1
|
Abdalsada HK, Abdulsaheb YS, Zolghadri S, Al-Hakeim HK, Stanek A. The Potential Diagnostic Utility of SMAD4 and ACCS in the Context of Inflammation in Type 2 Diabetes Mellitus Patients. Biomedicines 2024; 12:2015. [PMID: 39335530 PMCID: PMC11428511 DOI: 10.3390/biomedicines12092015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The search for new parameters for the prediction of type 2 diabetes mellitus (T2DM) or its harmful consequences remains an important field of study. Depending on the low-grade inflammatory nature of diabetes, we investigated three proteins in T2DM patients: 1-aminocyclopropane-1-carboxylate synthase (ACCS), granulocyte-colony-stimulating factor (G-CSF), and Sma Mothers Against Decapentaplegic homolog-4 (SMAD4). In brief, sixty T2DM and thirty healthy controls had their serum levels of ACCS, G-CSF, SMAD4, and insulin tested using the ELISA method. The insulin resistance (IR) parameter (HOMA2IR), beta-cell function percentage (HOMA2%B), and insulin sensitivity (HOMA2%S) were all determined by the Homeostasis Model Assessment-2 (HOMA2) calculator. The predictability of these protein levels was investigated by neural network (NN) analysis and was associated with measures of IR. Based on the results, ACCS, G-CSF, and SMAD4 increased significantly in the T2DM group compared with the controls. Their levels depend on IR status and inflammation. The multivariate GLM indicated the independence of the levels of these proteins on the covariates or drugs taken. The receiver operating characteristic area under the curve (AUC) for the prediction of T2DM using NN analysis is 0.902, with a sensitivity of 71.4% and a specificity of 93.8%. The network predicts T2DM well with predicted pseudoprobabilities over 0.5. The model's predictive capability (normalized importance) revealed that ACCS is the best model (100%) for the prediction of T2DM, followed by G-CSF (75.5%) and SMAD4 (69.6%). It can be concluded that ACCS, G-CSF, and SMAD4 are important proteins in T2DM prediction, and their increase is associated with the presence of inflammation.
Collapse
Affiliation(s)
- Habiba Khdair Abdalsada
- Department of Clinical Laboratory Sciences, College of Pharmacy, Al-Muthanna University, Al-Muthanna 66001, Iraq;
| | - Yusra Sebri Abdulsaheb
- Clinical Pharmacy Department, College of Pharmacy, Missan University, Missan 62001, Iraq;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | | | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
2
|
Vaitiekiene A, Kulboke M, Bieseviciene M, Bartnykaite A, Kireilis B, Rinkuniene D, Jankauskas A, Zemaitis J, Gaidamavicius I, Gerbutavicius R, Vaitiekus D, Vaskelyte JJ, Sakalyte G. Early Impact of Mobilization Process on Cardiac Function and Size in Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation. J Clin Med 2024; 13:773. [PMID: 38337467 PMCID: PMC10856069 DOI: 10.3390/jcm13030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Background: The hematopoietic stem cell transplantation (HSCT) process is known to cause cardiac toxicity of different grades. In this paper, we aimed to evaluate the impact of mobilization procedure of hematopoietic stem cells for autologous HSCT process for left and right ventricle sizes and functions. Material and Methods: The data of 47 patients undergoing autologous HSCT were analyzed. All patients underwent hematopoietic stem cell mobilization with chemotherapy and filgrastim at 10 µg/kg/d. Echocardiography was performed two times: before enrolling in the transplantation process and after mobilization before the conditioning regimen for transplantation. Changes in left and right ventricle (RV) diameter and systolic and diastolic function of the left ventricle and systolic function of the RV were measured. Results: A statistically significant difference was observed in the change of right ventricular function (S')-it slightly decreased. Mean S' before mobilization was 13.93 ± 2.85 cm/s, and after mobilization it was 12.19 ± 2.64 cm/s (p = 0.003). No statistically significant change in left ventricular diameter and systolic and diastolic function and RV diameter was observed. Conclusions: The mobilization procedure in patients undergoing autologous HSCT is associated with reduced RV systolic function. S' could be used as a reliable tool to evaluate early cardiotoxicity in HSCT patients and guide further follow-up.
Collapse
Affiliation(s)
- Audrone Vaitiekiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
| | - Migle Kulboke
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Monika Bieseviciene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
| | - Agne Bartnykaite
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Benas Kireilis
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Diana Rinkuniene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Antanas Jankauskas
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Justinas Zemaitis
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
| | - Ignas Gaidamavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rolandas Gerbutavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Domas Vaitiekus
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Jolanta Justina Vaskelyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Gintare Sakalyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| |
Collapse
|
3
|
Abdelrahman SA, Khattab MA, Youssef MS, Mahmoud AA. Granulocyte-colony stimulating factor ameliorates di-ethylhexyl phthalate-induced cardiac muscle injury via stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms. J Mol Histol 2023; 54:349-363. [PMID: 37428366 PMCID: PMC10412672 DOI: 10.1007/s10735-023-10137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Phthalates are common plasticizers present in medical-grade plastics and other everyday products. Di-ethylhexyl phthalate (DEHP) has been noted as a causative risk factor for the initiation and augmentation of cardiovascular functional disorders. G-CSF is a glycoprotein found in numerous tissues throughout the body and is currently applied in clinical practice and has been tested in congestive heart failure. We aimed to examine in depth the effect of DEHP on the histological and biochemical structure of the cardiac muscle in adult male albino rats and the mechanisms underlying the possible ameliorative effect of G-CSF. Forty-eight adult male albino rats were divided into control group, DEHP group, DEHP+ G-CSF group and DEHP-recovery group. We measured serum levels of aspartate aminotransferase (AST), creatine kinase MB isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Left ventricular sections were processed for light and electron microscope examination, and immunohistochemical staining of Desmin, activated Caspase-3 and CD34. DEHP significantly increased enzyme levels, markedly distorted the normal architecture of cardiac muscle fibers, downregulated Desmin protein levels and enhanced fibrosis, and apoptosis. G-CSF treatment significantly decreased the enzyme levels compared to DEHP group. It enhanced CD34 positive stem cells recruitment to injured cardiac muscle, therefore improved the ultrastructural features of most cardiac muscle fibers via anti-fibrotic and anti-apoptotic effects in addition to increased Desmin protein expression levels. The recovery group showed partial improvement due to persistent DEHP effect. In conclusion, administration of G-CSF effectively corrected the histopathological, immunohistochemical and biochemical alterations in the cardiac muscle after DEHP administration by stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian S Youssef
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Park IH, Shen GY, Song YS, Jong Cho Y, Kim BS, Lee Y, Lim YH, Shin JH, Kim KS. Granulocyte colony-stimulating factor reduces the endoplasmic reticulum stress in a rat model of diabetic cardiomyopathy. Endocr J 2021; 68:1293-1301. [PMID: 34121048 DOI: 10.1507/endocrj.ej21-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Prolonged endoplasmic reticulum (ER) stress contributes to the apoptosis of cardiomyocytes, which leads to the development of diabetic cardiomyopathy. Previously, we reported that the granulocyte colony-stimulating factor (G-CSF) reduces the cardiomyocyte apoptosis in diabetic cardiomyopathy; however, the precise mechanisms associated with this process are not yet fully understood. Therefore, in this study, we investigated whether the mechanism of the anti-apoptotic effect of G-CSF was associated with ER stress in a rat model of diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in rats using a high-fat diet combined with the administration of a low-dose of streptozotocin. Diabetic rats were treated with G-CSF or saline for 5 days. Cardiac function was evaluated using serial echocardiography before and 4 weeks after treatment. The rate of cardiomyocyte apoptosis and the expression levels of proteins related to ER stress, including glucose-regulated protein 78 (GRP78), caspase-9, and caspase-12 were analyzed in the cardiac tissue. G-CSF treatment significantly reduced cardiomyocyte apoptosis in the diabetic myocardium and downregulated the expression levels of these proteins in diabetic rats treated with low-dose streptozotocin when compared to that in rats treated with saline. In addition, G-CSF treatment significantly downregulated the expression levels of proteins related to ER stress, such as GRP78, inositol-requiring enzyme-1α (IRE-1α), and C/EBP homologous protein (CHOP) in H9c2 cells under high glucose (HG) conditions. Moreover, G-CSF treatment significantly improved the diastolic dysfunction in serial echocardiography assessments. In conclusion, the anti-apoptotic effect of G-CSF may be associated with the downregulation of ER stress.
Collapse
Affiliation(s)
- In-Hwa Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Guang-Yin Shen
- Department of Cardiology, Jilin University, Jilin Central Hospital, Jilin, China
| | - Yi-Sun Song
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Young Jong Cho
- Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Byung Sik Kim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yonggu Lee
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young-Hyo Lim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hun Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Kim
- Department of Cardiology, St. Peter's Hospital, Seoul, Republic of Korea
| |
Collapse
|
5
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
6
|
Shen GY, Shin JH, Song YS, Joo HW, Park IH, Seong JH, Shin NK, Lee AH, Cho YJ, Lee Y, Lim YH, Kim H, Kim KS. Role of Autophagy in Granulocyte-Colony Stimulating Factor Induced Anti-Apoptotic Effects in Diabetic Cardiomyopathy. Diabetes Metab J 2021; 45:594-605. [PMID: 33631916 PMCID: PMC8369213 DOI: 10.4093/dmj.2020.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/27/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND We previously, reported that granulocyte-colony stimulating factor (G-CSF) reduces cardiomyocyte apoptosis in diabetic cardiomyopathy. However, the underlying mechanisms are not yet fully understood. Therefore, we investigated whether the mechanisms underlying of the anti-apoptotic effects of G-CSF were associated with autophagy using a rat model of diabetic cardiomyopathy. METHODS Diabetic cardiomyopathy was induced in rats through a high-fat diet combined with low-dose streptozotocin and the rats were then treated with G-CSF for 5 days. Rat H9c2 cardiac cells were cultured under high glucose conditions as an in vitro model of diabetic cardiomyopathy. The extent of apoptosis and protein levels related to autophagy (Beclin-1, microtubule-binding protein light chain 3 [LC3]-II/LC3-I ratio, and P62) were determined for both models. Autophagy determination was performed using an Autophagy Detection kit. RESULTS G-CSF significantly reduced cardiomyocyte apoptosis in the diabetic myocardium in vivo and led to an increase in Beclin-1 level and the LC3-II/LC3-I ratio, and decreased P62 level. Similarly, G-CSF suppressed apoptosis, increased Beclin-1 level and LC3-II/LC3-I ratio, and decreased P62 level in high glucose-induced H9c2 cardiac cells in vitro. These effects of G-CSF were abrogated by 3-methyladenine, an autophagy inhibitor. In addition, G-CSF significantly increased autophagic flux in vitro. CONCLUSION Our results suggest that the anti-apoptotic effect of G-CSF might be significantly associated with the up-regulation of autophagy in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Guang-Yin Shen
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Department of Cardiology, Jilin University Jilin Central Hospital, Jilin, China
| | - Jeong-Hun Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yi-Sun Song
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Hyun-Woo Joo
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - In-Hwa Park
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jin-Hee Seong
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Na-Kyoung Shin
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - A-Hyeon Lee
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Young Jong Cho
- Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yonggu Lee
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Young-Hyo Lim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hyuck Kim
- Department of Thoracic Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyung-Soo Kim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Corresponding author: Kyung-Soo Kim https://orcid.org/0000-0002-0891-1023 Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, 222-1 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea E-mail:
| |
Collapse
|
7
|
Insight into the Pro-inflammatory and Profibrotic Role of Macrophage in Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol 2021; 76:276-285. [PMID: 32501838 DOI: 10.1097/fjc.0000000000000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prevalence of heart failure (HF) with preserved ejection fraction (HFpEF) is higher than that of HF with reduced/midrange ejection fraction (HFrEF/HFmrEF). However, no evidence-based guidelines for managing HFpEF have been generated. The current body of knowledge indicates that fibrosis and inflammation are important components of the cardiac remodeling process in HFpEF. In addition, macrophages potentially play an important role in pro-inflammatory and profibrotic processes in HFpEF patients, whereas HFpEF comorbidities could be a driving force for systemic microvascular inflammation and endothelial dysfunction. Under such circumstances, macrophages reportedly contribute to inflammation and fibrosis through 3 phases namely, inflammation, repair, and resolution. Signal transduction pathway-targeted therapies using animal experiments have generated important discoveries and breakthroughs for understanding the underlying mechanisms of HFpEF. However, only a handful of studies have reported promising results using human trials. Further investigations are therefore needed to elucidate the exact mechanisms underlying HFpEF and immune-pathogenesis of cardiac fibrosis.
Collapse
|
8
|
Identification and analysis of circulating long non-coding RNAs with high significance in diabetic cardiomyopathy. Sci Rep 2021; 11:2571. [PMID: 33510471 PMCID: PMC7843621 DOI: 10.1038/s41598-021-82345-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) lacks diagnostic biomarkers. Circulating long non-coding RNAs (lncRNAs) can serve as valuable diagnostic biomarkers in cardiovascular disease. To seek potential lncRNAs as a diagnostic biomarker for DCM, we investigated the genome-wide expression profiling of circulating lncRNAs and mRNAs in type 2 diabetic db/db mice with and without DCM and performed bioinformatic analyses of the deregulated lncRNA-mRNA co-expression network. Db/db mice had obesity and hyperglycemia with normal cardiac function at 6 weeks of age (diabetes without DCM) but with an impaired cardiac function at 20 weeks of age (DCM) on an isolated Langendorff apparatus. Compared with the age-matched controls, 152 circulating lncRNAs, 127 mRNAs and 3355 lncRNAs, 2580 mRNAs were deregulated in db/db mice without and with DCM, respectively. The lncRNA-mRNA co-expression network analysis showed that five deregulated lncRNAs, XLOC015617, AK035192, Gm10435, TCR-α chain, and MouselincRNA0135, have the maximum connections with differentially expressed mRNAs. Bioinformatic analysis revealed that these five lncRNAs were highly associated with the development and motion of myofilaments, regulation of inflammatory and immune responses, and apoptosis. This finding was validated by the ultrastructural examination of myocardial samples from the db/db mice with DCM using electron microscopy and changes in the expression of myocardial tumor necrosis factor-α and phosphorylated p38 mitogen-activated protein kinase in db/db mice with DCM. These results indicate that XLOC015617, AK035192, Gm10435, TCR-α chain, and MouselincRNA0135 are crucial circulating lncRNAs in the pathogenesis of DCM. These five circulating lncRNAs may have high potential as a diagnostic biomarker for DCM.
Collapse
|
9
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Wang J, Tannous BA, Poznansky MC, Chen H. CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharmacol Res 2020; 159:105010. [PMID: 32544428 DOI: 10.1016/j.phrs.2020.105010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
AMD3100 (plerixafor), a CXCR4 antagonist, has opened a variety of avenues for potential therapeutic approaches in different refractory diseases. The CXCL12/CXCR4 axis and its signaling pathways are involved in diverse disorders including HIV-1 infection, tumor development, non-Hodgkin lymphoma, multiple myeloma, WHIM Syndrome, and so on. The mechanisms of action of AMD3100 may relate to mobilizing hematopoietic stem cells, blocking infection of X4 HIV-1, increasing circulating neutrophils, lymphocytes and monocytes, reducing myeloid-derived suppressor cells, and enhancing cytotoxic T-cell infiltration in tumors. Here, we first revisit the pharmacological discovery of AMD3100. We then review monotherapy of AMD3100 and combination use of AMD3100 with other agents in various diseases. Among those, we highlight the perspective of AMD3100 as an immunomodulator to regulate immune responses particularly in the tumor microenvironment and synergize with other therapeutics. All the pre-clinical studies support the clinical testing of the monotherapy and combination therapies with AMD3100 and further development for use in humans.
Collapse
Affiliation(s)
- Jingzhe Wang
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Huabiao Chen
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Park IH, Song YS, Joo HW, Shen GY, Seong JH, Shin NK, Cho YJ, Lee Y, Shin JH, Lim YH, Kim H, Kim KS. Role of MicroRNA-34a in Anti-Apoptotic Effects of Granulocyte-Colony Stimulating Factor in Diabetic Cardiomyopathy. Diabetes Metab J 2020; 44:173-185. [PMID: 31237127 PMCID: PMC7043984 DOI: 10.4093/dmj.2018.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/14/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recent studies have shown that microRNAs (miRNAs) are involved in the process of cardiomyocyte apoptosis. We have previously reported that granulocyte-colony stimulating factor (G-CSF) ameliorated diastolic dysfunction and attenuated cardiomyocyte apoptosis in a rat model of diabetic cardiomyopathy. In this study, we hypothesized a regulatory role of cardiac miRNAs in the mechanism of the anti-apoptotic effect of G-CSF in a diabetic cardiomyopathy rat model. METHODS Rats were given a high-fat diet and low-dose streptozotocin injection and then randomly allocated to receive treatment with either G-CSF or saline. H9c2 rat cardiomyocytes were cultured under a high glucose (HG) condition to induce diabetic cardiomyopathy in vitro. We examined the extent of apoptosis, miRNA expression, and miRNA target genes in the myocardium and H9c2 cells. RESULTS G-CSF treatment significantly decreased apoptosis and reduced miR-34a expression in diabetic myocardium and H9c2 cells under the HG condition. G-CSF treatment also significantly increased B-cell lymphoma 2 (Bcl-2) protein expression as a target for miR-34a. In addition, transfection with an miR-34a mimic significantly increased apoptosis and decreased Bcl-2 luciferase activity in H9c2 cells. CONCLUSION Our results indicate that G-CSF might have an anti-apoptotic effect through down-regulation of miR-34a in a diabetic cardiomyopathy rat model.
Collapse
Affiliation(s)
- In Hwa Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Yi Sun Song
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Hyun Woo Joo
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Guang Yin Shen
- Division of Cardiology, Department of Internal Medicine, Jilin Central Hospital, Jilin University, Jilin, China
| | - Jin Hee Seong
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Na Kyoung Shin
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Young Jong Cho
- Department of Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yonggu Lee
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jeong Hun Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Young Hyo Lim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hyuck Kim
- Department of Thoracic Surgery, Hanyang University Seoul Hospital, Seoul, Korea
| | - Kyung Soo Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
The effect of G-CSF and AMD3100 on mice treated with streptozotocin: Expansion of alpha-cells and partial islet protection. Cytokine 2017; 96:123-131. [DOI: 10.1016/j.cyto.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
|
13
|
Geng J, Wang L, Qu M, Song Y, Lin X, Chen Y, Mamtilahun M, Chen S, Zhang Z, Wang Y, Yang GY. Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1α. Stem Cell Res Ther 2017; 8:163. [PMID: 28697748 PMCID: PMC5505148 DOI: 10.1186/s13287-017-0605-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Background Blood-brain barrier impairment is a major indicator of endothelial dysfunction in diabetes. Studies showed that endothelial progenitor cell (EPC) transplantation promoted angiogenesis and improved function recovery after hind limb ischemia in diabetic mice. The effect of EPC transplantation on blood-brain barrier integrity after cerebral ischemia in diabetic animals is unknown. The aim of this study is to explore the effect of EPC transplantation on the integrity of the blood-brain barrier after cerebral ischemia in diabetic mice. Methods EPCs were isolated by density gradient centrifugation and characterized by flow cytometry and immunostaining. Diabetes was induced in adult male C57BL/6 mice by a single injection of streptozotocin at 4 weeks before surgery. Diabetic mice underwent 90-minute transient middle cerebral artery occlusion surgery and received 1 × 106 EPCs transplantation immediately after reperfusion. Brain infarct volume, blood-brain barrier permeability, tight junction protein expression, and hypoxia inducible factor-1α (HIF-1α) mRNA level were examined after treatment. Results We demonstrated that neurological deficits were attenuated and brain infarct volume was reduced in EPC-transplanted diabetic mice after transient cerebral ischemia compared to the controls (p < 0.05). Blood-brain barrier leakage and tight junction protein degradation were reduced in EPC-transplanted mice (p <0.05). EPCs upregulated HIF-1α expression while HIF-1α inhibitor PX-478 abolished the beneficial effect of EPCs. Conclusions We conclude that EPCs protected blood-brain barrier integrity after focal ischemia in diabetic mice through upregulation of HIF-1α signaling.
Collapse
Affiliation(s)
- Jieli Geng
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Department of Neurology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Wang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Meijie Qu
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yaying Song
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Xiaojie Lin
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Shengdi Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
14
|
Fan W, Wang W, Zhang L, Qi L, Liu A. Study on changes and mechanisms of cytokines for alloxan-induced hepatic injury by Cr3+-treatment in mice. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0025-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Abstract
Diabetes is one of the main economic burdens in health care, which threatens to worsen dramatically if prevalence forecasts are correct. What makes diabetes harmful is the multi-organ distribution of its microvascular and macrovascular complications. Regenerative medicine with cellular therapy could be the dam against life-threatening or life-altering complications. Bone marrow-derived stem cells are putative candidates to achieve this goal. Unfortunately, the bone marrow itself is affected by diabetes, as it can develop a microangiopathy and neuropathy similar to other body tissues. Neuropathy leads to impaired stem cell mobilization from marrow, the so-called mobilopathy. Here, we review the role of bone marrow-derived stem cells in diabetes: how they are affected by compromised bone marrow integrity, how they contribute to other diabetic complications, and how they can be used as a treatment for these. Eventually, we suggest new tactics to optimize stem cell therapy.
Collapse
Affiliation(s)
- Giuseppe Mangialardi
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS28HW UK
| | - Paolo Madeddu
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS28HW UK
| |
Collapse
|
16
|
Paul AJ, Momier D, Boukhechba F, Michiels JF, Lagadec P, Rochet N. Effect of G-CSF on the osteoinductive property of a BCP/blood clot composite. J Biomed Mater Res A 2015; 103:2830-8. [DOI: 10.1002/jbm.a.35424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Adrien J. Paul
- Université Nice Sophia Antipolis, iBV, UMR7277; Nice 06100 France
- CNRS, iBV, UMR7277; Nice 06100 France
- Inserm, iBV, U1091; Nice 06100 France
- Université Nice Sophia Antipolis, UFR odontologie; Nice 06000 France
- Centre Hospitalier Universitaire, Pôle d'odontologie; Nice 06000 France
| | - David Momier
- Université Nice Sophia Antipolis, iBV, UMR7277; Nice 06100 France
- CNRS, iBV, UMR7277; Nice 06100 France
- Inserm, iBV, U1091; Nice 06100 France
| | - Florian Boukhechba
- Université Nice Sophia Antipolis, iBV, UMR7277; Nice 06100 France
- CNRS, iBV, UMR7277; Nice 06100 France
- Inserm, iBV, U1091; Nice 06100 France
- Graftys, 13854 Aix En Provence; France
| | | | - Patricia Lagadec
- Université Nice Sophia Antipolis, iBV, UMR7277; Nice 06100 France
- CNRS, iBV, UMR7277; Nice 06100 France
- Inserm, iBV, U1091; Nice 06100 France
| | - Nathalie Rochet
- Université Nice Sophia Antipolis, iBV, UMR7277; Nice 06100 France
- CNRS, iBV, UMR7277; Nice 06100 France
- Inserm, iBV, U1091; Nice 06100 France
| |
Collapse
|
17
|
Granulocyte-colony stimulating factor reduces cardiomyocyte apoptosis and ameliorates diastolic dysfunction in Otsuka Long-Evans Tokushima Fatty rats. Cardiovasc Drugs Ther 2015; 28:211-20. [PMID: 24771224 DOI: 10.1007/s10557-014-6519-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND In recent studies, granulocyte-colony stimulating factor (G-CSF) was shown to improve cardiac function in myocardial infarction and non-ischemic cardiomyopathies. The mechanisms of these beneficial effects of G-CSF in diabetic cardiomyopathy are not yet fully understood. Therefore, we investigated the mechanisms of action of G-CSF on diabetic cardiomyopathy in a rat model of type 2 diabetes. METHODS Seventeen-week-old OLETF (Otsuka Long Evans Tokushima Fatty) diabetic rats and LETO (Long Evans Tokushima Otuska) rats were randomized to treatment with 5 days of G-CSF (100 μg/kg/day) or with saline. Cardiac function was evaluated by serial echocardiography performed before and 4 weeks after treatment. We measured expression of the G-CSF receptor (GCSFR) and Bcl-2, as well as the extent of apoptosis in the myocardium. RESULTS G-CSF treatment significantly improved cardiac diastolic function in the serial echocardiography assessments. Expression of G-CSFR was down-regulated in the diabetic myocardium (0.03 ± 0.12 % vs. 1 ± 0.15 %, p < 0.05), and its expression was stimulated by G-CSF treatment (0.03 ± 0.12 % vs. 0.42 ± 0.06 %, p < 0.05). In addition, G-CSF treatment increased the expression of Bcl-2 in the diabetic myocardium (0.69 ± 0.06 % vs. 0.26 ± 0.11 %, p < 0.05), consistent with the reduced cardiomyocyte apoptosis (9.38 ± 0.67 % vs. 17.28 ± 2.16 %, p < 0.05). CONCLUSIONS Our results suggest that G-CSF might have a cardioprotective effect in diabetic cardiomyopathy through up-regulation of G-CSFR, attenuation of apoptosis by up-regulation of Bcl-2 expression, and glucose-lowering effect. Our findings support the therapeutic potential of G-CSF in diabetic cardiomyopathy.
Collapse
|
18
|
Shin JH, So BI, Song YS, Lee Y, Jang KS, Kim H, Kim KS. Histopathological analyses of diabetic nephropathy in sucrose-fed Otsuka Long-Evans Tokushima fatty rats. Endocr Res 2015; 40:29-36. [PMID: 24833322 DOI: 10.3109/07435800.2014.915848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Otsuka Long-Evans Tokushima fatty (OLETF) rats are an established model of diabetic nephropathy. However, diabetes and diabetic nephropathy (DN) in OLETF rats develop later than in other animal type 2 diabetes models. OBJECTIVES This study was conducted to investigate the serial changes in the histopathological characteristics of DN in sucrose-fed OLETF rats by biochemical and morphometric analyses. METHODS We conducted sucrose feeding to examine the progression of DN. One group of OLETF rats was given water containing 30% sucrose ad libitum (SO) and the other group was given water without 30% sucrose (TO). Consecutive observations were made at 4-week intervals from 16 to 50 weeks of age in TO rats, and from 16 to 42 weeks of age in SO rats. Examination parameters included body weight, serum glucose level, urine albumin-to-creatinine ratio (UACR), light microscopy (LM) and electron microscopy (EM). RESULTS The UACR was over 300 mg/g in 32-week-old SO rats (after 16 weeks of sucrose feeding) and in 38-week-old TO rats. LM indicated that glomerular hypertrophy and mesangial matrix expansion in SO rats increased compared to that of age-matched TO rats especially at 42 weeks of age (p < 0.05). EM also showed that glomerular basement membrane thickness and podocyte foot process width of SO rats were significantly greater than those of age-matched TO rats (p < 0.05). CONCLUSION Our results suggested that dietary manipulation by sucrose feeding may cause deterioration of DN and could hasten the onset of diabetes and DN in OLETF rats.
Collapse
Affiliation(s)
- Jeong Hun Shin
- Department of Internal Medicine, Hanyang University College of Medicine , Seoul , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Kang MH, Park HM. Short-term effect of granulocyte colony-stimulating factor in dogs with severe myxomatous mitral valve disease. Vet Q 2014; 34:60-6. [PMID: 25252247 DOI: 10.1080/01652176.2014.954063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Use of granulocyte colony-stimulating factor (G-CSF) to treat damaged myocardium is a relatively new concept. Clinical beneficial and safety outcomes are still controversial. OBJECTIVE The aim of this study was to evaluate recruitment of hematopoietic stem cells and therapeutic efficacy of G-CSF in the treatment of myxomatous mitral valve disease (MMVD) of dogs. ANIMALS AND METHODS Thirty client-owned MMVD dogs with clinical signs of heart failure were enrolled in a prospective double-blind, randomized, placebo-controlled study to compare the short-term effect of G-CSF (n = 17) with control group (n = 13) for identical periods. Clinical, hematological, and cardiovascular assessments were performed on days 0, 1, 3, and 7. Follow-up examination was conducted four weeks after the study. RESULTS Dogs treated with G-CSF had a significantly elevated white blood cell (WBC) (×10(3)/μL) count at day 3 compared with baseline (from 10.23 ± 4.42 to 42.84 ± 11.84; P = .000). The WBC population was also changed (elevated neutrophils and decreased lymphocytes) and the numbers of CD34+ cells in the peripheral blood were also increased at day 3. However, the results of clinical, laboratory, and echocardiographic assessments did not differ significantly between the G-CSF treatment and control groups after four weeks. CONCLUSIONS G-CSF administration elevated the peripheral WBC count, especially neutrophils, and recruited hematopoietic stem cells. However, positive effects of G-CSF on cardiac function were not detected during short-term monitoring.
Collapse
Affiliation(s)
- Min-Hee Kang
- a Department of Veterinary Internal Medicine , College of Veterinary Medicine , Konkuk University , Seoul , South Korea
| | | |
Collapse
|
20
|
Lee Y, Song YS, Fang CH, So BI, Park JY, Joo HW, Park IH, Shen GY, Shin JH, Kim H, Ahn YH, Kim KS. Anti-obesity effects of granulocyte-colony stimulating factor in Otsuka-Long-Evans-Tokushima fatty rats. PLoS One 2014; 9:e105603. [PMID: 25144367 PMCID: PMC4140798 DOI: 10.1371/journal.pone.0105603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/26/2014] [Indexed: 11/18/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) has molecular structures and intracellular signaling pathways that are similar to those of leptin and ciliary neurotropic factor (CNTF). It also has immune-modulatory properties. Given that leptin and CNTF play important roles in energy homeostasis and that obesity is an inflammatory condition in adipose tissue, we hypothesized that G-CSF could also play a role in energy homeostasis. We treated 12 38-week-old male Otsuka-Long-Evans-Tokushima fatty rats (OLETF, diabetic) and 12 age-matched male Long-Evans-Tokushima rats (LETO, healthy) with 200 µg/day G-CSF or saline for 5 consecutive days. Body weight reduction was greater in G-CSF-treated OLETF (G-CSF/OLETF) than saline-treated OLETF (saline/OLETF) following 8 weeks of treatment (−6.9±1.6% vs. −3.1±2.2%, p<0.05). G-CSF treatment had no effect on body weight in LETO or on food intake in either OLETF or LETO. Body fat in G-CSF/OLETF was more reduced than in saline/OLETF (−32.2±3.1% vs. −20.8±6.2%, p<0.05). Energy expenditure was higher in G-CSF/OLETF from 4 weeks after the treatments than in saline/OLETF. Serum levels of cholesterol, triglyceride, interleukin-6 and tumor necrosis factor-α were lower in G-CSF/OLETF than in saline/OLETF. Uncoupling protein-1 (UCP-1) expression in brown adipose tissue (BAT) was higher in G-CSF/OLETF than in saline/OLETF, but was unaffected in LETO. Immunofluorescence staining and PCR results revealed that G-CSF receptors were expressed in BAT. In vitro experiments using brown adipocyte primary culture revealed that G-CSF enhanced UCP-1 expression from mature brown adipocytes via p38 mitogen-activated protein kinase pathway. In conclusion, G-CSF treatment reduced body weight and increased energy expenditure in a diabetic model, and enhanced UCP-1 expression and decreased inflammatory cytokine levels may be associated with the effects of G-CSF treatment.
Collapse
Affiliation(s)
- Yonggu Lee
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
- Department of Cardiology, Sung-Ae Hospital, Seoul, South Korea
| | - Yi-Sun Song
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Cheng-Hu Fang
- Division of Cardiology, Yanbian University, Yanji, China
| | - Byung-Im So
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Jun-Young Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Woo Joo
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - In-Hwa Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Guang-Yin Shen
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Jeong-Hun Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Hyuck Kim
- Department of Thoracic Surgery, Hanyang University Hospital, Seoul, South Korea
| | - You-Heon Ahn
- Department of Endocrinology, Hanyang University Hospital, Seoul, South Korea
| | - Kyung-Soo Kim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
21
|
So BI, Song YS, Fang CH, Park JY, Lee Y, Shin JH, Kim H, Kim KS. G-CSF prevents progression of diabetic nephropathy in rat. PLoS One 2013; 8:e77048. [PMID: 24167558 PMCID: PMC3805566 DOI: 10.1371/journal.pone.0077048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/30/2013] [Indexed: 01/07/2023] Open
Abstract
Background The protective effects of granulocyte colony-stimulating factor (G-CSF) have been demonstrated in a variety of renal disease models. However, the influence of G-CSF on diabetic nephropathy (DN) remains to be examined. In this study, we investigated the effect of G-CSF on DN and its possible mechanisms in a rat model. Methods Otsuka Long-Evans Tokushima Fatty (OLETF) rats with early DN were administered G-CSF or saline intraperitoneally. Urine albumin creatinine ratio (UACR), creatinine clearance, mesangial matrix expansion, glomerular basement membrane (GBM) thickness, and podocyte foot process width (FPW) were measured. The levels of interleukin (IL)-1β, transforming growth factor (TGF)-β1, and type IV collagen genes expression in kidney tissue were also evaluated. To elucidate the mechanisms underlying G-CSF effects, we also assessed the expression of G-CSF receptor (G-CSFR) in glomeruli as well as mobilization of bone marrow (BM) cells to glomeruli using sex-mismatched BM transplantation. Results After four weeks of treatment, UACR was lower in the G-CSF treatment group than in the saline group (p<0.05), as were mesangial matrix expansion, GBM thickness, and FPW (p<0.05). In addition, the expression of TGF-β1 and type IV collagen and IL-1β levels was lower in the G-CSF treatment group (p<0.05). G-CSFR was not present in glomerular cells, and G-CSF treatment increased the number of BM-derived cells in glomeruli (p<0.05). Conclusions G-CSF can prevent the progression of DN in OLETF rats and its effects may be due to mobilization of BM cells rather than being a direct effect.
Collapse
Affiliation(s)
- Byung-Im So
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Yi-Sun Song
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Cheng-Hu Fang
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yanbian University, College of Medicine, Yanji, China
| | - Jun-Young Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Yonggu Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jeong Hun Shin
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hyuck Kim
- Department of Thoracic and Cardiovascular Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyung-Soo Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
Lee JE, Yi CO, Jeon BT, Shin HJ, Kim SK, Jung TS, Choi JY, Roh GS. α-Lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats. Cardiovasc Diabetol 2012; 11:111. [PMID: 22992429 PMCID: PMC3558371 DOI: 10.1186/1475-2840-11-111] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 02/06/2023] Open
Abstract
Background Hyperglycemia leads to cardiac oxidative stress and an imbalance in glucose homeostasis. Diabetic cardiomyopathy is characterised by cardiac hypertrophy and fibrosis. However, the underlying mechanisms of diabetic cardiomyopathy are not fully understood. This study aimed to investigate the effects of alpha-lipoic acid (ALA) on cardiac energy metabolism, antioxidant effect, and fibrosis in the hearts of Otsuka Long-Evans Tokushima fatty (OLETF) rats. Methods Animals were separated into non-diabetic Long-Evans Tokushima Otsuka (LETO) rats and diabetes-prone OLETF rats with or without ALA (200 mg/kg/day) administration for 16 weeks. Diabetic cardiomyopathy was assessed by staining with Sirius Red. The effect of ALA on AMPK signalling, antioxidant enzymes, and fibrosis-related genes in the heart of OLETF rats were performed by Western blot analysis or immunohistochemistry. Results Western blot analysis showed that cardiac adenosine monophosphate-activated kinase (AMPK) signalling was lower in OLETF rats than in LETO rats, and that ALA treatment increased the signalling in OLETF rats. Furthermore, the low antioxidant activity in OLETF rats was increased by ALA treatment. In addition to increased Sirius red staining of collagen deposits, transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were expressed at higher levels in OLETF rat hearts than in LETO rat hearts, and the levels of these factors were decreased by ALA. Conclusions ALA enhances AMPK signalling, antioxidant, and antifibrogenic effect. Theses findings suggest that ALA may have beneficial effects in the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|