-assisted process, can potentially be used as a natural alternative to synthetic antioxidants.
Collapse
Affiliation(s)
- Patroklos Vareltzis
- Laboratory of Food and Agricultural Industry Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aggelos Stergiou
- Laboratory of Food and Agricultural Industry Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Chamilaki
- Laboratory of Food and Agricultural Industry Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
39
|
Buarque FS, Monteiro e Silva SA, Ribeiro BD. Choline chloride-based deep eutectic solvent as an inhibitor of metalloproteases (collagenase and elastase) in cosmetic formulation. 3 Biotech 2023; 13:219. [PMID: 37265540 PMCID: PMC10229499 DOI: 10.1007/s13205-023-03602-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/29/2023] [Indexed: 06/03/2023] Open
Abstract
Green chemistry and engineering are potential alternatives for achieving higher sustainability and lower generation of hazardous compounds in chemical product design, production, and use. Deep Eutectic Solvents (DES) are characterized as green solvents and have become increasingly attractive due to their characteristic design solvents. In this work, two DES (choline chloride (ChCl)/glycerol and ChCl/Urea), aqueous solutions of the DES-forming components, and green tea extracts obtained with DES were used as anti-ageing active in cosmetic products using in vitro tests to inhibit extracellular matrix metalloproteases (such as collagenase and elastase). Finally, the stability of the formulations with DES as a cosmetic active was also evaluated. The results showed that DES based on ChCl/Urea and ChCl/glycerol exhibited remarkable inhibition values of collagenase (91.1 and 92.7%, respectively) and elastase (49.8 and 45.7%, respectively). However, pure urea displayed better inhibition values (66%) for elastase, possibly due to its direct contribution to intramolecular hydrogen bonds. ChCl/glycerol showed remarkable stability in the average cube diameter values, which may indicate no change in the conformation of the micellar structure of the cosmetic formulation. Moreover, the formulation containing this DES remained stable at room temperature. Given the remarkable results, DES can be applied in cosmetic products for anti-ageing purposes.
Collapse
Affiliation(s)
- Filipe Smith Buarque
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Ilha do Fundão, Rio de Janeiro, 21941-909 Brazil
| | - Silas Arandas Monteiro e Silva
- Faculty of Pharmaceutical Sciences, State University of Campinas, Rua Cândido Portinari, Cidade Universitária, São Paulo, 13083871 Brazil
| | - Bernardo Dias Ribeiro
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Ilha do Fundão, Rio de Janeiro, 21941-909 Brazil
| |
Collapse
|
40
|
Hering A, Stefanowicz-Hajduk J, Gucwa M, Wielgomas B, Ochocka JR. Photoprotection and Antiaging Activity of Extracts from Honeybush ( Cyclopia sp.)-In Vitro Wound Healing and Inhibition of the Skin Extracellular Matrix Enzymes: Tyrosinase, Collagenase, Elastase and Hyaluronidase. Pharmaceutics 2023; 15:pharmaceutics15051542. [PMID: 37242784 DOI: 10.3390/pharmaceutics15051542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclopia sp. (honeybush) is an African shrub known as a rich source of polyphenols. The biological effects of fermented honeybush extracts were investigated. The influence of honeybush extracts on extracellular matrix (ECM) enzymes responsible for the skin malfunction and aging process-collagenase, elastase, tyrosinase and hyaluronidase-was analysed. The research also included assessment of the in vitro photoprotection efficiency of honeybush extracts and their contribution to the wound healing process. Antioxidant properties of the prepared extracts were evaluated, and quantification of the main compounds in the extracts was achieved. The research showed that the analysed extracts had a significant ability to inhibit collagenase, tyrosinase and hyaluronidase and a weak influence on elastase activity. Tyrosinase was inhibited effectively by honeybush acetone (IC50 26.18 ± 1.45 µg/mL), ethanol (IC50 45.99 ± 0.76 µg/mL) and water (IC50 67.42 ± 1.75 µg/mL) extracts. Significant hyaluronidase inhibition was observed for ethanol, acetone and water extracts (IC50 were 10.99 ± 1.56, 13.21 ± 0.39 and 14.62 ± 0.21µg/mL, respectively). Collagenase activity was inhibited effectively by honeybush acetone extract (IC50 42.5 ± 1.05 μg/mL). The wound healing properties of the honeybush extracts, estimated in vitro in human keratinocytes (HaCaTs), were indicated for water and ethanol extracts. In vitro sun protection factor (SPF in vitro) showed medium photoprotection potential for all the honeybush extracts. The quantity of polyphenolic compounds was estimated with the use of high-performance liquid chromatography equipped with diode-array detection (HPLC-DAD), indicating the highest mangiferin contents in ethanol, acetone and n-butanol extracts, while in the water extract hesperidin was the dominant compound. The antioxidant properties of the honeybush extracts were estimated with FRAP (2,4,6-Tris(2-pyridyl)-s-triazine) and DPPH (2,2-diphenyl-1-picrylhydrazyl) tests, indicating their strong antioxidant activity, similar to ascorbic acid for the acetone extract in both tests. The wound healing abilities, estimation of SPF in vitro and the direct influence on selected enzymes (elastase, tyrosinase, collagenase and hyaluronidase) of the tested honeybush extracts were analysed for the first time, indicating a high potential of these well-known herbal tea for antiaging, anti-inflammation, regeneration and protection of the skin.
Collapse
Affiliation(s)
- Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, 80-416 Gdansk, Poland
| | | | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jadwiga Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, 80-416 Gdansk, Poland
| |
Collapse
|
41
|
Pastare L, Berga M, Kienkas L, Boroduskis M, Ramata-Stunda A, Reihmane D, Senkovs M, Skudrins G, Nakurte I. Exploring the Potential of Supercritical Fluid Extraction of Matricaria chamomilla White Ray Florets as a Source of Bioactive (Cosmetic) Ingredients. Antioxidants (Basel) 2023; 12:1092. [PMID: 37237958 PMCID: PMC10215379 DOI: 10.3390/antiox12051092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Aromatic and medicinal plants are a great source of useful bioactive compounds for use in cosmetics, drugs, and dietary supplements. This study investigated the potential of using supercritical fluid extracts obtained from Matricaria chamomilla white ray florets, a kind of industrial herbal byproduct, as a source of bioactive cosmetic ingredients. Response surface methodology to optimize the supercritical fluid extraction process by analyzing the impact of pressure and temperature on yield and the main bioactive compound groups were used. High-throughput 96-well plate spectrophotometric methods were used to analyze the extracts for total phenols, flavonoids, tannins, and sugars, as well as their antioxidant capacity. Gas chromatography and liquid chromatography-mass spectrometry was used to determine the phytochemical composition of the extracts. The extracts were also analyzed for antimicrobial activity, cytotoxicity, phototoxicity, and melanin content. Statistical analysis was performed to establish correlations between the extracts and develop models to predict the targeted phytochemical recovery and chemical and biological activities. The results show that the extracts contained a diverse range of phytochemical classes and had cytotoxic, proliferation-reducing, and antimicrobial activities, making them potentially useful in cosmetic formulations. This study provides valuable insights for further research on the uses and mechanisms of action of these extracts.
Collapse
Affiliation(s)
- Laura Pastare
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (M.B.); (G.S.); (I.N.)
| | - Marta Berga
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (M.B.); (G.S.); (I.N.)
| | - Liene Kienkas
- Field and Forest, SIA, 2 Izstades Str., Priekuli Parish, LV-4126 Priekuli, Latvia;
| | - Martins Boroduskis
- Alternative Plants, SIA, 2 Podraga Str, LV-1023 Riga, Latvia; (M.B.); (A.R.-S.); (D.R.)
| | - Anna Ramata-Stunda
- Alternative Plants, SIA, 2 Podraga Str, LV-1023 Riga, Latvia; (M.B.); (A.R.-S.); (D.R.)
| | - Dace Reihmane
- Alternative Plants, SIA, 2 Podraga Str, LV-1023 Riga, Latvia; (M.B.); (A.R.-S.); (D.R.)
| | - Maris Senkovs
- Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia;
| | - Gundars Skudrins
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (M.B.); (G.S.); (I.N.)
| | - Ilva Nakurte
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (M.B.); (G.S.); (I.N.)
| |
Collapse
|
42
|
Jang YA, Kim SG, Kim HK, Lee JT. Biological Activity and Component Analyses of Chamaecyparis obtusa Leaf Extract: Evaluation of Antiwrinkle and Cell Protection Effects in UVA-Irradiated Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040755. [PMID: 37109713 PMCID: PMC10146071 DOI: 10.3390/medicina59040755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: Chamaecyparis obtusa (C. obtuse) extract has been used as a folk medicinal remedy in East Asian countries to alleviate inflammation and prevent allergies. Active oxygen causes skin aging and leads to skin cell and tissue damage. Extensive research has been conducted to control active oxygen generation to prevent skin aging. We evaluated the antioxidant activity and antiwrinkle effect of C. obtusa extract to determine its potential as a cosmetic material. Materials and Methods: The antioxidant activity of a 70% ethanol extract of C. obtusa (COE 70) and a water extract of C. obtusa (COW) was determined using 2,2-diphenyl-1-picrylhydrazy (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) scavenging, superoxide dismutase-like activity, xanthine oxidase inhibition, and ferric-reducing antioxidant power assays. The effective concentration of the extracts was determined using the methyl thiazolyl tetrazolium assay to evaluate their toxicity. The effects of COE 70 on the production of matrix metalloproteinases (MMPs) and procollagen, and expression of activated cytokines, interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), in UVA-irradiated fibroblasts were determined using quantitative real-time PCR. Additionally, quercitrin, amentoflavone, hinokiflavone, and myricetin concentrations in COE 70 were determined using high-pressure high-performance liquid chromatography. Results: COE 70 had higher polyphenol and flavonoid concentrations than COW and exhibited an excellent antioxidant effect. COE 70 suppressed UVA-induced fibroblast death by 21.3% at 25 µg/mL. It also increased MMP-1, MMP-3, TNF-α, and IL-6 mRNA levels at 5-25 µg/mL compared with those in control UVA-irradiated fibroblasts. Moreover, mRNA levels of collagen type I and superoxide dismutase significantly increased, indicating the antiwrinkle and anti-inflammatory effects of the extract. Among the COE 70 components, quercitrin concentration was the highest; hence, quercitrin could be an active ingredient. Conclusions: COE 70 could be used as a natural antioxidant and antiwrinkle agent.
Collapse
Affiliation(s)
- Young-Ah Jang
- Convergence Research Center for Smart Healthcare of KS R & DB Foundation, Kyungsung University, Busan 48434, Republic of Korea
| | - Se-Gie Kim
- Department of Pharmaceutical Engineering, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Hye-Kyung Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Jin-Tae Lee
- Department of Cosmetic Science, Kyungsung University, Busan 48434, Republic of Korea
| |
Collapse
|
43
|
Abbas EY, Ezzat MI, Ramadan NM, Eladl A, Hamed WHE, Abdel-Aziz MM, Teaima M, El Hefnawy HM, Abdel-Sattar E. Characterization and anti-aging effects of Opuntia ficus-indica (L.) Miller extracts in a D-galactose-induced skin aging model. Food Funct 2023; 14:3107-3125. [PMID: 36942614 DOI: 10.1039/d2fo03834j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Opuntia ficus-indica (L.) Miller (OFI), belonging to the family Cactaceae, is widely cultivated not only for its delicious fruits but also for its health-promoting effects, which enhance the role of OFI as a potential functional food. In this study, the in vitro collagenase and elastase enzyme inhibitory effects of extracts from different parts of OFI were evaluated. The most promising extracts were formulated as creams at two concentrations (3 and 5%) to investigate their effects on a D-galactose (D-gal)-induced skin-aging mouse model. The ethanolic extracts of the peel and cladodes exhibited the highest enzyme inhibitory effects. Cream made from the extract of OFI peel (OP) (5%) and cream from OFI cladodes extract (OC) (5%) significantly decreased the macroscopic aging of skin scores. Only a higher concentration (5%) of OC showed the normalization of superoxide dismutase (SOD) and malondialdehyde (MDA) skin levels and achieved significant improvements as compared to the vitamin E group. Both OC and OP (5%) showed complete restoration of the normal skin structure and nearly normal collagen fibres upon histopathological examination. The Ultra-Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-ESI-TOF-MS) metabolite profiles revealed the presence of organic acids, phenolic acids, flavonoids, betalains, and fatty acids. Flavonoids were the predominant phytochemical class (23 and 22 compounds), followed by phenolic acids (14 and 17 compounds) in the ethanolic extracts from the peel and cladodes, respectively. The anti-skin-aging effects could be attributed to the synergism of different phytochemicals in both extracts. From these findings, the OFI peel and cladodes as agro-waste products are good candidates for anti-skin-aging phytocosmetics.
Collapse
Affiliation(s)
- Eman Yasser Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Marwa I Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Amira Eladl
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Walaa H E Hamed
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, 11651, Egypt
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hala Mohamed El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| |
Collapse
|
44
|
Kısa D, Imamoglu R, Genc N, Taslimi P, Kaya Z, Taskin‐Tok T. HPLC analysis, Phytochemical Content, and Biological Effects of
Centaurea kilae
Against Some Metabolic Enzymes: In Vitro and In Silico Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Dursun Kısa
- Department of Molecular Biology and Genetics, Faculty of Science Bartin University 74100 Bartin Turkey
| | - Rizvan Imamoglu
- Department of Molecular Biology and Genetics, Faculty of Science Bartin University 74100 Bartin Turkey
| | - Nusret Genc
- Department of Chemistry, Faculty of Science and Arts Gaziosmanpasa University Tokat Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University 74100 Bartin Turkey
| | - Zafer Kaya
- Department of Forest Engineering, Faculty of Forestry Bartin University Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University 27310 – Gaziantep Turkey
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences Gaziantep University 27310 – Gaziantep Turkey
| |
Collapse
|
45
|
Xiong J, Grace MH, Kobayashi H, Lila MA. Evaluation of saffron extract bioactivities relevant to skin resilience. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Halim HH, Pak Dek MS, Hamid AA, Saari N, Mohd Lazim MI, Abas F, Ngalim A, Ismail A, Jaafar AH. Novel sources of bioactive compounds in coconut (Cocos nucifera L.) water from different maturity levels and varieties as potent skin anti-aging strategies and anti-fatigue agents. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Biochemical Pilot Study on Effects of Pomegranate Seed Oil Extract and Cosmetic Cream on Neurologically Mediated Skin Inflammation in Animals and Humans: A Comparative Observational Study. Molecules 2023; 28:molecules28020903. [PMID: 36677961 PMCID: PMC9865066 DOI: 10.3390/molecules28020903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
The presence of phenobarbital and formaldehyde in drugs, food, and beverages can lead to various health issues, including inflammation, oncogenesis, and neurological distress. Psychological stress leads to mood fluctuations and the onset of skin inflammation. Skin inflammation has a range of causes, including chemicals, heavy metals, infection, immune-related disorders, genetics, and stress. The various treatments for skin inflammation include medical and cosmetic creams, diet changes, and herbal therapy. In this study, we investigated the effects of Avocom-M and pomegranate seed oil extract (PSOE) against phenobarbital- and formaldehyde-induced skin biochemical changes in rats. We analyzed the constituents of PSOE using gas chromatography-mass spectrometry and inductively coupled plasma-mass spectrometry. We also observed biochemical changes in the skin of human volunteers with and without TROSYD and PSOE as a skin cream. We compared the biochemical changes in human volunteers' skin before treatment and 21 days after the treatment stopped. The outcomes showed an improvement in the rats' biochemical status, due to PSOE and Avocom-M treatment. The human volunteers treated with TROSYD and PSOE showed substantial amelioration of skin inflammation. PSOE, Avocom-M, and TROSYD produced beneficial effects by reducing the levels of cyclooxygenase-2, lipid peroxidation, tyrosinase, hyaluronidase, elastase, collagenase, and nitric oxide in the animals tested on and in human volunteers.
Collapse
|
48
|
Michalak M, Zagórska-Dziok M, Klimek-Szczykutowicz M, Szopa A. Phenolic Profile and Comparison of the Antioxidant, Anti-Ageing, Anti-Inflammatory, and Protective Activities of Borago officinalis Extracts on Skin Cells. Molecules 2023; 28:868. [PMID: 36677923 PMCID: PMC9865334 DOI: 10.3390/molecules28020868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
In this study, methanol and water-methanol extracts of borage (Borago officinalis) herb dried using various methods were analysed for their phenolic profile and biological activity. Twelve compounds, including flavonoids (astragalin, kaempferol 4-glucoside, rutoside, and vitexin) and phenolic acids (caffeic, chlorogenic, 3,4-dihydroxyphenylacetic, ferulic, p-hydroxybenzoic, protocatechuic, rosmarinic, and syringic), were determined qualitatively and quantitatively in B. officinalis extracts by the HPLC-DAD method. The highest total flavonoid content was confirmed for the methanol extract from the hot-air-dried herb, while the methanol extract from the air-dried herb was most abundant in phenolic acids. The results of in vitro tests on human keratinocytes (HaCaT) and fibroblasts (BJ) showed that the extracts were able to reduce the intracellular level of reactive oxygen species in skin cells. Tests performed to assess inhibition of protein denaturation, lipoxygenase activity, and proteinase activity demonstrated that borage extracts have anti-inflammatory properties. In addition, the methanol extract of the herb dried in a convection oven showed the strongest inhibition of both collagenase and elastase activity, which is indicative of anti-ageing properties. The results show that the borage extracts are a source of valuable bioactive compounds with beneficial properties in the context of skin cell protection.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
49
|
Kapoor L, Udhaya Kumar S, De S, Vijayakumar S, Kapoor N, Ashok Kumar SK, Priya Doss C G, Ramamoorthy S. Multispectroscopic, virtual and in vivo insights into the photoaging defense mediated by the natural food colorant bixin. Food Funct 2023; 14:319-334. [PMID: 36503930 DOI: 10.1039/d2fo02338e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An upsurge in early onset of photoaging due to repeated skin exposure to environmental stressors such as UV radiation is a challenge for pharmaceutical and cosmeceutical divisions. Current reports indicate severe side effects because of chemical or synthetic inhibitors of matrix metalloproteases (MMPs) in anti-skin aging cosmeceuticals. We evaluated the adequacy of bixin, a well-known FDA certified food additive, as a scavenger of free radicals and its inhibitory mechanism of action on MMP1, collagenase, elastase, and hyaluronidase. The anti-skin aging potential of bixin was evaluated by several biotechnological tools in silico, in vitro and in vivo. Molecular docking and simulation dynamics studies gave a virtual insight into the robust binding interaction between bixin and skin aging-related enzymes. Absorbance and fluorescence studies, enzyme inhibition assays, enzyme kinetics and in vitro bioassays of human dermal fibroblast (HDF) cells highlighted bixin's role as a potent antioxidant and inhibitor of skin aging-related enzymes. Furthermore, in vivo protocols were carried out to study the impact of bixin administration on UVA induced photoaging in C57BL/6 mice skin. Here, we uncover the UVA shielding effect of bixin and its efficacy as a novel anti-photoaging agent. Furthermore, the findings of this study provide a strong foundation to explore the pharmaceutical applications of bixin in several other biochemical pathways linked to MMP1, collagenase, elastase, and hyaluronidase.
Collapse
Affiliation(s)
- Leepica Kapoor
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - S Udhaya Kumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan
| | - Sujithra Vijayakumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore 632004, Tamil Nadu, India.,Non Communicable Disease Unit and Implementation Science Lab, The Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - S K Ashok Kumar
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
50
|
El-Rahmana SNA, Abubshaitb SA, Abubshaitc HA, Elsharifb AM, Kamound M. The anti-aging, anti-tuberculosis and antioxidant potential benefits of Saudi Arabia Olea-Europaea Leaves extracts. BRAZ J BIOL 2023; 84:e270885. [PMID: 37132677 DOI: 10.1590/1519-6984.270885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/18/2023] [Indexed: 05/04/2023] Open
Abstract
The olive leaf extract and olive leaf indicated a high potential for application in food additives and foodstuffs. It could be these bio-products useful and important in condition therapy related with oxidative stress and can use it to develop functional foods and to improve the food's shelf life. The olive leaf chemical composition of Oleaeuropaea L. grown from eljouf in Saudi Arabia, using solvents of increasing polarity cyclohexane, dichloromethane, chloroform, ethyl acetate, methanol and ethanol was determined using by GC/MS. Furthermore, the antioxidant activity (diphenylpicrylhydrazyl (DPPH), anti-aging, and anti-tuberculosis of olive leaf extracts were evaluated. The results indicated that extract of Oleaeuropaea L. has a considerable contains in polyphenols (hydroxytyrosol, oleuropein and their derivatives) regarding its antioxidant effects, the major components were detected by GC/MS in Olea dichloromethane extract are Hexadecanoic acid (15.82%), 7(4Dimethylaminophenyl)3,3,12trimethyl3,12dihydro6 Hpyrano[2,3c]acridin 6 one (11.21%), and in Olea chloroform extract are Hexatriacontane (12.68%), nTetratr iacontane (10.95%). The results concluded that the plant extract of chloroform showed no anti-aging activities and the lower anti-aging activities for cyclohexane extract, while, the Olea dichloromethane extract was the most active extract. The obtained data confirmed that the most active extract of anti-tubercolisis was for chloroform and ethyl acetate extract, while, anti-tubercolisis activity of ethanolic extract was the lower. The extract amount as well as the solvent polarity influence the inhibitory activity. A favorable connection was demonstrated inter alia the leaf extracts antioxidant activity and the content of total phenol.
Collapse
Affiliation(s)
- S N Abd El-Rahmana
- Food Technology Research Institute, Agricultural Research Center, Department of Crops Technology Research, Giza, Egypt
| | - S A Abubshaitb
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Chemistry, Dammam, Saudi Arabia
| | - H A Abubshaitc
- Imam Abdulrahman Bin Faisal University, Department of Basic Sciences, Dammam, Saudi Arabia
| | - A M Elsharifb
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Chemistry, Dammam, Saudi Arabia
| | - M Kamound
- Technopark of Borj-Cedria, Centre of Research and Water Technologies, Laboratory Water, Membrane and Environmental Biotechnology, Soliman, Tunisia
| |
Collapse
|