1
|
Elshareif N, Gornick E, Gavini CK, Aubert G, Mansuy-Aubert V. Comparison of western diet-induced obesity and streptozotocin mouse models: insights into energy balance, somatosensory dysfunction, and cardiac autonomic neuropathy. Front Physiol 2023; 14:1238120. [PMID: 37885804 PMCID: PMC10598778 DOI: 10.3389/fphys.2023.1238120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Metabolic disorders such as obesity and type 2 diabetes (T2D) are increasingly prevalent worldwide, necessitating a deeper comprehension of their underlying mechanisms. However, translating findings from animal research to human patients remains challenging. This study aimed to investigate the long-term effects of Streptozotocin (STZ) on metabolic, cardiac, and somatosensory function in mice fed a Western diet (WD) of high fat, sucrose, and cholesterol with low doses of STZ administration compared to mice fed WD alone. In our research, we thoroughly characterized energy balance and glucose homeostasis, as well as allodynia and cardiac function, all of which have been previously shown to be altered by WD feeding. Notably, our findings revealed that the treatment of WD-fed mice with STZ exacerbated dysfunction in glucose homeostasis via reduced insulin secretion in addition to impaired peripheral insulin signaling. Furthermore, both WD and WD + STZ mice exhibited the same degree of cardiac autonomic neuropathy, such as reduced heart rate variability and decreased protein levels of cardiac autonomic markers. Furthermore, both groups developed the same symptoms of neuropathic pain, accompanied by elevated levels of activating transcription factor 3 (Atf3) in the dorsal root ganglia. These discoveries enhance our understanding of metabolic activity, insulin resistance, neuropathy, and cardiac dysfunction of diet-induced models of obesity and diabetes. The exacerbation of impaired insulin signaling pathways by STZ did not lead to or worsen cardiac and somatosensory dysfunction. Additionally, they offer valuable insights into suitable diet induced translational mouse models, thereby advancing the development of potential interventions for associated conditions.
Collapse
Affiliation(s)
- Nadia Elshareif
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Emily Gornick
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Chaitanya K. Gavini
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory Aubert
- Division of Cardiology, Department of Internal Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Clinical Development, CSL Vifor, Glattbrugg, Switzerland
| | - Virginie Mansuy-Aubert
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
He J, Xi Y, Lam H, Du K, Chen D, Dong Z, Xiao J. Effect of Intensive Glycemic Control on Myocardial Infarction Outcome in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Diabetes Res 2023; 2023:8818502. [PMID: 36873813 PMCID: PMC9984264 DOI: 10.1155/2023/8818502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The effect of intensive glucose-lowering treatment on the risk of cardiovascular events in type 2 diabetes remains uncertain, especially the effect on the occurrence of myocardial infarction in patients with type 2 diabetes is still unclear. The purpose of this study was to conduct a systematic review and meta-analysis of relevant RCTs. METHODS We performed a systematic review of randomized clinical trials (RCTS) and observational studies relevant to this study question. We searched the PubMed and Cochrane databases until June 2022. RESULTS We included data on 14 RCTs and 144,334 patients, all of whom had type 2 diabetes. When all studies were considered, intensive glucose-lowering treatment significantly reduced the incidence of MI compared with conventional therapy and the total OR value is 0.90 (CI 0.84, 0.97; P = 0.004) when considering all the studies. When the target value of intensive glucose-lowering treatment was considered as HbA1c decrease of more than 0.5%, there was no significant protective effect on MI, the total OR value is 0.88 (CI 0.81, 0.96; P = 0.003). When considering all available RCTS, the intensive glucose-lowering treatment group had a protective effect for MACE compared to the conventional treatment group, and the total OR value is 0.92 (CI 0.88, 0.96; P < 0.00001). In the available RCTs, for the patients with a history of prior CAD, the total OR value is 0.94 (CI 0.89, 0.99; P = 0.002). And there was no difference in the incidence of hypoglycemic events between the intensive and conservative treatment groups. CONCLUSION Our data support the positive protective effect of glucose-lowering therapy on MI in patients with T2DM, but there is no significant effect of intensive glucose-lowering. In addition, we found no greater protective effect of enhanced glucose control in the HbA1c reduction of more than 0.5%, and no difference in the incidence of adverse events compared with the HbA1c reduction of less than 0.5%.
Collapse
Affiliation(s)
- Jiading He
- Department of Cardiology, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Department of The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Yangbo Xi
- Department of Cardiology, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Department of The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Hingcheung Lam
- Department of Cardiology, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Department of The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Keyi Du
- Department of Cardiology, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Department of The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Dongping Chen
- Central Laboratory, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Zhihui Dong
- Central Laboratory, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Jianmin Xiao
- Department of Cardiology, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Central Laboratory, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| |
Collapse
|
3
|
Emlek N, Aydin C. The relationship between nondipper hypertension and triglyceride glucose index. Blood Press Monit 2022; 27:384-390. [PMID: 36094366 DOI: 10.1097/mbp.0000000000000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nondipper hypertensive patients have an increased incidence of damage to end organs, including the brain, heart, and kidney, and a worse cardiovascular prognosis. The triglyceride glucose (TyG) index is a reliable indicator of insulin resistance (IR) and is closely related to the traditional risk factors of cardiovascular disease. To the best of our knowledge, whether there is a relationship between the TyG index and impaired diurnal blood pressure (BP) has not been investigated. This study aimed to compare the TyG index between normotensive, nondipper, and dipper hypertensive patients. A total of 1037 patients grouped according to the results of ambulatory BP monitoring were included, with group 1 including dipper hypertensive ( n = 368), group 2 including nondipper hypertensive ( n = 496), and group 3 including normotensive control ( n = 173) patients. In both the univariate and multivariate logistic regression analyses, TyG index [odds ratio (OR), 4.656; 95% confidence interval (CI), 3.014-7.193; P < 0.001], age (OR, 1.011; 95% CI, 1.002-1.021; P = 0.018), and glomerular filtration rate (GFR) (OR, 0.979; 95% CI, 0.971-0.987; P < 0.001) were independent predictors of nondipper hypertension (HT). In the ROC analysis, a TyG index cutoff value of at least 4.74 predicted nondipper hypertensive patients with a sensitivity of 59.7%, and a specificity of 59.9% [area under the curve = 0.647 (0.614-0.680); 95% CI; P < 0.001]. We showed that TyG index, age, and GFR are independent predictors in patients with nondipper HT. TyG index, a simple, cost-effective, and rapid tool can predict the nondipper pattern in essential HT.
Collapse
Affiliation(s)
- Nadir Emlek
- Department of Cardiology, Faculty of Medicine Recep Tayyip Erdoğan University, Rize
| | - Cihan Aydin
- Department of Cardiology, Faculty of Medicine, Namik Kemal University, Tekirdağ, Turkey
| |
Collapse
|
4
|
Wang J, Xu Z, Lv K, Ye Y, Luo D, Wan L, Zhou F, Yu A, Wang S, Liu J, Gao L. The Predictive Value of Serum Calcium on Heart Rate Variability and Cardiac Function in Type 2 Diabetes Patients. Front Endocrinol (Lausanne) 2022; 13:864008. [PMID: 35498438 PMCID: PMC9047897 DOI: 10.3389/fendo.2022.864008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cardiovascular autonomic neuropathy (CAN) is common in patients with type 2 diabetes mellitus (T2DM), mainly presented as decreased heart rate variability (HRV) which often leads to cardiac death. However, HRV measurement is not convenient in most clinics. Therefore, identifying high-risk patients for CAN in diabetes with easier measurements is crucial for the early intervention and prevention of catastrophic consequences. METHODS In this cross-sectional study, 675 T2DM patients with normocalcemia were selected. Of these, they were divided into two groups: normal HRV group (n = 425, 100 ms≤ SDNN ≤180 ms) vs. declined HRV group (n = 250, SDNN <100 ms). All patients' clinical data were collected and the correlation of clinical variables with HRV were analyzed by correlation and logistic regression analysis. The area below the ROC curve was used to evaluate the predictive performance of serum calcium on HRV. RESULTS In this study, declines in HRV were present in 37.0% of T2DM patients. Significant differences in albumin-adjusted serum calcium levels (CaA) (8.86 ± 0.27 vs. 9.13 ± 0.39 mg/dl, p <0.001) and E/A (0.78 ± 0.22 vs. 0.83 ± 0.26, p = 0.029) were observed between declined HRV and normal HRV groups. Bivariate linear correlation analysis showed that CaA and E/A were positively correlated with HRV parameters including SDNN (p < 0.001), SDNN index (p < 0.001), and Triangle index (p < 0.05). The AUC in the ROC curve for the prediction of CaA on HRV was 0.730 (95% CI (0.750-0.815), p < 0.001). The cutoff value of CaA was 8.87 mg/dl (sensitivity 0.644, specificity 0.814). The T2DM patients with CaA <8.87 mg/dl had significantly lower HRV parameters (SDNN, SDNN index, rMSSD, and triangle index) than those with CaA ≥8.87 mg/dl (p < 0.01, respectively). Multivariate logistic regression analysis showed a significantly increased risk of declined HRV in subjects with CaA level <8.87 mg/dl [OR (95% CI), 0.049 (0.024-0.099), p < 0.001]. CONCLUSIONS Declined HRV is associated with a lower CaA level and worse cardiac function. The serum calcium level can be used for risk evaluation of declined HRV in T2DM patients even within the normocalcemic range.
Collapse
Affiliation(s)
- Junyi Wang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Xu
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kang Lv
- Shenzhen University, College of Big Data and Internet, Shenzhen, China
| | - Yingchun Ye
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Deng Luo
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Wan
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fen Zhou
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ailin Yu
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Wang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingcheng Liu
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Ling Gao,
| |
Collapse
|
5
|
Abstract
The science of penile erection, including recent advances in its molecular physiology and neuroanatomic pathways, is described. The pathophysiology of erectile dysfunction is presented, acknowledging associated disease states, and accordingly follows a practical classification scheme: vasculogenic, neurogenic, endocrine, and psychogenic.
Collapse
Affiliation(s)
- Susan M MacDonald
- Division of Urology, Penn State Health Milton S. Hershey Medical Center, Mail Code H055, 500 University Drive, Hershey, PA 17033, USA.
| | - Arthur L Burnett
- James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe Street, Marburg 407, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
7
|
Bakkar NMZ, Dwaib HS, Fares S, Eid AH, Al-Dhaheri Y, El-Yazbi AF. Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders. Int J Mol Sci 2020; 21:E9005. [PMID: 33260799 PMCID: PMC7730941 DOI: 10.3390/ijms21239005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood-brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin-angiotensin-aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.
Collapse
Affiliation(s)
- Nour-Mounira Z. Bakkar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
| | - Haneen S. Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
| | - Souha Fares
- Rafic Hariri School of Nursing, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
8
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
9
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
10
|
Nuclear Imaging of the Cardiac Sympathetic Nervous System. JACC Cardiovasc Imaging 2020; 13:1036-1054. [DOI: 10.1016/j.jcmg.2019.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
|
11
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
12
|
Wu KY, Zelt JG, Wang T, Dinculescu V, Miner R, Lapierre C, Kaps N, Lavallee A, Renaud JM, Thackeray J, Mielniczuk LM, Chen SY, Burwash IG, DaSilva JN, Beanlands RS, deKemp RA. Reliable quantification of myocardial sympathetic innervation and regional denervation using [11C]meta-hydroxyephedrine PET. Eur J Nucl Med Mol Imaging 2019; 47:1722-1735. [DOI: 10.1007/s00259-019-04629-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|
13
|
|
14
|
Simental-Mendía LE, Hernández-Ronquillo G, Gamboa-Gómez CI, Gómez-Díaz R, Rodríguez-Morán M, Guerrero-Romero F. The triglycerides and glucose index is associated with elevated blood pressure in apparently healthy children and adolescents. Eur J Pediatr 2019; 178:1069-1074. [PMID: 31081518 DOI: 10.1007/s00431-019-03392-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
Abstract
Prevalence of elevated blood pressure in pediatric population has been increasing worldwide. Thus, the aim of this study was to examine whether the triglycerides and glucose (TyG) index is associated with the presence of prehypertension or hypertension in children and adolescents. Apparently healthy children aged 6 to 15 years were enrolled in a population-based cross-sectional study. Participants were allocated into groups with normal blood pressure (NBP), prehypertension, and hypertension. Smoking, alcohol intake, pregnancy, previous diagnosis of diabetes, kidney, hepatic, or endocrine diseases were exclusion criteria. NBP was defined by systolic and/or diastolic blood pressure < 90th percentile, prehypertension by systolic and/or diastolic blood pressure ≥ 90th < 95th percentile, and hypertension by systolic and/or diastolic blood pressure ≥ 95th percentile, according to age, sex, and height percentiles. A total of 3589 children were enrolled, 1748 (49%) girls and 1841 (51%) boys, and allocated into groups with NBP (n = 2874), prehypertension (n = 271), and hypertension (n = 444). The multiple logistic regression analysis stratified by age and adjusted by the Z-score/SDS of body mass index and waist circumference showed that elevated TyG index was significantly associated with prehypertension (OR = 1.48; 95% CI: 1.08-2.05) and hypertension (OR = 1.63; 95% CI: 1.26-2.11).Conclusion: The results of the present study shows that the elevated TyG index is significantly associated with the presence of prehypertension and hypertension in children and adolescents. What is Known: • Prevalence of elevated blood pressure in children and adolescents has been increasing worldwide. • Insulin resistance plays a key role in the pathogenesis of hypertension. What is New: • The elevated TyG index is significantly associated with the presence of prehypertension in children aged 6-9 years and adolescents aged 10-15 years. • The elevated TyG index is significantly associated with the presence of hypertension in children aged 6-9 years and adolescents aged 10-15 years.
Collapse
Affiliation(s)
- Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Canoas 100, Col. Los Angeles, 34067, Durango, Mexico
| | - Gabriela Hernández-Ronquillo
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Canoas 100, Col. Los Angeles, 34067, Durango, Mexico
| | - Claudia I Gamboa-Gómez
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Canoas 100, Col. Los Angeles, 34067, Durango, Mexico
| | - Rita Gómez-Díaz
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Especialidades del CMN Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Martha Rodríguez-Morán
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Canoas 100, Col. Los Angeles, 34067, Durango, Mexico
| | - Fernando Guerrero-Romero
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Canoas 100, Col. Los Angeles, 34067, Durango, Mexico.
| |
Collapse
|
15
|
唐 碧, 康 品, 郭 建, 朱 磊, 徐 庆, 高 琴, 张 恒, 王 洪. [Effects of mitochondrial aldehyde dehydrogenase 2 on autophagy-associated proteins in neonatal rat myocardial fibroblasts cultured in high glucose]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:523-527. [PMID: 31140414 PMCID: PMC6743934 DOI: 10.12122/j.issn.1673-4254.2019.05.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether autophagy mediates the effects of aldehyde dehydrogenase 2 (ALDH2) on the proliferation of neonatal rat cardiac fibroblasts cultured in high glucose. METHODS Cardiac fibroblasts were isolated from neonatal (within 3 days) SD rats and subcultured. The fibroblasts of the third passage, after identification with immunofluorescence staining for vimentin, were treated with 5.5 mmol/L glucose (control group), 30 mmol/L glucose (high glucose group), or 30 mmol/L glucose in the presence of Alda-1 (an ALDH2 agonist), daidzin (an ALDH2 2 inhibitor), or both. Western blotting was employed to detect ALDH2, microtubule-associated protein 1 light chain 3B subunit (LC3B) and Beclin-1 in the cells, and a hydroxyproline detection kit was used for determining hydroxyproline content in cell culture medium; CCK- 8 kit was used for assessing the proliferation ability of the cardiac fibroblasts after the treatments. RESULTS Compared with the control cells, the cells exposed to high glucose exhibited obviously decreased expressions of ALDH2, Beclin-1 and LC3B and increased cell number and hydroxyproline content in the culture medium. Treatment of the high glucose-exposed cells with Alda-1 significantly increased Beclin-1, LC3B, and ALDH2 protein expressions and lowered the cell number and intracellular hydroxyproline content, whereas the application of daidzin resulted in reverse changes in the expressions of ALDH2, Beclin-1 and LC3B, viable cell number and intracellular hydroxyproline content in high glucose-exposed cells. CONCLUSIONS Mitochondrial ALDH2 inhibits the proliferation of neonatal rat cardiac fibroblasts induced by high glucose, and the effect is possibly mediated by the up-regulation of autophagy-related proteins Beclin-1 and LC3B.
Collapse
Affiliation(s)
- 碧 唐
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 品方 康
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 建路 郭
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 磊 朱
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 庆梅 徐
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 琴 高
- 蚌埠医学院 生理学教研室,安徽 蚌埠 233030Department of Physiology Cardiovascular Research Center of BengBu Medical College, Bengbu 233030, China
- 蚌埠医学院 心血管病研究中心,安徽 蚌埠 233030Department of Physiology Bengbu Medical College, Bengbu 233030, China
| | - 恒 张
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 洪巨 王
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
16
|
Komici K, Femminella GD, de Lucia C, Cannavo A, Bencivenga L, Corbi G, Leosco D, Ferrara N, Rengo G. Predisposing factors to heart failure in diabetic nephropathy: a look at the sympathetic nervous system hyperactivity. Aging Clin Exp Res 2019; 31:321-330. [PMID: 29858985 DOI: 10.1007/s40520-018-0973-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/17/2018] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM) and heart failure (HF) are frequent comorbidities among elderly patients. HF, a leading cause of mortality and morbidity worldwide, is characterized by sympathetic nervous system hyperactivity. The prevalence of diabetes mellitus (DM) is rapidly growing and the risk of developing HF is higher among DM patients. DM is responsible for several macro- and micro-angiopathies that contribute to the development of coronary artery disease (CAD), peripheral artery disease, retinopathy, neuropathy and diabetic nephropathy (DN) as well. Independently of CAD, chronic kidney disease (CKD) and DM increase the risk of HF. Individuals with diabetic nephropathy are likely to present a distinct pathological condition, defined as diabetic cardiomyopathy, even in the absence of hypertension or CAD, whose pathogenesis is only partially known. However, several hypotheses have been proposed to explain the mechanism of diabetic cardiomyopathy: increased oxidative stress, altered substrate metabolism, mitochondrial dysfunction, activation of renin-angiotensin-aldosterone system (RAAS), insulin resistance, and autonomic dysfunction. In this review, we will focus on the involvement of sympathetic system hyperactivity in the diabetic nephropathy.
Collapse
Affiliation(s)
- Klara Komici
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy.
| | - Grazia Daniela Femminella
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Claudio de Lucia
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Dario Leosco
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
- Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS - Istituto Scientifico di Telese, Terme, BN, Italy
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy.
- Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS - Istituto Scientifico di Telese, Terme, BN, Italy.
| |
Collapse
|
17
|
Guo J, Kang P, Zhu L, Sun S, Tao M, Zhang H, Tang B. [Mitochondrial aldehyde dehydrogenase 2 protects against high glucose-induced injury in neonatal rat cardiomyocytes by regulating CaN-NFAT3 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1288-1293. [PMID: 30514674 DOI: 10.12122/j.issn.1673-4254.2018.11.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether CaN-NFAT3 pathway mediates the protective effects of aldehyde dehydrogenase (ALDH) 2 in high glucose-treated neonatal rat ventricular myocytes. METHODS The ventricular myocytes were isolated from the heart of neonatal (within 3 days) SD rats by enzyme digestion and cultured in the presence of 5-Brdu. After reaching confluence, the cultured ventricular myocytes were identified using immunofluorescence assay for α-SA protein. The cells were then cultured in either normal (5 mmol/L) or high glucose (30 mmol/L) medium in the presence of ALDH2 agonist Alda-1, ALDH 2 inhibitor Daidzin, or Alda-1 and NFAT3 inhibitor (11R-VIVIT). Fluorescent probe and ELISA were used to detect intracellular Ca2+ concentration and CaN content, respectively; ALDH2, CaN and NFAT3 protein expressions in the cells were detected using Western blotting. RESULTS Compared with cells cultured in normal glucose, the cells exposed to high glucose showed a significantly decreased expression of ALDH2 protein (P < 0.05) and increased expressions of CaN (P < 0.05) and NFAT3 proteins with also increased intracellular CaN and Ca2+ concentrations (P < 0.01). Alda-1 treatment significantly lowered Ca2+ concentration (P < 0.05), intracellular CaN content (P < 0.01), and CaN and NFAT3 protein expressions (P < 0.05), and increased ALDH2 protein expression (P < 0.05) in high glucose- exposed cells; Daidzin treatment significantly increased Ca2+ concentration (P < 0.01) and intracellular CaN content (P < 0.05) in the exposed cells. Compared with Alda-1 alone, treatment of the high glucose-exposed cells with both Alda-1 and 11R-VIVIT did not produce significant changes in the expression of ALDH2 protein (P>0.05) but significantly reduced the expression of NFAT3 protein (P < 0.05). CONCLUSIONS Mitochondrial ALDH2 protects neonatal rat cardiomyocytes against high glucose-induced injury possibly by negatively regulating Ca2+-CaN-NFAT3 signaling pathway.
Collapse
Affiliation(s)
- Jianlu Guo
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Pinfang Kang
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Lei Zhu
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Shuo Sun
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Min Tao
- Department of Cardiology, Huishan District People's Hospital, Wuxi 214100, China
| | - Heng Zhang
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Bi Tang
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
18
|
Mi Y, Wu Q, Yuan W, Chen F, Du D. Role of microglia M1/M2 polarisation in the paraventricular nucleus: New insight into the development of stress-induced hypertension in rats. Auton Neurosci 2018; 213:71-80. [DOI: 10.1016/j.autneu.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
|
19
|
Hu B, Zhang J, Wang J, He B, Wang D, Zhang W, Zhou X, Li H. Responses of PKCε to cardiac overloads on myocardial sympathetic innervation and NET expression. Auton Neurosci 2017; 210:24-33. [PMID: 29195789 DOI: 10.1016/j.autneu.2017.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023]
Abstract
Protein kinase C (PKC) is a key mediator of many diverse physiological and pathological responses. PKC activation play an important regulatory role of cardiac function. The present study was performed to investigate whether there were differential activations of the PKCε and how the activation coupled with norepinephrine transporter (NET) surface expression, sympathetic innervation pattern and extracellular matrix remodeling in different cardiac hemodynamic overloads induced by abdominal aortic constriction or aortocaval fistula. At 8weeks after the operations, heart failure were induced, accompanied with myocardial hypertrophy, which was more pronounced in pressure overload (POL) than that of volume overload (VOL) rats, left ventricular dysfunction and increased plasma norepinephrine (NE). In POL rats there was an increase in myocardial collagen deposition, in contrast, the amount decreased in VOL as compared with the sham rats. POL remarkably upregulated PKCε membrane-cytosol ratio and downregulated NET membrane fraction, whereas, in VOL induced opposite changes. Accompanied with the PKCε activation, nerve sprouting, evidenced by myocardial GAP43 protein increased, and different nerve phenotypes were found, in POL tyrosine hydroxylase (TH) positive nerve density increased with NET and choline acetyltransferase (ChAT) immunoreactivity density decreased, in contrast, in VOL NET and ChAT increased, TH did not change. The overloads did not induce alteration of NET mRNA expression, but resulted in different myocardial β1-AR mRNA expression, in POL β1-AR mRNAwas significantly downregulated, while in VOL rats unaltered. Conclusion, the present results suggested that the different cardiac hemodynamic overload could differentially activate a common signaling, PKCε intermediate and thereby generate biological diversity.
Collapse
Affiliation(s)
- Bing Hu
- Xiqing Hospital, Tianjin, China
| | - Jing Zhang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Jing Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Bing He
- Tianjin Key Laboratory for Biomarkers of Occupation and Environmental Hazard, China
| | - Deshun Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | | | - Xin Zhou
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China
| | - He Li
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China.
| |
Collapse
|
20
|
Gutiérrez-Lara EJ, Navarrete-Vázquez G, Sánchez-López A, Centurión D. Pharmacological evaluation of metformin and N-benzylbiguanide, a novel analogue of metformin, on the vasopressor responses to adrenergic system stimulation in pithed rats with fructose-induced insulin resistance. Eur J Pharmacol 2017; 814:313-323. [PMID: 28870455 DOI: 10.1016/j.ejphar.2017.08.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/13/2022]
Abstract
Metformin has been associated with cardioprotection, vasorelaxation and normalization of endothelial function during type 2 Diabetes Mellitus. However, few studies have analysed its effects on vascular adrenergic system. Our study has evaluated the vasopressor responses induced by sympathetic stimulation or by i.v. bolus injections of the agonists noradrenaline (α1/2), methoxamine (α1) and UK 14,304 (α2) in rats with fructose-induced insulin resistance chronically pretreated with either metformin or EGL-6M (N-benzylbiguanide), a novel analogue of metformin. Rats were treated with fructose (15%) or tap water (control) during 16 weeks. Next, both groups were treated daily during 4 weeks with: (1) vehicle; (2) metformin (50mg/kg); or (3) EGL-6M (50mg/kg). Blood glucose and plasma insulin were determined before and after administration of glucose during oral glucose tolerance test. Animals treated with fructose showed hyperinsulinemia and insulin resistance, which were decreased by metformin and EGL-6M. In animals treated with fructose, the vasopressor responses induced by: (1) sympathetic stimulation were decreased; (2) noradrenaline were increased; and (3) methoxamine and UK 14,304 remained unaffected compared with control group. In control animals, metformin failed to modify the vasopressor responses analysed, while EGL-6M increased the vasopressor responses to sympathetic stimulation. In rats treated with fructose, metformin decreased vasopressor response to noradrenaline but did not modify the sympathetic stimulation responses. EGL-6M increased the vasopressor responses to sympathetic stimulation without modifying those to noradrenaline, methoxamine or UK 14,304. Collectively, these data suggest that EGL-6M is capable to increase insulin sensitivity and the vasopressor sympathetic outflow in rats.
Collapse
Affiliation(s)
- Erika J Gutiérrez-Lara
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca Morelos, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, Mexico
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, Mexico.
| |
Collapse
|
21
|
Jian S, Su-Mei N, Xue C, Jie Z, Xue-Sen W. Association and interaction between triglyceride-glucose index and obesity on risk of hypertension in middle-aged and elderly adults. Clin Exp Hypertens 2017; 39:732-739. [PMID: 28737433 DOI: 10.1080/10641963.2017.1324477] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIMS To investigate the association between triglyceride-glucose(TyG) index and the risk of hypertension. METHOD A cross-sectional study was conducted in Bengbu, China. The participants received relevant questionnaire survey, anthropometric tests, and laboratory examination. Multivariate logistic regression analysis was performed to estimate the possible association between TyG index and hypertension risk. The additive interaction evaluated by the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index(SI) was calculated. RESULTS A total of 1777 participants (748 men and 1029 women) were investigated. There was a significant increase in the risk of hypertension and isolated systolic hypertension (ISH) when comparing the highest TyG index (the fourth quartile) to the lowest TyG index (the first quartile) and corresponding ORs were 2.446 (95% CI: 1.746-3.426) and 2.621(95%CI: 1.627-4.224), respectively. However, no significant relationship was observed between TyG index and isolated diastolic hypertension (IDH). In males, significant interactions between TyG index and WHtR (RERI:1.978, 95%CI: 0.162-3.792; AP: 0.359, 0.113-0.605; SI:1.782, 1.017-3.122), smoking (AP: 0.437, 95%CI: 0.048-0.825), family history of hypertension (AP:0.433, 95%CI: 0.203-0.662; SI:2.248, 95%CI: 1.333-3.791) were observed. As for females, there were also significant interactions between TyG index and WHtR (RERI:1.415, 95%CI: 0.693-2.136; AP: 0.198, 95%CI: 0.104-0.291; SI:1.298, 95%CI:1.101-1.530), family history of hypertension (RERI:1.744, 95%CI: 0.221-3.267; AP:0.405, 95%CI: 0.113-0.697) on risk of hypertension. CONCLUSIONS Increased TyG index was significantly associated with higher risk of hypertension and ISH, but not for IDH in middle-aged and elderly adults. Our results also demonstrated interactions of TyG index and abdominal obesity and family history of hypertension on hypertension risk.
Collapse
Affiliation(s)
- Song Jian
- a Department of Preventive Medicine , Bengbu medical college , Bengbu , Anhui Province , China
| | - Nie Su-Mei
- b Department of public health , Bengbu Health Board , Bengbu , Anhui Province , China
| | - Chen Xue
- a Department of Preventive Medicine , Bengbu medical college , Bengbu , Anhui Province , China
| | - Zhang Jie
- a Department of Preventive Medicine , Bengbu medical college , Bengbu , Anhui Province , China
| | - Wu Xue-Sen
- a Department of Preventive Medicine , Bengbu medical college , Bengbu , Anhui Province , China
| |
Collapse
|
22
|
Stoyneva Z, Velcheva I, Antonova N, Titianova E, Koleva I. Venoarteriolar reflex responses in diabetic patients. Clin Hemorheol Microcirc 2017; 65:57-65. [PMID: 27716649 DOI: 10.3233/ch-15106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the venoarteriolar reflex (VAR) responses in type 1 (T1DM) and type 2 (T2DM) diabetes mellitus (DM) with polyneuropathy and to estimate their relationship with age, DM duration, initial cutaneous temperature and body mass index. Four groups of subjects were investigated: 1st group -20 patients with T1DM; 2nd group -50 patients with T2DM; 3rd group of 20 healthy subjects with similar age and body mass index (BMI) to the T1DM group; 4th group (Control2) of 24 healthy subjects adjusted by age and BMI to the T2DM group. The cutaneous perfusions of the big toe pulp were monitored as baseline perfusions at a temperature of 32°C in supine and sitting position with hanging legs and back in supine position. Loss of venoarteriolar reflex responses was established in 75% of T1DM patients, 78% of T2DM patients and in none of the investigated healthy controls. Reduced venoarteriolar perfusion responses were established in both T1DM and T2DM patients with polyneuropathy compared with healthy subjects. Reliable positive associations between VAR responses and the age, DM duration and initial cutaneous temperature were found.
Collapse
Affiliation(s)
- Z Stoyneva
- Department of Neurology, University Hospital St. Ivan Rilsky - Sofia, Medical Universities of Sofia and Plovdiv, Bulgaria
| | - I Velcheva
- Department of Neurology, University Hospital of Neurology and Psychiatry, Medical University, Sofia, Bulgaria
| | - N Antonova
- Department of Biomechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - E Titianova
- Clinic of Functional Diagnostics of the Nervous System, Military Medical Academy, Sofia, Bulgaria
| | - I Koleva
- Department of Medical Rehabilitation and Occupational Therapy, Medical University, Sofia, Bulgaria
| |
Collapse
|
23
|
Straznicky NE, Guo L, Corcoran SJ, Esler MD, Phillips SE, Sari CI, Grima MT, Karapanagiotidis S, Wong CY, Eikelis N, Mariani JA, Kobayashi D, Dixon JB, Lambert GW, Lambert EA. Norepinephrine transporter expression is inversely associated with glycaemic indices: a pilot study in metabolically diverse persons with overweight and obesity. Obes Sci Pract 2016; 2:13-23. [PMID: 27812376 PMCID: PMC5066670 DOI: 10.1002/osp4.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/04/2015] [Accepted: 10/09/2015] [Indexed: 01/20/2023] Open
Abstract
Objective The objective of this study was to examine the cross‐sectional relationship between the expression of norepinephrine transporter (NET), the protein responsible for neuronal uptake‐1, and indices of glycaemia and hyperinsulinaemia, in overweight and obese individuals. Methods Thirteen non‐medicated, non‐smoking subjects, aged 58 ± 1 years (mean ± standard error of the mean), body mass index (BMI) 31.4 ± 1.0 kg m−2, with wide‐ranging plasma glucose and haemoglobin A1c (HbA1c, range 5.1% to 6.5%) participated. They underwent forearm vein biopsy to access sympathetic nerves for the quantification of NET by Western blot, oral glucose tolerance test (OGTT), euglycaemic hyperinsulinaemic clamp, echocardiography and assessments of whole‐body norepinephrine kinetics and muscle sympathetic nerve activity. Results Norepinephrine transporter expression was inversely associated with fasting plasma glucose (r = −0.62, P = 0.02), glucose area under the curve during OGTT (AUC0–120, r = −0.65, P = 0.02) and HbA1c (r = −0.67, P = 0.01), and positively associated with steady‐state glucose utilization during euglycaemic clamp (r = 0.58, P = 0.04). Moreover, NET expression was inversely related to left ventricular posterior wall dimensions (r = −0.64, P = 0.02) and heart rate (r = −0.55, P = 0.05). Indices of hyperinsulinaemia were not associated with NET expression. In stepwise linear regression analysis adjusted for age, body mass index and blood pressure, HbA1c was an independent inverse predictor of NET expression, explaining 45% of its variance. Conclusions Hyperglycaemia is associated with reduced peripheral NET expression. Further studies are required to identify the direction of causality.
Collapse
Affiliation(s)
- N E Straznicky
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - L Guo
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - S J Corcoran
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - M D Esler
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - S E Phillips
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - C I Sari
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - M T Grima
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - S Karapanagiotidis
- Alfred Baker Medical Unit Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - C Y Wong
- Alfred Baker Medical Unit Baker IDI Heart & Diabetes Institute Melbourne Australia; Cardiology, Western Health University of Melbourne Melbourne Australia
| | - N Eikelis
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - J A Mariani
- Heart Failure Research Group Baker IDI Heart & Diabetes Institute Melbourne Australia; Faculty of Medicine, Nursing and Health Sciences Monash University Melbourne Australia
| | - D Kobayashi
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - J B Dixon
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia; Primary Health Care Monash University Melbourne Australia
| | - G W Lambert
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia; Faculty of Medicine, Nursing and Health Sciences Monash University Melbourne Australia
| | - E A Lambert
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia; Departments of Physiology Monash University Melbourne Australia; Departments of Physiology University of Melbourne Melbourne Australia
| |
Collapse
|
24
|
|
25
|
Musicki B, Bella AJ, Bivalacqua TJ, Davies KP, DiSanto ME, Gonzalez-Cadavid NF, Hannan JL, Kim NN, Podlasek CA, Wingard CJ, Burnett AL. Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction. J Sex Med 2015; 12:2233-55. [PMID: 26646025 DOI: 10.1111/jsm.13069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. AIM This study aims to provide scientific evidence for the link between CVMD and ED. METHODS In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. RESULTS A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). CONCLUSION Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony J Bella
- Division of Urology, Department of Surgery and Department of Neuroscience, Ottawa Hospital Research Institute at the University of Ottawa, Ottawa, ON, Canada
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kelvin P Davies
- Department of Urology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael E DiSanto
- Department of Surgery/Division of Urology, Cooper University Hospital, Camden, NJ, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA.,Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Noel N Kim
- Institute for Sexual Medicine, San Diego, CA, USA
| | - Carol A Podlasek
- Departments of Urology, Physiology, and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Wong WY, Ward LC, Fong CW, Yap WN, Brown L. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. Eur J Nutr 2015; 56:133-150. [PMID: 26446095 DOI: 10.1007/s00394-015-1064-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/25/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE This study tested the hypothesis that γ- and δ-tocotrienols are more effective than α-tocotrienol and α-tocopherol in attenuating the signs of diet-induced metabolic syndrome in rats. METHODS Five groups of rats were fed a corn starch-rich (C) diet containing 68 % carbohydrates as polysaccharides, while the other five groups were fed a diet (H) high in simple carbohydrates (fructose and sucrose in food, 25 % fructose in drinking water, total 68 %) and fats (beef tallow, total 24 %) for 16 weeks. Separate groups from each diet were supplemented with either α-, γ-, δ-tocotrienol or α-tocopherol (85 mg/kg/day) for the final 8 of the 16 weeks. RESULTS H rats developed visceral obesity, hypertension, insulin resistance, cardiovascular remodelling and fatty liver. α-Tocopherol, α-, γ- and δ-tocotrienols reduced collagen deposition and inflammatory cell infiltration in the heart. Only γ- and δ-tocotrienols improved cardiovascular function and normalised systolic blood pressure compared to H rats. Further, δ-tocotrienol improved glucose tolerance, insulin sensitivity, lipid profile and abdominal adiposity. In the liver, these interventions reduced lipid accumulation, inflammatory infiltrates and plasma liver enzyme activities. Tocotrienols were measured in heart, liver and adipose tissue showing that chronic oral dosage delivered tocotrienols to these organs despite low or no detection of tocotrienols in plasma. CONCLUSION In rats, δ-tocotrienol improved inflammation, heart structure and function, and liver structure and function, while γ-tocotrienol produced more modest improvements, with minimal changes with α-tocotrienol and α-tocopherol. The most important mechanism of action is likely to be reduction in organ inflammation.
Collapse
Affiliation(s)
- Weng-Yew Wong
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Laboratory of Cardiovascular Signalling, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Leigh C Ward
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Chee Wai Fong
- Davos Life Science Pte Ltd, 3 Biopolis Drive, #04-19 Synapse, Singapore, 138623, Singapore
| | - Wei Ney Yap
- Davos Life Science Pte Ltd, 3 Biopolis Drive, #04-19 Synapse, Singapore, 138623, Singapore
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| |
Collapse
|
27
|
Zou Z, Shen Z, Cai Y, Chen Y, Chen S, Chen Y. The β-adrenoceptor agonist isoproterenol rescues acetaminophen-injured livers: Is it really safe? Hepatology 2015; 61:1765. [PMID: 25138958 DOI: 10.1002/hep.27374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Zhuolin Zou
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
28
|
Maiese K. mTOR: Driving apoptosis and autophagy for neurocardiac complications of diabetes mellitus. World J Diabetes 2015; 6:217-224. [PMID: 25789103 PMCID: PMC4360415 DOI: 10.4239/wjd.v6.i2.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/10/2014] [Accepted: 01/19/2015] [Indexed: 02/05/2023] Open
Abstract
The World Health Organization estimates that diabetes mellitus (DM) will become the seventh leading cause of death during the next two decades. DM affects approximately 350 million individuals worldwide and additional millions that remain undiagnosed are estimated to suffer from the complications of DM. Although the complications of DM can be seen throughout the body, the nervous, cardiac, and vascular systems can be significantly affected and lead to disorders that include cognitive loss, stroke, atherosclerosis, cardiac failure, and endothelial stem cell impairment. At the cellular level, oxidative stress is a significant determinant of cell fate during DM and leads to endoplasmic reticulum stress, mitochondrial dysfunction, apoptosis, and autophagy. Multiple strategies are being developed to combat the complications of DM, but it is the mechanistic target of rapamycin (mTOR) that is gaining interest in drug development circles especially for protective therapies that involve cytokines and growth factors such as erythropoietin. The pathways of mTOR linked to mTOR complex 1, mTOR complex 2, AMP activated protein kinase, and the hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) complex can ultimately influence neuronal, cardiac, and vascular cell survival during oxidant stress in DM through a fine interplay between apoptosis and autophagy. Further understanding of these mTOR regulated pathways should foster novel strategies for the complications of DM that impact millions of individuals with death and disability.
Collapse
|
29
|
Straznicky NE, Grima MT, Sari CI, Eikelis N, Lambert GW, Nestel PJ, Karapanagiotidis S, Wong C, Richards K, Marusic P, Dixon JB, Schlaich MP, Lambert EA. A randomized controlled trial of the effects of pioglitazone treatment on sympathetic nervous system activity and cardiovascular function in obese subjects with metabolic syndrome. J Clin Endocrinol Metab 2014; 99:E1701-7. [PMID: 24937541 DOI: 10.1210/jc.2014-1976] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Insulin resistance and sympathetic nervous system overactivity are closely associated and contribute to cardiovascular risk. OBJECTIVE The objective of the study was to test the hypotheses that pharmacological improvement in insulin sensitivity would (1) attenuate sympathetic neural drive and (2) enhance neuronal norepinephrine uptake. PARTICIPANTS AND METHODS A randomized, double-blind trial was conducted in 42 obese, unmedicated individuals with metabolic syndrome (mean age 56 ± 1 y, body mass index 34 ± 0.6 kg/m(2)) who received 12 weeks of pioglitazone (PIO; 15 mg for 6 wk, then 30 mg daily) or matched placebo. Clinical measurements included whole-body norepinephrine kinetics [spillover rate, plasma clearance, and the steady state ratio of tritiated 3,4-dihydroxyphenylglycol to tritiated norepinephrine ([(3)H]-DHPG to [(3)H]-NE) as an index of neuronal uptake-1], muscle sympathetic nerve activity, spontaneous baroreflex sensitivity, euglycemic hyperinsulinemic clamp, oral glucose tolerance test, ambulatory blood pressure, and Doppler echocardiography. RESULTS PIO treatment increased glucose uptake by 35% and was accompanied by significant reductions in diastolic blood pressure and improved left ventricular diastolic and endothelial function. Resting muscle sympathetic nerve activity burst frequency decreased by -6 ± 3 burst/min compared with baseline (P = .03), but the magnitude of change was not different from placebo (P = .89). Norepinephrine spillover and clearance rates and baroreflex sensitivity were unchanged. Post hoc subgroup analyses revealed an 83% increase in [(3)H]-DHPG to [(3)H]-NE ratio in hyperinsulinemic (P = .04) but not normoinsulinemic subjects (time × group interaction, P = .045). Change in [(3)H]-DHPG to [(3)H]-NE ratio correlated with improvements in diastolic blood pressure (r = -0.67, P = .002), the ratio of early (E) to late (A) peak transmitral diastolic inflow velocity (r = 0.62, P = .008), E wave deceleration time (r = -0.48, P = .05), and Δinsulin area under the curve0-120 during the oral glucose tolerance test (r = -0.42, P = .08). CONCLUSIONS Compared with placebo, PIO does not affect resting sympathetic drive or norepinephrine disposition in obese subjects with metabolic syndrome. Treatment induced changes in the [(3)H]-DHPG to [(3)H]-NE ratio related to reduction in hyperinsulinemia and improvements in diastolic function.
Collapse
Affiliation(s)
- Nora E Straznicky
- Laboratories of Human Neurotransmitters (N.E.S., M.T.G., C.L.S., N.E., G.W.L., K.R., J.B.D., E.A.L.), Cardiovascular Nutrition (P.J.N.), and Neurovascular Hypertension and Kidney Disease (P.M., M.P.S.) and Alfred Baker Medical Unit (S.K., C.W.), Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 8008, Australia; Faculty of Medicine, Nursing, and Health Sciences (G.W.L., M.P.S.) and the Departments of Physiology (E.A.L.) and Primary Health Care (J.B.D.), Monash University, Melbourne, Victoria 3800, Australia; and the Department of Physiology (E.A.L.), University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Thackeray JT, deKemp RA, Beanlands RS, DaSilva JN. Early diabetes treatment does not prevent sympathetic dysinnervation in the streptozotocin diabetic rat heart. J Nucl Cardiol 2014; 21:829-41. [PMID: 24890379 DOI: 10.1007/s12350-014-9900-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/03/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Positron emission tomography (PET) studies have demonstrated reduced sympathetic neuronal integrity in high-fat diet fed streptozotocin insulin-resistant diabetic rats in parallel with abnormal early-to-atrial transmitral velocity. We hypothesized that administration of anti-glycemic drugs early after diabetes induction would prevent sympathetic neuronal dysfunction. METHODS AND RESULTS Male Sprague-Dawley rats fed high-fat diet were administered streptozotocin (45 mg·kg(-1), ip, n = 23) to induce diabetes or vehicle alone (n = 6). Diabetic rats were randomized to receive insulin (4 U·day(-1)), metformin (650 mg·kg(-1)·day(-1)), rosiglitazone (4 mg·kg(-1)·day(-1)), or no treatment 1 week after streptozotocin. Small animal PET imaging using the norepinephrine analog [(11)C]meta-hydroxyephedrine (HED) at baseline and 8 weeks of diabetes determined sympathetic neuronal integrity. Echocardiography assessed cardiac function. Plasma norepinephrine levels were determined in parallel. Ex vivo immunoblotting was performed at the end of the experiment to compare the relative expression of various proteins involved in metabolic and noradrenergic signaling. Insulin restored blood glucose and lipid levels to normal. Despite improved plasma lipid levels, neither metformin nor rosiglitazone reduced blood glucose. At 8 weeks, untreated and treated diabetics displayed a 39%-42% reduction in myocardial HED standardized uptake values (P < .05). In all diabetic groups, plasma norepinephrine was elevated (2.3- to 3.3-fold, P < .05) and norepinephrine reuptake transporter expression reduced (28%-35%, P < .05) compared to non-diabetics. Doppler echocardiography revealed delayed development of prolonged mitral valve deceleration and elevated early-to-atrial filling velocity ratio among treated diabetic rats. CONCLUSION Early glycemic treatment of insulin-resistant diabetic rats did not prevent deterioration of sympathetic neuronal integrity though ventricular filling abnormalities were delayed.
Collapse
Affiliation(s)
- James T Thackeray
- Molecular Function & Imaging Program, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
| | | | | | | |
Collapse
|
31
|
Straznicky NE, Lambert EA, Grima MT, Eikelis N, Richards K, Nestel PJ, Dawood T, Masuo K, Sari CI, Dixon JB, Esler MD, Paul E, Schlaich MP, Lambert GW. The effects of dietary weight loss on indices of norepinephrine turnover: modulatory influence of hyperinsulinemia. Obesity (Silver Spring) 2014; 22:652-62. [PMID: 23997009 DOI: 10.1002/oby.20614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 11/11/2022]
Abstract
OBJECTIVES This study was conducted to examine (1) the effects of dietary weight loss on indices of norepinephrine (NE) turnover and (2) whether baseline hyperinsulinemia modulates sympathetic neural adaptations. METHODS Obese individuals aged 56 ± 1 year, BMI 32.5 ± 0.4 kg/m(2) , with metabolic syndrome, underwent a 12-week hypocaloric diet (HCD, n = 39) or no treatment (n = 26). Neurochemical measurements comprised arterial dihydroxyphenylalanine (DOPA), 3,4-dihydroxyphenylglycol (DHPG), and NE concentrations, the steady-state ratio of [3H]-DHPG to [3H]-NE, as an index of neuronal uptake, and calculated whole-body plasma NE clearance and spillover rates. RESULTS Body weight decreased by -7.4 ± 0.5% in HCD group (P < 0.001) and was accompanied by reductions in DOPA, NE, and DHPG averaging -14 ± 5% (P = 0.001), -23 ± 4% (P <0.001), and -5 ± 4% (P = 0.03), respectively. NE spillover rate decreased by -88 ± 39 ng/min (P = 0.01), whereas neuronal uptake and NE plasma clearance were unchanged. Despite similar weight loss, hyperinsulinemic subjects exhibited greater reductions in NE and NE spillover rate, compared to normoinsulinemic subjects (group by time interaction P < 0.05). CONCLUSIONS Weight loss is associated with down-regulation of sympathetic nervous activity but no overall alteration in disposition indices. Hyperinsulinemic subjects derive a greater sympathoinhibitory benefit during weight loss.
Collapse
Affiliation(s)
- Nora E Straznicky
- Laboratories of Human Neurotransmitters, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tarvainen MP, Laitinen TP, Lipponen JA, Cornforth DJ, Jelinek HF. Cardiac autonomic dysfunction in type 2 diabetes - effect of hyperglycemia and disease duration. Front Endocrinol (Lausanne) 2014; 5:130. [PMID: 25152747 PMCID: PMC4126058 DOI: 10.3389/fendo.2014.00130] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/19/2014] [Indexed: 01/15/2023] Open
Abstract
Heart rate variability (HRV) is reduced in diabetes mellitus (DM) patients, suggesting dysfunction of cardiac autonomic regulation and an increased risk for cardiac events. The aim of this paper was to examine the associations of blood glucose level (BGL), glycated hemoglobin (HbA1c), and duration of diabetes with cardiac autonomic regulation assessed by HRV analysis. Resting electrocardiogram (ECG), recorded over 20 min in supine position, and clinical measurements of 189 healthy controls and 93 type 2 DM (T2DM) patients were analyzed. HRV was assessed using several time-domain, frequency-domain, and non-linear methods. HRV parameters showed a clear difference between healthy controls and T2DM patients. Hyperglycemia was associated with increase in mean heart rate and decrease in HRV, indicated by negative correlations of BGL and HbA1c with mean RR interval and most of the HRV parameters. Duration of diabetes was strongly associated with decrease in HRV, the most significant decrease in HRV was found within the first 5-10 years of the disease. In conclusion, elevated blood glucose levels have an unfavorable effect on cardiac autonomic function and this effect is pronounced in long-term T2DM patients. The most significant decrease in HRV related to diabetes and thus presence of autonomic neuropathy was observed within the first 5-10 years of disease progression.
Collapse
Affiliation(s)
- Mika P. Tarvainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- *Correspondence: Mika P. Tarvainen, Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio 70211, Finland e-mail:
| | - Tomi P. Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Jukka A. Lipponen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - David J. Cornforth
- School of Design, Communication and IT, University of Newcastle, Newcastle, NSW, Australia
| | - Herbert F. Jelinek
- School of Community Health, Centre for Research in Complex Systems, Charles Sturt University, Albury, NSW, Australia
| |
Collapse
|
33
|
Thackeray JT, deKemp RA, Beanlands RS, DaSilva JN. Insulin restores myocardial presynaptic sympathetic neuronal integrity in insulin-resistant diabetic rats. J Nucl Cardiol 2013; 20:845-56. [PMID: 23842711 DOI: 10.1007/s12350-013-9759-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Diabetes is associated with increased sympathetic activity, elevated norepinephrine, impaired heart rate variability, and the added risk of cardiovascular mortality. The temporal development of sympathetic neuronal dysfunction, response to therapy, and relation to ventricular function is not well characterized. METHODS AND RESULTS Sympathetic neuronal integrity was serially investigated in high fat diet-fed streptozotocin diabetic rats using [(11)C]meta-hydroxyephedrine (HED) positron emission tomography at baseline, 8 weeks of diabetes, and after a further 8 weeks of insulin or insulin-sensitizing metformin therapy. Myocardial HED retention was reduced in diabetic rats (n = 16) compared to non-diabetics (n = 6) at 8 weeks by 52-57% (P = .01) with elevated plasma and myocardial norepinephrine levels. Echocardiography pulse-wave Doppler measurements demonstrated prolonged mitral valve deceleration and increased early-to-atrial filling velocity, consistent with diastolic dysfunction. Insulin but not metformin evoked recovery of HED retention and plasma norepinephrine (P < .05), whereas echocardiography measurements of diastolic function were not improved by either treatment. Relative expressions of norepinephrine reuptake transporter and β-adrenoceptors were lower in metformin-treated as compared to insulin-treated diabetic and non-diabetic rats. Diabetic rats exhibited depressed heart rate variability and impaired diastolic function which persisted despite insulin treatment. CONCLUSIONS HED imaging provides sound estimation of sympathetic function. Effective glycemic control can recover sympathetic function in diabetic rats without the corresponding recovery of echocardiography indicators of diastolic dysfunction. HED positron emission tomography imaging may be useful in stratifying cardiovascular risk among diabetic patients and in evaluating the effect of glycemic therapy on the heart.
Collapse
Affiliation(s)
- James T Thackeray
- Molecular Function & Imaging Program, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada,
| | | | | | | |
Collapse
|
34
|
Oosugi K, Fujimoto N, Dohi K, Machida H, Onishi K, Takeuchi M, Nomura S, Takeuchi H, Nobori T, Ito M. Hemodynamic and pathophysiological characteristics of intradialytic blood pressure elevation in patients with end-stage renal disease. Hypertens Res 2013; 37:158-65. [PMID: 24048483 DOI: 10.1038/hr.2013.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 11/09/2022]
Abstract
An increase in systolic blood pressure (SBP) after hemodialysis (intradialytic-HTN) is associated with adverse outcomes in patients on regular hemodialysis. However, the hemodynamic and Doppler echocardiographic characteristics of intradialytic-HTN and its impact on clinical outcomes are unclear. A retrospective analysis of 84 patients (45 men, 70±9 years) stratified into three groups on the basis of SBP response from pre- to post-hemodialysis: GHTN (intradialytic-HTN, SBP increase 10 mm Hg), GDROP<15 mm Hg (SBP drop <15 mm Hg), and GDROP15 mm Hg (SBP drop 15 mm Hg). Hemodynamic and echocardiographic assessments were performed pre- and post-hemodialysis, and patients were followed for 41±17 months. GHTN had higher blood glucose and lower baseline SBP, serum potassium and total cholesterol. Cardiothoracic ratio was smaller, and peak early diastolic mitral annular velocity (E') was lower in GHTN. During hemodialysis, SBP and diastolic blood pressure increased only in GHTN. After hemodialysis, left ventricular (LV) filling pressure (E/E' ratio) decreased only in GDROP15 mm Hg, resulting in a higher E/E' ratio in GHTN than GDROP15 mm Hg. Multivariate logistic regression analysis revealed a positive correlation between blood glucose and intradialytic-HTN, whereas cardiothoracic ratio, pre-hemodialysis SBP and the change in E/E' ratio with hemodialysis were negatively related to intradialytic-HTN. During follow-up, GHTN had more cardiovascular deaths than GDROP15 mm Hg (P=0.03). Multivariate Cox regression analysis showed that lower serum potassium and previous coronary artery disease, but not intradialytic-HTN, were associated with cardiovascular deaths. A higher LV afterload and elevated filling pressures after hemodialysis, indicative of increased cardiovascular stiffening and impaired diastolic filling, may contribute in part to an increased cardiovascular burden in patients with intradialytic-HTN.
Collapse
Affiliation(s)
- Kazuki Oosugi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoki Fujimoto
- Department of Molecular and Laboratory Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Machida
- Department of Internal Medicine, Syojunkai Takeuchi Hospital, Tsu, Japan
| | - Katsuya Onishi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Misao Takeuchi
- Department of Internal Medicine, Syojunkai Takeuchi Hospital, Tsu, Japan
| | - Shinsuke Nomura
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideyuki Takeuchi
- Department of Internal Medicine, Syojunkai Takeuchi Hospital, Tsu, Japan
| | - Tsutomu Nobori
- Department of Molecular and Laboratory Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
35
|
Flotats A. Advances in Molecular Imaging: Innervation Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-013-9209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Thackeray JT, Renaud JM, Kordos M, Klein R, deKemp RA, Beanlands RS, DaSilva JN. Test–retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nucl Med Biol 2013; 40:676-81. [DOI: 10.1016/j.nucmedbio.2013.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 11/26/2022]
|
37
|
Ekici B, Unal-Cevik I, Akgul-Ercan E, Morkavuk G, Yakut Y, Erkan AF. Duration of Migraine Is Associated with Cardiac Diastolic Dysfunction. PAIN MEDICINE 2013; 14:988-93. [DOI: 10.1111/pme.12105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Batulevicius D, Frese T, Peschke E, Pauza DH, Batuleviciene V. Remodelling of the intracardiac ganglia in diabetic Goto-Kakizaki rats: an anatomical study. Cardiovasc Diabetol 2013; 12:85. [PMID: 23758627 PMCID: PMC3688305 DOI: 10.1186/1475-2840-12-85] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022] Open
Abstract
Background Although cardiac autonomic neuropathy is one of major complications of diabetes mellitus (DM), anatomical data on cardiac innervation of diabetic animal models is scant and controversial. We performed this study to check whether long-term diabetic state impacts the anatomy of intracardiac ganglia in Goto-Kakizaki (GK) rats, a genetic model of type 2 DM. Methods Twelve GK rats (276 ± 17 days of age; mean ± standard error) and 13 metabolically healthy Wistar rats (262 ± 5 days of age) as controls were used for this study. Blood glucose was determined using test strips, plasma insulin by radioimmunoassay. Intrinsic ganglia and nerves were visualized by acetylcholinesterase histochemistry on whole hearts. Ganglion area was measured, and the neuronal number was assessed according to ganglion area. Results The GK rats had significantly elevated blood glucose level compared to controls (11.0 ± 0.6 vs. 5.9 ± 0.1 mmol/l, p < 0.001), but concentration of plasma insulin did not differ significantly between the two groups (84.0 ± 9.8 vs. 67.4 ± 10.9 pmol/l, p = 0.17). The GK rats contained significantly fewer intracardiac ganglia, decreased total area of intracardiac ganglia (1.4 ± 0.1 vs. 2.2 ± 0.1 mm2, p < 0.001) and smaller somata of ganglionic neurons. Mean total number of intracardiac neurons in GK rats was 1461 ± 62, while this number in control rats was higher by 39% and reached 2395 ± 110 (p < 0.001). Conclusions Results of our study demonstrate the decreased number of intracardiac neurons in GK rats compared to metabolically healthy Wistar rats of similar age. It is likely that the observed structural remodelling of intracardiac ganglia in GK rats is caused by a long-term diabetic state.
Collapse
|
39
|
Abstract
The autonomic nervous system is the primary extrinsic control of cardiac performance, and altered autonomic activity has been recognized as an important factor in the progression of various cardiac pathologies. Molecular imaging techniques have been developed for global and regional interrogation of pre- and postsynaptic targets of the cardiac autonomic nervous system. Building on established work with the guanethidine analogue ¹²³I-metaiodobenzylguanidine (MIBG) for single-photon emission tomography (SPECT), development of radiotracers and protocols for positron emission tomography (PET) investigation of autonomic signaling has expanded. PET is limited in availability and requires specialized centers for radiosynthesis and interpretation, but the higher resolution allows for improved regional analysis and kinetic modeling provides more true quantification than is possible with SPECT. A wider array of radiolabeled catecholamines, analogues of catecholamines, and receptor ligands have been characterized and evaluated. Sympathetic neuronal PET tracers have shown promise in the identification of several cardiac pathologies. In particular, recent studies have elucidated a mechanistic role for heterogeneous sympathetic innervation in the development of lethal ventricular arrhythmias. Evaluation of cardiomyocyte adrenergic receptor expression and the parasympathetic nervous system has been slower to develop, with clinical studies beginning to emerge. This review summarizes the clinical and the experimental PET tracers currently available for autonomic imaging and discusses their application in health and cardiovascular disease, with particular emphasis on the major findings of the last decade.
Collapse
Affiliation(s)
- James T Thackeray
- Klinik für Nuklearmedizin, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
40
|
Kim YH, Jung KI, Song CH. Effects of serum calcium and magnesium on heart rate variability in adult women. Biol Trace Elem Res 2012; 150:116-22. [PMID: 23054869 DOI: 10.1007/s12011-012-9518-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/01/2012] [Indexed: 02/05/2023]
Abstract
The present study was designed to evaluate the association of serum calcium (Ca) and magnesium (Mg) levels with heart rate variability (HRV). One hundred and sixteen adult women were recruited in this cross-sectional study. Serum Ca and Mg levels were measured, and HRV in each time and frequency domain was recorded for 5 min. Mean heart rate and standard deviation of the normal to normal interval (SDNN) and root mean square of differences of successive RR interval (RMSSD) in time domain and total power (TP), low-frequency power (LF), high-frequency power (HF), and LF/HF ratio in frequency domain were compared according to the tertiles of serum Ca and Mg levels and Ca/Mg ratio. The associations between serum Ca and Mg levels and Ca/Mg ratio with HRV were evaluated using regression analyses. Mean heart rate tended to increase from the lowest to the highest tertile of Ca levels (p = 0.081), whereas it decreased significantly with higher Mg levels (p = 0.026). Increasing SDNN value was observed from the lowest to the highest tertile of Mg levels (p = 0.009). SDNN value decreased significantly from the lowest to the highest tertile of Ca/Mg ratio (p = 0.030). Participants in the lowest tertile of Ca/Mg ratio had significantly higher TP and LF values compared to those in the middle and highest tertiles (p < 0.05). Decreasing SDNN, TP, and LF values were significantly associated with higher Ca/Mg ratios (p < 0.05). Associations of serum Mg level and Ca/Mg ratio with HRV could be one of the mechanisms involved in cardiovascular diseases.
Collapse
Affiliation(s)
- Yeong-Hoon Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | |
Collapse
|
41
|
Yi T, Cheema Y, Tremble SM, Bell SP, Chen Z, Subramanian M, LeWinter MM, VanBuren P, Palmer BM. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform. Cardiovasc Diabetol 2012; 11:135. [PMID: 23116444 PMCID: PMC3537566 DOI: 10.1186/1475-2840-11-135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/20/2012] [Indexed: 02/07/2023] Open
Abstract
It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG) and that exposure of zinc ion (Zn2+) to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR) at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our results suggest that the relaxing effects of Zn2+ on cardiomyocyte function are more pronounced in the HG state due an insulin-dependent effect of enhancing removal of cytosolic Ca2+ via SERCA2a or NCX or by reducing Ca2+ influx via L-type channel or Ca2+ leak through the RyR. Investigations into the effects of Zn2+ on these mechanisms are now underway.
Collapse
Affiliation(s)
- Ting Yi
- Department of Molecular Physiology and Biophysics, University of Vermont, 122 HSRF Beaumont Ave, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Clark I, Atwood C, Bowen R, Paz-Filho G, Vissel B. Tumor necrosis factor-induced cerebral insulin resistance in Alzheimer's disease links numerous treatment rationales. Pharmacol Rev 2012; 64:1004-26. [PMID: 22966039 DOI: 10.1124/pr.112.005850] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The evident limitations of the amyloid theory of the pathogenesis of Alzheimer's disease are increasingly putting alternatives in the spotlight. We argue here that a number of independently developing approaches to therapy-including specific and nonspecific anti-tumor necrosis factor (TNF) agents, apolipoprotein E mimetics, leptin, intranasal insulin, the glucagon-like peptide-1 mimetics and glycogen synthase kinase-3 (GSK-3) antagonists-are all part of an interlocking chain of events. All these approaches inform us that inflammation and thence cerebral insulin resistance constitute the pathway on which to focus for a successful clinical outcome in treating this disease. The key link in this chain presently absent is a recognition by Alzheimer's research community of the long-neglected history of TNF induction of insulin resistance. When this is incorporated into the bigger picture, it becomes evident that the interventions we discuss are not competing alternatives but equally valid approaches to correcting different parts of the same pathway to Alzheimer's disease. These treatments can be expected to be at least additive, and conceivably synergistic, in effect. Thus the inflammation, insulin resistance, GSK-3, and mitochondrial dysfunction hypotheses are not opposing ideas but stages of the same fundamental, overarching, pathway of Alzheimer's disease pathogenesis. The insight this provides into progenitor cells, including those involved in adult neurogenesis, is a key part of this approach. This pathway also has therapeutic implications for other circumstances in which brain TNF is pathologically increased, such as stroke, traumatic brain injury, and the infectious disease encephalopathies.
Collapse
Affiliation(s)
- Ian Clark
- Division of Medical Science and Biochemistry, Research School of Biology, Australian National University, Canberra ACT, Australia.
| | | | | | | | | |
Collapse
|
43
|
Leguisamo NM, Lehnen AM, Machado UF, Okamoto MM, Markoski MM, Pinto GH, Schaan BD. GLUT4 content decreases along with insulin resistance and high levels of inflammatory markers in rats with metabolic syndrome. Cardiovasc Diabetol 2012; 11:100. [PMID: 22897936 PMCID: PMC3439702 DOI: 10.1186/1475-2840-11-100] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/11/2012] [Indexed: 02/07/2023] Open
Abstract
Background Metabolic syndrome is characterized by insulin resistance, which is closely related to GLUT4 content in insulin-sensitive tissues. Thus, we evaluated the GLUT4 expression, insulin resistance and inflammation, characteristics of the metabolic syndrome, in an experimental model. Methods Spontaneously hypertensive neonate rats (18/group) were treated with monosodium glutamate (MetS) during 9 days, and compared with Wistar-Kyoto (C) and saline-treated SHR (H). Blood pressure (BP) and lipid levels, C-reactive protein (CRP), interleukin 6 (IL-6), TNF-α and adiponectin were evaluated. GLUT4 protein was analysed in the heart, white adipose tissue and gastrocnemius. Studies were performed at 3 (3-mo), 6 (6-mo) and 9 (9-mo) months of age. Results MetS rats were more insulin resistant (p<0.001, all ages) and had higher BP (3-mo: p<0.001, 6-mo: p = 0.001, 9-mo: p = 0.015) as compared to C. At 6 months, CRP, IL-6 and TNF-α were higher (p<0.001, all comparisons) in MetS rats vs H, but adiponectin was lower in MetS at 9 months (MetS: 32 ± 2, H: 42 ± 2, C: 45 ± 2 pg/mL; p<0.001). GLUT4 protein was reduced in MetS as compared to C rats at 3, 6 and 9-mo, respectively (Heart: 54%, 50% and 57%; Gastrocnemius: 37%, 56% and 50%; Adipose tissue: 69%, 61% and 69%). Conclusions MSG-treated SHR presented all metabolic syndrome characteristics, as well as reduced GLUT4 content, which must play a key role in the impaired glycemic homeostasis of the metabolic syndrome.
Collapse
Affiliation(s)
- Natalia M Leguisamo
- Laboratório de Experimentação Animal e Laboratório de Cardiologia Molecular e Celular, Instituto de Cardiologia/Fundação, Universitária de Cardiologia, Bairro Santana, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Thackeray JT, Beanlands RS, Dasilva JN. Altered sympathetic nervous system signaling in the diabetic heart: emerging targets for molecular imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2012; 2:314-334. [PMID: 23133819 PMCID: PMC3477737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
Diabetes is commonly associated with increased risk of cardiovascular morbidity and mortality. Perturbations in sympathetic nervous system (SNS) signaling have been linked to the progression of diabetic heart disease. Glucose, insulin, and free fatty acids contribute to elevated sympathetic nervous activity and norepinephrine release. Reduced left ventricular compliance and impaired cardiac function lead to further SNS activation. Chronic elevation of cardiac norepinephrine culminates in altered expression of pre- and post-synaptic sympathetic signaling elements, changes in calcium regulatory proteins, and abnormal contraction-excitation coupling. Clinically, these factors manifest as altered resting heart rate, depressed heart rate variability, and impaired cardiac autonomic reflex, which may contribute to elevated cardiovascular risk. Development of molecular imaging probes enable a comprehensive evaluation of cardiac SNS signaling at the neuron, postsynaptic receptor, and intracellular second messenger sites of signal transduction, providing mechanistic insights into cardiac pathology. This review will examine the evidence for abnormal SNS signaling in the diabetic heart and establish the physiological consequences of these changes, drawing from basic biological research in isolated heart and rodent models of diabetes, as well as from clinical reports. Particular attention will be paid to the use of molecular imaging approaches to non-invasively characterize and evaluate sympathetic signal transduction in diabetes, including pre-synaptic norepinephrine reuptake assessment using (11)C-meta-hydroxyephedrine ((11)C-HED) with PET or (123)I-metaiodobenzylguanidine ((123)I-MIBG) with SPECT, and postsynaptic β-adrenoceptor density measurements using CGP12177 derivatives. Finally, the review will attempt to define the future role of these non-invasive nuclear imaging techniques in diabetes research and clinical care.
Collapse
Affiliation(s)
- James T Thackeray
- Molecular Function & Imaging Program, National Cardiac PET Centre, University of Ottawa Heart Institute Canada ; Department of Cellular & Molecular Medicine, Faculty of Graduate and Postdoctoral Studies, University of Ottawa Canada
| | | | | |
Collapse
|
45
|
Chong ZZ, Maiese K. Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiovasc Diabetol 2012; 11:45. [PMID: 22545721 PMCID: PMC3398846 DOI: 10.1186/1475-2840-11-45] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/30/2012] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus currently affects more than 170 million individuals worldwide and is expected to afflict another 200 million individuals in the next 30 years. Complications of diabetes as a result of oxidant stress affect multiple systems throughout the body, but involvement of the cardiovascular system may be one of the most severe in light of the impact upon cardiac and vascular function that can result in rapid morbidity and mortality for individuals. Given these concerns, the signaling pathways of the mammalian target of rapamycin (mTOR) offer exciting prospects for the development of novel therapies for the cardiovascular complications of diabetes. In the cardiovascular and metabolic systems, mTOR and its multi-protein complexes of TORC1 and TORC2 regulate insulin release and signaling, endothelial cell survival and growth, cardiomyocyte proliferation, resistance to β-cell injury, and cell longevity. Yet, mTOR can, at times, alter insulin signaling and lead to insulin resistance in the cardiovascular system during diabetes mellitus. It is therefore vital to understand the complex relationship mTOR and its downstream pathways hold during metabolic disease in order to develop novel strategies for the complications of diabetes mellitus in the cardiovascular system.
Collapse
|
46
|
Monteiro PF, Morganti RP, Delbin MA, Calixto MC, Lopes-Pires ME, Marcondes S, Zanesco A, Antunes E. Platelet hyperaggregability in high-fat fed rats: a role for intraplatelet reactive-oxygen species production. Cardiovasc Diabetol 2012; 11:5. [PMID: 22248260 PMCID: PMC3320560 DOI: 10.1186/1475-2840-11-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/16/2012] [Indexed: 12/27/2022] Open
Abstract
Background Adiposity greatly increases the risk of atherothrombotic events, a pathological condition where a chronic state of oxidative stress is reported to play a major role. This study aimed to investigate the involvement of (NO)-soluble guanylyl cyclase (sGC) signaling pathway in the platelet dysfunction from high fat-fed (HFF) rats. Methods Male Wistar rats were fed for 10 weeks with standard chow (SCD) or high-fat diet (HFD). ADP (10 μM)- and thrombin (100 mU/ml)-induced washed platelet aggregation were evaluated. Measurement of intracellular levels of ROS levels was carried out using flow cytometry. Cyclic GMP levels were evaluated using ELISA kits. Results High-fat fed rats exhibited significant increases in body weight, epididymal fat, fasting glucose levels and glucose intolerance compared with SCD group. Platelet aggregation induced by ADP (n = 8) and thrombin from HFD rats (n = 8) were significantly greater (P < 0.05) compared with SCD group. Platelet activation with ADP increased by 54% the intraplatelet ROS production in HFD group, as measured by flow cytometry (n = 6). N-acetylcysteine (NAC; 1 mM) and PEG-catalase (1000 U/ml) fully prevented the increased ROS production and platelet hyperaggregability in HFD group. The NO donors sodium nitroprusside (SNP; 10 μM) and SNAP (10 μM), as well as the NO-independent soluble guanylyl cyclase stimulator BAY 41-2272 (10 μM) inhibited the platelet aggregation in HFD group with lower efficacy (P < 0.05) compared with SCD group. The cGMP levels in response to these agents were also markedly lower in HFD group (P < 0.05). The prostacyclin analogue iloprost (1 μM) reduced platelet aggregation in HFD and SCD rats in a similar fashion (n = 4). Conclusions Metabolic abnormalities as consequence of HFD cause platelet hyperaggregability involving enhanced intraplatelet ROS production and decreased NO bioavailability that appear to be accompanied by potential defects in the prosthetic haem group of soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Priscila F Monteiro
- Department of Pharmacology, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Maiese K, Chong ZZ, Shang YC, Wang S. Translating cell survival and cell longevity into treatment strategies with SIRT1. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2011; 52:1173-85. [PMID: 22203920 PMCID: PMC3253557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The sirtuin SIRT1, a class III NAD(+)-dependent protein histone deacetylase, is present throughout the body that involves cells of the central nervous system, immune system, cardiovascular system, and the musculoskeletal system. SIRT1 has broad biological effects that affect cellular metabolism as well as cellular survival and longevity that can impact both acute and chronic disease processes that involve neurodegenerative disease, diabetes mellitus, cardiovascular disease, and cancer. Given the intricate relationship SIRT1 holds with a host of signal transduction pathways ranging from transcription factors, such as forkhead, to cytokines and growth factors, such as erythropoietin, it becomes critical to elucidate the cellular pathways of SIRT1 to safely and effectively develop and translate novel avenues of treatment for multiple disease entities.
Collapse
Affiliation(s)
- K Maiese
- Department of Neurology and Neurosciences, Cancer Center, F 1220, UMDNJ - New Jersey Medical School, Newark, NJ, USA.
| | | | | | | |
Collapse
|