1
|
Power ML, Snead C, Reed EG, Schulkin J. Integrating evolution into medical education for women's health care practitioners. Evol Med Public Health 2020; 2020:60-67. [PMID: 32382419 PMCID: PMC7196338 DOI: 10.1093/emph/eoaa009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Evolution is a fundamental principle in biology; however, it has been neglected in medical education. We argue that an evolutionary perspective is especially important for women's health care providers, as selection will act strongly on reproductive parameters, and the biological costs of female reproduction are generally more resource expensive than for men (e.g. due to gestation and lactation) with greater effects on health and wellbeing. An evolutionary perspective is needed to understand antibiotic resistance, disease and health risks associated with mismatches between our evolved adaptations and current conditions, the importance of the microbiome and the maternal role in how infants acquire and develop their early-life microbiome (vaginal birth, lactation), and the importance of breastmilk as a biochemical signal from mothers to their babies. We present data that obstetrician-gynecologists' views regarding the inclusion of evolution within their training is generally positive, but many barriers are perceived. Requiring coursework in evolutionary biology with an emphasis on evolutionary medicine prior to enrollment in medical school may be a solution.
Collapse
Affiliation(s)
- Michael L Power
- Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC 20013-7012, USA
- American College of Obstetricians and Gynecologists, Washington, DC 20024-2188, USA
| | - Carrie Snead
- American College of Obstetricians and Gynecologists, Washington, DC 20024-2188, USA
| | - Eda G Reed
- Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC 20013-7012, USA
- Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jay Schulkin
- Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Vieth R. The Paleolithic Nutrition Model in Relation to Ultraviolet Light and Vitamin D. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:409-419. [PMID: 32918231 DOI: 10.1007/978-3-030-46227-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biology of every species has been optimized for life in the environment in which that species evolved. Humans originated in the tropics, and while some natural selection took place in response to behaviors and environments that decreased exposure to ultraviolet light, there has never been a species-wide biological accommodation. Paleolithic nutrition advocates argue that risk of disease is higher because modern diets differ from what was consumed by early humans. Early humans were the naked ape living in the tropics, exposed to high levels of ultraviolet light and vitamin D nutrition (serum 25-hydroxyvitamin D; 25(OH)D) averaging 115 nmol/L, as compared to today's population averages that are well below 70 nmol/L. Natural selection from an available gene pool cannot compensate fully to an environmental change away from the one within which the species originally evolved. Vitamin D nutrition remains a contentious area. The epidemiological evidence consistently relates lower 25(OH)D to higher disease risk. However, evidence from double-blind clinical trials looking at preventing new disease in healthy volunteers has been disappointing. But such negative trials have been the case for all nutrients except for folic acid which lowers risk of spina bifida. The Paleolithic nutrition model is based on fundamental biological concepts, but it has overlooked the environmental effects of ultraviolet light and vitamin D nutrition. This paper presents evolutionary and Paleolithic aspects of ultraviolet light and vitamin D with the aim to support pertinent research and, ultimately, public policy regarding nutrition and light exposure.
Collapse
Affiliation(s)
- Reinhold Vieth
- Department of Laboratory Medicine and Pathobiology, and Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Basile AJ, Schwartz DB, Rigdon J, Stapell H. Status of evolutionary medicine within the field of nutrition and dietetics: A survey of professionals and students. Evol Med Public Health 2018; 2018:201-210. [PMID: 30254747 PMCID: PMC6146772 DOI: 10.1093/emph/eoy022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/01/2018] [Indexed: 01/03/2023] Open
Abstract
LAY SUMMARY Through an online survey of nutrition and dietetic professionals and students, we learned there is interest to incorporate evolutionary medicine into the nutrition and dietetics field and education programs. BACKGROUND AND OBJECTIVES Evolutionary medicine is an emerging field that examines the evolutionary significance of modern disease to develop new preventative strategies or treatments. While many areas of interest in evolutionary medicine and public health involve diet, we currently lack an understanding of whether nutrition and dietetics professionals and students appreciate the potential of evolutionary medicine. METHODOLOGY Cross-sectional online survey to measure the level of appreciation, applicability and knowledge of evolutionary medicine among nutrition and dietetics professionals and students. We then examined the relationships between support of evolutionary medicine and (i) professionals and students, (ii) US region, (iii) religious belief and (iv) existing evolutionary knowledge. RESULTS A total of 2039 people participated: students (n = 893) and professionals (n = 1146). The majority of the participants agree they are knowledgeable on the theory of evolution (59%), an understanding of evolution can aid the nutrition and dietetics field (58%), an evolutionary perspective would be beneficial in dietetics education (51%) and it is equally important to understand both the evolutionary and direct causes of disease (71%). Significant differences in responses between professionals and students suggest students are currently learning more about evolution and are also more supportive of using an evolutionary perspective. Whereas differences in responses by US region were minimal, differences by religious belief and prior evolutionary knowledge were significant; however, all responses were either neutral or supportive at varying strengths. CONCLUSION AND IMPLICATIONS There is interest among professionals and students to incorporate evolutionary medicine into the nutrition and dietetics field and education programs.
Collapse
Affiliation(s)
- Anthony J Basile
- School of Life Sciences, Arizona State University, 427 E Tyler Mall #4601, Tempe, AZ, USA
- Institute of Human Nutrition, Columbia University Medical Center, 630 West 168th Street PH1512, New York, NY, USA
| | - David B Schwartz
- Department of Sociology, Princeton University260 College Ave Apt. E, Palo Alto, CA, USA
| | - Joseph Rigdon
- Quantitative Science Unit, Stanford University School of Medicine, 1070 Arastradero Rd, Palo Alto, Stanford, CA, USA
| | - Hamilton Stapell
- Department of History, State University of New York, 600 Hawk Dr, New Paltz, NY, USA
| |
Collapse
|
4
|
Hidaka BH, Asghar A, Aktipis CA, Nesse RM, Wolpaw TM, Skursky NK, Bennett KJ, Beyrouty MW, Schwartz MD. The status of evolutionary medicine education in North American medical schools. BMC MEDICAL EDUCATION 2015; 15:38. [PMID: 25884843 PMCID: PMC4355969 DOI: 10.1186/s12909-015-0322-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education. METHODS In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson's chi-square test, Student's t-test, and Spearman's correlation. Open-ended questions sought insight into perceived barriers and benefits. RESULTS Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care. CONCLUSION North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.
Collapse
Affiliation(s)
- Brandon H Hidaka
- University of Kansas Medical Center, 3901 W Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Anila Asghar
- McGill University, 3700 McTavish Street, Room 244, Montréal, Québec, H3A 1Y2, Canada.
| | - C Athena Aktipis
- Arizona State University, 411 North Central Avenue, Phoenix, AZ, 85004, USA.
| | - Randolph M Nesse
- Arizona State University, 411 North Central Avenue, Phoenix, AZ, 85004, USA.
| | - Terry M Wolpaw
- Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| | - Nicole K Skursky
- New York University School of Medicine, 550 1st Ave, New York, NY, 10016, USA.
| | - Katelyn J Bennett
- New York University School of Medicine, 550 1st Ave, New York, NY, 10016, USA.
| | - Matthew W Beyrouty
- New York University School of Medicine, 550 1st Ave, New York, NY, 10016, USA.
| | - Mark D Schwartz
- New York University School of Medicine, 550 1st Ave, New York, NY, 10016, USA.
| |
Collapse
|
5
|
|
6
|
Kirchengast S, Rühli F. Evolutionary medicine and its implications for endocrinological issues (e.g. menopause). Gen Comp Endocrinol 2013; 186:145-9. [PMID: 23523999 DOI: 10.1016/j.ygcen.2013.02.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
Evolutionary medicine, which was formalized in the early 1990s, investigates evolutionary causes of recent human disease, disorders and malfunctions but also the influence of changing living conditions and modernization on health and disease. Evolutionary medicine can also provide insights into endocrinological disorders and in particular in the process of female reproductive senescence. Female reproductive senescence, i.e. menopausal transition is physiologically caused by the decline of estrogen secretion, which is associated with various somatic and psychic discomforts making this stage of life extremely uncomfortable. From the viewpoint of evolutionary medicine, these menopausal symptoms are the result from the sudden decrease of very high lifetime estrogen levels to zero during postmenopause, a situation which is quite new in our evolution and history. While women in recent developed countries experience menarche early, menopause late, few pregnancies, short periods of lactation and consequently low life time estrogen levels. The opposite is true of women living in traditional societies, whose living conditions may be interpreted as a mirror of the situation in our history. From this viewpoint we can conclude that menopausal symptoms may are the result of a mismatch between female reproductive physiology and recent living conditions.
Collapse
Affiliation(s)
- Sylvia Kirchengast
- University of Vienna, Department of Anthropology, Althanstrasse 14, A-1090 Vienna, Austria.
| | | |
Collapse
|
7
|
A multidisciplinary reconstruction of Palaeolithic nutrition that holds promise for the prevention and treatment of diseases of civilisation. Nutr Res Rev 2012; 25:96-129. [PMID: 22894943 DOI: 10.1017/s0954422412000017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evolutionary medicine acknowledges that many chronic degenerative diseases result from conflicts between our rapidly changing environment, our dietary habits included, and our genome, which has remained virtually unchanged since the Palaeolithic era. Reconstruction of the diet before the Agricultural and Industrial Revolutions is therefore indicated, but hampered by the ongoing debate on our ancestors' ecological niche. Arguments and their counterarguments regarding evolutionary medicine are updated and the evidence for the long-reigning hypothesis of human evolution on the arid savanna is weighed against the hypothesis that man evolved in the proximity of water. Evidence from various disciplines is discussed, including the study of palaeo-environments, comparative anatomy, biogeochemistry, archaeology, anthropology, (patho)physiology and epidemiology. Although our ancestors had much lower life expectancies, the current evidence does neither support the misconception that during the Palaeolithic there were no elderly nor that they had poor health. Rather than rejecting the possibility of 'healthy ageing', the default assumption should be that healthy ageing posed an evolutionary advantage for human survival. There is ample evidence that our ancestors lived in a land-water ecosystem and extracted a substantial part of their diets from both terrestrial and aquatic resources. Rather than rejecting this possibility by lack of evidence, the default assumption should be that hominins, living in coastal ecosystems with catchable aquatic resources, consumed these resources. Finally, the composition and merits of so-called 'Palaeolithic diets', based on different hominin niche-reconstructions, are evaluated. The benefits of these diets illustrate that it is time to incorporate this knowledge into dietary recommendations.
Collapse
|
8
|
Antolin MF, Jenkins KP, Bergstrom CT, Crespi BJ, De S, Hancock A, Hanley KA, Meagher TR, Moreno-Estrada A, Nesse RM, Omenn GS, Stearns SC. Evolution and medicine in undergraduate education: a prescription for all biology students. Evolution 2012; 66:1991-2006. [PMID: 22671563 PMCID: PMC7202235 DOI: 10.1111/j.1558-5646.2011.01552.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/06/2011] [Indexed: 01/13/2023]
Abstract
The interface between evolutionary biology and the biomedical sciences promises to advance understanding of the origins of genetic and infectious diseases in humans, potentially leading to improved medical diagnostics, therapies, and public health practices. The biomedical sciences also provide unparalleled examples for evolutionary biologists to explore. However, gaps persist between evolution and medicine, for historical reasons and because they are often perceived as having disparate goals. Evolutionary biologists have a role in building a bridge between the disciplines by presenting evolutionary biology in the context of human health and medical practice to undergraduates, including premedical and preprofessional students. We suggest that students will find medical examples of evolution engaging. By making the connections between evolution and medicine clear at the undergraduate level, the stage is set for future health providers and biomedical scientists to work productively in this synthetic area. Here, we frame key evolutionary concepts in terms of human health, so that biomedical examples may be more easily incorporated into evolution courses or more specialized courses on evolutionary medicine. Our goal is to aid in building the scientific foundation in evolutionary biology for all students, and to encourage evolutionary biologists to join in the integration of evolution and medicine.
Collapse
Affiliation(s)
- Michael F Antolin
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Notzer N, Abramovitz R. Expanding the scope of anatomical sciences: the case of "Human evolution: The fossil evidence" course at the Sackler School of Medicine, Tel-Aviv University. ANATOMICAL SCIENCES EDUCATION 2012; 5:177-181. [PMID: 22383423 DOI: 10.1002/ase.1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
The Anatomy Department at Tel-Aviv University Medical School offers its students an elective course of 26 didactic hours on human evolution. The course is open to students from all faculties, who must fulfill all academic requirements, without a prerequisite of a background in anatomy. Approximately 120 students attend annually, a third of them are nonmedical students who major in philosophy, archeology, and sociology. This article discusses the course's contributions to students' understanding of a scientific concept that a scientific theory can be contradicted by new evidence, because facts govern science. Also, research methods of applying scientific principles establish the understanding of the human body, which evidently contributes to health and medicine. In the classes, the students are divided into mini-groups of 2-3 students, while the lecturer moves among students to examine fossils. In addition, analogies, open-discussions, and explanations accompany the tangible experiences. The lecturer of the course is an experienced anthropologist-anatomist researcher. He is a role-model and a mentor, sharing with the students his belief that a scientist should be persistent in his research to overcome difficult circumstances. Students, regardless of their backgrounds, express high appreciation of the course in their feedback questionnaires. The message conveyed by this course is that not only knowledge counts but also its integration with scientific principles. This course teaches us that science can bring students from different areas to study together and share ideas. In conclusion, this is a unique course in the eyes of the faculty and students alike.
Collapse
Affiliation(s)
- Netta Notzer
- Medical Education Unit, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
10
|
Glass DJ, Arnold SE. Some evolutionary perspectives on Alzheimer's disease pathogenesis and pathology. Alzheimers Dement 2011; 8:343-51. [PMID: 22137143 DOI: 10.1016/j.jalz.2011.05.2408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 02/20/2011] [Accepted: 05/12/2011] [Indexed: 10/14/2022]
Abstract
There is increasing urgency to develop effective prevention and treatment for Alzheimer's disease (AD) as the aging population swells. Yet, our understanding remains limited for the elemental pathophysiological mechanisms of AD dementia that may be causal, compensatory, or epiphenomenal. To this end, we consider AD and why it exists from the perspectives of natural selection, adaptation, genetic drift, and other evolutionary forces. We discuss the connection between the apolipoprotein E (APOE) allele and AD, with special consideration to APOE ɛ4 as the ancestral allele. The phylogeny of AD-like changes across species is also examined, and pathology and treatment implications of AD are discussed from the perspective of evolutionary medicine. In particular, amyloid-β (Aβ) neuritic plaques and paired helical filament tau (PHFtau) neurofibrillary tangles have been traditionally viewed as injurious pathologies to be targeted, but may be preservative or restorative processes that mitigate harmful neurodegenerative processes or may be epiphenoma of the essential processes that cause neurodegeneration. Thus, we raise fundamental questions about current strategies for AD prevention and therapeutics.
Collapse
Affiliation(s)
- Daniel J Glass
- Department of Psychology, State University of New York at New Paltz, USA
| | | |
Collapse
|
11
|
Alfonso-Sánchez MA, Pérez-Miranda AM, García-Obregón S, Peña JA. An evolutionary approach to the high frequency of the Delta F508 CFTR mutation in European populations. Med Hypotheses 2010; 74:989-92. [PMID: 20110149 DOI: 10.1016/j.mehy.2009.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 10/19/2022]
Abstract
The diffusion of the cattle pastoralism across Europe during the Neolithic period was probably accompanied by the emergence and spread of diverse contagious diseases that were unknown in the Paleolithic and that would have affected the frequency of genes directly or indirectly associated with differential susceptibility and/or resistance to infectious pathogens. We therefore propose that the high frequency of the CFTR gene, and in particular, the common Delta F508 allele mutation in current European and European-derived populations might be a consequence of the impact of selective pressures generated by the transmission of pathogenic agents from domesticated animals, mainly bovine cattle, to the man. Intestinal infectious diseases were probably a major health problem for Neolithic peoples. In such a context, a gene mutation that conferred an increased resistance to the diseases caused by pathogens transmitted by dairy cattle would have constituted a definite selective advantage, particularly in those human groups where cow's milk became an essential component of the diet. This selective advantage would be determined by an increased resistance to Cl(-)-secreting diarrheas of those individuals carrying a single copy of the Delta F508 CFTR mutation (heterozygote resistance). This hypothesis is supported by the strong association between the geography of the diffusion of cattle pastoralism (assessed indirectly by the lactase persistence distribution), the geographic distribution of a sizeable number of HLA alleles (as indicative of potential selective pressures generated by epidemic mortality) and the geographic distribution of the most common mutation causing cystic fibrosis (Delta F508). The systematic interaction of humans with infectious pathogens would have begun in northern Europe, among the carriers of the Funnel Beaker Culture, the first farmers of the North European plain, moving progressively to the south with the dissemination of the cattle pastoralism. This gradual exposure to epidemic mortality among populations located further and further south in Europe as cattle pastoralism expanded could have generated differences in CFTR gene frequencies, thereby shaping the latitudinal frequency gradients observed in present-day European populations.
Collapse
|
12
|
Nesse RM, Bergstrom CT, Ellison PT, Flier JS, Gluckman P, Govindaraju DR, Niethammer D, Omenn GS, Perlman RL, Schwartz MD, Thomas MG, Stearns SC, Valle D. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine. Proc Natl Acad Sci U S A 2010; 107 Suppl 1:1800-7. [PMID: 19918069 PMCID: PMC2868284 DOI: 10.1073/pnas.0906224106] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.
Collapse
Affiliation(s)
- Randolph M Nesse
- Department of Psychiatry and Psychology, University of Michigan, Room 3018, East Hall, 530 Church Street, Ann Arbor, MI 48104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Darwin and dermatopathology. Am J Dermatopathol 2009; 31:792-3. [PMID: 19730224 DOI: 10.1097/dad.0b013e31819f9fee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Abstract
Increased life expectancy has led to an overall aging of the population and greater numbers of elderly people. Therefore, the number of people with osteoporosis has increased substantially, accompanied with an epidemic of hip fractures. Osteoporosis is an age-related systemic condition that naturally occurs, among mammals, only in humans. Osteoporosis is known to be highly heritable. However, assuming a genetic determinant for this post-reproductive disease to be transmitted from one generation to the next is counter-intuitive, based on the principles of human evolution, I will attempt to provide an explanation of the phenomenon from the point of view of evolution, selection, and changed environment in humans, which contributed to human longevity, while on other hand, contribute to diseases of civilization, including osteoporosis. There is a need to delve into evolution of human species in search for adaptive patterns to a specific environment that humans are operating in the last couple of millennia, to clarify whether "good" and "bad" genes exist, and how to find and correct them. The answer to the above questions will help us to identify causes of the current epidemic of osteoporosis and to pin-point a tailored treatment.
Collapse
|
15
|
Nesse RM, Stearns SC. The great opportunity: Evolutionary applications to medicine and public health. Evol Appl 2008; 1:28-48. [PMID: 25567489 PMCID: PMC3352398 DOI: 10.1111/j.1752-4571.2007.00006.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 11/27/2007] [Indexed: 02/06/2023] Open
Abstract
Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for making medical education more coherent. We conclude with recommendations for actions that would better connect evolutionary biology and medicine in ways that will benefit public health. It is our hope that faculty and students will send this article to their undergraduate and medical school Deans, and that this will initiate discussions about the gap, the great opportunity, and action plans to bring the full power of evolutionary biology to bear on human health problems.
Collapse
|
16
|
Naugler C. Hemochromatosis: A Neolithic adaptation to cereal grain diets. Med Hypotheses 2008; 70:691-2. [PMID: 17689879 DOI: 10.1016/j.mehy.2007.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
The Neolithic period in Europe marked the transition from a hunter-gatherer diet rich in red meat to an iron-reduced cereal grain diet. This dietary shift likely resulted in an increased incidence of iron deficiency anemia, especially in women of reproductive age. I propose that hereditary hemochromatosis and in particular the common HFE C282Y mutation may represent an adaptation to decreased dietary iron in cereal grain-based Neolithic diets. Both homozygous and heterozygous carriers of the HFE C282Y mutation have increased iron stores and therefore possessed an adaptive advantage under Neolithic conditions. An allele age estimate places the origin of the HFE C282Y mutation in the early Neolithic period in Northern Europe and is thus consistent with this hypothesis. The lower incidence of this mutation in other agrarian regions (the Mediterranean and Near East) may be due to higher dietary intakes of the iron uptake cofactor vitamin C in those regions. The HFE C282Y mutation likely only became maladaptive in the past several centuries as dietary sources of iron and vitamin C improved in Northern Europe.
Collapse
Affiliation(s)
- Christopher Naugler
- Department of Laboratory Medicine, Dalhousie University, 5788 University Avenue, Halifax, Nova Scotia, Canada B3H 2Y9.
| |
Collapse
|