1
|
Quiroga D, Roman B, Salih M, Daccarett-Bojanini WN, Garbus H, Ebenebe OV, Dodd-O JM, O'Rourke B, Kohr M, Das S. Sex-dependent phosphorylation of Argonaute 2 reduces the mitochondrial translocation of miR-181c and induces cardioprotection in females. J Mol Cell Cardiol 2024; 194:59-69. [PMID: 38880194 PMCID: PMC11345856 DOI: 10.1016/j.yjmcc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.
Collapse
Affiliation(s)
- Diego Quiroga
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Barbara Roman
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - Marwan Salih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - William N Daccarett-Bojanini
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Jeffrey M Dodd-O
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Mark Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Samarjit Das
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America; Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America.
| |
Collapse
|
2
|
Chatterjee B, Sarkar M, Bose S, Alam MT, Chaudhary AA, Dixit AK, Tripathi PP, Srivastava AK. MicroRNAs: Key modulators of inflammation-associated diseases. Semin Cell Dev Biol 2024; 154:364-373. [PMID: 36670037 DOI: 10.1016/j.semcdb.2023.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Inflammation is a multifaceted biological and pathophysiological response to injuries, infections, toxins, and inflammatory mechanisms that plays a central role in the progression of various diseases. MicroRNAs (miRNAs) are tiny, 19-25 nucleotides long, non-coding RNAs that regulate gene expression via post-transcriptional repression. In this review, we highlight the recent findings related to the significant roles of miRNAs in regulating various inflammatory cascades and immunological processes in the context of many lifestyle-related diseases such as diabetes, cardiovascular diseases, cancer, etc. We also converse on how miRNAs can have a dual impact on inflammatory responses, suggesting that regulation of their functions for therapeutic purposes may be disease-specific.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mrinmoy Sarkar
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Tanjim Alam
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia
| | | | - Prem Prakash Tripathi
- Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Li Q, Zhang Q. MiR-34a and endothelial biology. Life Sci 2023; 330:121976. [PMID: 37495076 DOI: 10.1016/j.lfs.2023.121976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/06/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
MicroRNAs (miRNAs) are endogenous ∼22 nt long RNAs that play important gene-regulatory roles in cells by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. Many miRNAs have been identified in endothelial cells and play important roles in endothelial biology. miR-34a is relatively early identified in endothelial cells and has been involved in regulating endothelial functions, angiogenesis, differentiation, senescence, inflammatory response, responses to shear stress, and mitochondrial function. This review outlines the current understanding of miR-34a in endothelial biology and discusses its potential as a therapeutic target to treat vascular diseases.
Collapse
Affiliation(s)
- Qiuxia Li
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA 90095, USA; Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Quanjiang Zhang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Castillo JA, Urcuqui-Inchima S. Vitamin D modulates inflammatory response of DENV-2-infected macrophages by inhibiting the expression of inflammatory-liked miRNAs. Pathog Glob Health 2023; 117:167-180. [PMID: 35850625 PMCID: PMC9970239 DOI: 10.1080/20477724.2022.2101840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Dengue disease caused by dengue virus (DENV) infection is the most common vector-borne viral disease worldwide. Currently, no treatment is available to fight dengue symptoms. We and others have demonstrated the antiviral and immunomodulatory properties of VitD3 as a possible therapy for DENV infection. MicroRNAs (miRNAs) are small non-coding RNAs responsible for the regulation of cell processes including antiviral defense. Previous transcriptomic analysis showed that VitD3 regulates the expression of genes involved in stress and immune response by inducing specific miRNAs. Here, we focus on the effects of VitD3 supplementation in the regulation of the expression of inflammatory-liked miR-182-5p, miR-130a-3p, miR125b-5p, miR146a-5p, and miR-155-5p during DENV-2 infection of monocyte-derived macrophages (MDMs). Further, we evaluated the effects of inhibition of these miRNAs in the innate immune response. Our results showed that supplementation with VitD3 differentially regulated the expression of these inflammatory miRNAs. We also observed that inhibition of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p, led to decreased production of TNF-α and TLR9 expression, while increased the expression of SOCS-1, IFN-β, and OAS1, without affecting DENV replication. By contrast, over-expression of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p significantly decreased DENV-2 infection rates and also DENV-2 replication in MDMs. Our results suggest that VitD3 immunomodulatory effects involve regulation of inflammation-linked miRNAs expression, which might play a key role in the inflammatory response during DENV infection.
Collapse
Affiliation(s)
- Jorge Andrés Castillo
- Grupo de Inmunovirología. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo de Inmunovirología. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
5
|
Yu H, Wang Y, Gao J, Gao Y, Zhong C, Chen Y. Application of the neuropeptide NPVF to enhance angiogenesis and osteogenesis in bone regeneration. Commun Biol 2023; 6:197. [PMID: 36804475 PMCID: PMC9941492 DOI: 10.1038/s42003-023-04567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
The brain-bone regulatory system regulates skeletal homeostasis via bioactive neuropeptides, yet the underlying mechanism remains elusive. Here, we report the role of the neuropeptide VF (NPVF, VPNLPQRF-NH2) in enhancing both angiogenesis and osteogenesis in a rat skeletal system and the potential pathways involved. An in vitro study revealed that NPVF not only promotes migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) by activating NPFFR1, which leads to upregulation of miR-181c-3p and downregulation of Argonaute1 (AGO1), but also mediates osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via the Wnt/β-catenin signaling pathway. To improve the stability and bioavailability and thus efficacy of NPVF as a promoter of in vivo bone regeneration, we genetically engineered amyloid-NPVF-fusion proteins and utilized them as self-assembling nanofiber coatings to treat bone defects in a rat calvarial defect model. We found that a porous hydroxyapatite scaffold loaded with the NPVF peptide-fused amyloid coating substantially enhanced angiogenesis and site-specific fresh bone in-growth when implanted in calvarial defects. Taken together, our work uncovered a previously undefined crosstalk between the brain and bone by unveiling the role of NPVF in bone tissue and demonstrated a viable method for promoting bone tissue repairs based upon self-assembling NPVF-containing protein coatings.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
6
|
Hu L, Zhang R, Wu J, Feng C, Jiang J. Kruppel-Like Factor (KLF6) Regulates Oxidative Stress and Apoptosis of Human Retinal Pigment Epithelial Cells Induced by High Glucose Through Transcriptional Regulation of USP22 and the Downstream SIRT1/Nrf2 Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oxidative stress and apoptosis play an important role in diabetic retinopathy (DR). KLF6 and its transcriptional regulator USP22 are abnormally expressed in DR, but the specific role and mechanism have not been reported. In this paper, we will discuss the specific roles and mechanisms
of KLF6 and USP22 on oxidative stress and apoptosis in DR. In this study, RT-qPCR and western blot were used to detect the expression of KLF6 and USP22 in ARPE-19 cells. Subsequently, after KLF6 was overexpressed and USP22 expression was inhibited by cell transfection, the oxidative stress
and apoptosis related indexes were detected by CCK-8, ELISA, TUNEL and other techniques to explore the mechanism. In addition, we used luciferase and ChIP to detect the association between KLF6 and USP22. Finally, the expression of proteins related to the SIRT1/Nrf2 pathway was detected by
western blot. The results showed that silencing USP22 increased the activity, and inhibited apoptosis and oxidative stress of ARPE-19 cells induced by high glucose (HG). KLF6 transcriptionally activates USP22. Overexpression of KLF6 reversed the protective effects of silencing USP22 on HG-induced
ARPE-19 cells against apoptosis and antioxidant stress, which may be achieved by regulating the SIRT1/Nrf2 pathway. In conclusion, KLF6 regulated oxidative stress and apoptosis of ARPE-19 cells induced by high glucose through transcriptional regulation of USP22 and the downstream SIRT1/Nrf2
pathway.
Collapse
Affiliation(s)
- Liping Hu
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Rui Zhang
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Jianhua Wu
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Chao Feng
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Jingli Jiang
- Department of Ophthalmology, Wenrong Hospital of Hengdian, Jinhua, Zhejiang, 322118, China
| |
Collapse
|
7
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
8
|
Developmental vitamin D-deficiency increases the expression of microRNAs involved in dopamine neuron development. Brain Res 2022; 1789:147953. [DOI: 10.1016/j.brainres.2022.147953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
|
9
|
Sen A, Vincent V, Thakkar H, Abraham R, Ramakrishnan L. Beneficial Role of Vitamin D on Endothelial Progenitor Cells (EPCs) in Cardiovascular Diseases. J Lipid Atheroscler 2022; 11:229-249. [PMID: 36212746 PMCID: PMC9515729 DOI: 10.12997/jla.2022.11.3.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. Endothelial progenitor cells (EPCs) are currently being explored in the context of CVD risk. EPCs are bone marrow derived progenitor cells involved in postnatal endothelial repair and neovascularization. A large body of evidence from clinical, animal, and in vitro studies have shown that EPC numbers in circulation and their functionality reflect endogenous vascular regenerative capacity. Traditionally vitamin D is known to be beneficial for bone health and calcium metabolism and in the last two decades, its role in influencing CVD and cancer risk has generated significant interest. Observational studies have shown that low vitamin D levels are associated with an adverse cardiovascular risk profile. Still, Mendelian randomization studies and randomized control trials (RCTs) have not shown significant effects of vitamin D on cardiovascular events. The criticism regarding the RCTs on vitamin D and CVD is that they were not designed to investigate cardiovascular outcomes in vitamin D-deficient individuals. Overall, the association between vitamin D and CVD remains inconclusive. Recent clinical and experimental studies have demonstrated the beneficial role of vitamin D in increasing the circulatory level of EPC as well as their functionality. In this review we present evidence supporting the beneficial role of vitamin D in CVD through its modulation of EPC homeostasis.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ransi Abraham
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Shah S, Iqbal Z, Alharbi MG, Kalra HS, Suri M, Soni N, Okpaleke N, Yadav S, Hamid P. Vitamin D and Gastric Cancer: A Ray of Sunshine? Cureus 2021; 13:e18275. [PMID: 34722053 PMCID: PMC8545571 DOI: 10.7759/cureus.18275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/25/2021] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) is one of the most aggressive malignancies, currently ranking third among cancers leading to death worldwide. Despite the recent advancements in GC research, it is most often diagnosed during the terminal stages and with limited treatment modalities contributing to its poor prognosis and a lower survival rate. Much research has provided conflicting results between a vitamin D deficient status and the development of GC. Vitamin D is a well-known and essential hormone classically known to regulate calcium and phosphate absorption, enabling adequate mineralization of the skeletal system. However, the function of vitamin D is multidimensional. It possesses unique roles, including acting as antioxidants or immunomodulators while crossing the cell membrane, performing several intracellular functions, participating in gene regulation, and controlling the proliferation and invasion of cancer cells, including those of GC. In light of this, it is imperative to analyze the causes of GC, review the factors that can be used to enhance the effectiveness of treatments, and discover the tools to determine prognosis, reduce mortality, and prevent GC development. In this review, we have summarized recent investigations on multiple associations between vitamin D and GC, emphasizing genetic associations, vitamin D receptors, and the prevalence of hormone deficiency in those developing this aggressive malignancy.
Collapse
Affiliation(s)
- Suchitra Shah
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zafar Iqbal
- Emergency Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammed G Alharbi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harjeevan S Kalra
- Internal Medicine/Emergency Medicine/Oncology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Megha Suri
- Pediatrics/Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nitin Soni
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nkiruka Okpaleke
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shikha Yadav
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
11
|
Solly EL, Psaltis PJ, Bursill CA, Tan JTM. The Role of miR-181c in Mechanisms of Diabetes-Impaired Angiogenesis: An Emerging Therapeutic Target for Diabetic Vascular Complications. Front Pharmacol 2021; 12:718679. [PMID: 34483928 PMCID: PMC8414254 DOI: 10.3389/fphar.2021.718679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is estimated to affect up to 700 million people by the year 2045, contributing to an immense health and economic burden. People living with diabetes have a higher risk of developing numerous debilitating vascular complications, leading to an increased need for medical care, a reduced quality of life and increased risk of early death. Current treatments are not satisfactory for many patients who suffer from impaired angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular conditions. These vascular pathologies are characterised by endothelial dysfunction and abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic stimulation of angiogenesis holds promise for the treatment of diabetic vascular complications that stem from impaired ischaemic responses. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis to improve ischaemic complications such as ischaemic heart disease and peripheral artery disease, highlighting the immense unmet need. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs (miRNAs) are emerging as powerful targets for multifaceted diseases including diabetes and cardiovascular disease. This review highlights the potential role of microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a specific focus on miR-181c, which we have previously identified as an important angiogenic regulator. Here we summarise the pathways currently known to be regulated by miR-181c, which include the classical angiogenesis pathways that are dysregulated in diabetes, mitochondrial function and axonal guidance, and describe how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of miR-181c across multiple key angiogenic signaling pathways and critical cellular processes highlight its therapeutic potential as a novel target for treating diabetic vascular complications.
Collapse
Affiliation(s)
- Emma L Solly
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Collado A, Jin H, Pernow J, Zhou Z. MicroRNA: A mediator of diet-induced cardiovascular protection. Curr Opin Pharmacol 2021; 60:183-192. [PMID: 34461563 DOI: 10.1016/j.coph.2021.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
Diets containing nutrients such as polyunsaturated fatty acids, polyphenols, or vitamins have been shown to have cardiovascular benefits. Micro (mi)RNAs are fundamental regulators of gene expression and function in the cardiovascular system. Diet-induced cardiovascular benefits are associated with changes in endogenous expression of miRNAs in the cardiovascular system. In addition, emerging studies have shown that miRNAs present in the food can be transported in the circulation to tissues. These exogenous miRNAs may also affect cardiovascular function contributing to the diet-induced benefits. This review discusses the emerging role of both endogenous and exogenous miRNAs as mediators of diet-induced cardiovascular protection. Understanding the mechanisms of diet-mediated actions through modulation of miRNA may provide a potential strategy for new therapies.
Collapse
Affiliation(s)
- Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Hong Jin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
13
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
14
|
Anitha A, Viswambharan V, Thanseem I, Iype M, Parakkal R, Surendran SP, Mundalil MV. Vitamins and Cognition: A Nutrigenomics Perspective. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200901180443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rise in the prevalence of neurodegenerative and neurodevelopmental cognitive disorders
combined with a lack of efficient therapeutic strategies has necessitated the need to develop alternate
approaches. Dietary supplements are now being considered as a complementary and alternative
medicine for cognitive impairments. Considerable evidence suggests the role of vitamins in
modulating the genetic and epigenetic factors implicated in neuropsychiatric, neurodevelopmental
and neurodegenerative disorders. In this review, we provide an overview of the implications of nutrigenomics
with reference to vitamins that are suggested to boost cognitive functions (nootropic vitamins).
Several vitamins have been found to possess antioxidant and anti-inflammatory properties
which make them potential candidates in preventing or delaying age-related neurodegeneration and
cognitive decline. Well-designed longitudinal studies are essential to examine the association between
vitamins and cognitive functions. Future studies linking nutrition with advances in neuroscience,
genomics and epigenomics would provide novel approaches to managing cognitive disorders.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Vijitha Viswambharan
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mary Iype
- Government Medical College, Thiruvananthapuram 695 011, Kerala, India
| | - Rahna Parakkal
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Sumitha P. Surendran
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mahesh V. Mundalil
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| |
Collapse
|
15
|
Zhou H, Ni WJ, Meng XM, Tang LQ. MicroRNAs as Regulators of Immune and Inflammatory Responses: Potential Therapeutic Targets in Diabetic Nephropathy. Front Cell Dev Biol 2021; 8:618536. [PMID: 33569382 PMCID: PMC7868417 DOI: 10.3389/fcell.2020.618536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/21/2020] [Indexed: 01/07/2023] Open
Abstract
Diabetic nephropathy (DN) is the principal cause of end-stage renal disease and results in high morbidity and mortality in patients, causing a large socioeconomic burden. Multiple factors, such as metabolic abnormalities, inflammation, immunoregulation and genetic predisposition, contribute to the pathogenesis of DN, but the exact mechanism is unclear, and the therapeutic strategies are not satisfactory. Accordingly, there is an unmet need for new therapeutic targets and strategies for DN. MicroRNAs (miRNAs) act as major epigenetic mechanisms that regulate gene expression and provide novel insights into our understanding of the molecular and signaling pathways that are associated with various diseases, including DN. Studies in the past decade have shown that different miRNAs affect the progression of DN by modulating different aspects of immune and inflammatory responses. Therefore, in this review, we summarized the pivotal roles of miRNAs in inflammatory and immune processes, with an integrative comprehension of the detailed signaling network. Additionally, we discussed the possibilities and significance of these miRNAs as therapeutic targets in the treatment of DN. This review will facilitate the identification of new therapeutic targets and novel strategies that can be translated into clinical applications for DN treatment.
Collapse
Affiliation(s)
- Hong Zhou
- Division of Life Sciences and Medicine, Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Division of Life Sciences and Medicine, Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li-Qin Tang
- Division of Life Sciences and Medicine, Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
16
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2020; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
17
|
Kumari A, Bhawal S, Kapila S, Yadav H, Kapila R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2020; 62:619-639. [PMID: 33081489 DOI: 10.1080/10408398.2020.1825286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epigenome is an overall epigenetic state of an organism, which is as important as that of the genome for normal development and functioning of an individual. Epigenetics involves heritable but reversible changes in gene expression through alterations in DNA methylation, histone modifications and regulation of non-coding RNAs in cells, without any change in the DNA sequence. Epigenetic changes are owned by various environmental factors including pollution, microbiota and diet, which have profound effects on epigenetic modifiers. The bioactive compounds present in the diet mainly include curcumin, resveratrol, catechins, quercetin, genistein, sulforaphane, epigallocatechin-3-gallate, alkaloids, vitamins, and peptides. Bioactive compounds released during fermentation by the action of microbes also have a significant effect on the host epigenome. Besides, recent studies have explored the new insights in vitamin's functions through epigenetic regulation. These bioactive compounds exert synergistic, preventive and therapeutic effects when combined as well as when used with chemotherapeutic agents. Therefore, these compounds have potential of therapeutic agents that could be used as "Epidrug" to treat many inflammatory diseases and various cancers where chemotherapy results have many side effects. In this review, the effect of diet derived bioactive compounds through epigenetic modulations on in vitro and in vivo models is discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shalaka Bhawal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
18
|
The protective effect of 1,25(OH) 2D 3 against cardiac hypertrophy is mediated by the cyclin-dependent kinase inhibitor p21. Eur J Pharmacol 2020; 888:173510. [PMID: 32861664 DOI: 10.1016/j.ejphar.2020.173510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
Abstract
As a critical regulator of the cell cycle, cyclin-dependent kinase (CDK) inhibitor p21 or p21 is involved in the development of cardiac hypertrophy and heart failure. Calcitriol, or 1,25(OH)2D3, the bioactive form of vitamin D (VD), can activate p21 expression and attenuate cardiac hypertrophy. To simulate cardiac hypertrophy in vitro and ex vivo, respectively, mice and cardiomyocytes were treated with isoproterenol (ISO). Moreover, the p21 signaling pathway was examined in ISO + VD and ISO + VD p21 inhibitor-treated cardiomyocytes. We found that calcitriol treatment led to a significant decrease in cardiac size and the mRNA levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in ISO-treated mice. Furthermore, the surface area of cardiomyocytes and the expression of ANP and BNP were decreased, and the expression of p21 was increased in the ISO + VD group compared with those in the ISO group. Furthermore, the surface area of cardiomyocytes and the expression of ANP and BNP were markedly upregulated in the ISO + VD p21 inhibitor group relative to the ISO + VD group, whereas the difference was not statistically significant compared with those of the ISO p21 inhibitor group. Therefore, our findings indicate that 1,25(OH)2D3 protects against cardiac hypertrophy in mice through upregulating p21 expression.
Collapse
|
19
|
Wu X, Ding M, Lin J. Three-microRNA expression signature predicts survival in triple-negative breast cancer. Oncol Lett 2019; 19:301-308. [PMID: 31897142 PMCID: PMC6923981 DOI: 10.3892/ol.2019.11118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific type of breast cancer with poor overall survival (OS) time. Previous studies revealed that microRNAs (miRNAs/miRs) serve important roles in the pathogenesis, progression and prognosis of TNBC. The present study analyzed the miRNA expression and clinical data of patients with TNBC downloaded from The Cancer Genome Atlas. A total of 194 differentially expressed miRNAs were identified between TNBC and matched normal tissues using the cut-off criteria of P<0.05 and |log2 fold change|>2. Of these miRNAs, 65 were downregulated and 129 were upregulated. Using Kaplan-Meier survival analysis, a total of 77 miRNAs that were closely associated with OS time were identified (P<0.05). The intersection of the 77 miRNAs and 194 differentially expressed miRNAs revealed six miRNAs. Log-rank tests based on survival curves were performed and two miRNAs were eliminated. The prognostic value of the remaining four miRNAs was evaluated with a Cox proportional hazards model using multiple logistic regression with forward stepwise selection of variables. Three miRNAs (miR-21-3p, miR-659-5p and miR-200b-5p) were subsequently identified as independent risk factors associated with OS time in the model. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the target genes of these three miRNAs were mainly involved in ‘cell protein metabolism’, ‘RNA transcriptional regulation’, ‘cell migration’, ‘MAPK signaling pathway’, ‘ErbB signaling pathway’, ‘prolactin signaling pathway’ and ‘adherens junctions’. Taken together, the results obtained in the present study suggested that the three-miRNA signature may serve as a prognostic biomarker for patients with TNBC.
Collapse
Affiliation(s)
- Xinquan Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mingji Ding
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jianqin Lin
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
20
|
Mazdeh M, Zamani M, Eftekharian MM, Komaki A, Arsang-Jang S, Taheri M, Ghafouri-Fard S. Expression analysis of vitamin D receptor-associated lncRNAs in epileptic patients. Metab Brain Dis 2019; 34:1457-1465. [PMID: 31187385 DOI: 10.1007/s11011-019-00446-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 01/28/2023]
Abstract
Vitamin D has been vastly acknowledged as a neuroactive steroid controlling neurodevelopment. As it exerts its functions through activation of vitamin D receptor (VDR), several studies have assessed the role of VDR in brain function. More recently, a number of long non-coding RNAs (lncRNAs) have been recognized that alter expression of VDR. In the current study, we evaluated expression of four VDR-related lncRNAs (LINC00511, LINC00346, SNHG6 and SNHG16) in peripheral blood of 40 epileptic patients and 39 healthy subjects using quantitative real time PCR method. The relative expression levels of SNHG16 and LINC00511 were higher in epileptic patients compared with healthy subjects. For SNHG16, the difference was only significant between male patients and male controls, while LINC00511 had the opposite pattern. The results of Quantile regression model showed significant associations between SNHG6 and SNHG16 expressions and gender (P values of 0.027 and 0.009 respectively). Significant correlations were detected between expression levels of SNHG6 and SNHG16 (r = 0.32, P = 0.004), SNHG6 and LINC00346 (r = 0.37, P = 0.001), SNHG16 and LINC00346 (r = 0.30, P = 0.007) as well as SNHG16 and LINC00511 (r = 0.29, P = 0.009). Expression of LINC00346 was inversely correlated with vitamin D levels only in male epileptic patients (r = -0.58, P = 0.011). Expression of SNHG6 was correlated with vitamin D levels in male controls but no other subgroups (r = 0.51, P = 0.044). Based on the results of ROC curve analysis, SNHG16 had the diagnostic power of 0.86 in male subjects. Taken together, the current study provides evidences for dys-regulation of VDR-related lncRNAs in epileptic patients. The clinical significance of these finding should be explored in future studies.
Collapse
Affiliation(s)
- Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Zamani
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Lee TW, Kao YH, Chen YJ, Chao TF, Lee TI. Therapeutic potential of vitamin D in AGE/RAGE-related cardiovascular diseases. Cell Mol Life Sci 2019; 76:4103-4115. [PMID: 31250032 PMCID: PMC11105755 DOI: 10.1007/s00018-019-03204-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) are among the leading threats to human health. The advanced glycation end product (AGE) and receptor for AGE (RAGE) signaling pathway regulates the pathogenesis of CVDs, through its effects on arterial stiffness, atherosclerosis, mitochondrial dysfunction, oxidative stress, calcium homeostasis, and cytoskeletal function. Targeting the AGE/RAGE pathway is a potential therapeutic strategy for ameliorating CVDs. Vitamin D has several beneficial effects on the cardiovascular system. Experimental findings have shown that vitamin D regulates AGE/RAGE signaling and its downstream effects. This article provides a comprehensive review of the mechanistic insights into AGE/RAGE involvement in CVDs and the modulation of the AGE/RAGE signaling pathways by vitamin D.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan.
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Yu P, Song H, Gao J, Li B, Liu Y, Wang Y. Vitamin D (1,25-(OH) 2D 3) regulates the gene expression through competing endogenous RNAs networks in high glucose-treated endothelial progenitor cells. J Steroid Biochem Mol Biol 2019; 193:105425. [PMID: 31302220 DOI: 10.1016/j.jsbmb.2019.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin D (vit-D) supplementation can improve endothelial cell function in type 2 diabetes mellitus patients with vit-D insufficiency or deficiency. In the present study, we aimed to compare the expression profiles of circRNAs, lncRNAs, miRNAs, and mRNAs between 1,25-(OH)2D3-treated endothelial progenitor cells (EPCs) and control cells, and to further construct the 1,25-(OH)2D3-regulated ceRNA networks in EPCs. RNA sequencing was performed on the 1,25-(OH)2D3-treated EPCs and control cells derived from the bone marrow (BM). Bioinformatics analyses were performed to identify differentially expressed (DE) microRNAs (miRNAs), circular RNAs (circRNAs), mRNAs, and long non-coding RNAs (lncRNAs). Then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to predict the function of genes. Competing endogenous RNA (ceRNA) networks were constructed with Cytoscape software. 1,25-(OH)2D3 application induced changes in the expression profiles of 1791 mRNAs, 2726 lncRNAs, 205 circRNAs, and 45 miRNAs in EPCs treated with high levels of glucose. These DE RNAs were associated with MMP and GTPase activities, specific signaling pathways, and components of actin, extracellular matrix, or adherens junction. DE circRNAs, which functioned independently of their linear host genes, interacted with miRNAs to serve as miRNA sponges in complex ceRNA networks. The data indicated that circRNAs and lncRNAs comprised ceRNAs to sponge effects of miRNAs on the expressions of mRNAs following 1,25-(OH)2D3 application in EPCs. 1,25-(OH)2D3 improved the function of EPCs via associated ceRNA interaction networks in diabetes patients.
Collapse
Affiliation(s)
- Ping Yu
- Department of Endocrinology, Shenzhen Samii Medical Center, Shenzhen, 518000, China; Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Haiyan Song
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiaxin Gao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Bo Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ying Liu
- Department of Endocrinology, Daqing People's Hospital (The Fifth Affiliated Hospital of Harbin Medical University), Daqing, 163316, China
| | - Yanhe Wang
- Department of Endocrinology, Shenzhen Samii Medical Center, Shenzhen, 518000, China; Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
23
|
Jin G, Wang Q, Hu X, Li X, Pei X, Xu E, Li M. Profiling and functional analysis of differentially expressed circular RNAs in high glucose-induced human umbilical vein endothelial cells. FEBS Open Bio 2019; 9:1640-1651. [PMID: 31369204 PMCID: PMC6722901 DOI: 10.1002/2211-5463.12709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Dysfunction of vascular endothelial cells often results in diabetic vascular complications. Circular RNAs (circRNAs) have been implicated in the pathogenesis of various diseases, including diabetes and many vascular diseases. This study aimed to explore the roles of circRNAs in high glucose‐induced human umbilical vein endothelial cells (HUVECs) to elucidate the contributions of circRNAs to diabetic vascular complications. We subjected control and high glucose‐induced HUVECs to RNA sequencing and identified 214 differentially expressed circRNAs (versus control HUVECs, fold change ≥ 2.0, P < 0.05). We then validated seven of these differentially expressed circRNAs by qPCR (hsa_circ_0008360, hsa_circ_0005741, hsa_circ_0003250, hsa_circ_0045462, hsa_circ_0064772, hsa_circ_0007976, and hsa_circ_0005263). A representative circRNA–microRNA (miRNA) network was constructed using the three most up‐regulated circRNAs (hsa_circ_0008360, hsa_circ_0000109, and hsa_circ_0002317) and their putative miRNA. Bioinformatic analysis indicated that these circRNAs regulate the expressions of genes involved in vascular endothelial function and angiogenesis through targeting miRNAs. Our work highlights the potential regulatory mechanisms of three crucial circRNAs in diabetes‐associated endothelial dysfunction.
Collapse
Affiliation(s)
- Guoxi Jin
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Qiong Wang
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Xiaolei Hu
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Xiaoli Li
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Xiaoyan Pei
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Erqin Xu
- Room of Physical Diagnostics, Bengbu Medical College, Anhui, China
| | - Minglong Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Xu J, Gu Y, Lewis DF, Cooper DB, McCathran CE, Wang Y. Downregulation of vitamin D receptor and miR-126-3p expression contributes to increased endothelial inflammatory response in preeclampsia. Am J Reprod Immunol 2019; 82:e13172. [PMID: 31323164 DOI: 10.1111/aji.13172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/30/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
PROBLEM To investigate whether downregulation of miR-126-3p and vitamin D receptor (VDR) expression contributes to increased endothelial inflammatory response in preeclampsia. METHODS OF STUDY Maternal vessel miR-126-3p expression was assessed by in situ hybridization. VDR expression and VCAM-1 expression were determined by immunostaining. Subcutaneous adipose tissue sections from normotensive and preeclamptic pregnant women were used. HUVECs from normotensive deliveries were used to test anti-inflammatory effects of vitamin D and miR-126-3p in endothelial cells (ECs) treated with TNFα in vitro. 1,25(OH)2 D3 was used as bioactive vitamin D. Transient overexpression of miR-126-3p in ECs was induced by transfection of pre-mir-126 precursor. Endothelial VCAM-1 and SOCS-3 expression or production was determined by Western blotting or by ELISA, respectively. RESULTS Reduced VDR and miR-126-3p expression, but increased VCAM-1 expression, was observed in maternal vessel endothelium in tissue sections from women with preeclampsia compared to normotensive pregnant controls. Transient overexpression of miR-126-3p not only attenuated upregulation of VCAM-1 expression and production, but also preserved downregulation of SOCS-3 expression, induced by TNFα in ECs. VDR expression and miR-126-3p expression were significantly upregulated in cells treated with 1,25(OH)2 D3 , but not in cells transfected with VDR siRNA. CONCLUSION Downregulation of VDR and miR-126-3p expression was associated with upregulation of VCAM-1 expression in systemic vessel endothelium in preeclampsia. The finding of increased anti-inflammatory property by 1,25(OH)2 D3 through promotion of VDR and miR-126-3p expression in ECs provide plausible evidence that vitamin D deficiency and downregulation of VDR expression could contribute to increased inflammatory phenotypic changes in maternal vasculature in preeclampsia.
Collapse
Affiliation(s)
- Jie Xu
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.,Department of Physiology, Harbin Medical University, Harbin, China
| | - Yang Gu
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - David F Lewis
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Danielle B Cooper
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Charles E McCathran
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Yuping Wang
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| |
Collapse
|
25
|
Doering L, Khatri R, Petry SF, Sauer H, Howaldt HP, Linn T. Regulation of somatostatin expression by vitamin D3 and valproic acid in human adipose-derived mesenchymal stem cells. Stem Cell Res Ther 2019; 10:240. [PMID: 31387633 PMCID: PMC6685151 DOI: 10.1186/s13287-019-1330-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/19/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADMSC) are non-haematopoietic, fibroblast-like multipotent progenitor cells. They have the potential for trilineage (adipocyte, chondrocyte and osteocyte) differentiation as well as differentiation into endocrine pancreatic progenitors. In diabetic or cancer therapy, somatostatin (SST) expression plays a vital role. Small molecules such as valproic acid (VPA) and micronutrients like vitamin D3 have differentiation potential in ADMSC. Therefore, the aim of this study was to investigate the role of vitamin D3 machinery and its metabolic enzymes in ADMSC. Furthermore, the reprogramming effect of vitamin D3 and VPA was evaluated on somatostatin expression in pancreatic lineage differentiation. METHODS ADMSC were characterised based on their cell surface marker profile using flow cytometry. Specific adipogenic and osteogenic differentiation protocols were used in this study. Gene expression of several pluripotent, endodermal, pancreatic progenitor and pancreatic endocrine lineage markers were investigated in native ADMSC and after stimulation with different concentration of vitamin D3 for five consecutive days (0, 50, 100, 150 nM) and VPA (0.5, 1, 1.5, 2 mM) by real-time PCR. Furthermore, somatostatin expression was confirmed with ELISA and immunocytochemistry. RESULTS In ADMSC, the expression of somatostatin mRNA, the vitamin D receptor (VDR) and its metabolising enzymes 1 α-Hydroxylase, 24-Hydroxylase and 25-Hydroxylase were detected. Upon stimulation with vitamin D3, nuclear translocation of vitamin D receptor (VDR) was observed. Interestingly, the presence of vitamin D3 reduced the transcription of the somatostatin gene. By contrast, VPA treatment of cultivated ADMSC showed enhancing effect on somatostatin gene expression. No other pluripotent, endodermal, pancreatic progenitor or pancreatic endocrine lineage mRNA expression was modulated under the influence of vitamin D3 and VPA. CONCLUSION Human ADMSC carry the VDR. The vitamin D metabolising enzyme 25-Hydroxylase responded to the addition of vitamin D3. Moreover, our results demonstrate that somatostatin expression in ADMSC is constitutive, partially secreted and regulated by vitamin D3 and VPA.
Collapse
Affiliation(s)
- Luise Doering
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany
| | - Rahul Khatri
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany
| | - Heinrich Sauer
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Hans-Peter Howaldt
- Department of Oral and Maxillofacial Surgery, University Hospital of Giessen and Marburg, Klinikstrasse. 33, 35392, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
26
|
Zitman-Gal T, Einbinder Y, Ohana M, Katzav A, Kartawy A, Benchetrit S. Effect of liraglutide on the Janus kinase/signal transducer and transcription activator (JAK/STAT) pathway in diabetic kidney disease in db/db mice and in cultured endothelial cells. J Diabetes 2019; 11:656-664. [PMID: 30575282 DOI: 10.1111/1753-0407.12891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates the involvement of Janus tyrosine kinase/signal transducer and transcription activator (JAK/STAT) proteins in the pathophysiology of diabetic kidney disease (DKD). The JAK/STAT pathway is involved in the inflammatory response and endothelial cell dysfunction observed in DKD. The glucagon-like peptide-1 (GLP-1) analog liraglutide is an effective treatment for type 2 diabetes because it improves the inflammatory changes observed in experimental models of DKD. This study used db/db mice and endothelial cells (ECs) to determine the effect of diabetic environment on the JAK/STAT pathway and to assess the potential effect of liraglutide (200 μg/kg) in both models. METHODS Diabetic db/db mice (12 weeks old) were treated with liraglutide for 14 weeks. The kidneys were then perfused with saline and removed for mRNA, protein, and immunohistochemical analyses. Endothelial cells were stimulated advanced glycation end products (AGEs) (200 μg/μL) glucose (200 mg/dL) and liraglutide (100 nM) for 24 hours. Total RNA and protein were extracted and analyzed for expression of JAK/STAT signaling. RESULTS Phosphorylated (p-) STAT3 was significantly upregulated in db/db mice compared with non-diabetic mice. Liraglutide significantly downregulated p-STAT3 protein expression in db/db mice. In db/db mice, p-STAT3 was primarily expressed in the glomeruli, whereas p-JAK2 was also expressed in kidney tubules. In ECs, liraglutide treatment prevented increased expression of p-STAT3 and p-JAK2. Liraglutide inhibited the target gene suppressor of cytokine signaling 3 (SOCS3) and sirtuin 1 (SIRT1) in db/db mice and in cultured EC. CONCLUSIONS This study suggests that the GLP-1 analog liraglutide inhibits the JAK/STAT pathway, which participates in intracellular processes in experimental models of diabetes.
Collapse
Affiliation(s)
- Tali Zitman-Gal
- Nephrology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Einbinder
- Nephrology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meital Ohana
- Nephrology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| | - Aviva Katzav
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Amany Kartawy
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Sydney Benchetrit
- Nephrology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Guo Y, Li G, Li H, Huang C, Liu Q, Dou Y, Yin X, Dong L, Yang N, Han Z. MicroRNA-15a Inhibits Glucose Transporter 4 Translocation and Impairs Glucose Metabolism in L6 Skeletal Muscle Via Targeting of Vesicle-Associated Membrane Protein-Associated Protein A. Can J Diabetes 2019; 44:261-266.e2. [PMID: 31594761 DOI: 10.1016/j.jcjd.2019.07.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/13/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES MicroRNAs have been reported to participate in various important cell biological processes, such as glucose metabolism. The aim of this study was to explore the roles of microRNA-15a (miR-15a) in regulating insulin sensitivity. METHODS In L6 rat skeletal muscle cells, we observed the effect of miR-15a on glucose metabolism and glucose transporter 4 (GLUT4) translocation by targeting vesicle-associated membrane protein-associated protein A (VAP-A) after insulin treatment. Luciferase reporter assays were performed to demonstrate a direct interaction between miR-15a and the 3'-untranslated region of VAP-A microRNA. RESULTS We identified miR-15a as an extremely important regulator of GLUT4 translocation via targeting of VAP-A. Additionally, knockdown of endogenous miR-15a or overexpression of VAP-A could increase extracellular glucose by inhibiting the translocation of GLUT4 to the cell membrane after insulin treatment. However, overexpression of miR-15a or knockdown of VAP-A had no significant effect on glucose metabolism. CONCLUSIONS These findings reveal the following: 1) VAP-A is a marker of skeletal muscle glucose disposal and 2) a novel mechanism for GLUT4 translocation by miR-15a.
Collapse
Affiliation(s)
- Ying Guo
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China.
| | - Gang Li
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Huiqing Li
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Chunlan Huang
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Qiao Liu
- Department of Psychology and Dentistry, Health School of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yifei Dou
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Xiurong Yin
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Lixia Dong
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Na Yang
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Zhonghou Han
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| |
Collapse
|
28
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Molecular Changes in Diabetic Wound Healing following Administration of Vitamin D and Ginger Supplements: Biochemical and Molecular Experimental Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4352470. [PMID: 31428171 PMCID: PMC6679851 DOI: 10.1155/2019/4352470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Circulating micro-RNAs are differentially expressed in various tissues and could be considered as potential regulatory biomarkers for T2DM and related complications, such as chronic wounds. AIM In the current study, we investigated whether ginger extract enriched with [6]-gingerol-fractions either alone or in combination with vitamin D accelerates diabetic wound healing and explores underlying molecular changes in the expression of miRNA and their predicted role in diabetic wound healing. METHODS Diabetic wounded mice were treated with [6]-gingerol-fractions (GF) (25 mg/kg of body weight) either alone or in combination with vitamin D (100 ng/kg per day) for two weeks. Circulating miRNA profile, fibrogenesis markers, hydroxyproline (HPX), fibronectin (FN), and collagen deposition, diabetic control variables, FBS, HbA1c, C-peptide, and insulin, and wound closure rate and histomorphometric analyses were, respectively, measured at days 3, 6, 9, and 15 by RT-PCR and immunoassay analysis. RESULTS Treatment of diabetic wounds with GF and vitamin D showed significant improvement in wound healing as measured by higher expression levels of HPX, FN, collagen, accelerated wound closure, complete epithelialization, and scar formation in short periods (11-13 days, (P < 0.01). On a molecular level, three circulating miRNAs, miR-155, miR-146a, and miR-15a, were identified in diabetic and nondiabetic skin wounds by PCR analysis. Lower expression in miR-155 levels and higher expression of miR-146a and miR-15a levels were observed in diabetic skin wounds following treatment with gingerols fractions and vitamin D for 15 days. The data showed that miRNAs, miR-146a, miR-155, and miR-15a, correlated positively with the expression levels of HPX, FN, and collagen and negatively with FBS, HbA1c, C-peptide, and insulin in diabetic wounds following treatment with GF and /or vitamin D, respectively. CONCLUSION Treatment with gingerols fractions (GF) and vitamin D for two weeks significantly improves delayed diabetic wound healing. The data showed that vitamin D and gingerol activate vascularization, fibrin deposition (HPX, FN, and collagen), and myofibroblasts in such manner to synthesize new tissues and help in the scar formation. Accordingly, three miRNAs, miR-155, miR-146a, and miR-15, as molecular targets, were identified and significantly evaluated in wound healing process. It showed significant association with fibrin deposition, vascularization, and reepithelialization process following treatment with GF and vitamin D. It proposed having anti-inflammatory action and promoting new tissue formation via vascularization process during the wound healing. Therefore, it is very interesting to consider miRNAs as molecular targets for evaluating the efficiency of nondrug therapy in the regulation of wound healing process.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
High glucose induces apoptosis of HUVECs in a mitochondria-dependent manner by suppressing hexokinase 2 expression. Exp Ther Med 2019; 18:621-629. [PMID: 31258698 PMCID: PMC6566108 DOI: 10.3892/etm.2019.7609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia in patients with diabetes induces vascular endothelial cell apoptosis and subsequent vasculopathy. The aim of the current study was to investigate the pathological mechanism of hyperglycemia-induced endothelial cell apoptosis and vasculopathy using human umbilical vein endothelial cells. As high glucose-induced apoptosis is caused by elevated mitochondrial permeability-mediated release of mitochondrial cytochrome c, the current study examined voltage-dependent anion channel (VDAC1), the controller of mitochondrial permeability, and its regulators, hexokinase2 (HK2), Bcl-2 and Bax. The current study demonstrated that HK2 may be involved in high glucose-induced cell apoptosis, as HK2 overexpression partially reversed high glucose-induced downregulation of mitochondrial/cellular HK2 and Bcl-2 as well as upregulation of mitochondrial Bax. These results suggest that HK2 overexpression partially reversed the reduced binding of HK2 and Bcl-2 and the enhanced binding of Bax to VDAC1, which reduced the high mitochondrial permeability observed under high-glucose conditions. Furthermore, high glucose reduced HK2 transcription via down-regulation of the HK2 transcriptional factor, peroxisome proliferator activated receptor γ (PPARγ). Taken together, these results suggest that PPARγ/HK2 may be novel targets for the prevention of diabetic vasculopathy.
Collapse
|
30
|
Widlansky ME, Jensen DM, Wang J, Liu Y, Geurts AM, Kriegel AJ, Liu P, Ying R, Zhang G, Casati M, Chu C, Malik M, Branum A, Tanner MJ, Tyagi S, Usa K, Liang M. miR-29 contributes to normal endothelial function and can restore it in cardiometabolic disorders. EMBO Mol Med 2019; 10:emmm.201708046. [PMID: 29374012 PMCID: PMC5840545 DOI: 10.15252/emmm.201708046] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated the role of microRNAs (miRNA) in endothelial dysfunction in the setting of cardiometabolic disorders represented by type 2 diabetes mellitus (T2DM). miR‐29 was dysregulated in resistance arterioles obtained by biopsy in T2DM patients. Intraluminal delivery of miR‐29a‐3p or miR‐29b‐3p mimics restored normal endothelium‐dependent vasodilation (EDVD) in T2DM arterioles that otherwise exhibited impaired EDVD. Intraluminal delivery of anti‐miR‐29b‐3p in arterioles from non‐DM human subjects or rats or targeted mutation of Mir29b‐1/a gene in rats led to impaired EDVD and exacerbation of hypertension in the rats. miR‐29b‐3p mimic increased, while anti‐miR‐29b‐3p or Mir29b‐1/a gene mutation decreased, nitric oxide levels in arterioles. The mutation of Mir29b‐1/a gene led to preferential differential expression of genes related to nitric oxide including Lypla1. Lypla1 was a direct target of miR‐29 and could abrogate the effect of miR‐29 in promoting nitric oxide production. Treatment with Lypla1 siRNA improved EDVD in arterioles obtained from T2DM patients or Mir29b‐1/a mutant rats or treated with anti‐miR‐29b‐3p. These findings indicate miR‐29 is required for normal endothelial function in humans and animal models and has therapeutic potential for cardiometabolic disorders.
Collapse
Affiliation(s)
- Michael E Widlansky
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David M Jensen
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jingli Wang
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alison J Kriegel
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pengyuan Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rong Ying
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guangyuan Zhang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marc Casati
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chen Chu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mobin Malik
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amberly Branum
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Tanner
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sudhi Tyagi
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kristie Usa
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
31
|
Jin G, Wang Q, Pei X, Li X, Hu X, Xu E, Li M. mRNAs expression profiles of high glucose-induced memory in human umbilical vein endothelial cells. Diabetes Metab Syndr Obes 2019; 12:1249-1261. [PMID: 31413614 PMCID: PMC6662530 DOI: 10.2147/dmso.s206270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/22/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE A long-term "memory" of hyperglycemic stress, even when glycemia is normalized, has been previously reported in endothelial cells. However, the molecular mechanism of "metabolic memory" (MM) remains unknown. In this report, we sought to screen at the whole transcriptome level the genes that participate in MM. METHODS In the present research, RNA sequencing was used to determine the protein-coding mRNA expression profiles of human umbilical vein endothelial cells (HUVECs) under normal-glucose concentration (LG), high-glucose concentration (HG), and MM. A series of bioinformatic analyses was performed. HG-induced MM-involved up-regulated genes (up-HGMMGs) and HG-induced MM-involved down-regulated genes (down-HGMMGs) were identified. Afterward, based on up-HGMMGs and down-HGMMGs, the biological functions and signaling pathways were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, several of the identified genes were validated by RT-qPCR. RESULTS A total of 726 HGMMGs were identified, including 210 down- and 516 up-HGMMGs, which were enriched in the cell cycle (hsa04110), oocyte meiosis (hsa04114), p53 signaling pathway (hsa04115), and oxidative phosphorylation (hsa00190), among others. The protein-protein-interaction (PPI) network consisted of 462 nodes and 2656 connections, and four main modules were identified by MCODE. The cell cycle (hsa04110), oocyte meiosis (hsa04114), p53 signaling pathway (hsa04115), and oxidative phosphorylation (hsa00190), among others, could be potential therapeutic targets of HG-induced MM in endothelial cells. The real-time PCR results validated the RNA-seq data. CONCLUSION This study identified crucial mRNAs related to MM-persistent injury in endothelial cells even after switching the cells from high- glucose to normal glucose levels. Further research focusing on these mRNA may unravel new ways to modify MM in diabetes.
Collapse
Affiliation(s)
- Guoxi Jin
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong250021, People’s Republic of China
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Qiong Wang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Xiaoli Li
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Xiaolei Hu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Erqin Xu
- Room of Physical Diagnostics, Clinical College of Medicine, Bengbu Medical College, Bengbu, Anhui233030, People’s Republic of China
| | - Minglong Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong250021, People’s Republic of China
- Correspondence: Minglong Li Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Huaiyin Zone, Jinan, Shandong Province250012, People’s Republic of ChinaTel +86 5 316 877 6375Fax +86 5 316 877 6383 Email
| |
Collapse
|
32
|
Biersack B. Interplay of non-coding RNAs and approved antimetabolites such as gemcitabine and pemetrexed in mesothelioma. Noncoding RNA Res 2018; 3:213-225. [PMID: 30809600 PMCID: PMC6257890 DOI: 10.1016/j.ncrna.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
Gemcitabine and pemetrexed are clinically approved antimetabolites for the therapy of mesothelioma diseases. These drugs are often applied in combination with platinum complexes and other drugs. The activity of antimetabolites depended on the expression levels of certain non-coding RNAs, in particular, of small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The development of tumor resistance towards antimetabolites was regulated by non-coding RNAs. An overview of the interplay between gemcitabine/pemetrexed antimetabolites and non-coding RNAs in mesothelioma is provided. Further to this, various non-coding RNA-modulating agents are discussed which displayed positive effects on gemcitabine or pemetrexed treatment of mesothelioma diseases. A detailed knowledge of the connections of non-coding RNAs with antimetabolites will be constructive for the design of improved therapies in future.
Collapse
Key Words
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3‘-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- Gemcitabine
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- Pemetrexed
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TSA, trichostatin A
Collapse
|
33
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
34
|
Lei H, Li H, Tian L, Li M, Xin Z, Zhang X, Guan R. Icariside II ameliorates endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in diabetic human cavernous endothelial cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1743-1751. [PMID: 29942117 PMCID: PMC6005314 DOI: 10.2147/dddt.s166734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aim The aim of the study was to investigate whether miR-126, a regulator of MAPK signaling via targeting sprouty-related EVH1 domain-containing protein 1 (SPRED1) mRNA, is involved in the process by which icariside II (ICA II) ameliorates endothelial dysfunction in human cavernous endothelial cells (hCECs) exposed to a diabetic-like environment. Materials and methods Primary hCECs were isolated and divided into three groups, normal control, diabetes mellitus (DM), and DM treated with ICA II. The cell proliferation and migration abilities of the hCECs were examined. The expression levels of endothelial-related microRNAs and relative target mRNAs (SPRED1, phosphoinositol-3 kinase regulatory subunit 2, and vascular cell adhesion molecule 1) of miR-126 were determined by real-time PCR. The protein expression of endothelial nitric oxide synthase, receptor for advanced glycation end products, and SPRED1, and MAPK signaling activities was determined by Western blot analysis. In addition, miR-126 agomir and antagomir were used for transfection into hCECs to further testify the association between miR-126 and its targeting mRNA SPRED1. Results hCECs induced with glucose plus advanced glycation end product-BSA showed a significant decrease in endothelial nitric oxide synthase, Ki-67, and miR-126 expression; a downregulated cell migration ability and an increased receptor for advanced glycation end products level. ICA II could partially reverse these changes. SPRED1 mRNA showed a contrary tendency with the miR-126-3p changes. The level of SPRED1 protein increased after the hCECs were induced with glucose plus advanced glycation end product-BSA, and ICA II could rescue its aberrant expression. In addition, the MAPK pathway was downregulated in the hCECs under diabetic conditions, and ICA II could partially enhance its signaling activities. miR-126 was obviously downregulated, and SPRED1 was accordingly upregulated after miR-126 antagomir transfection, while ICA II treatment could recover the expressions of both miR-126 and SPRED1. Moreover, the upregulation of miR-126 and the inhibition of SPRED1 were noticed in the diabetic hCECs by further transfection with miR-126 agomir. Conclusion ICA II could ameliorate endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in hCECs exposed to a diabetic-like environment, and ICA II might be a protective agent for endothelial function in diabetic ED.
Collapse
Affiliation(s)
- Hongen Lei
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Huixi Li
- Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, People's Republic of China
| | - Long Tian
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Meng Li
- Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, People's Republic of China
| | - Zhongcheng Xin
- Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, People's Republic of China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Ruili Guan
- Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, People's Republic of China
| |
Collapse
|
35
|
Memon A, Lee WK. KLF10 as a Tumor Suppressor Gene and Its TGF-β Signaling. Cancers (Basel) 2018; 10:E161. [PMID: 29799499 PMCID: PMC6025274 DOI: 10.3390/cancers10060161] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factor 10 (KLF10), originally named TGF-β (Transforming growth factor beta) inducible early gene 1 (TIEG1), is a DNA-binding transcriptional regulator containing a triple C2H2 zinc finger domain. By binding to Sp1 (specificity protein 1) sites on the DNA and interactions with other regulatory transcription factors, KLF10 encourages and suppresses the expression of multiple genes in many cell types. Many studies have investigated its signaling cascade, but other than the TGF-β/Smad signaling pathway, these are still not clear. KLF10 plays a role in proliferation, differentiation as well as apoptosis, just like other members of the SP (specificity proteins)/KLF (Krüppel-like Factors). Recently, several studies reported that KLF10 KO (Knock out) is associated with defects in cell and organs such as osteopenia, abnormal tendon or cardiac hypertrophy. Since KLF10 was first discovered, several studies have defined its role in cancer as a tumor suppressor. KLF10 demonstrate anti-proliferative effects and induce apoptosis in various carcinoma cells including pancreatic cancer, leukemia, and osteoporosis. Collectively, these data indicate that KLF10 plays a significant role in various biological processes and diseases, but its role in cancer is still unclear. Therefore, this review was conducted to describe and discuss the role and function of KLF10 in diseases, including cancer, with a special emphasis on its signaling with TGF-β.
Collapse
Affiliation(s)
- Azra Memon
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
36
|
Shen X, Li Y, Sun G, Guo D, Bai X. miR-181c-3p and -5p promotes high-glucose-induced dysfunction in human umbilical vein endothelial cells by regulating leukemia inhibitory factor. Int J Biol Macromol 2018; 115:509-517. [PMID: 29605252 DOI: 10.1016/j.ijbiomac.2018.03.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease with high blood glucose level and closely related to endothelial dysfunction, an important factor in the pathogenesis of vascular changes. Several miRNAs have been reported to be altered in a diabetic environment including miR-181c. In the article, we found that the expression of miR-181c-3p and miR-181c-5p was significantly downregulated under glucose treatment in a dose-dependent manner and in peripheral blood from diabetic patients compared with healthy participants. We explored the role of miR-181c-3p and miR-181c-5p in high glucose (HG)-induced dysfunction in human umbilical vein endothelial cells (HUVECs) by regulating leukemia inhibitory factor (LIF), their potential target with binding sites in 3-UTR region, that is also closely related to glucose metabolism. In addition, miR-181c-3p and miR-181c-5p significantly enhanced HG-induced oxidative stress injury by increasing malondialdehyde (MDA) and reactive oxygen species (ROS) production and promoted HG-induced HUVECs apoptosis, confirmed by TUNEL staining. LIF partially reduced those effects by decreasing oxidative stress and inhibiting cell apoptosis. Therefore, knocking down of LIF in HUVECs by LIF siRNA transfection, significantly increased HG-induced MDA and ROS production and induced more intense HUVECs apoptosis. Our results indicate that miR-181c-3p and miR-181c-5p promote HG-induced HUVECs injury through their target LIF.
Collapse
Affiliation(s)
- Xinghua Shen
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, China
| | - Yunling Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, China
| | - Guizhi Sun
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, China
| | - Dianlong Guo
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, China
| | - Xiuping Bai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
37
|
Shin Y, Kim DY, Ko JY, Woo YM, Park JH. Regulation of KLF12 by microRNA-20b and microRNA-106a in cystogenesis. FASEB J 2018; 32:3574-3582. [PMID: 29475398 DOI: 10.1096/fj.201700923r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited disorders. ADPKD is caused by mutations in the gene encoding either polycystic kidney disease 1 ( PKD1) or polycystic kidney disease 2 ( PKD2). Patients with ADPKD show progressive growth of cystic fluid-filled renal cysts. Here, we used Pkd2f/f control mice and Pkd2f/f:HoxB7-Cre experimental mice, which are bred to have a conditional deletion of Pkd2 in the collecting ducts, and analyzed the expression pattern of microRNAs (miRNAs) of kidney tissues from Pkd2f/f and Pkd2f/f:HoxB7-Cre mice. Decreased expression of miR-20b-5p and miR-106a-5p in Pkd2f/f:HoxB7-Cre mice compared to that in Pkd2f/f mice was observed. These miRNAs target Klf12 (Krüppel-like factor 12), which has low expression in kidney tissues of Pkd2f/f mice; however, its expression is enhanced in Pkd2f/f:HoxB7-Cre mice over time. Moreover, miR-20b-5p and miR-106a-5p directly target Klf12 mRNA by binding to the 3'-UTR of Klf12. In addition, human and mouse cell lines exhibit similar patterns. These findings were also consistent with the data from Pkd2 knockout mouse embryonic fibroblasts. Furthermore, direct and indirect knockdown of Klf12 slows cyst growth and cell proliferation in mouse inner medullary collecting duct cells. Taken together, we suggest that the induction of miR-20b-5p or miR-106a-5p or the down-regulation of KLF12 could be used as potential novel therapies for inhibiting cyst growth in patients with ADPKD.-Shin, Y., Kim, D. Y., Ko, J. Y., Woo, Y. M., Park, J. H. Regulation of KLF12 by microRNA-20b and microRNA-106a in cystogenesis.
Collapse
Affiliation(s)
- Yubin Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Do Yeon Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Je Yeong Ko
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Yu Mi Woo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
38
|
Yu H, Xu M, Dong Y, Liu J, Li Y, Mao W, Wang J, Wang L. 1,25(OH) 2 D 3 attenuates pulmonary arterial hypertension via microRNA-204 mediated Tgfbr2/Smad signaling. Exp Cell Res 2018; 362:311-323. [DOI: 10.1016/j.yexcr.2017.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Accepted: 11/25/2017] [Indexed: 12/27/2022]
|
39
|
Menachem A, Makovski V, Bodner O, Pasmanik-Chor M, Stein R, Shomron N, Kloog Y. Intercellular transfer of small RNAs from astrocytes to lung tumor cells induces resistance to chemotherapy. Oncotarget 2017; 7:12489-504. [PMID: 26871466 PMCID: PMC4914300 DOI: 10.18632/oncotarget.7273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/23/2016] [Indexed: 12/17/2022] Open
Abstract
Brain metastases are resistant to chemotherapy and carry a poor prognosis. Studies have shown that tumor cells are surrounded by activated astrocytes, whose cytoprotective properties they exploit for protection from chemotherapy-induced apoptosis. The mechanism of such astrocytic protection is poorly understood. A non-mutational mechanism of resistance to chemotherapy that is receiving increased attention is the regulation of gene translation mediated by small noncoding RNAs (sRNAs), and particularly microRNAs (miRNAs). With the aim of examining the role of astrocytic sRNAs in promoting resistance of human lung tumor PC14 cells to chemotherapy-induced apoptosis, here we used a miRNA microarray to compare sRNA profiles of human lung tumor cells cultured with and without astrocytes. We found that sRNAs are transferred from astrocytes to PC14 cells in a contact-dependent manner. Transfer was rapid, reaching a plateau after only 6 hours in culture. The sRNA transfer was inhibited by the broad-spectrum gap-junction antagonist carbenoxolone, indicating that transfer occurs via gap junctions. Among the transferred sRNAs were several that are implicated in survival pathways. Enforced expression of these sRNAs in PC14 cells increased their resistance to the chemotherapeutic agent paclitaxel. These novel findings might be of clinical relevance for the treatment of patients with brain metastases.
Collapse
Affiliation(s)
- Assaf Menachem
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Victoria Makovski
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Or Bodner
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Reuven Stein
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Yoel Kloog
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
40
|
Nunez Lopez YO, Pittas AG, Pratley RE, Seyhan AA. Circulating levels of miR-7, miR-152 and miR-192 respond to vitamin D supplementation in adults with prediabetes and correlate with improvements in glycemic control. J Nutr Biochem 2017; 49:117-122. [PMID: 28945992 DOI: 10.1016/j.jnutbio.2017.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/16/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Vitamin D may play an important role in modifying the risk of type 2 diabetes. Supplementation with cholecalciferol has been shown to improve β cell function and to attenuate the rise in glycated hemoglobin in people at high risk of diabetes. We examined whether circulating microRNAs (miRNAs) reflect disease progression and/or respond to vitamin D supplementation. We measured plasma levels of select miRNAs implicated in diabetes in people with prediabetes treated either with placebo (n=21) or 2000 U of cholecalciferol daily (n=21) for 4 months in the Calcium and Vitamin D for Diabetes Mellitus trial and compared the baseline-adjusted changes after correcting for age, body mass index, race, time of study entry (season) and baseline disposition index. Circulating levels of miR-7 (sixfold reduction, P=.01), miR-152 (1.5-fold increase, P=.03), and miR-192 (1.7-fold reduction, P=.026) displayed significant treatment-by-time interactions between the placebo- and the vitamin-D-treated groups. Plasma levels of miR-7 were reduced in the vitamin D and increased in the placebo group. The change in miR-152 positively correlated with the change in levels of the circulating metabolite 25-hydroxyvitamin D (r=0.33, P=.046) and negatively correlated with the change in glycated hemoglobin (r=-0.37, P=.024). The change in miR-192 positively correlated with the change in fasting glucose (r=0.41, P<.011). In conclusion, reduction of circulating miR-7 and miR-192, accompanied by elevation of miR-152, reflects a beneficial metabolic response to vitamin D treatment in people with prediabetes. These miRNAs may be useful biomarkers in diabetes prevention trials and other studies of vitamin D.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL 32804, USA
| | - Anastassios G Pittas
- Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL 32804, USA; Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Rd, Orlando, FL 32827, USA
| | - Attila A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL 32804, USA; Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Rd, Orlando, FL 32827, USA; Massachusetts Institute of Technology, Chemical Engineering Department Cambridge, MA 02142, USA.
| |
Collapse
|
41
|
Zhang Y, Sun X, Icli B, Feinberg MW. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr Rev 2017. [DOI: 10.1210/er.2016-1122.2017.1.test] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Rashidi B, Hoseini Z, Sahebkar A, Mirzaei H. Anti-Atherosclerotic Effects of Vitamins D and E in Suppression of Atherogenesis. J Cell Physiol 2017; 232:2968-2976. [DOI: 10.1002/jcp.25738] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology; School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Zahra Hoseini
- Student Research Center; School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
43
|
Zhang Y, Sun X, Icli B, Feinberg MW. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr Rev 2017; 38:145-168. [PMID: 28323921 PMCID: PMC5460677 DOI: 10.1210/er.2016-1122] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Chronic, low-grade systemic inflammation and impaired microvascular function are critical hallmarks in the development of insulin resistance. Accordingly, insulin resistance is a major risk factor for type 2 diabetes and cardiovascular disease. Accumulating studies demonstrate that restoration of impaired function of the diabetic macro- and microvasculature may ameliorate a range of cardiovascular disease states and diabetes-associated complications. In this review, we focus on the emerging role of microRNAs (miRNAs), noncoding RNAs that fine-tune target gene expression and signaling pathways, in insulin-responsive tissues and cell types important for maintaining optimal vascular homeostasis and preventing the sequelae of diabetes-induced end organ injury. We highlight current pathophysiological paradigms of miRNAs and their targets involved in regulating the diabetic microvasculature in a range of diabetes-associated complications such as retinopathy, nephropathy, wound healing, and myocardial injury. We provide an update of the potential use of circulating miRNAs diagnostically in type I or type II diabetes. Finally, we discuss emerging delivery platforms for manipulating miRNA expression or function as the next frontier in therapeutic intervention to improve diabetes-associated microvascular dysfunction and its attendant clinical consequences.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China, and
| | - Xinghui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Basak Icli
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
44
|
Liu M, Wang D, Li N. MicroRNA-20b Downregulates HIF-1α and Inhibits the Proliferation and Invasion of Osteosarcoma Cells. Oncol Res 2017; 23:257-66. [PMID: 27098149 PMCID: PMC7838620 DOI: 10.3727/096504016x14562725373752] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant primary bone tumor disease. HIF-1α was predicted to be the target gene of microRNA-20b (miR-20b). The present study was designed to illustrate the effect of miR-20b in regulating osteosarcoma via targeting HIF-1α. In this study, we found that the expression of HIF-1α was significantly increased, while miR-20b obviously decreased in OS patients and OS cell lines compared with healthy controls. Moreover, the luciferase report confirmed the targeting reaction between miR-20b and HIF-1α. Additionally, the overexpression of miR-20b suppressed the invasion and growth of both MG63 and U2OS cells, and inhibited the expressions of HIF-1α and VEGF pathway proteins, while the inhibition of miR-20b led to the reverse results. Furthermore, the overexpression of HIF-1α affected the suppression effect of miR-20b in MG63 cells, indicating that miR-20b suppresses the tumor cell process via inhibiting the expression of HIF-1α. Taken together, our results suggest that the upregulation of miR-20b affects the expression of HIF-1α, downregulates the VEGF pathway proteins, and suppresses cell invasion and proliferation rate. These results provide a potential therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Ming Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | |
Collapse
|
45
|
Huang J, Liang Z, Kuang Y, Jia F, Yang Y, Kang M, Xie M, Li F. 1,25-Dihydroxyvitamin D3 Does Not Affect MicroRNA Expression When Suppressing Human Th17 Differentiation. Med Sci Monit 2017; 23:535-541. [PMID: 28133358 PMCID: PMC5295180 DOI: 10.12659/msm.898824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Vitamin D is an import regulator of T helper 17 (Th17) differentiation, but our understanding of the underlying mechanisms remains limited. In the present study, we aimed to detect the expression levels of microRNAs (miRNAs) during human Th17 differentiation and evaluate the effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the bioactive form of vitamin D, on Th17 differentiation and miRNA expression. Material/Methods We cultured human peripheral blood mononuclear cells (PBMC) in vitro and activated them with anti-CD3 and anti-CD28 antibodies in the presence of Th17-promoting cytokines interleukin (IL)-23, IL-1β, TGF-β1, and IL-6 for 72 hours. 1,25(OH)2D3 was added to the medium at a final concentration of 100 nM on day 0. The production of IL-17A in culture medium was detected by enzyme-linked immunosorbent assay (ELISA). The expression levels of miRNAs during Th17 differentiation were determined by quantitative polymerase chain reaction (qPCR). Results Six miRNAs were found to be dysregulated during human Th17 differentiation. Of these miRNAs, hsa-miR-155 was significantly up-regulated (median fold change: 3.61, P<0.05), whereas hsa-miR-20b, hsa-miR-21, hsa-miR-181a, hsa-miR-210, and hsa-miR-301a were significantly down-regulated (median fold change: 0.44, 0.37, 0.18, 0.15, and 0.26, respectively, P<0.05). 1,25(OH)2D3 treatment significantly decreased IL-17A production (median [interquartile range], 745.7 [473.5] pg/mL vs. 2535.4 [2153.3] pg/mL, P<0.05). However, expression of these miRNAs was not changed after 1,25(OH)2D3 treatment. Conclusions 1,25(OH)2D3 suppressed human Th17 differentiation without affecting miRNA expression.
Collapse
Affiliation(s)
- Jian Huang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Zibin Liang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Ying Kuang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Fujie Jia
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Yaqi Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Miaomiao Kang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Muke Xie
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Feng Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
46
|
Jin L, Li Y, He T, Hu J, Liu J, Chen M, Zhang Z, Gui Y, Mao X, Yang S, Lai Y. miR‑15a‑5p acts as an oncogene in renal cell carcinoma. Mol Med Rep 2017; 15:1379-1386. [PMID: 28098906 DOI: 10.3892/mmr.2017.6121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/07/2016] [Indexed: 11/06/2022] Open
Abstract
miRNAs have been reported to be involved in multiple cellular processes and the tumorigenesis of various cancers. miR‑15a‑5p (also termed miR‑15a) has previously been determined to be upregulated in renal cell carcinoma (RCC) by microarray profile. However, the expression and function of miR‑15a‑5p in RCC remain to be validated. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to detect the expression levels of miR‑15a‑5p in RCC tissues and cells. The expression level of miR‑15a‑5p was upregulated or downregulated by transfecting synthesized miR‑15a‑5p mimics or inhibitors. The MTT assay, CCK‑8 assay, Transwell assay, wound healing assay, Hoechest 33342 staining and flow cytometry were conducted to investigate the role of miR‑15a‑5p in RCC. The results of the RT‑qPCR demonstrated that miR‑15a‑5p was upregulated in RCC tissues and ACHN, 786‑O and 769P RCC cells compared with paired normal tissues and HEK‑293T cells. miR‑15a‑5p was observed to be associated with RCC cell proliferation, migration, invasion and apoptosis. The results demonstrated that miR‑15a‑5p may be important as a tumor promoter in RCC. To the best of our knowledge, the present study is the first to describe miR‑15a‑5p as a tumor promoter in RCC. Further research will be performed to investigate the underlying signaling pathway of miR‑15a‑5p and the potential role of miR‑15a‑5p as a biomarker for early detection, prognosis prediction and a therapeutic target of RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Mingwei Chen
- Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zeng Zhang
- Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
47
|
Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 2017; 16:10. [PMID: 28086863 PMCID: PMC5237289 DOI: 10.1186/s12933-016-0484-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022] Open
Abstract
Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggravate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease (DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effective synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underlying mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.
Collapse
Affiliation(s)
- Jason Kar Sheng Lew
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Daryl O Schwenke
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| |
Collapse
|
48
|
Ye EA, Steinle JJ. Regulatory role of microRNA on inflammatory responses of diabetic retinopathy. Neural Regen Res 2017; 12:580-581. [PMID: 28553335 PMCID: PMC5436353 DOI: 10.4103/1673-5374.205095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA.,Department of Ophthalmology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
49
|
Ye EA, Liu L, Jiang Y, Jan J, Gaddipati S, Suvas S, Steinle JJ. miR-15a/16 reduces retinal leukostasis through decreased pro-inflammatory signaling. J Neuroinflammation 2016; 13:305. [PMID: 27931222 PMCID: PMC5146897 DOI: 10.1186/s12974-016-0771-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/02/2016] [Indexed: 11/24/2022] Open
Abstract
Background Hyperglycemia is a significant risk factor for diabetic retinopathy and induces increased inflammatory responses and retinal leukostasis, as well as vascular damage. Although there is an increasing amount of evidence that miRNA may be involved in the regulation in the pathology of diabetic retinopathy, the mechanisms by which miRNA mediate cellular responses to control onset and progression of diabetic retinopathy are still unclear. The purpose of our study was to investigate the hypothesis that miR-15a/16 inhibit pro-inflammatory signaling to reduce retinal leukostasis. Methods We generated conditional knockout mice in which miR-15a/16 are eliminated in vascular endothelial cells. For the in vitro work, human retinal endothelial cells (REC) were cultured in normal (5 mM) glucose or transferred to high glucose medium (25 mM) for 3 days. Transfection was performed on REC in high glucose with miRNA mimic (hsa-miR-15a-5p, hsa-miR-16-5p). Statistical analyses were done using unpaired Student t test with two-tailed p value. p < 0.05 was considered significant. Data are presented as mean ± SEM. Results We demonstrated that high glucose conditions decreased expression of miR-15a/16 in cultured REC. Overexpression of miR-15a/16 with the mimic significantly decreased pro-inflammatory signaling of IL-1β, TNFα, and NF-κB in REC. In vivo data demonstrated that the loss of miR-15a/16 in vascular cells led to increased retinal leukostasis and CD45 levels, together with upregulated levels of IL-1β, TNFα, and NF-κB. Conclusions The data indicate that miR-15a/16 play significant roles in reducing retinal leukostasis, potentially through inhibition of inflammatory cellular signaling. Therefore, we suggest that miR-15a/16 offer a novel potential target for the inhibition of inflammatory mediators in diabetic retinopathy. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0771-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Li Liu
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Jenny Jan
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Subhash Gaddipati
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Susmit Suvas
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA.,Ophthalmology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA.,Immunology and Microbiology, Wayne State University, Detroit, MI, USA
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA. .,Ophthalmology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA.
| |
Collapse
|
50
|
Abstract
Diabetic retinopathy (DR), a leading cause of acquired vision loss, is a microvascular complication of diabetes. While traditional risk factors for diabetic retinopathy including longer duration of diabetes, poor blood glucose control, and dyslipidemia are helpful in stratifying patient's risk for developing retinopathy, many patients without these traditional risk factors develop DR; furthermore, there are persons with long diabetes duration who do not develop DR. Thus, identifying biomarkers to predict DR or to determine therapeutic response is important. A biomarker can be defined as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Incorporation of biomarkers into risk stratification of persons with diabetes would likely aid in early diagnosis and guide treatment methods for those with DR or with worsening DR. Systemic biomarkers of DR include serum measures including genomic, proteomic, and metabolomics biomarkers. Ocular biomarkers including tears and vitreous and retinal vascular structural changes have also been studied extensively to prognosticate the risk of DR development. The current studies on biomarkers are limited by the need for larger sample sizes, cross-validation in different populations and ethnic groups, and time-efficient and cost-effective analytical techniques. Future research is important to explore novel DR biomarkers that are non-invasive, rapid, economical, and accurate to help reduce the incidence and progression of DR in people with diabetes.
Collapse
Affiliation(s)
- Daniel Shu Wei Ting
- Singapore National Eye Center, 11 Third Hospital Avenue, Singapore, 168751, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Kara-Anne Tan
- Singapore National Eye Center, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Val Phua
- Singapore National Eye Center, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Gavin Siew Wei Tan
- Singapore National Eye Center, 11 Third Hospital Avenue, Singapore, 168751, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Chee Wai Wong
- Singapore National Eye Center, 11 Third Hospital Avenue, Singapore, 168751, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Singapore National Eye Center, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|