1
|
Pramanik S, Pal P, Ray S. Non-alcoholic fatty liver disease in type 2 diabetes: Emerging evidence of benefit of peroxisome proliferator-activated receptors agonists and incretin-based therapies. World J Methodol 2024; 14:91319. [PMID: 38983664 PMCID: PMC11229880 DOI: 10.5662/wjm.v14.i2.91319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 02/27/2024] [Indexed: 06/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic, affecting more than half of the people living with type 2 diabetes (T2D). The relationship between NAFLD and T2D is bidirectional and the presence of one perpetuates the other, which significantly increases the hepatic as well as extrahepatic complications. Until recently, there was no approved pharmacological treatment for NAFLD/ nonalcoholic steatohepatitits (NASH). However, there is evidence that drugs used for diabetes may have beneficial effects on NAFLD. Insulin sensitizers acting through peroxisome proliferator-activated receptor (PPAR) modulation act on multiple levels of NAFLD pathogenesis. Pioglitazone (PPARγ agonist) and saroglitazar (PPARα/γ agonist) are particularly beneficial and recommended by several authoritative bodies for treating NAFLD in T2D, although data on biopsy-proven NASH are lacking with the latter. Initial data on elafibanor (PPAR α/δ agonist) and Lanifibranor (pan PPAR agonist) are promising. On the other hand, incretin therapies based on glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RA) and dual- and triple-hormone receptor co-agonists reported impressive weight loss and may have anti-inflammatory and antifibrotic properties. GLP-1 RAs have shown beneficial effects on NAFLD/NASH and more studies on potential direct effects on liver function by dual- and triple-agonists are required. Furthermore, the long-term safety of these therapies in NAFLD needs to be established. Collaborative efforts among healthcare providers such as primary care doctors, hepatologists, and endocrinologists are warranted for selecting patients for the best possible management of NAFLD in T2D.
Collapse
Affiliation(s)
- Subhodip Pramanik
- Department of Endocrinology, Neotia Getwel Multispecialty Hospital, Siliguri 734010, West Bengal, India
| | - Partha Pal
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad 500082, India
| | - Sayantan Ray
- Department of Endocrinology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar 751019, Odisha, India
| |
Collapse
|
2
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
4
|
Koutsogianni AD, Liamis G, Liberopoulos E, Adamidis PS, Florentin M. Effects of Lipid-Modifying and Other Drugs on Lipoprotein(a) Levels-Potent Clinical Implications. Pharmaceuticals (Basel) 2023; 16:ph16050750. [PMID: 37242533 DOI: 10.3390/ph16050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The past few years have shown an ongoing interest in lipoprotein(a) (Lp(a)), a lipid molecule that has been proven to have atherogenic, thrombogenic, and inflammatory properties. Several lines of evidence, indeed, have demonstrated an increased risk of cardiovascular disease as well as calcific aortic valve stenosis in patients with elevated Lp(a) levels. Statins, the mainstay of lipid-lowering therapy, slightly increase Lp(a) levels, while most other lipid-modifying agents do not significantly alter Lp(a) concentrations, except for proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. The latter have been shown to reduce Lp(a) levels; however, the clinical significance of this effect has not been clearly elucidated. Of note, the pharmaceutical lowering of Lp(a) may be achieved with novel treatments specifically designed for this purpose (i.e., antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs)). Large clinical trials with cardiovascular outcomes with these agents are ongoing, and their results are eagerly awaited. Furthermore, several non-lipid-modifying drugs of various classes may influence Lp(a) concentrations. We have searched MEDLINE, EMBASE, and CENTRAL databases up to 28 January 2023 and summarized the effects of established and emerging lipid-modifying drugs and other medications on Lp(a) levels. We also discuss the potent clinical implications of these alterations.
Collapse
Affiliation(s)
| | - George Liamis
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos Liberopoulos
- 1st Propaideutic Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| | | | - Matilda Florentin
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Desrochers GF, Filip R, Bastianelli M, Stern T, Pezacki JP. microRNA-27b regulates hepatic lipase enzyme LIPC and reduces triglyceride degradation during hepatitis C virus infection. J Biol Chem 2022; 298:101983. [PMID: 35483451 PMCID: PMC9163519 DOI: 10.1016/j.jbc.2022.101983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/26/2022] Open
Abstract
miRNAs are short, noncoding RNAs that negatively and specifically regulate protein expression, the cumulative effects of which can result in broad changes to cell systems and architecture. The miRNA miR-27b is known to regulate lipid regulatory pathways in the human liver and is also induced by the hepatitis C virus (HCV). However, the functional targets of miR-27b are not well established. Herein, an activity-based protein profiling method using a serine hydrolase probe, coupled with stable isotope labeling and mass spectrometry identified direct and indirect targets of miR-27b. The hepatic lipase C (LIPC) stood out as both highly dependent on miR-27b and as a major modulator of lipid pathway misregulation. Modulation of miR-27b using both exogenous miRNA mimics and inhibitors demonstrated that transcription factors Jun, PPARα, and HNF4α, all of which also influence LIPC levels and activity, are regulated by miR-27b. LIPC was furthermore shown to affect the progress of the life cycle of HCV and to decrease levels of intracellular triglycerides, upon which HCV is known to depend. In summary, this work has demonstrated that miR-27b mediates HCV infection by downregulating LIPC, thereby reducing triglyceride degradation, which in turn increases cellular lipid levels.
Collapse
Affiliation(s)
| | - Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Micheal Bastianelli
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Tiffany Stern
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
6
|
Xu S, Rha SW, Choi BG, Seo HS. The Impact of Age on Statin-Related Glycemia: A Propensity Score-Matched Cohort Study in Korea. Healthcare (Basel) 2022; 10:healthcare10050777. [PMID: 35627914 PMCID: PMC9141400 DOI: 10.3390/healthcare10050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the influence of statin on glycemic control in different age groups. Patients admitted for suspected or confirmed coronary artery disease between January 2005 and December 2013 in Seoul, Korea were initially enrolled. After propensity score matching, 2654 patients (1:1 statin users and non-users) were selected out of total 5041 patients, including 1477 “young” patients (≤60 y) and 1177 elderly patients (>60 y). HbA1c was decreased by 0.04% (±0.86%) in statin non-users. On the contrary, a slight increment of 0.05% (±0.71%) was found in statin users (p < 0.001). The change patterns of HbA1c were constant in both young and elderly patient groups. Furthermore, elderly statin users demonstrated significantly worse glycemic control in serum insulin and homeostatic model assessment—insulin resistance (HOMA-IR) index. In elderly patients, statin users were found to have a 2.61 ± 8.34 μU/mL increment in serum insulin, whereas it was 2.35 ± 6.72 μU/mL for non-users (p = 0.012). Statin users had a 0.78 ± 3.28 increment in HOMA-IR, in contrast to the 0.67 ± 2.51 increment in statin non-users (p = 0.008). In conclusion, statin treatment was associated with adverse glycemic control in the elderly population.
Collapse
Affiliation(s)
- Shaopeng Xu
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin 300052, China
- Cardiovascular Center, Division of Cardiology, Korea University Guro Hospital, Seoul 08308, Korea;
- Correspondence: (S.X.); (S.-W.R.)
| | - Seung-Woon Rha
- Cardiovascular Center, Division of Cardiology, Korea University Guro Hospital, Seoul 08308, Korea;
- Correspondence: (S.X.); (S.-W.R.)
| | - Byoung Geol Choi
- Cardiovascular Research Institute, Korea University College of Medicine, Seoul 02841, Korea;
| | - Hong Seog Seo
- Cardiovascular Center, Division of Cardiology, Korea University Guro Hospital, Seoul 08308, Korea;
| |
Collapse
|
7
|
Lange NF, Graf V, Caussy C, Dufour JF. PPAR-Targeted Therapies in the Treatment of Non-Alcoholic Fatty Liver Disease in Diabetic Patients. Int J Mol Sci 2022; 23:ijms23084305. [PMID: 35457120 PMCID: PMC9028563 DOI: 10.3390/ijms23084305] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR), ligand-activated transcription factors of the nuclear hormone receptor superfamily, have been identified as key metabolic regulators in the liver, skeletal muscle, and adipose tissue, among others. As a leading cause of liver disease worldwide, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) cause a significant burden worldwide and therapeutic strategies are needed. This review provides an overview of the evidence on PPAR-targeted treatment of NAFLD and NASH in individuals with type 2 diabetes mellitus. We considered current evidence from clinical trials and observational studies as well as the impact of treatment on comorbid metabolic conditions such as obesity, dyslipidemia, and cardiovascular disease. Future areas of research, such as possible sexually dimorphic effects of PPAR-targeted therapies, are briefly reviewed.
Collapse
Affiliation(s)
- Naomi F. Lange
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| | - Vanessa Graf
- Department of Diabetes, Endocrinology, Clinical Nutrition, and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Cyrielle Caussy
- Univ Lyon, CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69495 Pierre-Bénite, France;
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Jean-François Dufour
- Centre des Maladies Digestives, 1003 Lausanne, Switzerland
- Swiss NASH Foundation, 3011 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| |
Collapse
|
8
|
Chen M, Zhu H, Zhu Q, Wu X, Zhou Y, Gao R, Shi M, Zhang T, Yin T, Zhang H, Shang H, Li X. Citri Reticulatae Pericarpium alleviates postmyocardial infarction heart failure by upregulating PPARγ expression. Clin Exp Pharmacol Physiol 2022; 49:661-673. [PMID: 35278230 DOI: 10.1111/1440-1681.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Heart failure after myocardial infarction (MI) is the leading cause of death worldwide. Citri Reticulatae Pericarpium (CRP) is a traditional Chinese herbal medicine that has been used in the clinic for centuries. In this study, we aimed to investigate the roles of CRP in cardiac remodeling and heart failure after MI, as well as the molecular mechanisms involved. Male C57BL/6 mice aged 8 weeks were subjected to coronary artery ligation to mimic the clinical situation in vivo. Echocardiography was used to assess the systolic function of the mouse heart. Masson trichrome staining and Wheat germ agglutinin (WGA) staining were utilized to determine the fibrotic area and cross-sectional area of the mouse heart, respectively. Cardiomyocytes and fibroblasts were isolated from neonatal rats aged 0-3 days in vitro using enzyme digestion. TUNEL staining and EdU staining were performed to evaluate apoptosis and proliferation, respectively. Gene expression changes were analyzed by qRT-PCR, and protein expression changes were assessed by Western blotting. Our findings revealed that CRP attenuated cardiac hypertrophy, fibrosis and apoptosis and alleviated heart failure after MI in vivo. Furthermore, CRP mitigated cardiomyocyte apoptosis and fibroblast proliferation and differentiation into myofibroblasts. In addition, the PPARγ inhibitor T0070907 completely abolished the abovementioned beneficial effects of CRP, and the PPARγ activator rosiglitazone failed to further ameliorate cardiac apoptosis and fibrosis in vitro. CRP alleviates cardiac hypertrophy, fibrosis, and apoptosis and can ameliorate heart failure after MI via activation of PPARγ. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengli Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyan Zhu
- Department of Pediatric Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yufei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengsha Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Dutra LA, Lacerda MG, Destro Inácio M, Martins JW, Lopes Silva AC, Bento da Silva P, Chorilli M, Amato AA, Baviera AM, Passarelli M, Guido RV, Dos Santos JL. Discovery of (E)-4-styrylphenoxy-propanamide: A dual PPARα/γ partial agonist that regulates high-density lipoprotein-cholesterol levels, modulates adipogenesis, and improves glucose tolerance in diet-induced obese mice. Bioorg Chem 2022; 120:105600. [DOI: 10.1016/j.bioorg.2022.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
|
10
|
Zhang X, Chen Y, Tong N, Shao Q, Zhou Y, Mu T, Yang X, Zhang Y. Maternally inherited diabetes and deafness coexists with lipoprotein lipase gene mutation-associated severe hyperlipidemia that was resistant to fenofibrate and atorvastatin, but sensitive to bezafibrate: A case report. J Diabetes Investig 2022; 13:397-401. [PMID: 34460997 PMCID: PMC8847153 DOI: 10.1111/jdi.13651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
Maternally inherited diabetes and deafness is a rare genetic disease mainly caused by a point mutation in mitochondrial deoxyribonucleic acid. Lipoprotein lipase gene mutations are associated with familial dyslipidemias, which are difficult to manage. We reported for the first time a case that had both maternally inherited diabetes and severe hyperlipidemia caused by lipoprotein lipase gene mutation (C.347(exon3)G>C) that was resistant to fenofibrate and atorvastatin. We were able to manage the patient's hyperlipidemia with bezafibrate, and her diabetes was well controlled with insulin. In conclusion, genetic testing is helpful in identifying rare and interesting cases when clinicians suspect inheritable diseases. Additionally, when one fibrate drug is ineffective in treating hyperlipidemia, it might be worthwhile trying another fibrate.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| | - Yongyong Chen
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
- Department of Endocrinology and MetabolismThe Fifth People's Hospital of ChongqingChongqingChina
| | - Nanwei Tong
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| | - Qing Shao
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| | - Yueyang Zhou
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| | - Tong Mu
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| | - Xiaoling Yang
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| | - Yuwei Zhang
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
11
|
Bezafibrate Exerts Neuroprotective Effects in a Rat Model of Sporadic Alzheimer’s Disease. Pharmaceuticals (Basel) 2022; 15:ph15020109. [PMID: 35215222 PMCID: PMC8877080 DOI: 10.3390/ph15020109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Bezafibrate, a pan-peroxisome proliferator-activated receptor (PPAR) agonist, reportedly attenuated tau pathology in a transgenic mouse model of primary tauopathy. Since tau pathology is a neuropathological hallmark of Alzheimer’s disease (AD), bezafibrate may be a potential drug for the treatment of AD. However, no study has investigated its effects in AD models. Thus, we aimed to evaluate whether bezafibrate has neuroprotective effects in a sporadic AD model induced by streptozotocin (STZ) intracerebroventricular (ICV) injection. Rats were administered STZ-ICV (3 mg/kg) followed by bezafibrate (50 mg/kg/day, intraperitoneal) for 4 weeks. Behavior tests and positron emission tomography (PET) were performed to evaluate longitudinal changes in cognitive function, tau pathology, and cerebral glucose metabolism. Immunofluorescence staining was performed to assess neuronal survival and microglial accumulation. STZ-ICV administration induced significant cognitive impairment and substantial neuronal loss, tau pathology, glucose hypometabolism, and microgliosis in the cortex and hippocampus, while bezafibrate effectively attenuated these abnormalities. This study demonstrated that bezafibrate has long-lasting neuroprotective effects in a sporadic AD model. Our data indicate that the neuroprotective effects of bezafibrate might be associated with its ability to ameliorate tau pathology, brain glucose hypometabolism, and neuroinflammation. These findings suggest that bezafibrate is a potential multi-target drug candidate for the treatment of AD.
Collapse
|
12
|
Vuppalanchi R, Caldwell SH, Pyrsopoulos N, deLemos AS, Rossi S, Levy C, Goldberg DS, Mena EA, Sheikh A, Ravinuthala R, Shaikh F, Bainbridge JD, Parmar DV, Chalasani NP. Proof-of-concept study to evaluate the safety and efficacy of saroglitazar in patients with primary biliary cholangitis. J Hepatol 2022; 76:75-85. [PMID: 34487750 DOI: 10.1016/j.jhep.2021.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIM Saroglitazar is a novel peroxisome proliferator-activated receptor (PPAR) agonist with dual agonistic properties (α/γ). Due to a strong mechanistic rationale, we aimed to test the safety and efficacy of saroglitazar in patients with primary biliary cholangitis (PBC) who were either ursodeoxycholic acid (UDCA) resistant or intolerant. METHODS In this double-blind, phase II proof-of-concept trial, 37 patients with PBC were randomized to saroglitazar 4 mg (n = 13), saroglitazar 2 mg (n = 14), or placebo (n = 10) daily for 16 weeks. The primary efficacy endpoint was the reduction in alkaline phosphatase (ALP) level at Week 16. RESULTS A significant reduction of mean ALP levels was observed at Week 16 relative to baseline in both the saroglitazar 4 mg (least-squares [LS] mean =-163.3 U/L, SE = 25.1, p <0.001) and 2 mg (LS mean =-155.8 U/L, SE = 24.4, p <0.001) groups, compared with placebo (LS mean =-21.1 U/L, SE = 28.9). Treatment with saroglitazar resulted in a rapid reduction of ALP concentration at Week 4 that was sustained through the study duration. At least 1 treatment-emergent adverse event occurred in 11 (84.6%) patients in the saroglitazar 4 mg group, in 12 (85.7%) patients in the 2 mg group and in 8 (80%) patients in the placebo group. Study drug was discontinued in 4 patients (3 patients in the 4 mg group and 1 patient in the 2 mg group) due to aminotransferase increases that promptly returned to baseline values after drug discontinuation. CONCLUSIONS Saroglitazar at 2 mg and 4 mg daily was tolerated and resulted in rapid and sustained improvements in ALP. Further studies are underway at a daily dose of 2 mg and 1 mg due to the higher incidence of elevated liver enzymes observed with the 4 mg dose. CLINICALTRIALS. GOV IDENTIFIER NCT03112681 LAY SUMMARY: Saroglitazar resulted in a rapid and sustained improvement in alkaline phosphatase levels in patients with primary biliary cholangitis. The mean percentage reductions in alkaline phosphatase levels were 49% and 51% in the saroglitazar 4 mg and 2 mg groups compared to 3% in the placebo group.
Collapse
Affiliation(s)
- Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, USA.
| | - Stephen H Caldwell
- Division of Gastroenterology and Hepatology, University of Virginia, USA
| | | | | | - Simona Rossi
- Division of Hepatology, Einstein Healthcare Network, USA
| | - Cynthia Levy
- Schiff Center for Liver Diseases, USA; University of Miami Miller School of Medicine, USA
| | - David S Goldberg
- Hospital of the University of Pennsylvania, USA; University of Miami Miller School of Medicine, USA
| | | | - Aasim Sheikh
- Gastrointestinal Specialists of Georgia, Marietta, GA, USA
| | | | | | | | | | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, USA.
| |
Collapse
|
13
|
Jacob L, Greiner RA, Luedde M, Kostev K. Prevalence of and Factors Associated With the Prescription of Fibrates Among Patients Receiving Lipid-Lowering Drugs in Germany. J Cardiovasc Pharmacol 2021; 78:885-890. [PMID: 34654787 DOI: 10.1097/fjc.0000000000001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/08/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Little recent data are available about the patterns of prescription for fibrates in patients followed in primary care practices. Therefore, the goal of this study was to analyze the prevalence of and the factors associated with the use of fibrates among patients receiving lipid-lowering drugs in Germany. The study included patients aged ≥18 years with at least 1 visit to 1 of 1070 general practices in Germany between January and December 2019. Lipid-lowering drugs included statins (without and with ezetimibe) and fibrates. The prevalence of the prescription of fibrates corresponded to the number of patients with at least 1 prescription for fibrates divided by the total number of patients receiving lipid-lowering drugs. A logistic regression model was used to assess the relationship between several demographic, clinical, and biological factors and the prescription of fibrates. A total of 111,329 patients were included in this study (mean [SD] age 68.8 [11.5] years; 56.0% of patients were men). The prevalence of the prescription of fibrates was 1.5%. Male sex, hypertension, diabetes mellitus, high low-density lipoprotein cholesterol, low high-density lipoprotein cholesterol, and high triglyceride were positively associated with the use of fibrates. By contrast, there was a negative relationship between the odds of receiving fibrates and coronary heart disease, myocardial infarction, peripheral arterial disease, and stroke including transient ischemic attack. Overall, we found that fibrates were infrequently prescribed in general practices in Germany.
Collapse
Affiliation(s)
- Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Dr Antoni Pujadas, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | | | | | | |
Collapse
|
14
|
Wang X, Wang D, Xia P, Cheng K, Wang Q, Wang X, Lin Q, Song J, Chen A, Li X. Ultrasound-targeted simvastatin-loaded microbubble destruction promotes OA cartilage repair by modulating the cholesterol efflux pathway mediated by PPARγ in rabbits. Bone Joint Res 2021; 10:693-703. [PMID: 34666502 PMCID: PMC8559971 DOI: 10.1302/2046-3758.1010.bjr-2021-0162.r3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aims To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ). Methods In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMDSV on alternate days for four weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+ UTMDSV, and UTMDSV. The cholesterol efflux rate and triglyceride levels were measured using an assay kit and oil red O staining, respectively. In vivo, the OA rabbits were treated with a single intra-articular injection of UTMD, SV, and UTMDSV every seven days for four weeks. Cartilage histopathology was assessed by safranin-O staining and the Mankin score. Total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) in rabbit knee synovial fluid were detected by enzyme-marker assay. Aggrecan, collagen II, and PPARγ expression levels were analyzed by Western blotting (WB). Results In vitro, UTMDSV significantly increased the cholesterol efflux rate and aggrecan, collagen II, and PPARγ levels in OA chondrocytes; these effects were blocked by the PPARγ inhibitor. In vivo, UTMDSV significantly increased aggrecan, collagen II, PPARγ, and HDL-C levels, while TC levels and Mankin scores were decreased compared with the UTMD, SV, OA, and control groups. Conclusion UTMDSV promotes cartilage extracellular matrix synthesis by modulating the PPARγ-mediated cholesterol efflux pathway in OA rabbits. Cite this article: Bone Joint Res 2021;10(10):693–703.
Collapse
Affiliation(s)
- Xinwei Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Danbi Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiulong Song
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Anliang Chen
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Calderón-Hernández MF, Altamirano-Bustamante NF, Revilla-Monsalve C, Mosquera-Andrade MB, Altamirano-Bustamante MM. What can we learn from β-cell failure biomarker application in diabetes in childhood? A systematic review. World J Diabetes 2021; 12:1325-1362. [PMID: 34512897 PMCID: PMC8394223 DOI: 10.4239/wjd.v12.i8.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/12/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prevalence of diabetes as a catastrophic disease in childhood is growing in the world. The search for novel biomarkers of β-cell failure has been an elusive task because it requires several clinical and biochemical measurements in order to integrate the risk of metabolic syndrome.
AIM To determine which biomarkers are currently used to identify β-cell failure among children and adolescents with high risk factors for diabetes mellitus.
METHODS This systematic review was carried out using a modified version of the PICO protocol (Participants/Intervention/Comparison/Outcome). Once our research question was established, terms were individually researched on three different databases (PubMed, BIREME and Web of Science). The total articles obtained underwent a selection process from which the 78 most relevant articles were retrieved to undergo further analysis. They were assessed individually according to quality criteria.
RESULTS First, we made the classification of the β-cell-failure biomarkers by the target tissue and the evolution of the disease, separating the biomarkers in relation to the types of diabetes. Second, we demonstrated that most biomarkers currently used as early signs of β-cell failure are those that concern local or systemic inflammation processes and oxidative stress as well as those related to endothelial dysfunction processes. Third, we explored the novelties of diabetes as a protein conformational disease and the novel biomarker called real human islet amyloid polypeptide amyloid oligomers. Finally, we ended with a discussion about the best practice of validation and individual control of using different types of biomarkers in type 1 and type 2 diabetes in order to assess the role they play in the progress of diabetes in childhood.
CONCLUSION This review makes widely evident that most biomarkers currently used as early signs of β-cell failure are those that concern local or systemic inflammation processes and oxidative stress as well as those related to endothelial dysfunction processes. Landing in the clinical practice we propose that real human islet amyloid polypeptide amyloid oligomers is good for identifying patients with β-cell damage and potentially could substitute many biomarkers.
Collapse
Affiliation(s)
- María F Calderón-Hernández
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, IMSS, Mexico 06720, Mexico
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, IMSS, Mexico 06720, Mexico
| | | | | |
Collapse
|
16
|
Minamimoto R. Series of myocardial FDG uptake requiring considerations of myocardial abnormalities in FDG-PET/CT. Jpn J Radiol 2021; 39:540-557. [PMID: 33517516 PMCID: PMC8175248 DOI: 10.1007/s11604-021-01097-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Distinct from cardiac PET performed with preparation to control physiological FDG uptake in the myocardium, standard FDG-PET/CT performed with 4-6 h of fasting will show variation in myocardial FDG uptake. For this reason, important signs of myocardial and pericardial abnormality revealed by myocardial FDG uptake tend to be overlooked. However, recognition of possible underlying disease will support further patient management to avoid complications due to the disease. This review demonstrates the mechanism of FDG uptake in the myocardium, discusses the factors affecting uptake, and provides notable image findings that may suggest underlying disease.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
17
|
Masuda K, Han X, Kato H, Sato H, Zhang Y, Sun X, Hirofuji Y, Yamaza H, Yamada A, Fukumoto S. Dental Pulp-Derived Mesenchymal Stem Cells for Modeling Genetic Disorders. Int J Mol Sci 2021; 22:ijms22052269. [PMID: 33668763 PMCID: PMC7956585 DOI: 10.3390/ijms22052269] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.
Collapse
Affiliation(s)
- Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan;
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yu Zhang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Haruyoshi Yamaza
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| |
Collapse
|
18
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
19
|
Greco MF, Sirtori CR, Corsini A, Ezhov M, Sampietro T, Ruscica M. Lipoprotein(a) Lowering-From Lipoprotein Apheresis to Antisense Oligonucleotide Approach. J Clin Med 2020; 9:jcm9072103. [PMID: 32635396 PMCID: PMC7408876 DOI: 10.3390/jcm9072103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
It is well-known that elevated lipoprotein(a)—Lp(a)—levels are associated with a higher risk of cardiovascular (CV) mortality and all-cause mortality, although a standard pharmacotherapeutic approach is still undefined for patients with high CV risk dependent on hyperlipoproteinemia(a). Combined with high Lp(a) levels, familial hypercholesterolemia (FH) leads to a greater CVD risk. In suspected FH patients, the proportion of cases explained by a rise of Lp(a) levels ranges between 5% and 20%. In the absence of a specific pharmacological approach able to lower Lp(a) to the extent required to achieve CV benefits, the most effective strategy today is lipoprotein apheresis (LA). Although limited, a clear effect on Lp(a) is exerted by PCSK9 antagonists, with apparently different mechanisms when given with statins (raised catabolism) or as monotherapy (reduced production). In the era of RNA-based therapies, a new dawn is represented by the use of antisense oligonucleotides APO(a)Lrx, able to reduce Lp(a) from 35% to over 80%, with generally modest injection site reactions. The improved knowledge of Lp(a) atherogenicity and possible prevention will be of benefit for patients with residual CV risk remaining after the most effective available lipid-lowering agents.
Collapse
Affiliation(s)
- Maria Francesca Greco
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
| | - Cesare R. Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Alberto Corsini
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
- IRCCS Multimedica, 20099 Milan, Italy
| | - Marat Ezhov
- National Medical Research Center of Cardiology of the Ministry of Health, Moscow, Russia;
| | - Tiziana Sampietro
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, 56126 Pisa, Italy;
| | - Massimiliano Ruscica
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
- Correspondence: ; Tel.: +39-0250318220
| |
Collapse
|
20
|
Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux. Pharmaceut Med 2020; 33:465-498. [PMID: 31933239 PMCID: PMC7101889 DOI: 10.1007/s40290-019-00308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesterol efflux is the key process protecting the vascular system from the development of atherosclerotic lesions. Various extracellular and intracellular events affect the ability of the cell to efflux excess cholesterol. To explore the possible pathways and processes that promote or inhibit cholesterol efflux, we applied a combined cheminformatic and bioinformatic approach. We performed a comprehensive analysis of published data on the various substances influencing cholesterol efflux and found 153 low molecular weight substances that are included in the Chemical Entities of Biological Interest (ChEBI) database. Pathway enrichment was performed for substances identified within the Reactome database, and 45 substances were selected in 93 significant pathways. The most common pathways included the energy-dependent processes related to active cholesterol transport from the cell, lipoprotein metabolism and lipid transport, and signaling pathways. The activators and inhibitors of cholesterol efflux were non-uniformly distributed among the different pathways: the substances influencing ‘biological oxidations’ activate cholesterol efflux and the substances influencing ‘Signaling by GPCR and PTK6’ inhibit efflux. This analysis may be used in the search and design of efflux effectors for therapies targeting structural and functional high-density lipoprotein deficiency.
Collapse
|
21
|
To Probe Full and Partial Activation of Human Peroxisome Proliferator-Activated Receptors by Pan-Agonist Chiglitazar Using Molecular Dynamics Simulations. PPAR Res 2020; 2020:5314187. [PMID: 32308671 PMCID: PMC7152983 DOI: 10.1155/2020/5314187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chiglitazar is a promising new-generation insulin sensitizer with low reverse effects for the treatment of type II diabetes mellitus (T2DM) and has shown activity as a nonselective pan-agonist to the human peroxisome proliferator-activated receptors (PPARs) (i.e., full activation of PPARγ and a partial activation of PPARα and PPARβ/δ). Yet, it has no high-resolution complex structure with PPARs and its detailed interactions and activation mechanism remain unclear. In this study, we docked chiglitazar into three experimentally resolved crystal structures of hPPAR subtypes, PPARα, PPARβ/δ, and PPARγ, followed by 3 μs molecular dynamics simulations for each system. Our MM-GBSA binding energy calculation revealed that chiglitazar most favorably bound to hPPARγ (-144.6 kcal/mol), followed by hPPARα (-138.0 kcal/mol) and hPPARβ (-135.9 kcal/mol), and the order is consistent with the experimental data. Through the decomposition of the MM-GBSA binding energy by residue and the use of two-dimensional interaction diagrams, key residues involved in the binding of chiglitazar were identified and characterized for each complex system. Additionally, our detailed dynamics analyses support that the conformation and dynamics of helix 12 play a critical role in determining the activities of the different types of ligands (e.g., full agonist vs. partial agonist). Rather than being bent fully in the direction of the agonist versus antagonist conformation, a partial agonist can adopt a more linear conformation and have a lower degree of flexibility. Our finding may aid in further development of this new generation of medication.
Collapse
|
22
|
Kawasaki M, Kambe A, Yamamoto Y, Arulmozhiraja S, Ito S, Nakagawa Y, Tokiwa H, Nakano S, Shimano H. Elucidation of Molecular Mechanism of a Selective PPARα Modulator, Pemafibrate, through Combinational Approaches of X-ray Crystallography, Thermodynamic Analysis, and First-Principle Calculations. Int J Mol Sci 2020; 21:E361. [PMID: 31935812 PMCID: PMC6981837 DOI: 10.3390/ijms21010361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023] Open
Abstract
The selective PPARα modulator (SPPARMα) is expected to medicate dyslipidemia with minimizing adverse effects. Recently, pemafibrate was screened from the ligand library as an SPPARMα bearing strong potency. Several clinical pieces of evidence have proved the usefulness of pemafibrate as a medication; however, how pemafibrate works as a SPPARMα at the molecular level is not fully known. In this study, we investigate the molecular mechanism behind its novel SPPARMα character through a combination of approaches of X-ray crystallography, isothermal titration calorimetry (ITC), and fragment molecular orbital (FMO) analysis. ITC measurements have indicated that pemafibrate binds more strongly to PPARα than to PPARγ. The crystal structure of PPARα-ligand binding domain (LBD)/pemafibrate/steroid receptor coactivator-1 peptide (SRC1) determined at 3.2 Å resolution indicates that pemafibrate binds to the ligand binding pocket (LBP) of PPARα in a Y-shaped form. The structure also reveals that the conformation of the phenoxyalkyl group in pemafibrate is flexible in the absence of SRC1 coactivator peptide bound to PPARα; this gives a freedom for the phenoxyalkyl group to adopt structural changes induced by the binding of coactivators. FMO calculations have indicated that the accumulation of hydrophobic interactions provided by the residues at the LBP improve the interaction between pemafibrate and PPARα compared with the interaction between fenofibrate and PPARα.
Collapse
Affiliation(s)
- Mayu Kawasaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.K.); (A.K.); (S.I.)
| | - Akira Kambe
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.K.); (A.K.); (S.I.)
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; (Y.Y.); (S.A.); (H.T.)
| | - Sundaram Arulmozhiraja
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; (Y.Y.); (S.A.); (H.T.)
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.K.); (A.K.); (S.I.)
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-1004, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; (Y.Y.); (S.A.); (H.T.)
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-1004, Japan
- Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.K.); (A.K.); (S.I.)
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-1004, Japan
| | - Hitoshi Shimano
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-1004, Japan
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
23
|
Montgomery MK, Bayliss J, Keenan S, Rhost S, Ting SB, Watt MJ. The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue. FASEB J 2019; 33:13267-13279. [PMID: 31533003 DOI: 10.1096/fj.201900909rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adipose tissue plays a major role in the regulation of systemic metabolic homeostasis, with the AP2 adaptor complex being important in clathrin-mediated endocytosis (CME) of various cell surface receptors, including glucose transporter 4, the insulin receptor, and β-adrenergic receptors (ARs). One of the AP2 subunits, adaptor-related protein complex 2, α2 subunit (Ap2a2), has recently been identified as a peroxisome proliferator-activated receptor (PPAR)α target gene. The effects of PPARα on the AP2 adaptor complex and CME are unknown. We generated adipocyte-specific Ap2a2 knockout mice and investigated their metabolism when fed a standard chow or high-fat diet, without and with supplementation with the PPARα-agonist WY-14643 (WY). Although Ap2a2 deletion had only minor effects on glycaemic control, it led to substantial impairment in β-adrenergic activation of lipolysis, as evidenced by a loss of cAMP response, PKA activation, and glycerol/fatty acid release. These differences were related to increased cell surface localization of the β2- and β3-ARs. Lipolytic defects were accompanied by impaired WY-mediated loss of fat mass and whole-body fat oxidation. This study demonstrates a novel role for PPARα in β-adrenergic regulation of adipose tissue lipolysis and for adipose tissue in supplying adequate substrate to other peripheral tissues to accommodate the increase in systemic fatty acid oxidation that occurs upon treatment with PPARα agonists.-Montgomery, M. K., Bayliss, J., Keenan, S., Rhost, S., Ting, S. B., Watt, M. J. The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jacqueline Bayliss
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Stacey Keenan
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Rhost
- Australian Centre for Blood Diseases, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Stephen B Ting
- Australian Centre for Blood Diseases, The Alfred Centre, Monash University, Melbourne, Victoria, Australia.,Department of Haematology, Box Hill Hospital (Eastern Health), Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Inchiosa MA. Further investigation of the potential anti-neoplastic, anti-inflammatory and immunomodulatory actions of phenoxybenzamine using the Broad Institute CLUE platform.. [DOI: 10.1101/767392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractPrevious clinical studies with the FDA-approved alpha-adrenergic antagonist, phenoxybenzamine, showed apparent efficacy to reverse the symptoms and disabilities of the neuropathic condition, Complex Regional Pain Syndrome; also, the anatomic spread and intensity of this syndrome has a proliferative character and it was proposed that phenoxybenzamine may have an anti-inflammatory, immunomodulatory mode of action. A previous study gave evidence that phenoxybenzamine had anti-proliferative activity in suppression of growth in several human tumor cell cultures. The same report demonstrated that the drug possessed significant histone deacetylase inhibitory activity. Utilizing the Harvard/Massachusetts Institute of Technology Broad Institute genomic database, CLUE, the present study suggests that the gene expression signature of phenoxybenzamine in malignant cell lines is consistent with anti-inflammatory/immunomodulatory activity and suppression of tumor expansion by several possible mechanisms of action. Of particular note, phenoxybenzamine demonstrated signatures that were highly similar to those with glucocorticoid agonist activity. Also, gene expression signatures of phenoxbenzamine were consistent with several agents in each case that were known to suppress tumor proliferation, notably, protein kinase C inhibitors, Heat Shock Protein inhibitors, epidermal growth factor receptor inhibitors, and glycogen synthase kinase inhibitors. Searches in CLUE also confirmed the earlier observations of strong similarities between gene expression signatures of phenoxybenzamine and several histone deacetylase inhibitors.
Collapse
|
25
|
2-Phenyl-8-(1-phenylallyl)-chromenone compounds have a pan-PPAR modulator pharmacophore. Bioorg Med Chem 2019; 27:2948-2958. [PMID: 31128991 DOI: 10.1016/j.bmc.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022]
Abstract
Adiponectin is an adipocytokine with insulin-sensitizing, anti-atherogenic, and anti-inflammatory properties. Adiponectin secretion-inducing compounds have therapeutic potential in a variety of metabolic diseases. Phenotypic screening led to the discovery that 5,7-dihydroxy-8-(1-(4-hydroxy-3-methoxyphenyl)allyl)-2-phenyl-4H-chromen-4-one (compound 1) had adiponectin secretion-inducing activity during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Compound 1 was originally reported to be an anti-cancer chemical isolated from natural honeybee propolis, and its adiponectin secretion-inducing activity was found in non-cytotoxic concentrations. In a target identification study, compound 1 and its potent synthetic derivative compound 5 were shown to be novel pan-peroxisome proliferator-activator receptor (PPAR) modulators. Molecular docking models with PPARs have indicated that the binding modes of chromenone compounds preferentially interacted with the hydrophobic ligand binding pocket of PPARs. In addition, chromenone compounds have been shown to result in different phenotypic outcomes in the transcriptional regulation of lipid metabolic enzymes than those of selective PPAR mono-agonists for PPARα, PPARγ, and PPARδ. In line with the pharmacology of adiponectin and PPAR pan-modulators, compounds 1 and 5 may have diverse therapeutic potentials to treat cancer and metabolic diseases.
Collapse
|
26
|
Li MH, Chen W, Wang LL, Sun JL, Zhou L, Shi YC, Wang CH, Zhong BH, Shi WG, Guo ZW. RLA8—A New and Highly Effective Quadruple PPAR-α/γ/δ and GPR40 Agonist to Reverse Nonalcoholic Steatohepatitis and Fibrosis. J Pharmacol Exp Ther 2019; 369:67-77. [DOI: 10.1124/jpet.118.255216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
|
27
|
Choudhary NS, Kumar N, Duseja A. Peroxisome Proliferator-Activated Receptors and Their Agonists in Nonalcoholic Fatty Liver Disease. J Clin Exp Hepatol 2019; 9:731-739. [PMID: 31889755 PMCID: PMC6926194 DOI: 10.1016/j.jceh.2019.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. In addition to the liver-related morbidity and mortality, NAFLD is now also associated with various extrahepatic diseases. Pathogenesis of NAFLD is multifactorial with limited pharmacotherapy options for the treatment of patients with NAFLD. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are involved in the transcriptional regulation of lipid metabolism, glucose homeostasis, energy balance, inflammation, and atherosclerosis. PPAR agonists are attractive options for treatment of NAFLD as they can act at multiple targets involved in the pathogenesis of NAFLD. We reviewed the available literature on the pathophysiological role of PPARs and use of PPAR agonists in the treatment of NAFLD. Original studies and review articles available on PubMed regarding the role of PPARs in the pathogenesis and utility of PPAR agonists in the treatment of NAFLD were included in this review article. ClinicalTrials.gov and Clinical Trials Registry-India sites were searched for ongoing studies on saroglitazar. The available literature suggests that PPARs play an important role in the pathogenesis of NAFLD. Use of PPAR gamma agonists is associated with histological improvement in NAFLD. Dual PPAR agonists with no or minimal PPAR gamma activity are being explored in the treatment of NAFLD. Because of the pathophysiological role of PPARs in NAFLD, PPAR agonists are attractive options for the treatment of patients with NAFLD. Dual PPAR agonists without significant gamma activity appear promising for the treatment of NAFLD.
Collapse
Affiliation(s)
- Narendra S. Choudhary
- Institute of Liver Transplantation and Regenerative Medicine, Medanta the Medicity, Gurugram, India
| | | | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India,Address for correspondence: Dr. Ajay Duseja MD, DM, FAMS, FAASLD, FACG, FSGEI Professor, Department of Hepatology, Sector 12, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
28
|
Yamaguchi T, Shirai K, Nagayama D, Nakamura S, Oka R, Tanaka S, Watanabe Y, Imamura H, Sato Y, Kawana H, Ohira M, Saiki A, Shimizu N, Tatsuno I. Bezafibrate Ameliorates Arterial Stiffness Assessed by Cardio-Ankle Vascular Index in Hypertriglyceridemic Patients with Type 2 Diabetes Mellitus. J Atheroscler Thromb 2018; 26:659-669. [PMID: 30584220 PMCID: PMC6629745 DOI: 10.5551/jat.45799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the abundant data indicating slower progression of atherosclerosis with statins, studies on fibrates remain scarce. The aim of this study was thus to clarify the effect of bezafibrate on CAVI as well as on oxidative stress. METHODS A randomized, open-label, controlled study was performed. 66 hypertriglyceridemic patients with type 2 diabetes were assigned to two groups: bezafibrate (400 mg/day) group and eicosapentaenoic acid (EPA 1.8 g/day) group. Patients were administered the respective treatment for 12 weeks. CAVI, glycolipid metabolic parameters, and diacron-reactive oxygen metabolites (d-ROMs) were evaluated before and after the study period. RESULTS Serum triglycerides (TG), remnant-like particle cholesterol (RLP-C), fasting plasma glucose, HbA1c and d-ROMs decreased, while HDL-cholesterol increased significantly in the bezafibrate group but did not change in the EPA group. The decreases in TG, RLP-C, HbA1c and d-ROMs were significantly greater in the bezafibrate group than in the EPA group. CAVI decreased significantly only in the bezafibrate group and the decrease was significantly greater in bezafibrate group than in EPA group. Simple regression analysis showed no significant relationship between the change in CAVI and changes in other variables. Multivariate logistic regression analysis identified high baseline CAVI, low HDL-cholesterol level, and bezafibrate administration as significant independent predictors of CAVI decrease. CONCLUSION Bezafibrate treatment ameliorates arterial stiffness accompanied by improvement of glycolipid metabolism and oxidative stress. These effects potentially have important beneficial health consequences in hypertriglyceridemic patients with type 2 diabetes.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | | | | | - Shoko Nakamura
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Rena Oka
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Sho Tanaka
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Yasuhiro Watanabe
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Haruki Imamura
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Yuta Sato
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Hidetoshi Kawana
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Masahiro Ohira
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Atsuhito Saiki
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Naomi Shimizu
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Ichiro Tatsuno
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| |
Collapse
|
29
|
Han X, Nonaka K, Kato H, Yamaza H, Sato H, Kifune T, Hirofuji Y, Masuda K. Osteoblastic differentiation improved by bezafibrate-induced mitochondrial biogenesis in deciduous tooth-derived pulp stem cells from a child with Leigh syndrome. Biochem Biophys Rep 2018; 17:32-37. [PMID: 30533535 PMCID: PMC6262801 DOI: 10.1016/j.bbrep.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 11/12/2018] [Indexed: 01/07/2023] Open
Abstract
Leigh syndrome is a highly heterogeneous condition caused by pathological mutations in either nuclear or mitochondrial DNA regions encoding molecules involved in mitochondrial oxidative phosphorylation, in which many organs including the brain can be affected. Among these organs, a high incidence of poor bone health has been recognized in primary mitochondrial diseases including Leigh syndrome. However, the direct association between mitochondrial dysfunction and poor bone health has not been fully elucidated. Mitochondrial biosynthesis is a potential therapeutic target for this syndrome, as it can ameliorate the impairment of oxidative phosphorylation without altering these gene mutations. A recent study has shown the impaired osteogenesis in the dental pulp stem cells derived from the deciduous teeth of a child with Leigh syndrome, harboring the heteroplasmic mutation G13513A in the mitochondrial DNA region encoding the ND5 subunit of the respiratory chain complex I. The present study aimed to investigate whether mitochondrial biogenesis could be a therapeutic target for improving osteogenesis, using the same stem cells in a patient-specific cellular model. For this purpose, bezafibrate was used because it has been reported to induce mitochondrial biogenesis as well as to improve bone metabolism and osteoporosis. Bezafibrate clearly improved the differentiation of patient-derived stem cells into osteoblasts and the mineralization of differentiated osteoblasts. The mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α, ATP production, and mitochondrial Ca2+ levels were all significantly increased by bezafibrate in the patient-derived cells. In addition, the increased amount and morphological shift from the fragmentary to network shape associated with DRP1 downregulation were also observed in the bezafibrate-treated patient-derived cells. These results suggest that mitochondrial biogenesis may be a potential therapeutic target for improving osteogenesis in patients with Leigh syndrome, and bezafibrate may be one of the candidate treatment agents. Dental pulp stem cells from a child with Leigh syndrome have impaired osteogenesis. Bezafibrate-PGC-1α pathway improves osteogenesis via mitochondrial biogenesis. Bezafibrate also induces DRP1 downregulation and mitochondrial network formation. Dental pulp stem cells may help to establish treatment strategies for Leigh syndrome.
Collapse
Key Words
- BZF, bezafibrate
- Bezafibrate
- DRP1, dynamin-related protein 1
- Dental pulp stem cell
- LS, Leigh syndrome
- Leigh syndrome
- MMP, Mitochondrial membrane potential
- Mitochondrial biogenesis
- OXPHOS, oxidative phosphorylation
- Osteogenesis
- PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator-1α
- PPAR, peroxisome proliferator-activated receptor
- RC complex I, respiratory chain complex I
- SHED, Stem cells from human exfoliated deciduous teeth
- mtDNA, mitochondrial DNA
Collapse
Affiliation(s)
- Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kentaro Nonaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Haruyoshi Yamaza
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Takashi Kifune
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Patel K, Zafar M, Ziganshin B, Elefteriades J. Diabetes Mellitus: Is It Protective against Aneurysm? A Narrative Review. Cardiology 2018; 141:107-122. [DOI: 10.1159/000490373] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/24/2018] [Indexed: 11/19/2022]
Abstract
Objectives: In the course of extensive clinical aortic surgery, we noticed that the aorta was quite thick and fibrotic in diabetic patients. We thought the diabetic aortic aorta might be inimitable to aortic dissection. On this basis, we set out to review information in the literature regarding aortic growth and dissection in diabetic patients. Methods: We used a 2-step search approach to the available literature on diabetes and aneurysm. Firstly, databases including PubMed, Cochrane, Embase and TRIP were searched. Secondly, relevant studies were identified through secondary sources including references of initially selected articles. We address the relationship between diabetes and the incidence, prevalence, growth, mortality and rupture of an aneurysm. Results: Diabetes is thought to exert a protective role in both thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA). Diabetics were shown to have a slower aneurysm growth rate, lower rupture rate, delayed (> 65 years) age of rupture, decreased rate of mortality from an aneurysm and a decreased length of hospital stay. There was also noted a decreased rate of incidence and prevalence of TAA and AAA in diabetics, smaller aneurysm diameter, reduction in matrix metalloproteinases and an increased aortic wall stress in diabetics. Antidiabetic agents like metformin, thiazolidinediones and dipeptidyl peptidase-4 inhibitors may protect against an aneurysm. Conclusion: Our literature review provides strong (but often circumstantial) evidence that diabetic patients exhibit slower growth of aortic aneurysms and a lower rate of aortic dissection. Furthermore, clinical and experimental studies indicate that common antidiabetic medications on their own inhibit growth of aortic aneurysms. These findings indicate a paradoxically beneficial effect of the otherwise highly detrimental diabetic state.
Collapse
|
31
|
Elucidating the Beneficial Role of PPAR Agonists in Cardiac Diseases. Int J Mol Sci 2018; 19:ijms19113464. [PMID: 30400386 PMCID: PMC6275024 DOI: 10.3390/ijms19113464] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that bind to DNA and regulate transcription of genes involved in lipid and glucose metabolism. A growing number of studies provide strong evidence that PPARs are the promising pharmacological targets for therapeutic intervention in various diseases including cardiovascular disorders caused by compromised energy metabolism. PPAR agonists have been widely used for decades as lipid-lowering and anti-inflammatory drugs. Existing studies are mainly focused on the anti-atherosclerotic effects of PPAR agonists; however, their role in the maintenance of cellular bioenergetics remains unclear. Recent studies on animal models and patients suggest that PPAR agonists can normalize lipid metabolism by stimulating fatty acid oxidation. These studies indicate the importance of elucidation of PPAR agonists as potential pharmacological agents for protection of the heart from energy deprivation. Here, we summarize and provide a comprehensive analysis of previous studies on the role of PPARs in the heart under normal and pathological conditions. In addition, the review discusses the PPARs as a therapeutic target and the beneficial effects of PPAR agonists, particularly bezafibrate, to attenuate cardiomyopathy and heart failure in patients and animal models.
Collapse
|
32
|
Okopień B, Bułdak Ł, Bołdys A. Benefits and risks of the treatment with fibrates––a comprehensive summary. Expert Rev Clin Pharmacol 2018; 11:1099-1112. [DOI: 10.1080/17512433.2018.1537780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
33
|
Santin JR, Machado ID, Drewes CC, de Vinci Kanda Kupa L, Soares RM, Cavalcanti DM, da Rocha Pitta I, Farsky SHP. Role of an indole-thiazolidiene PPAR pan ligand on actions elicited by G-protein coupled receptor activated neutrophils. Biomed Pharmacother 2018; 105:947-955. [PMID: 30021389 DOI: 10.1016/j.biopha.2018.06.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Neutrophils are the first line of defence during inflammatory processes; nevertheless, exacerbated influx and actions of neutrophils in terms of uncontrolled inflammation are harmful to the host. Hence, neutrophil activity is the target of drugs seeking to address undesired inflammation. Here, we investigated the mechanisms of action of a ligand of the three isoforms of peroxisome proliferator-activated receptors (PPAR; (5Z)-5-[(5-bromo-1H-indole-3-yl)methylene]-3-(4-chlorobenzyl)-thiazolidine-2,4-dione), dubbed LYSO-7, on neutrophils activated by N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP), an agonist of G-protein coupled receptors (GPCRs) that binds to membrane-formylated peptide and activates intracellular inflammation pathways. Neutrophils were collected from the peritoneal cavity of male Wistar rats four hours after oyster glycogen injection. Afterwards, the neutrophils were incubated with saline or LYSO-7 (1 or 10 μM, 30 min), washed and stimulated with fMLP (10-7 μM, 1 h). LYSO-7 treatment inhibited gene and protein expression of adhesion molecules, CD62 L and CD18, abolished adhesion of neutrophils to endothelial cells, impaired chemotaxis, blocked the enhancement of intracellular calcium levels, induced the expression of PPARγ as well as PPARβδ and reduced nuclear translocation of nuclear factor κB (NF-κB). Moreover, topical application of LYSO-7 (10 mM) prior to local application of fMLP (10-7 μM) diminished the in vivo leukocyte-endothelial interactions in the mesentery microcirculation of rats. Together, our data highlight the effectiveness of anti-inflammatory actions of LYSO-7 on neutrophils activated by GPCRs, depending, at least in part, on impaired of NF-κB activation and induction of PPAR expression.
Collapse
Affiliation(s)
- José Roberto Santin
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isabel Daufenback Machado
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carine C Drewes
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Léonard de Vinci Kanda Kupa
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Marcondes Soares
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Danielle Maia Cavalcanti
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ivan da Rocha Pitta
- Department of Chemistry, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| | - Sandra H P Farsky
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
34
|
An aPPARent Functional Consequence in Skeletal Muscle Physiology via Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2018; 19:ijms19051425. [PMID: 29747466 PMCID: PMC5983589 DOI: 10.3390/ijms19051425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle comprises 30–40% of the total body mass and plays a central role in energy homeostasis in the body. The deregulation of energy homeostasis is a common underlying characteristic of metabolic syndrome. Over the past decades, peroxisome proliferator-activated receptors (PPARs) have been shown to play critical regulatory roles in skeletal muscle. The three family members of PPAR have overlapping roles that contribute to the myriad of processes in skeletal muscle. This review aims to provide an overview of the functions of different PPAR members in energy homeostasis as well as during skeletal muscle metabolic disorders, with a particular focus on human and relevant mouse model studies.
Collapse
|
35
|
Matsuba I, Matsuba R, Ishibashi S, Yamashita S, Arai H, Yokote K, Suganami H, Araki E. Effects of a novel selective peroxisome proliferator-activated receptor-α modulator, pemafibrate, on hepatic and peripheral glucose uptake in patients with hypertriglyceridemia and insulin resistance. J Diabetes Investig 2018; 9:1323-1332. [PMID: 29603684 PMCID: PMC6215940 DOI: 10.1111/jdi.12845] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/17/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
AIMS/INTRODUCTION Pemafibrate is a novel selective peroxisome proliferator-activated receptor-α modulator with potent triglyceride-lowering and high-density lipoprotein cholesterol-raising effects. We showed that pemafibrate decreased the homeostatic model assessment for insulin resistance in patients with dyslipidemia. To investigate how pemafibrate improves insulin sensitivity, we used a hyperinsulinemic-euglycemic clamp technique to determine the splanchnic and peripheral glucose uptake in patients with hypertriglyceridemia and insulin resistance. MATERIALS AND METHODS A total of 27 patients with hypertriglyceridemia and insulin resistance were randomly assigned to receive pemafibrate (0.4 mg/day, b.i.d.) or placebo treatment for 12 weeks. The hyperinsulinemic-euglycemic clamp test combined with oral glucose loading was carried out at weeks 0 and 12 to evaluate the splanchnic and peripheral glucose uptake. RESULTS Pemafibrate, but not the placebo, significantly increased the splanchnic glucose uptake rate from baseline (19.6 ± 5.9% with P = 0.005 and 2.1 ± 7.4% with P = 0.78, respectively), although no significant difference between the groups was observed (P = 0.084). Conversely, peripheral glucose uptake rate was not significantly altered. Pemafibrate, compared with the placebo, significantly decreased plasma triglycerides (-61.4 ± 16.4% vs -2.5 ± 41.4%, P = 0.001), free fatty acids (-24.8 ± 23.2% vs 2.0 ± 26.8%, P = 0.016) and gamma-glutamyl transpeptidase (-30 ± 46 vs 10 ± 19 U/L, P = 0.009) levels, and significantly increased fibroblast growth factor 21 (457.7 ± 402.1 vs -41.7 ± 37.4 pg/mL, P = 0.007) levels. CONCLUSIONS Pemafibrate increased splanchnic glucose uptake from baseline in patients with hypertriglyceridemia.
Collapse
Affiliation(s)
| | - Ren Matsuba
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shizuya Yamashita
- Department of Community Medicine and Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Rinku General Medical Center, Osaka, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Suganami
- Clinical Data Science Department, Kowa Company, Ltd., Tokyo, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
36
|
Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR Agonists and Metabolic Syndrome: An Established Role? Int J Mol Sci 2018; 19:E1197. [PMID: 29662003 PMCID: PMC5979533 DOI: 10.3390/ijms19041197] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Therapeutic approaches to metabolic syndrome (MetS) are numerous and may target lipoproteins, blood pressure or anthropometric indices. Peroxisome proliferator-activated receptors (PPARs) are involved in the metabolic regulation of lipid and lipoprotein levels, i.e., triglycerides (TGs), blood glucose, and abdominal adiposity. PPARs may be classified into the α, β/δ and γ subtypes. The PPAR-α agonists, mainly fibrates (including newer molecules such as pemafibrate) and omega-3 fatty acids, are powerful TG-lowering agents. They mainly affect TG catabolism and, particularly with fibrates, raise the levels of high-density lipoprotein cholesterol (HDL-C). PPAR-γ agonists, mainly glitazones, show a smaller activity on TGs but are powerful glucose-lowering agents. Newer PPAR-α/δ agonists, e.g., elafibranor, have been designed to achieve single drugs with TG-lowering and HDL-C-raising effects, in addition to the insulin-sensitizing and antihyperglycemic effects of glitazones. They also hold promise for the treatment of non-alcoholic fatty liver disease (NAFLD) which is closely associated with the MetS. The PPAR system thus offers an important hope in the management of atherogenic dyslipidemias, although concerns regarding potential adverse events such as the rise of plasma creatinine, gallstone formation, drug-drug interactions (i.e., gemfibrozil) and myopathy should also be acknowledged.
Collapse
Affiliation(s)
- Margherita Botta
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Cesare R Sirtori
- Centro Dislipidemie, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy.
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
37
|
Abstract
This review is motivated by the need to question dogma that has not yielded significant improvements in outcomes of Type 2 Diabetes treatment: that insulin resistance is the driver of ß-Cell failure and resulting hyperglycemia. We highlight the fact that hyperlipidemia, insulin resistance, and hyperinsulinemia all precede overt diabetes diagnosis and can each induce the other when tested experimentally. New research highlights the importance of high levels of circulating insulin as both a driver of weight gain and insulin resistance. Data from our lab and others document that several nutrients and environmental toxins can stimulate insulin secretion at non-stimulatory glucose in the absence of insulin resistance. This occurs either by direct action on the ß-Cell or by shifting its sensitivity to known secretagogues. We raise the next logical question of whether ß-Cell dysfunction in Type 2 Diabetes is due to impaired function, defined as failure, or if chronic overstimulation of the ß-Cell that exceeds its capacity to synthesize and secrete insulin, defined as abuse, is the main abnormality in Type 2 Diabetes. These questions are important as they have direct implications for how to best prevent and treat Type 2 Diabetes.
Collapse
Affiliation(s)
- Karel Erion
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Barbara E Corkey
- Evans Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
38
|
Abstract
INTRODUCTION Significant advancements in the treatment of hypercholesterolemia have recently been achieved. However, a considerable level of residual cardiovascular risk still affects patients' outcomes. Atherogenic dyslipidemia is one of the major constituents of residual risk. Fibrates, PPAR alpha agonists, which modify lipid profile and have numerous pleiotropic effects, seem to be drugs of choice in patients with atherogenic dyslipidemia. These drugs are effective both in monotherapy and combined therapy with statins. Areas covered: A review of clinical trials and experimental studies on fibrates and their use in the treatment of lipid disorders has been performed. Expert commentary: Fibrates are an effective and safe group of drugs to treat patients with atherogenic dyslipidemia. In this particular population of patients, they improve cardiovascular outcomes. Benefits of fibrate treatment extend beyond the impact of lipid profile. Significant improvements in carbohydrate metabolism, adipokines levels, thrombosis and inflammation were also noted.
Collapse
Affiliation(s)
- Bogusław Okopień
- a Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Lukasz Buldak
- a Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Aleksandra Bołdys
- a Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| |
Collapse
|
39
|
Koopal C, Marais AD, Westerink J, van der Graaf Y, Visseren FLJ. Effect of adding bezafibrate to standard lipid-lowering therapy on post-fat load lipid levels in patients with familial dysbetalipoproteinemia. A randomized placebo-controlled crossover trial. J Lipid Res 2017; 58:2180-2187. [PMID: 28928170 PMCID: PMC5665665 DOI: 10.1194/jlr.m076901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Familial dysbetalipoproteinemia (FD) is a genetic disorder associated with impaired postprandial lipid clearance. The effect of adding bezafibrate to standard lipid-lowering therapy on postprandial and fasting lipid levels in patients with FD is unknown. In this randomized placebo-controlled double-blind crossover trial, 15 patients with FD received bezafibrate and placebo for 6 weeks in randomized order in addition to standard lipid-lowering therapy (statin, ezetimibe, and/or lifestyle). We assessed post-fat load lipids, expressed as incremental area under the curve (iAUC) and area under the curve (AUC), as well as fasting levels and safety, and found that adding bezafibrate did not reduce post-fat load non-HDL-cholesterol (non-HDL-C) iAUC (1.78 ± 4.49 mmol·h/l vs. 1.03 ± 2.13 mmol·h/l, P = 0.57), but did reduce post-fat load triglyceride (TG) iAUC (8.05 ± 3.32 mmol·h/l vs. 10.61 ± 5.92 mmol·h/l, P = 0.03) and apoB (0.64 ± 0.62 g·h/l vs. 0.93 ± 0.71 g·h/l, P = 0.01). Furthermore, bezafibrate significantly improved AUC and fasting levels of non-HDL-C, TG, total cholesterol, HDL-C, and apoB. Bezafibrate was associated with lower estimated glomerular filtration rate (78.4 ± 11.4 ml/min/1.73 m2 vs. 86.1 ± 5.85 ml/min/1.73 m2, P = 0.002). In conclusion, in patients with FD, the addition of bezafibrate to standard lipid-lowering therapy resulted in improved post-fat load and fasting plasma lipids. Combination therapy of statin/fibrate could be considered as standard lipid-lowering treatment in FD.
Collapse
Affiliation(s)
- Charlotte Koopal
- Department of Vascular Medicine University Medical Center Utrecht, Utrecht, The Netherlands
| | - A David Marais
- Division of Chemical Pathology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Jan Westerink
- Department of Vascular Medicine University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yolanda van der Graaf
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank L J Visseren
- Department of Vascular Medicine University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
40
|
Ajith TA, Jayakumar TG. Peroxisome proliferator-activated receptors in cardiac energy metabolism and cardiovascular disease. Clin Exp Pharmacol Physiol 2017; 43:649-58. [PMID: 27115677 DOI: 10.1111/1440-1681.12579] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 11/30/2022]
Abstract
Cardiomyocytes mainly depend on energy produced from the oxidation of fatty acids and mitochondrial oxidative phosphorylation. Shortage of energy or excessive fat accumulation can lead to cardiac disorders. High saturated fat intake and a sedentary life style have a major influence in the development of cardiovascular disease (CVD). Peroxisome proliferator-activated receptors (PPARs), one of the nuclear receptor super family members, play critical role in the metabolism of lipids by regulating their oxidation and storage. Furthermore, they are involved in glucose homeostasis as well. PPARs, mainly alpha (α) and beta/delta (β/δ), have a significant effect on the lipid metabolism and anti-inflammation in endothelial cells (ECs), vascular smooth muscle cells, and also in cardiomyocytes. Pro-inflammatory cytokines, mainly tumour necrosis factor-α, released at the site of inflammation in the sub-ECs of coronary arteries can inactivate the PPARs which can eventually lead to decreased energy production in the myocardium. Various synthetic ligands of PPAR-α and β/δ have many favourable effects in modulating the vascular diseases and heart failure. Despite the adverse effects from therapy using PPAR- gamma ligands, several laboratories are now focused on synthesizing partial activators which may combine their beneficial effects with lowering of undesirable side effects. This review discusses the role of isoforms of PPAR in the cardiomyocytes energy balance and CVD. The knowledge will help in the synthesis of ligands for their partial activation in order to render energy balance and protection from CVD.
Collapse
|
41
|
Yu Q, Chen Y, Xu CB. Statins and New-Onset Diabetes Mellitus: LDL Receptor May Provide a Key Link. Front Pharmacol 2017; 8:372. [PMID: 28659805 PMCID: PMC5468445 DOI: 10.3389/fphar.2017.00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
Numerous studies have noted that populations treated with statins have increased risk for new-onset diabetes mellitus; however, the underlying molecular mechanisms are not fully understood. Interestingly, familial hypercholesterolemia (FH) patients with mutations in the low-density lipoprotein receptor (LDLR) gene are protected against diabetes mellitus (DM), despite these patients being subjected to long-term statin therapy. Since the common pathway between FH and statin therapy is LDLR-mediated cellular cholesterol uptake, the arising question is whether the LDLR plays an important role in the diabetogenic effect of statins. Indeed, given that statins can regulate the LDLR expression in liver and peripheral tissue, there is a possible mechanism that the increased LDLR causes cellular cholesterol accumulation and dysfunction in pancreatic islets, explaining why statins fail to increase the risk of DM in FH patients. In this paper, with regarded to recent literatures, we highlight the role of LDLR in the pathophysiology of cholesterol-induced pancreatic islets dysfunction, which may provide the key link between statins treatment and the increased risk of new-onset diabetes mellitus.
Collapse
Affiliation(s)
- Qi Yu
- Institute of Basic and Translational Medicine, Xi'an Medical UniversityXi'an, China.,Shaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an, China.,Institute of Material Medical, School of Pharmacy, The Fourth Military Medical UniversityXi'an, China
| | - Ying Chen
- Institute of Basic and Translational Medicine, Xi'an Medical UniversityXi'an, China.,Department of Information and Communication Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Cang-Bao Xu
- Institute of Basic and Translational Medicine, Xi'an Medical UniversityXi'an, China.,Shaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an, China
| |
Collapse
|
42
|
Discovery of Novel Insulin Sensitizers: Promising Approaches and Targets. PPAR Res 2017; 2017:8360919. [PMID: 28659972 PMCID: PMC5474250 DOI: 10.1155/2017/8360919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/23/2017] [Indexed: 01/06/2023] Open
Abstract
Insulin resistance is the undisputed root cause of type 2 diabetes mellitus (T2DM). There is currently an unmet demand for safe and effective insulin sensitizers, owing to the restricted prescription or removal from market of certain approved insulin sensitizers, such as thiazolidinediones (TZDs), because of safety concerns. Effective insulin sensitizers without TZD-like side effects will therefore be invaluable to diabetic patients. The specific focus on peroxisome proliferator-activated receptor γ- (PPARγ-) based agents in the past decades may have impeded the search for novel and safer insulin sensitizers. This review discusses possible directions and promising strategies for future research and development of novel insulin sensitizers and describes the potential targets of these agents. Direct PPARγ agonists, selective PPARγ modulators (sPPARγMs), PPARγ-sparing compounds (including ligands of the mitochondrial target of TZDs), agents that target the downstream effectors of PPARγ, along with agents, such as heat shock protein (HSP) inducers, 5'-adenosine monophosphate-activated protein kinase (AMPK) activators, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) selective inhibitors, biguanides, and chloroquines, which may be safer than traditional TZDs, have been described. This minireview thus aims to provide fresh perspectives for the development of a new generation of safe insulin sensitizers.
Collapse
|
43
|
Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol 2017; 13:259-278. [PMID: 28581332 PMCID: PMC5941715 DOI: 10.2217/fca-2016-0059] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
This article provides a comprehensive review about the molecular and metabolic actions of PPAR-α. It describes its structural features, ligand specificity, gene transcription mechanisms, functional characteristics and target genes. In addition, recent progress with the use of loss of function and gain of function mouse models in the discovery of diverse biological functions of PPAR-α, particularly in the vascular system and the status of the development of new single, dual, pan and partial PPAR agonists (PPAR modulators) in the clinical management of metabolic diseases are presented. This review also summarizes the clinical outcomes from a large number of clinical trials aimed at evaluating the atheroprotective actions of current clinically used PPAR-α agonists, fibrates and statin-fibrate combination therapy.
Collapse
Affiliation(s)
- Lu Han
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jun Shen
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stefanie Bittner
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Fredric B Kraemer
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Salman Azhar
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Abstract
Chronic kidney disease (CKD) is associated with high risk for cardiovascular disease (CVD). This association is multifactorial, but CKD is often associated with dyslipidemia, which likely contributes. Patients with CKD have dyslipidemia even at early stages of renal dysfunction and dyslipidemia tends to progress with deterioration of kidney function. The dyslipidemia in CKD is largely due to increased triglyceride levels, decreased HDL-C and varying levels of LDL-C. Current management of CKD may also affect lipid levels. Robust clinical trials demonstrate that statins are safe and efficacious in both lipid lowering and prevention of CVD events in pre-end stage CKD and post-transplant. However, there is no evidence of improved CVD outcomes with statin use in dialysis patients. This review will focus on mechanisms underlying dyslipidemia in CKD and clinical trial evidence for lipid lowering therapy in patients with CKD.
Collapse
Affiliation(s)
- Matthew R Hager
- Department of Internal Medicine University of Kentucky, Lexington, KY, USA
| | - Archana D Narla
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
| | - Lisa R Tannock
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA.
- Department of Veterans Affairs, Lexington, KY, USA.
- University of Kentucky, 900 S. Limestone, Room 553 CTW, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
45
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
46
|
Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A 2017; 114:E761-E770. [PMID: 28096382 DOI: 10.1073/pnas.1620433114] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although immunotherapy by PD-1 blockade has dramatically improved the survival rate of cancer patients, further improvement in efficacy is required to reduce the fraction of less sensitive patients. In mouse models of PD-1 blockade therapy, we found that tumor-reactive cytotoxic T lymphocytes (CTLs) in draining lymph nodes (DLNs) carry increased mitochondrial mass and more reactive oxygen species (ROS). We show that ROS generation by ROS precursors or indirectly by mitochondrial uncouplers synergized the tumoricidal activity of PD-1 blockade by expansion of effector/memory CTLs in DLNs and within the tumor. These CTLs carry not only the activation of mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) but also an increment of their downstream transcription factors such as PPAR-gamma coactivator 1α (PGC-1α) and T-bet. Furthermore, direct activators of mTOR, AMPK, or PGC-1α also synergized the PD-1 blockade therapy whereas none of above-mentioned chemicals alone had any effects on tumor growth. These findings will pave a way to developing novel combinatorial therapies with PD-1 blockade.
Collapse
|
47
|
Franko A, Huypens P, Neschen S, Irmler M, Rozman J, Rathkolb B, Neff F, Prehn C, Dubois G, Baumann M, Massinger R, Gradinger D, Przemeck GKH, Repp B, Aichler M, Feuchtinger A, Schommers P, Stöhr O, Sanchez-Lasheras C, Adamski J, Peter A, Prokisch H, Beckers J, Walch AK, Fuchs H, Wolf E, Schubert M, Wiesner RJ, Hrabě de Angelis M. Bezafibrate Improves Insulin Sensitivity and Metabolic Flexibility in STZ-Induced Diabetic Mice. Diabetes 2016; 65:2540-52. [PMID: 27284107 DOI: 10.2337/db15-1670] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/25/2016] [Indexed: 11/13/2022]
Abstract
Bezafibrate (BEZ), a pan activator of peroxisome proliferator-activated receptors (PPARs), has been generally used to treat hyperlipidemia for decades. Clinical trials with type 2 diabetes patients indicated that BEZ also has beneficial effects on glucose metabolism, although the underlying mechanisms of these effects remain elusive. Even less is known about a potential role for BEZ in treating type 1 diabetes. Here we show that BEZ markedly improves hyperglycemia and glucose and insulin tolerance in mice with streptozotocin (STZ)-induced diabetes, an insulin-deficient mouse model of type 1 diabetes. BEZ treatment of STZ mice significantly suppressed the hepatic expression of genes that are annotated in inflammatory processes, whereas the expression of PPAR and insulin target gene transcripts was increased. Furthermore, BEZ-treated mice also exhibited improved metabolic flexibility as well as an enhanced mitochondrial mass and function in the liver. Finally, we show that the number of pancreatic islets and the area of insulin-positive cells tended to be higher in BEZ-treated mice. Our data suggest that BEZ may improve impaired glucose metabolism by augmenting hepatic mitochondrial performance, suppressing hepatic inflammatory pathways, and improving insulin sensitivity and metabolic flexibility. Thus, BEZ treatment might also be useful for patients with impaired glucose tolerance or diabetes.
Collapse
Affiliation(s)
- Andras Franko
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Peter Huypens
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Susanne Neschen
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität-München, Munich, Germany
| | - Frauke Neff
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cornelia Prehn
- Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Guillaume Dubois
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Baumann
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rebecca Massinger
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Gradinger
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Gerhard K H Przemeck
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Birgit Repp
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philipp Schommers
- Institute of Vegetative Physiology, University of Köln, Cologne, Germany Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Oliver Stöhr
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Köln, Cologne, Germany
| | | | - Jerzy Adamski
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Andreas Peter
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Axel K Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität-München, Munich, Germany
| | - Markus Schubert
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Köln, Cologne, Germany Internal Medicine, SCIVIAS Hospital St. Josef, Rüdesheim am Rhein, Germany
| | - Rudolf J Wiesner
- Institute of Vegetative Physiology, University of Köln, Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Köln, Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Ageing-associated Diseases (CECAD), University of Köln, Cologne, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
48
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
49
|
Abstract
Since their introduction, statin (HMG-CoA reductase inhibitor) drugs have advanced the practice of cardiology to unparalleled levels. Even so, coronary heart disease (CHD) still remains the leading cause of death in developed countries, and is predicted to soon dominate the causes of global mortality and disability as well. The currently available non-statin drugs have had limited success in reversing the burden of heart disease, but new information suggests they have roles in sizeable subpopulations of those affected. In this review, the status of approved non-statin drugs and the significant potential of newer drugs are discussed. Several different ways to raise plasma high-density lipoprotein (HDL) cholesterol (HDL-C) levels have been proposed, but disappointments are now in large part attributed to a preoccupation with HDL quantity, rather than quality, which is more important in cardiovascular (CV) protection. Niacin, an old drug with many antiatherogenic properties, was re-evaluated in two imperfect randomized controlled trials (RCTs), and failed to demonstrate clear effectiveness or safety. Fibrates, also with an attractive antiatherosclerotic profile and classically used for hypertriglyceridemia, lacks evidence-based proof of efficacy, save for a subgroup of diabetic patients with atherogenic dyslipidemia. Omega-3 fatty acids fall into this category as well, even with an impressive epidemiological evidence base. Omega-3 research has been plagued with methodological difficulties yielding tepid, uncertain, and conflicting results; well-designed studies over longer periods of time are needed. Addition of ezetimibe to statin therapy has now been shown to decrease levels of low-density lipoprotein (LDL) cholesterol (LDL-C), accompanied by a modest decrease in the number of CV events, though without any improvement in CV mortality. Importantly, the latest data provide crucial evidence that LDL lowering is central to the management of CV disease. Of drugs that inhibit cholesteryl ester transfer protein (CETP) tested thus far, two have failed and two remain under investigation and may yet prove to be valuable therapeutic agents. Monoclonal antibodies to proprotein convertase subtilisin/kexin type 9, now in phase III trials, lower LDL-C by over 50 % and are most promising. These drugs offer new ability to lower LDL-C in patients in whom statin drug use is, for one reason or another, limited or insufficient. Mipomersen and lomitapide have been approved for use in patients with familial hypercholesterolemia, a more common disease than appreciated. Anti-inflammatory drugs are finally receiving due attention in trials to elucidate potential clinical usefulness. All told, even though statins remain the standard of care, non-statin drugs are poised to assume a new, vital role in managing dyslipidemia.
Collapse
|
50
|
PPARα Agonist Fenofibrate Reduced the Secreting Load of β-Cells in Hypertriglyceridemia Patients with Normal Glucose Tolerance. PPAR Res 2016; 2016:6232036. [PMID: 27034649 PMCID: PMC4789521 DOI: 10.1155/2016/6232036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022] Open
Abstract
Hypertriglyceridemia is an important risk factor associated with insulin resistance and β-cell dysfunction. This study investigated the effects of hypertriglyceridemia and fenofibrate treatment on insulin sensitivity and β-cell function in subjects with normal glucose tolerance. A total of 1974 subjects with normal glucose tolerance were divided into the normal TG group (NTG group, n = 1302) and hypertriglyceridemia group (HTG group, n = 672). Next, 92 patients selected randomly from 672 patients with hypertriglyceridemia were assigned to a 24-week fenofibrate treatment. The HTG group had increased waist circumference (WC), body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR), and homeostasis model assessment of β-cell function (HOMA-β) and decreased high-density lipoprotein cholesterol (HDL-C) compared with the NTG group (all P < 0.01). The 24-week fenofibrate treatment significantly decreased the WC, BMI, TG, HOMA-IR, and HOMA-β levels and increased the HDL-C levels in the patients with hypertriglyceridemia (WC, BMI, and HOMA-IR: P < 0.05; TG, HDL-C, and HOMA-β: P < 0.01). The fenofibrate treatment significantly alleviated insulin resistance and reduced the secreting load of β-cells in the hypertriglyceridemia patients with normal glucose tolerance.
Collapse
|