1
|
Lahmar M, Besrour-Aouam N, Hernández-Alcántara AM, Diez-Ozaeta I, Fhoula I, López P, Mohedano ML, Ouzari HI. Riboflavin- and Dextran-Producing Weissella confusa FS54 B2: Characterization and Testing for Development of Fermented Plant-Based Beverages. Foods 2024; 13:4112. [PMID: 39767055 PMCID: PMC11675806 DOI: 10.3390/foods13244112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The use of lactic acid bacteria for developing functional foods is increasing for their ability to synthesize beneficial metabolites such as vitamin B (riboflavin, RF) and postbiotic compounds. Here, the spontaneous mutant FS54 B2 was isolated by treatment of the dextran-producing Weissella confusa FS54 strain with roseoflavin. FS54 B2 overproduced RF (4.9 mg/L) in synthetic medium. The FMN riboswitch is responsible for the regulation of RF biosynthesis, and sequencing of the coding DNA revealed that FS54 B2 carries the G131U mutation. FS54 B2 retained the capacity of FS54 to synthesize high levels of dextran (3.8 g/L) in synthetic medium. The fermentation capacities of the two Weissella strains was tested in commercial oat-, soy- and rice-based beverages. The best substrate for FS54 B2 was the oat-based drink, in which, after fermentation, the following were detected: RF (2.4 mg/L), dextran (5.3 mg/L), potential prebiotics (oligosaccharides (panose (5.1 g/L), isomaltose (753 mg/L) and isomaltotriose (454 mg/L)) and the antioxidant mannitol (16.3 g/L). pH-lowering ability and cell viability after one month of storage period were confirmed. As far as we know, this is the first time that an RF-overproducing W. confusa strain has been isolated, characterized and tested for its potential use in the development of functional beverages.
Collapse
Affiliation(s)
- Malek Lahmar
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
- Microorganisms and Active Biomolecules Laboratory (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (N.B.-A.); (I.F.); (H.-I.O.)
| | - Norhane Besrour-Aouam
- Microorganisms and Active Biomolecules Laboratory (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (N.B.-A.); (I.F.); (H.-I.O.)
| | - Annel M. Hernández-Alcántara
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
| | - Iñaki Diez-Ozaeta
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
| | - Imene Fhoula
- Microorganisms and Active Biomolecules Laboratory (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (N.B.-A.); (I.F.); (H.-I.O.)
| | - Paloma López
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
| | - Mari Luz Mohedano
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
| | - Hadda-Imene Ouzari
- Microorganisms and Active Biomolecules Laboratory (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (N.B.-A.); (I.F.); (H.-I.O.)
| |
Collapse
|
2
|
Rasmussen EJF, Acs N, Jensen PR, Solem C. Harnessing Oxidative Stress to Obtain Natural Riboflavin Secreting Lactic Acid Bacteria for Use in Biofortification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26356-26365. [PMID: 39540590 DOI: 10.1021/acs.jafc.4c08881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lactococcus lactis suffers from oxidative stress and riboflavin starvation at elevated temperatures due to dissolved oxygen, which can be relieved partially by exogenously supplied riboflavin. Here we explore whether this phenomenon can be harnessed to obtain riboflavin overproducing mutants. Using a riboflavin auxotrophic L. lactis strain as a riboflavin biosensor, we screened L. lactis cultures that had been exposed to temperature induced oxidative stress for up to one year. Riboflavin secreting mutants could readily be identified, some of which had arisen after just two weeks of exposure to oxidative stress. Whole genome sequencing revealed mutations in the riboswitch, which regulate riboflavin biosynthesis. Riboflavin secretion conferred a significant increase in tolerance to oxidative stress and enabled growth at high temperatures in the presence of dissolved oxygen. It was subsequently demonstrated that vigorous aeration at high temperature (37 °C) could prompt rapid emergence of riboflavin secreting mutants. The protective effect provided by riboflavin against oxidative stress may explain the natural occurrence of lactic acid bacteria (LAB) secreting riboflavin. By optimizing fermentation conditions and eliminating lactate formation, we achieved 64 mg/L riboflavin, the highest reported titer so far for LAB, which indicates great potential for use as a riboflavin fortification agent in food.
Collapse
Affiliation(s)
| | - Norbert Acs
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Dricot CEMK, Erreygers I, Cauwenberghs E, De Paz J, Spacova I, Verhoeven V, Ahannach S, Lebeer S. Riboflavin for women's health and emerging microbiome strategies. NPJ Biofilms Microbiomes 2024; 10:107. [PMID: 39420006 PMCID: PMC11486906 DOI: 10.1038/s41522-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women's health due to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are increasingly developed to meet women's riboflavin needs to supplement dietary sources. An emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular mechanisms and clinical benefits of riboflavin intake for women's health, and evaluate the synergistic potential of riboflavin-producing lactobacilli and other microbiota.
Collapse
Affiliation(s)
- Caroline E M K Dricot
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Isabel Erreygers
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eline Cauwenberghs
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Jocelyn De Paz
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Zhang K, Cai T, Han Y, Gu Z, Hu R, Hou Z, Yu X, Gao Y, Gao M, Liu T, Zhang Y. Association between dietary riboflavin intake and cognitive decline in older adults: a cross-sectional analysis. Nutr Neurosci 2024:1-10. [PMID: 39012764 DOI: 10.1080/1028415x.2024.2375171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND Research exploring the link between dietary riboflavin intake and cognitive decline in this demographic is limited. Our aim was to examine the association between riboflavin intake levels and cognitive decline. METHODS The National Health and Nutrition Examination Survey (NHANES) data from 2011 to 2014 were utilized in this cross-sectional analysis. The Consortium to Establish a Registry for Alzheimer's Disease test Word Learning delayed recall trial (DR), Digit Symbol Substitution Test (DSST), Animal Fluency Test(AFT) and Z test were used to evaluate cognitive performance. Multivariate logistic regression, restricted cubic spline and subgroup analysis were performed to evaluate the associations between riboflavin intake and cognitive decline. RESULTS The study included a total of 2255 patients, with 47.9% being male. The incidence of cognitive decline was 23.8%. After adjusting for all selected covariates, we found that high riboflavin intake was associated with a lower risk of cognitive impairment in adults in the United States. When riboflavin intake was used as a Categorical variable, compared to those with the lowest intake, the odds ratio (OR) of individuals with the highest riboflavin intake for DR test, AFT test, DSST test and Z test were 0.73 (95% CI: 0.53~1), 0.68(95% CI: 0.49-0.96),0.53(95% CI: 0.37-0.77) and 0.56(95% CI: 0.39-0.8). The study also found an L-shaped association between riboflavin intake and cognitive decline, with an inflection point at approximately 2.984 mg/d. CONCLUSIONS Our cross-sectional study in a nationwide sample of American old adults suggests that dietary riboflavin intake was negative associated with cognitive decline.
Collapse
Affiliation(s)
- Kai Zhang
- Cardiovascular Surgery Department of Jilin University Second Hospital, Changchun, People's Republic of China
| | - Tianyi Cai
- Cardiovascular Surgery Department of Jilin University Second Hospital, Changchun, People's Republic of China
| | - Yu Han
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhaoxuan Gu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Rui Hu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Zhengyan Hou
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Xiaoqi Yu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Yafang Gao
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, People's Republic of China
| | - Min Gao
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tianzhou Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yixin Zhang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
5
|
Langa S, Peirotén Á, Rodríguez S, Calzada J, Prieto-Paredes R, Curiel JA, Landete JM. Riboflavin bio-enrichment of soy beverage by selected roseoflavin-resistant and engineered lactic acid bacteria. Int J Food Microbiol 2024; 411:110547. [PMID: 38150774 DOI: 10.1016/j.ijfoodmicro.2023.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Some lactic acid bacteria (LAB) have the ability to synthesize riboflavin, a trait linked to the presence of ribG, ribB, ribA and ribH genes located in the rib operon. Previous screening of riboflavin producers identified several LAB strains belonging to different species with this ability, but none of them surpassed 0.25 mg/L production of the vitamin. In this study, we explored two strategies to obtain riboflavin-overproducing strains: by roseoflavin selection of mutants, and by the transformation of selected strains with plasmids pNZ:TuR.rib or pNZ:TuB.rib containing the genes ribG, ribB, ribA and ribH from Lactococcus cremoris MG1363. The resulting riboflavin-overproducing strains were able to produce yields between 0.5 and 6 mg/L in culture media and several of them were selected for the fermentation of soy beverages. Riboflavin in bio-enriched soy beverages was evaluated by direct fluorescence measurement and high-performance liquid chromatography-fluorescence analysis. Soy beverages fermented with the recombinant strains Lactococcus cremoris ESI 277 pNZ:TuB.rib and Lactococcus lactis INIA 12 pNZ:TuR.rib showed the highest riboflavin yields (>5 mg/L) after 24 h fermentation. On the other hand, roseoflavin-resistant mutant Limosilactobacillus fermentum INIA P143R2 was able to enrich fermented soy beverages with 1.5 mg/L riboflavin. Riboflavin-overproducing LAB strains constitute a good option for riboflavin enrichment of soy beverages by fermentation and the commercialization of such beverages could be very useful to prevent riboflavin deficiency.
Collapse
Affiliation(s)
- Susana Langa
- Departamento de Tecnología de Alimentos, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain.
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Susana Rodríguez
- Departamento de Tecnología de Alimentos, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Javier Calzada
- Departamento de Tecnología de Alimentos, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Rubén Prieto-Paredes
- Departamento de Tecnología de Alimentos, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - José Antonio Curiel
- Departamento de Tecnología de Alimentos, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - José María Landete
- Departamento de Tecnología de Alimentos, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
6
|
Mahara FA, Nuraida L, Lioe HN, Nurjanah S. Hypothetical Regulation of Folate Biosynthesis and Strategies for Folate Overproduction in Lactic Acid Bacteria. Prev Nutr Food Sci 2023; 28:386-400. [PMID: 38188086 PMCID: PMC10764224 DOI: 10.3746/pnf.2023.28.4.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 01/09/2024] Open
Abstract
Folate (vitamin B9) is an essential nutrient for cell metabolism, especially in pregnant women; however, folate deficiency is a major global health issue. To address this issue, folate-rich fermented foods have been used as alternative sources of natural folate. Lactic acid bacteria (LAB), which are commonly involved in food fermentation, can synthesize and excrete folate into the medium, thereby increasing folate levels. However, screening for folate-producing LAB strains is necessary because this ability is highly dependent on the bacterial strain. Some strains of LAB consume folate, and their presence in a fermentation mix can lower the folate levels of the final product. Since microorganisms efficiently regulate folate biosynthesis to meet their growth needs, some strains of folate-producing LAB can deplete folate levels if folate is available in the media. Such folate-efficient producers possess a feedback inhibition mechanism that downregulates folate biosynthesis. Therefore, the application of folate-overproducing strains may be a key strategy for increasing folate levels in media with or without available folate. Many studies have been conducted to screen folate-producing bacteria, but very few have focused on the identification of overproducers. This is probably because of the limited understanding of the regulation of folate biosynthesis in LAB. In this review, we discuss the roles of folate-biosynthetic genes and their contributions to the ability of LAB to synthesize and regulate folate. In addition, we present various hypotheses regarding the regulation of the feedback inhibition mechanism of folate-biosynthetic enzymes and discuss strategies for obtaining folate-overproducing LAB strains.
Collapse
Affiliation(s)
- Fenny Amilia Mahara
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Lilis Nuraida
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Siti Nurjanah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| |
Collapse
|
7
|
Son SJ, Han AR, Sung MJ, Hong SM, Lee SH. Hermetia illucens Fermented with Lactobacillus plantarum KCCM12757P Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice. Antioxidants (Basel) 2023; 12:1822. [PMID: 37891901 PMCID: PMC10604763 DOI: 10.3390/antiox12101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) can severely affect humans and animals and is difficult to treat. Black soldier fly (Hermetia illucens; Hi) larvae (BSFL) are a sustainable source of protein. However, no studies exist on the antioxidant and anti-inflammatory functions of BSFL or fermented BSFL with respect to IBD. In this study, riboflavin-producing Lactobacillus plantarum KCCM12757P was isolated from a fish farm tank, and in conjunction with hot water-extracted Hi (HeHi) (termed HeHi_Lp), was used to determine optimal fermentation conditions to increase vitamin B2 concentration. This in vivo study investigated the therapeutic effects and mechanistic role of HeHi_Lp in chronic colitis-induced murine models. Histological changes, inflammatory cytokine levels, and intestinal barrier function were explored. Gut microbial communities and gene expression in the nuclear factor (NF)-κB signaling pathway were also studied. HeHi_Lp remarkably reduced the disease activity index, inflammatory cytokine (inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor α, interleukin (IL-6 and IL-1β) levels, and increased body weight and colon length. HeHi_Lp administration significantly raised zonula occludens 1, occludin and claudin 1 and improved the composition of the gut microbiota and beneficial intestinal bacteria. These results suggest that HeHi_Lp can be used as a dietary supplement in pet food to alleviate colitis.
Collapse
Affiliation(s)
- Seok Jun Son
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Ah-Ram Han
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Mi Jeong Sung
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Sun Mee Hong
- Department of Technology Development, Marine Industry Research Institute for East Sea Rim, Jukbyeon, Uljin-gun 36315, Gyeongsangbuk-do, Republic of Korea;
| | - Sang-Hee Lee
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| |
Collapse
|
8
|
Kumar V, Arora VK, Rana A, Kumar A, Taneja NK, Ahire JJ. Predictive Modeling of Riboflavin Production in Lactiplantibacillus plantarum MTCC 25432 Using Fuzzy Inference System. Foods 2023; 12:3155. [PMID: 37685088 PMCID: PMC10487235 DOI: 10.3390/foods12173155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/10/2023] Open
Abstract
Riboflavin (Vitamin B2) is an essential vitamin and a microbial metabolite produced by some lactic acid bacteria (LAB). This investigation aims to study the overproduction of riboflavin in selected Lactiplantibacillus plantarum strain by using the one factor at a time (OFAT) tool coupled with the Fuzzy Inference System (FIS) and its validation through fermentative production in semi-defined media. Out of three Lactiplantibacillus strains used in this study, the maximum riboflavin producing strain was selected based on its ability to grow and produce higher levels of riboflavin. In results, Lactiplantibacillus plantarum strain MTCC 25432 was able to produce 346 µg/L riboflavin in riboflavin deficient assay medium and was investigated further. By using the OFAT-fuzzy FIS system, casamino acid in the range of 5-20 g/L, GTP 0.01-0.04 g/L, sodium acetate 5-15 g/L, and glycine 5-15 g/L were used to predict their effect on riboflavin production. The conditions optimized with modeling showed a 24% increment in riboflavin production (429 µg/L) by Lactiplantibacillus plantarum MTCC 25432 vis-a-vis the unoptimized counterpart (346 µg/L). In conclusion, an FIS-based predictive model was effectively implemented to estimate the riboflavin within an acceptable limit of 3.4%. Riboflavin production enhancing effects observed with various levels of sodium acetate, casamino acid, and GTP could be useful to re-design matrices for riboflavin production.
Collapse
Affiliation(s)
- Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), HSIIDC, Kundli, Sonipat 131028, Haryana, India; (V.K.); (V.K.A.); (A.R.); (A.K.)
| | - Vinkel Kumar Arora
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), HSIIDC, Kundli, Sonipat 131028, Haryana, India; (V.K.); (V.K.A.); (A.R.); (A.K.)
| | - Ananya Rana
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), HSIIDC, Kundli, Sonipat 131028, Haryana, India; (V.K.); (V.K.A.); (A.R.); (A.K.)
| | - Ankur Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), HSIIDC, Kundli, Sonipat 131028, Haryana, India; (V.K.); (V.K.A.); (A.R.); (A.K.)
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), HSIIDC, Kundli, Sonipat 131028, Haryana, India; (V.K.); (V.K.A.); (A.R.); (A.K.)
- Centre for Advanced Translational Research in Food Nanobiotechnology (CATR-FNB), National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat 131028, Haryana, India
| | - Jayesh J. Ahire
- Dr. Reddy’s Laboratories Limited, Hyderabad 500016, Telangana, India
| |
Collapse
|
9
|
Diez-Ozaeta I, Martín-Loarte L, Mohedano ML, Tamame M, Ruiz-Masó JÁ, del Solar G, Dueñas MT, López P. A methodology for the selection and characterization of riboflavin-overproducing Weissella cibaria strains after treatment with roseoflavin. Front Microbiol 2023; 14:1154130. [PMID: 37089563 PMCID: PMC10116070 DOI: 10.3389/fmicb.2023.1154130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023] Open
Abstract
Fermentative processes by lactic acid bacteria can produce metabolites of interest to the health and food industries. Two examples are the production of B-group vitamins, and of prebiotic and immunomodulatory dextran-type exopolysaccharides. In this study, three riboflavin- and dextran-producing Weissella cibaria strains (BAL3C-5, BAL3C-7 and BAL3C-22) were used to develop a new method for selection and isolation of spontaneous riboflavin-overproducing W. cibaria mutants. This method was based on the selection of strains resistant to roseoflavin. The DNA sequencing of the FMN riboswitch of bacterial cell populations treated with various roseoflavin concentrations, revealed the existence of at least 10 spontaneous and random point mutations at this location. Folding and analysis of the mutated FMN riboswitches with the RNA fold program predicted that these mutations could result in a deregulation of the rib operon expression. When the roseoflavin-treated cultures were plated on medium supporting dextran synthesis, the most promising mutants were identified by the yellow color of their mucous colonies, exhibiting a ropy phenotype. After their isolation and recovery in liquid medium, the evaluation of their riboflavin production revealed that the mutant strains synthesized a wide range of riboflavin levels (from 0.80 to 6.50 mg/L) above the wild-type level (0.15 mg/L). Thus, this was a reliable method to select spontaneous riboflavin-overproducing and dextran-producing strains of W. cibaria. This species has not yet been used as a starter or adjunct culture, but this study reinforces the potential that it has for the food and health industry for the production of functional foods or as a probiotic. Furthermore, analysis of the influence of FMN present in the growth medium, on rib mRNA and riboflavin levels, revealed which mutant strains produce riboflavin without flavin regulation. Moreover, the BAL3C-5 C120T mutant was identified as the highest riboflavin-overproducer. Determination of its chromosomal DNA sequence and that of BAL3C-5, revealed a total identity between the 2 strains except for the C120T mutation at the FMN riboswitch. To our knowledge, this work is the first demonstration that only a single alteration in the genome of a lactic acid bacteria is required for a riboflavin-overproducing phenotype.
Collapse
Affiliation(s)
- Iñaki Diez-Ozaeta
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Lucía Martín-Loarte
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica, (IBFG) CSIC-Universidad de Salamanca, Salamanca, Spain
| | - José Ángel Ruiz-Masó
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Gloria del Solar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - María Teresa Dueñas
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
- *Correspondence: María Teresa Dueñas,
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
- Paloma López,
| |
Collapse
|
10
|
Hernández-Alcántara AM, Chiva R, Mohedano ML, Russo P, Ruiz-Masó JÁ, del Solar G, Spano G, Tamame M, López P. Weissella cibaria riboflavin-overproducing and dextran-producing strains useful for the development of functional bread. Front Nutr 2022; 9:978831. [PMID: 36267909 PMCID: PMC9577222 DOI: 10.3389/fnut.2022.978831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
This work describes a method for deriving riboflavin overproducing strains of Weissella cibaria by exposing three strains (BAL3C-5, BAL3C-7, and BAL3C-22) isolated from dough to increasing concentrations of roseoflavin. By this procedure, we selected one mutant overproducing strain from each parental strain (BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22 B2, respectively). Quantification of dextran and riboflavin produced by the parental and mutant strains in a defined medium lacking riboflavin and polysaccharides confirmed that riboflavin was only overproduced by the mutant strains, whereas dextran production was similar in both mutant and parental strains. The molecular basis of the riboflavin overproduction by the mutants was determined by nucleotide sequencing of their rib operons, which encode the enzymes of the riboflavin biosynthetic pathway. We detected a unique mutation in each of the overproducing strains. These mutations, which map in the sensor domain (aptamer) of a regulatory element (the so-called FMN riboswitch) present in the 5' untranslated region of the rib operon mRNA, appear to be responsible for the riboflavin-overproducing phenotype of the BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22 B2 mutant strains. Furthermore, the molecular basis of dextran production by the six W. cibaria strains has been characterized by (i) the sequencing of their dsr genes encoding dextransucrases, which synthesize dextran using sucrose as substrate, and (ii) the detection of active Dsr proteins by zymograms. Finally, the parental and mutant strains were analyzed for in situ production of riboflavin and dextran during experimental bread making. The results indicate that the mutant strains were able to produce experimental wheat breads biofortified with both riboflavin and dextran and, therefore, may be useful for the manufacture of functional commercial breads.
Collapse
Affiliation(s)
- Annel M. Hernández-Alcántara
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Rosana Chiva
- Instituto de Biología Funcional y Genómica, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - María Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Pasquale Russo
- Department of Agriculture Food Natural Science Engineering, University of Foggia, Foggia, Italy
| | - José Ángel Ruiz-Masó
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Gloria del Solar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering, University of Foggia, Foggia, Italy
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
11
|
Hemalatha M, Subathra Devi C. A statistical optimization by response surface methodology for the enhanced production of riboflavin from Lactobacillus plantarum–HDS27: A strain isolated from bovine milk. Front Microbiol 2022; 13:982260. [PMID: 36090106 PMCID: PMC9453640 DOI: 10.3389/fmicb.2022.982260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
In the present study, Lactobacillus plantarum-HDS27 strain isolated from bovine milk was used for the enhanced production of riboflavin. Production medium was optimized by one factor at a time with different parameters. Statistical optimization by Response surface methodology (RSM), central composite design was used to optimize variables such as pH, temperature, glucose, and yeast extract. The present study reveals the maximum riboflavin production by one factor at a time was obtained under the culture conditions; glucose, yeast extract, pH 6, the temperature at 40°C, and 3% of inoculum size. In RSM, analysis of variance for the responses was calculated. Among the tested variables, pH, yeast extract, and temperature showed significant impact on riboflavin production. Maximum amount of yeast extract in production medium resulted in increased riboflavin production. The riboflavin production after 24 h with the optimal condition was found to be 12.33 mg/L. It was found proximate to the expected value (12.29 mg/L) achieved by the RSM model. The yield of riboflavin was increased to 3.66-fold after 24 h with the optimized parameters. The current research, emphasizes that the Lactobacillus plantarum–HDS27 could be an excellent strain for the large-scale industrial production of riboflavin.
Collapse
|
12
|
Riboflavin (Vitamin B2) Deficiency Induces Apoptosis Mediated by Endoplasmic Reticulum Stress and the CHOP Pathway in HepG2 Cells. Nutrients 2022; 14:nu14163356. [PMID: 36014863 PMCID: PMC9414855 DOI: 10.3390/nu14163356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Riboflavin is an essential micronutrient and a precursor of flavin mononucleotide and flavin adenine dinucleotide for maintaining cell homeostasis. Riboflavin deficiency (RD) induces cell apoptosis. Endoplasmic reticulum (ER) stress is considered to induce apoptosis, and C/EBP homologous protein (CHOP) is a key pathway involved in this process. However, whether RD-induced apoptosis is mediated by ER stress and the CHOP pathway remains unclear and needs further investigation. Therefore, the current study presents the effect of RD on ER stress and apoptosis in the human hepatoma cell line (HepG2). Firstly, cells were cultured in a RD medium (4.55 nM riboflavin) and a control (CON) medium (1005 nM riboflavin). We conducted an observation of cell microstructure characterization and determining apoptosis. Subsequently, 4-phenyl butyric acid (4-PBA), an ER stress inhibitor, was used in HepG2 cells to investigate the role of ER stress in RD-induced apoptosis. Finally, CHOP siRNA was transfected into HepG2 cells to validate whether RD triggered ER stress-mediated apoptosis by the CHOP pathway. The results show that RD inhibited cell proliferation and caused ER stress, as well as increased the expression of ER stress markers (CHOP, 78 kDa glucose-regulated protein, activating transcription factor 6) (p < 0.05). Furthermore, RD increased the cell apoptosis rate, enhanced the expression of proapoptotic markers (B-cell lymphoma 2-associated X, Caspase 3), and decreased the expression of the antiapoptotic marker (B-cell lymphoma 2) (p < 0.05). The 4-PBA treatment and CHOP knockdown markedly alleviated RD-induced cell apoptosis. These results demonstrate that RD induces cell apoptosis by triggering ER stress and the CHOP pathway.
Collapse
|
13
|
Spacova I, Ahannach S, Breynaert A, Erreygers I, Wittouck S, Bron PA, Van Beeck W, Eilers T, Alloul A, Blansaer N, Vlaeminck SE, Hermans N, Lebeer S. Spontaneous Riboflavin-Overproducing Limosilactobacillus reuteri for Biofortification of Fermented Foods. Front Nutr 2022; 9:916607. [PMID: 35757245 PMCID: PMC9218631 DOI: 10.3389/fnut.2022.916607] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Riboflavin-producing lactic acid bacteria represent a promising and cost-effective strategy for food biofortification, but production levels are typically insufficient to support daily human requirements. In this study, we describe the novel human isolate Limosilactobacillus reuteri AMBV339 as a strong food biofortification candidate. This strain shows a high natural riboflavin (vitamin B2) overproduction of 18.36 μg/ml, biomass production up to 6 × 1010 colony-forming units/ml (in the typical range of model lactobacilli), and pH-lowering capacities to a pH as low as 4.03 in common plant-based (coconut, soy, and oat) and cow milk beverages when cultured up to 72 h at 37°C. These properties were especially pronounced in coconut beverage and butter milk fermentations, and were sustained in co-culture with the model starter Streptococcus thermophilus. Furthermore, L. reuteri AMBV339 grown in laboratory media or in a coconut beverage survived in gastric juice and in a simulated gastrointestinal dialysis model with colon phase (GIDM-colon system) inoculated with fecal material from a healthy volunteer. Passive transport of L. reuteri AMBV339-produced riboflavin occurred in the small intestinal and colon stage of the GIDM system, and active transport via intestinal epithelial Caco-2 monolayers was also demonstrated. L. reuteri AMBV339 did not cause fecal microbiome perturbations in the GIDM-colon system and inhibited enteric bacterial pathogens in vitro. Taken together, our data suggests that L. reuteri AMBV339 represents a promising candidate to provide riboflavin fortification of plant-based and dairy foods, and has a high application potential in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Irina Spacova
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Annelies Breynaert
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Isabel Erreygers
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Peter A Bron
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Wannes Van Beeck
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Naïm Blansaer
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Nina Hermans
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Ripa I, Ruiz‐Masó JÁ, De Simone N, Russo P, Spano G, del Solar G. A single change in the aptamer of the Lactiplantibacillus plantarum rib operon riboswitch severely impairs its regulatory activity and leads to a vitamin B 2 - overproducing phenotype. Microb Biotechnol 2022; 15:1253-1269. [PMID: 34599851 PMCID: PMC8966005 DOI: 10.1111/1751-7915.13919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Manufacturing of probiotics and functional foods using lactic acid bacteria (LAB) that overproduce vitamin B2 has gained growing interest due to ariboflavinosis problems affecting populations of both developing and affluent countries. Two isogenic Lactiplantibacillus plantarum strains, namely a riboflavin-producing parental strain (UFG9) and a roseoflavin-resistant strain (B2) that carries a mutation in the FMN-aptamer of the potential rib operon riboswitch, were analysed for production and intra- and extracellular accumulation of flavins, as well as for regulation of the rib operon expression. Strain B2 accumulated in the medium one of the highest levels of riboflavin+FMN ever reported for LAB, exceeding by ~ 25 times those accumulated by UFG9. Inside the cells, concentration of FAD was similar in both strains, while that of riboflavin+FMN was ~ 8-fold higher in B2. Mutation B2 could decrease the stability of the aptamer's regulatory P1 helix even in the presence of the effector, thus promoting the antiterminator structure of the riboswitch ON state. Although the B2-mutant riboswitch showed an impaired regulatory activity, it retained partial functionality being still sensitive to the effector. The extraordinary capacity of strain B2 to produce riboflavin, together with its metabolic versatility and probiotic properties, can be exploited for manufacturing multifunctional foods.
Collapse
Affiliation(s)
- Inés Ripa
- Microbial and Plant Biotechnology DepartmentCentro de Investigaciones Biológicas Margarita SalasConsejo Superior de Investigaciones CientíficasRamiro de Maeztu, 9MadridMadrid28040Spain
| | - José Ángel Ruiz‐Masó
- Microbial and Plant Biotechnology DepartmentCentro de Investigaciones Biológicas Margarita SalasConsejo Superior de Investigaciones CientíficasRamiro de Maeztu, 9MadridMadrid28040Spain
| | - Nicola De Simone
- Department Agriculture Food Natural Science EngineeringUniversity of FoggiaFoggiaItaly
| | - Pasquale Russo
- Department Agriculture Food Natural Science EngineeringUniversity of FoggiaFoggiaItaly
| | - Giuseppe Spano
- Department Agriculture Food Natural Science EngineeringUniversity of FoggiaFoggiaItaly
| | - Gloria del Solar
- Microbial and Plant Biotechnology DepartmentCentro de Investigaciones Biológicas Margarita SalasConsejo Superior de Investigaciones CientíficasRamiro de Maeztu, 9MadridMadrid28040Spain
| |
Collapse
|
15
|
Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022; 11:foods11050733. [PMID: 35267366 PMCID: PMC8909232 DOI: 10.3390/foods11050733] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Consumption of lactic acid fermented fruits and vegetables has been correlated with a series of health benefits. Some of them have been attributed to the probiotic potential of lactic acid microbiota, while others to its metabolic potential and the production of bioactive compounds. The factors that affect the latter have been in the epicenter of intensive research over the last decade. The production of bioactive peptides, vitamins (especially of the B-complex), gamma-aminobutyric acid, as well as phenolic and organosulfur compounds during lactic acid fermentation of fruits and vegetables has attracted specific attention. On the other hand, the production of biogenic amines has also been intensively studied due to the adverse health effects caused by their consumption. The data that are currently available indicate that the production of these compounds is a strain-dependent characteristic that may also be affected by the raw materials used as well as the fermentation conditions. The aim of the present review paper is to collect all data referring to the production of the aforementioned compounds and to present and discuss them in a concise and comprehensive way.
Collapse
|
16
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
17
|
Ziarno M, Cichońska P. Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms 2021; 9:2532. [PMID: 34946135 PMCID: PMC8706850 DOI: 10.3390/microorganisms9122532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
Plant beverages are becoming more popular, and fermented cereal- or pseudocereal-based beverages are increasingly used as alternatives for fermented products made from cow milk. This review aimed to describe the basic components of cereal- or pseudocereal-based beverages and determine the feasibility of fermenting them with lactic acid bacteria (LAB) to obtain products with live and active LAB cells and increased dietary value. The technology used for obtaining cereal- or pseudocereal-based milk substitutes primarily involves the extraction of selected plant material, and the obtained beverages differ in their chemical composition and nutritional value (content of proteins, lipids, and carbohydrates, glycemic index, etc.) due to the chemical diversity of the cereal and pseudocereal raw materials and the operations used for their production. Beverages made from cereals or pseudocereals are an excellent matrix for the growth of LAB, and the lactic acid fermentation not only produces desirable changes in the flavor of fermented beverages and the biological availability of nutrients but also contributes to the formation of functional compounds (e.g., B vitamins).
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), 02-787 Warsaw, Poland;
| | | |
Collapse
|
18
|
Antolak H, Piechota D, Kucharska A. Kombucha Tea-A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants (Basel) 2021; 10:antiox10101541. [PMID: 34679676 PMCID: PMC8532973 DOI: 10.3390/antiox10101541] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
Kombucha is a low alcoholic beverage with high content of bioactive compounds derived from plant material (tea, juices, herb extracts) and metabolic activity of microorganisms (acetic acid bacteria, lactic acid bacteria and yeasts). Currently, it attracts an increasing number of consumers due to its health-promoting properties. This review focuses on aspects significantly affecting the bioactive compound content and biological activities of Kombucha tea. The literature review shows that the drink is characterized by a high content of bioactive compounds, strong antioxidant, and antimicrobial properties. Factors that substantially affect these activities are the tea type and its brewing parameters, the composition of the SCOBY, as well as the fermentation parameters. On the other hand, Kombucha fermentation is characterized by many unknowns, which result, inter alia, from different methods of tea extraction, diverse, often undefined compositions of microorganisms used in the fermentation, as well as the lack of clearly defined effects of microorganisms on bioactive compounds contained in tea, and therefore the health-promoting properties of the final product. The article indicates the shortcomings in the current research in the field of Kombucha, as well as future perspectives on improving the health-promoting activities of this fermented drink.
Collapse
|
19
|
Konstantinidis D, Pereira F, Geissen E, Grkovska K, Kafkia E, Jouhten P, Kim Y, Devendran S, Zimmermann M, Patil KR. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol Syst Biol 2021; 17:e10189. [PMID: 34370382 PMCID: PMC8351387 DOI: 10.15252/msb.202010189] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptive laboratory evolution has proven highly effective for obtaining microorganisms with enhanced capabilities. Yet, this method is inherently restricted to the traits that are positively linked to cell fitness, such as nutrient utilization. Here, we introduce coevolution of obligatory mutualistic communities for improving secretion of fitness-costly metabolites through natural selection. In this strategy, metabolic cross-feeding connects secretion of the target metabolite, despite its cost to the secretor, to the survival and proliferation of the entire community. We thus co-evolved wild-type lactic acid bacteria and engineered auxotrophic Saccharomyces cerevisiae in a synthetic growth medium leading to bacterial isolates with enhanced secretion of two B-group vitamins, viz., riboflavin and folate. The increased production was specific to the targeted vitamin, and evident also in milk, a more complex nutrient environment that naturally contains vitamins. Genomic, proteomic and metabolomic analyses of the evolved lactic acid bacteria, in combination with flux balance analysis, showed altered metabolic regulation towards increased supply of the vitamin precursors. Together, our findings demonstrate how microbial metabolism adapts to mutualistic lifestyle through enhanced metabolite exchange.
Collapse
Affiliation(s)
- Dimitrios Konstantinidis
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Filipa Pereira
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Present address:
Life Science InstituteUniversity of MichiganAnn ArborUSA
| | - Eva‐Maria Geissen
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Kristina Grkovska
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Eleni Kafkia
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Medical Research Council Toxicology UnitCambridgeUK
| | - Paula Jouhten
- VTT Technical Research Centre of Finland LtdEspooFinland
| | - Yongkyu Kim
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Present address:
Brain Research InstituteKorea Institute of Research and TechnologySeoulSouth Korea
| | - Saravanan Devendran
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Michael Zimmermann
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Kiran Raosaheb Patil
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Medical Research Council Toxicology UnitCambridgeUK
| |
Collapse
|
20
|
Harale B, Kidwai S, Ojha D, Singh M, Chouhan DK, Singh R, Khedkar V, Rode AB. Synthesis and evaluation of antimycobacterial activity of riboflavin derivatives. Bioorg Med Chem Lett 2021; 48:128236. [PMID: 34242760 DOI: 10.1016/j.bmcl.2021.128236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
The riboflavin biosynthetic pathway is a promising target for the development of novel antimycobacterial drugs given the lack of riboflavin transporter in M. tuberculosis. Herein, a series of riboflavin derivatives was designed, synthesized and screened for their antimycobacterial and antibacterial activity. The compounds 1a, 1b, 2a, 3a and 5a displayed noticeable antitubercular activity against M. tuberculosis with minimum inhibitory concentration (MIC99) in the range of 6.25 to 25 μM. The lead compound 5a had a selectivity index of 10.7 in the present study. The compounds 2a, 2b, 2c, 4c and 4d showed relatively low to moderate antibacterial activity (MIC = 100-200 μM) against gram-positive strains. Notably, the compounds do not show any inhibition against gram-negative strains even at 200 μM concentration. Further, molecular docking and binding experiments with representative flavin mononucleotide (FMN) riboswitch suggested that the riboflavin analogs exhibited antimycobacterial activity plausibly through FMN riboswitch-mediated repression of riboflavin biosynthesis. In addition to FMN riboswitch, flavoproteins involved in the flavin biosynthesis could also be target of riboflavin derivatives. In conclusion, the potency and low toxicity of riboflavin analogs particularly 5a (MIC99 = 6.25) make it a lead compound for the synthesis of new analogs for antimycobacterial therapy.
Collapse
Affiliation(s)
- Bhaiyyasaheb Harale
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Divya Ojha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Manisha Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Dwarika Kumar Chouhan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Vijay Khedkar
- School of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India.
| |
Collapse
|
21
|
Probiotic Potential of a Novel Vitamin B2-Overproducing Lactobacillus plantarum Strain, HY7715, Isolated from Kimchi. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vitamin B2, also known as riboflavin, is essential for maintaining human health. The purpose of this study was to isolate novel lactic acid bacteria that overproduce vitamin B2 and to validate their potential as probiotics. In this study, Lactobacillus plantarum HY7715 (HY7715) was selected among lactic acid bacteria isolated from Kimchi. HY7715 showed a very high riboflavin-producing ability compared to the control strain due to the high expression of ribA, ribB, ribC, ribH, and ribG genes. HY7715 produced 34.5 ± 2.41 mg/L of riboflavin for 24 h without consuming riboflavin in the medium under optimal growth conditions. It was able to produce riboflavin in an in vitro model of the intestinal environment. In addition, when riboflavin deficiency was induced in mice through nutritional restriction, higher levels of riboflavin were detected in plasma and urine in the HY7715 administration group than in the control group. HY7715 showed high survival rate in simulated gastrointestinal conditions and had antibiotic resistance below the cutoff MIC value suggested by the European Food Safety Authority; moreover, it did not cause hemolysis. In conclusion, HY7715 could be considered a beneficial probiotic strain for human and animal applications, suggesting that it could be a new alternative to address riboflavin deficiency.
Collapse
|
22
|
Selection of Riboflavin Overproducing Strains of Lactic Acid Bacteria and Riboflavin Direct Quantification by Fluorescence. Methods Mol Biol 2021. [PMID: 33751425 DOI: 10.1007/978-1-0716-1286-6_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Riboflavin (vitamin B2) is a vitamin of the B group involved in essential biological pathways, including redox reactions and the electron transport chain. Some lactic acid bacteria (LAB) can synthesize riboflavin and this capability is strain-dependent. In the last years, a growing interest has focused on the selection of riboflavin-overproducing food-grade LAB for the vitamin biofortification of fermented foods, as well as for the formulation of innovative functional products.In this chapter we report fast and inexpensive techniques in order to (1) screen LAB isolates able to produce riboflavin from different matrices, (2) select spontaneous roseoflavin-resistant riboflavin overproducing strains, and (3) quantify vitamin B2 in culture media by fluorescence detection.These protocols could be useful to select new overproducing strains and/or species from different ecological niches, as well as to optimize the conditions for vitamin bioproduction.
Collapse
|
23
|
Aparicio-García N, Martínez-Villaluenga C, Frias J, Peñas E. Production and Characterization of a Novel Gluten-Free Fermented Beverage Based on Sprouted Oat Flour. Foods 2021; 10:139. [PMID: 33440811 PMCID: PMC7828039 DOI: 10.3390/foods10010139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/27/2022] Open
Abstract
This study investigates the use of sprouted oat flour as a substrate to develop a novel gluten-free beverage by fermentation with a probiotic (Lactobacillus plantarum WCFS1) starter culture. Physicochemical, microbiological, nutritional and sensory properties of sprouted oat fermented beverage (SOFB) were characterized. After fermentation for 4 h, SOFB exhibited an acidity of 0.42 g lactic acid/100 mL, contents of lactic and acetic acids of 1.6 and 0.09 g/L, respectively, and high viable counts of probiotic starter culture (8.9 Log CFU/mL). Furthermore, SOFB was a good source of protein (1.7 g/100 mL), β-glucan (79 mg/100 mL), thiamine (676 μg/100 mL), riboflavin (28.1 μg/100 mL) and phenolic compounds (61.4 mg GAE/100 mL), and had a high antioxidant potential (164.3 mg TE/100 mL). Spoilage and pathogenic microorganisms were not detected in SOFB. The sensory attributes evaluated received scores higher than 6 in a 9-point hedonic scale, indicating that SOFB was well accepted by panelists. Storage of SOFB at 4 °C for 20 days maintained L. plantarum viability and a good microbial quality and did not substantially affect β-glucan content. SOFB fulfils current consumer demands regarding natural and wholesome plant-based foods.
Collapse
Affiliation(s)
| | | | | | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (N.A.-G.); (C.M.-V.); (J.F.)
| |
Collapse
|
24
|
Hernández-Alcántara AM, Pardo S, Mohedano ML, Vignolo GM, de Moreno de LeBlanc A, LeBlanc JG, Aznar R, López P. The Ability of Riboflavin-Overproducing Lactiplantibacillus plantarum Strains to Survive Under Gastrointestinal Conditions. Front Microbiol 2020; 11:591945. [PMID: 33193258 PMCID: PMC7649808 DOI: 10.3389/fmicb.2020.591945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Riboflavin, vitamin B2, is essential for humans and has to be obtained from the diet. Some lactic acid bacteria (LAB) produce this vitamin, and they can be used for in-situ fortification of foods. This could be an alternative to supplementation with chemically synthesized vitamin, to palliate riboflavin deficiencies in specific groups of people. Moreover, if the producing LAB could survive in the gastrointestinal stress (GIT) they could be added as probiotics in this environment. In the present study we tested two riboflavin-overproducing Lactiplantibacillus plantarum strains (M5MA1-B2 and M9MG6-B2), spontaneous mutants of LAB isolated from chicha, a traditional Andean beverage. These two LAB, and also their isogenic strains M5MA1-B2[pRCR12] and M9MG6-B2[pRCR12], expressing the mCherry protein from the pRCR12 plasmid, were evaluated in vitro under simulated GIT conditions. Among other, specifically developed protein fluorescence assays were used. The four LAB showed similar levels of adhesion (>6.0%) to Caco-2 cells, higher than that of the probiotic Lacticaseibacillus rhamnosus GG strain (4.51%). Thus, LAB biofilm formation was assessed in the labeled cells by intracellular mCherry fluorescence and in the unlabeled parental strains by crystal violet staining. Both methods detected the formation of consistent biofilms by the L. plantarum strains. The quantification of mCherry fluorescence was also used to analyze LAB auto-aggregation properties. High levels of auto-aggregation were detected for both M5MA1-B2[pRCR12] and M9MG6-B2[pRCR12]. Survival of LAB included in a commercial cereal-based food matrix (Incaparina) under GIT conditions was also evaluated. The four LAB were resistant in vitro to the stomach and intestinal stresses, and proliferated in this environment, indicating a protective and nutritional effect of the Incaparina on the bacteria. Also, M9MG6-B2 survival in the presence or absence of Incaparina was evaluated in vivo in a BALB/c mouse model. The administration of the M9MG6-B2 strain alone or together with Incaparina had no adverse effect on the health, growth and/or well-being of the rodents. In addition, an increment in the villus length/crypt depth ratio was observed. The overall results obtained indicate that the LAB studied have probiotic characteristics of interest for the development of functional foods.
Collapse
Affiliation(s)
- Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sandra Pardo
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mari Luz Mohedano
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Graciela M. Vignolo
- Reference Center for Lactobacilli (CERELA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Alejandra de Moreno de LeBlanc
- Reference Center for Lactobacilli (CERELA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Jean Guy LeBlanc
- Reference Center for Lactobacilli (CERELA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Rosa Aznar
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA)-Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
25
|
Solopova A, Bottacini F, Venturi Degli Esposti E, Amaretti A, Raimondi S, Rossi M, van Sinderen D. Riboflavin Biosynthesis and Overproduction by a Derivative of the Human Gut Commensal Bifidobacterium longum subsp. infantis ATCC 15697. Front Microbiol 2020; 11:573335. [PMID: 33042083 PMCID: PMC7522473 DOI: 10.3389/fmicb.2020.573335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Riboflavin or vitamin B2 is the precursor of the essential coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Despite increased interest in microbial synthesis of this water-soluble vitamin, the metabolic pathway for riboflavin biosynthesis has been characterized in just a handful of bacteria. Here, comparative genome analysis identified the genes involved in the de novo biosynthetic pathway of riboflavin in certain bifidobacterial species, including the human gut commensal Bifidobacterium longum subsp. infantis (B. infantis) ATCC 15697. Using comparative genomics and phylogenomic analysis, we investigated the evolutionary acquisition route of the riboflavin biosynthesis or rib gene cluster in Bifidobacterium and the distribution of riboflavin biosynthesis-associated genes across the genus. Using B. infantis ATCC 15697 as model organism for this pathway, we isolated spontaneous riboflavin overproducers, which had lost transcriptional regulation of the genes required for riboflavin biosynthesis. Among them, one mutant was shown to allow riboflavin release into the medium to a concentration of 60.8 ng mL–1. This mutant increased vitamin B2 concentration in a fecal fermentation system, thus providing promising data for application of this isolate as a functional food ingredient.
Collapse
Affiliation(s)
- Ana Solopova
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Alberto Amaretti
- Department of Chemistry, University of Modena and Reggio Emilia, Modena, Italy.,BIOGEST-SITEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Raimondi
- Department of Chemistry, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Chemistry, University of Modena and Reggio Emilia, Modena, Italy.,BIOGEST-SITEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Recent update on lactic acid bacteria producing riboflavin and folates: application for food fortification and treatment of intestinal inflammation. J Appl Microbiol 2020; 130:1412-1424. [PMID: 32955761 DOI: 10.1111/jam.14854] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Lactic acid bacteria (LAB), widely used as starter cultures for the fermentation of a large variety of food, can improve the safety, shelf life, nutritional value and overall quality of the fermented products. In this regard, the selection of strains delivering health-promoting compounds is now the main objective of many researchers. Although most LAB are auxotrophic for several vitamins, it is known that certain strains have the capability to synthesize B-group vitamins. This is an important property since humans cannot synthesize most vitamins, and these could be obtained by consuming LAB fermented foods. This review discusses the use of LAB as an alternative to fortification by the chemical synthesis to increase riboflavin and folate concentrations in food. Moreover, it provides an overview of the recent applications of vitamin-producing LAB with anti-inflammatory/antioxidant activities against gastrointestinal tract inflammation. This review shows the potential uses of riboflavin and folates producing LAB for the biofortification of food, as therapeutics against intestinal pathologies and to complement anti-inflammatory/anti-neoplastic treatments.
Collapse
Affiliation(s)
- R Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - G Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - A de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - J G LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
27
|
Viscardi S, Marileo L, Barra PJ, Durán P, Inostroza-Blancheteau C. From farm to fork: it could be the case of Lactic Acid Bacteria in the stimulation of folates biofortification in food crops. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Genome-scale exploration of transcriptional regulation in the nisin Z producer Lactococcus lactis subsp. lactis IO-1. Sci Rep 2020; 10:3787. [PMID: 32123183 PMCID: PMC7051946 DOI: 10.1038/s41598-020-59731-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Transcription is of the most crucial steps of gene expression in bacteria, whose regulation guarantees the bacteria's ability to adapt to varying environmental conditions. Discovering the molecular basis and genomic principles of the transcriptional regulation is thus one of the most important tasks in cellular and molecular biology. Here, a comprehensive phylogenetic footprinting framework was implemented to predict maximal regulons of Lactococcus lactis subsp. lactis IO-1, a lactic acid bacterium known for its high potentials in nisin Z production as well as efficient xylose consumption which have made it a promising biotechnological strain. A total set of 321 regulons covering more than 90% of all the bacterium's operons have been elucidated and validated according to available data. Multiple novel biologically-relevant members were introduced amongst which arsC, mtlA and mtl operon for BusR, MtlR and XylR regulons can be named, respectively. Moreover, the effect of riboflavin on nisin biosynthesis was assessed in vitro and a negative correlation was observed. It is believed that understandings from such networks not only can be useful for studying transcriptional regulatory potentials of the target organism but also can be implemented in biotechnology to rationally design favorable production conditions.
Collapse
|
29
|
Liu S, Hu W, Wang Z, Chen T. Production of riboflavin and related cofactors by biotechnological processes. Microb Cell Fact 2020; 19:31. [PMID: 32054466 PMCID: PMC7017516 DOI: 10.1186/s12934-020-01302-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Riboflavin (RF) and its active forms, the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have been extensively used in the food, feed and pharmaceutical industries. Modern commercial production of riboflavin is based on microbial fermentation, but the established genetically engineered production strains are facing new challenges due to safety concerns in the food and feed additives industry. High yields of flavin mononucleotide and flavin adenine dinucleotide have been obtained using whole-cell biocatalysis processes. However, the necessity of adding expensive precursors results in high production costs. Consequently, developing microbial cell factories that are capable of efficiently producing flavin nucleotides at low cost is an increasingly attractive approach. The biotechnological processes for the production of RF and its cognate cofactors are reviewed in this article.
Collapse
Affiliation(s)
- Shuang Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Wenya Hu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
30
|
Bhushan B, Kumkum C, Kumari M, Ahire JJ, Dicks LM, Mishra V. Soymilk bio-enrichment by indigenously isolated riboflavin-producing strains of Lactobacillus plantarum. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int J Mol Sci 2020; 21:ijms21030950. [PMID: 32023913 PMCID: PMC7037471 DOI: 10.3390/ijms21030950] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Riboflavin (RF) is a water-soluble member of the B-vitamin family. Sufficient dietary and supplemental RF intake appears to have a protective effect on various medical conditions such as sepsis, ischemia etc., while it also contributes to the reduction in the risk of some forms of cancer in humans. These biological effects of RF have been widely studied for their anti-oxidant, anti-aging, anti-inflammatory, anti-nociceptive and anti-cancer properties. Moreover, the combination of RF and other compounds or drugs can have a wide variety of effects and protective properties, and diminish the toxic effect of drugs in several treatments. Research has been done in order to review the latest findings about the link between RF and different clinical aberrations. Since further studies have been published in this field, it is appropriate to consider a re-evaluation of the importance of RF in terms of its beneficial properties.
Collapse
|
32
|
Ge YY, Zhang JR, Corke H, Gan RY. Screening and Spontaneous Mutation of Pickle-Derived Lactobacillus plantarum with Overproduction of Riboflavin, Related Mechanism, and Food Application. Foods 2020; 9:foods9010088. [PMID: 31947521 PMCID: PMC7022482 DOI: 10.3390/foods9010088] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
Riboflavin, also known as vitamin B2, plays an important role in human cell metabolism and participates in various redox reactions and in energy utilization. In this study, 90 riboflavin-producing lactic acid bacteria (LAB) were screened out from pickle juices. The yields of riboflavin in these LAB were about 0.096-0.700 mg/L, and one strain, Lactobacillus plantarum RYG-YYG-9049, was found to produce the highest riboflavin content. Next, roseoflavin was used to induce the spontaneous mutation of RYG-YYG-9049, and selected roseoflavin-resistant colonies generally produced higher riboflavin contents, ranging from 1.013 to 2.332 mg/L. The No. 10 mutant, L. plantarum RYG-YYG-9049-M10, had the highest riboflavin content. Next, the molecular mechanism of enhancing riboflavin production in RYG-YYG-9049-M10 was explored, leading to the finding that roseoflavin treatment did not change the rib operons including the ribA, ribB, ribC, ribH, and ribG genes. Unexpectedly, however, this mechanism did induce an insertion of a 1059-bp DNA fragment in the upstream regulatory region of the rib operon, as compared to the wild-type RYG-YYG-9049. To the best of our knowledge, this is the first report that roseoflavin could induce an insertion of DNA fragment in LAB to increase riboflavin content, representing a new mutation type that is induced by roseoflavin. Finally, in order to fortify riboflavin content in soymilk, RYG-YYG-9049 and RYG-YYG-9049-M10 were used to ferment soymilk, and several fermentation parameters were optimized to obtain the fermented soymilk with riboflavin contents of up to 2.920 mg/L. In general, roseoflavin induction is an economical and feasible biotechnological strategy to induce riboflavin-overproducing LAB, and this strategy can be used to develop LAB-fermented functional foods that are rich in riboflavin.
Collapse
Affiliation(s)
- Ying-Ying Ge
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.-Y.G.); (J.-R.Z.); (H.C.)
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.-Y.G.); (J.-R.Z.); (H.C.)
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.-Y.G.); (J.-R.Z.); (H.C.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.-Y.G.); (J.-R.Z.); (H.C.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Correspondence: ; Tel.: +86-28-8020-3191
| |
Collapse
|
33
|
Engevik MA, Morra CN, Röth D, Engevik K, Spinler JK, Devaraj S, Crawford SE, Estes MK, Kalkum M, Versalovic J. Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Front Microbiol 2019; 10:2305. [PMID: 31649646 PMCID: PMC6795088 DOI: 10.3389/fmicb.2019.02305] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Microbial metabolites, including B complex vitamins contribute to diverse aspects of human health. Folate, or vitamin B9, refers to a broad category of biomolecules that include pterin, para-aminobenzoic acid (pABA), and glutamate subunits. Folates are required for DNA synthesis and epigenetic regulation. In addition to dietary nutrients, the gut microbiota has been recognized as a source of B complex vitamins, including folate. This study evaluated the predicted folate synthesis capabilities in the genomes of human commensal microbes identified in the Human Microbiome Project and folate production by representative strains of six human intestinal bacterial phyla. Bacterial folate synthesis genes were ubiquitous across 512 gastrointestinal reference genomes with 13% of the genomes containing all genes required for complete de novo folate synthesis. An additional 39% of the genomes had the genetic capacity to synthesize folates in the presence of pABA, an upstream intermediate that can be obtained through diet or from other intestinal microbes. Bacterial folate synthesis was assessed during exponential and stationary phase growth through the evaluation of expression of select folate synthesis genes, quantification of total folate production, and analysis of folate polyglutamylation. Increased expression of key folate synthesis genes was apparent in exponential phase, and increased folate polyglutamylation occurred during late stationary phase. Of the folate producers, we focused on the commensal Lactobacillus reuteri to examine host-microbe interactions in relation to folate and examined folate receptors in the physiologically relevant human enteroid model. RNAseq data revealed segment-specific folate receptor distribution. Treatment of human colonoid monolayers with conditioned media (CM) from wild-type L. reuteri did not influence the expression of key folate transporters proton-coupled folate transporter (PCFT) or reduced folate carrier (RFC). However, CM from L. reuteri containing a site-specific inactivation of the folC gene, which prevents the bacteria from synthesizing a polyglutamate tail on folate, significantly upregulated RFC expression. No effects were observed using L. reuteri with a site inactivation of folC2, which results in no folate production. This work sheds light on the contributions of microbial folate to overall folate status and mammalian host metabolism.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Christina N. Morra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Daniel Röth
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Kristen Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Jennifer K. Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine – Gastroenterology, Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- Mass Spectrometry and Proteomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
34
|
Mohedano ML, Hernández-Recio S, Yépez A, Requena T, Martínez-Cuesta MC, Peláez C, Russo P, LeBlanc JG, Spano G, Aznar R, López P. Real-Time Detection of Riboflavin Production by Lactobacillus plantarum Strains and Tracking of Their Gastrointestinal Survival and Functionality in vitro and in vivo Using mCherry Labeling. Front Microbiol 2019; 10:1748. [PMID: 31417534 PMCID: PMC6684964 DOI: 10.3389/fmicb.2019.01748] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/15/2019] [Indexed: 01/12/2023] Open
Abstract
Some strains of lactic acid bacteria (LAB) produce riboflavin, a water-soluble vitamin of the B complex, essential for human beings. Here, we have evaluated riboflavin (B2 vitamin) production by five Lactobacillus plantarum strains isolated from chicha, a traditional maize-based fermented alcoholic beverage from north-western Argentina and their isogenic riboflavin-overproducing derivatives previously selected using roseoflavin. A direct fluorescence spectroscopic detection method to quantify riboflavin production in bacterial culture supernatants has been tested. Comparison of the efficiency for riboflavin fluorescence quantification with and without prior HPLC fractionation showed that the developed method is a rapid and easy test for selection of B2 vitamin-producing strains. In addition, it can be used for quantitative detection of the vitamin production in real time during bacterial growth. On the basis of this and previous analyses, the L. plantarum M5MA1-B2 riboflavin overproducer was selected for in vitro and in vivo studies after being fluorescently labeled by transfer of the pRCR12 plasmid, which encodes the mCherry protein. The labeling did not affect negatively the growth, the riboflavin production nor the adhesion of the strain to Caco-2 cells. Thus, L. plantarum M5MA1-B2[pRCR12] was evaluated for its survival under digestive tract stresses in the presence of microbiota in the dynamic multistage BFBL gut model and in a murine model. After exposure to both models, M5MA1-B2[pRCR12] could be recovered and detected by the pink color of the colonies. The results indicated a satisfactory resistance of the strain to gastric and intestinal stress conditions but a low colonization capability observed both in vitro and in vivo. Overall, L. plantarum M5MA1-B2 could be proposed as a probiotic strain for the development of functional foods.
Collapse
Affiliation(s)
- Mari Luz Mohedano
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| | - Sara Hernández-Recio
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| | - Alba Yépez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Teresa Requena
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - M. Carmen Martínez-Cuesta
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Carmen Peláez
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Pasquale Russo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Jean Guy LeBlanc
- Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Giuseppe Spano
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Spain
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| |
Collapse
|
35
|
Xie C, Coda R, Chamlagain B, Varmanen P, Piironen V, Katina K. Co-fermentation of Propionibacterium freudenreichii and Lactobacillus brevis in Wheat Bran for in situ Production of Vitamin B12. Front Microbiol 2019; 10:1541. [PMID: 31333632 PMCID: PMC6624789 DOI: 10.3389/fmicb.2019.01541] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
The present study investigated the effect of co-fermentation on vitamin B12 content and microbiological composition of wheat bran. Propionibacterium freudenreichii DSM 20271 was used as the producer of vitamin while Lactobacillus brevis ATCC 14869 was selected to ensure the microbial safety of the bran dough. Fermentation trials were conducted in bioreactors to monitor and adjust the pH of the ferments. Vitamin B12 level reached 357 ± 8 ng/g dry weight (dw) after 1 day of pH-controlled fermentation with P. freudenreichii monoculture and remained stable thereafter. In co-fermentation with L. brevis, slightly less vitamin B12 (255 ± 31 ng/g dw) was produced in 1 day and an effective inhibition of the growth of total Enterobacteriaceae and Bacillus cereus was obtained. On day 3, vitamin B12 content in pH-controlled co-fermentation increased to 332 ± 44 ng/g dw. On the other hand, without a pH control, co-fermentation resulted in a stronger inhibition of Enterobacteriaceae and B. cereus but a lower level of vitamin B12 (183 ± 5 ng/g dw on day 3). These results demonstrated that wheat bran fermented by P. freudenreichii and L. brevis can be a promising way to produce vitamin B12 fortified plant-origin food ingredients, which could reduce cereal waste streams and contribute to a more resilient food chain.
Collapse
Affiliation(s)
- Chong Xie
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Bhawani Chamlagain
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Bechtner J, Xu D, Behr J, Ludwig C, Vogel RF. Proteomic Analysis of Lactobacillus nagelii in the Presence of Saccharomyces cerevisiae Isolated From Water Kefir and Comparison With Lactobacillus hordei. Front Microbiol 2019; 10:325. [PMID: 30891008 PMCID: PMC6413804 DOI: 10.3389/fmicb.2019.00325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Water kefir is a slightly alcoholic and traditionally fermented beverage, which is prepared from sucrose, water, kefir grains, and dried or fresh fruits (e.g., figs). Lactobacillus (L.) nagelii, L. hordei, and Saccharomyces (S.) cerevisiae are predominant and stable lactic acid bacteria and yeasts, respectively, isolated from water kefir consortia. The growth of L. nagelii and L. hordei are improved in the presence of S. cerevisiae. In this work we demonstrate that quantitative comparative proteomics enables the investigation of interactions between LAB and yeast to predict real-time metabolic exchange in water kefir. It revealed 73 differentially expressed (DE) in L. nagelii TMW 1.1827 in the presence of S. cerevisiae. The presence of the yeast induced changes in the changes in the carbohydrate metabolism of L. nagelii and affected reactions involved in NAD+/NADH homeostasis. Furthermore, the DE enzymes involved in amino acid biosynthesis or catabolism predict that S. cerevisiae releases glutamine, histidine, methionine, and arginine, which are subsequently used by L. nagelii to ensure its survival in the water kefir consortium. In co-culture with S. cerevisiae, L. nagelii profits from riboflavin, most likely secreted by the yeast. The reaction of L. nagelii to the presence of S. cerevisiae differs from that one of the previously studied L. hordei, which displays 233 differentially expressed proteins, changes in citrate metabolism and an antidromic strategy for NAD+/NADH homeostasis. So far, aggregation promotion factors, i.e., formation of a specific glucan and bifunctional enzymes were only detected in L. hordei.
Collapse
Affiliation(s)
- Julia Bechtner
- Lehrstuhl für Technische Mikrobiologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Di Xu
- Lehrstuhl für Technische Mikrobiologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Lehrstuhl für Technische Mikrobiologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
37
|
Wolkers – Rooijackers JC, Endika MF, Smid EJ. Enhancing vitamin B12 in lupin tempeh by in situ fortification. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.05.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Leenay RT, Vento JM, Shah M, Martino ME, Leulier F, Beisel CL. Genome Editing with CRISPR‐Cas9 in
Lactobacillus plantarum
Revealed That Editing Outcomes Can Vary Across Strains and Between Methods. Biotechnol J 2018; 14:e1700583. [DOI: 10.1002/biot.201700583] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ryan T. Leenay
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Justin M. Vento
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Malay Shah
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Maria Elena Martino
- Institut de Génomique Fonctionnelle de LyonUniversité de LyonEcole Normale Supérieure de LyonCentre National de la Recherche ScientifiqueUniversité Claude Bernard Lyon 1Unité Mixte de Recherche 524269364 LyonCedex 07France
| | - François Leulier
- Institut de Génomique Fonctionnelle de LyonUniversité de LyonEcole Normale Supérieure de LyonCentre National de la Recherche ScientifiqueUniversité Claude Bernard Lyon 1Unité Mixte de Recherche 524269364 LyonCedex 07France
| | - Chase L. Beisel
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
- Helmholtz Institute for RNA‐based Infection ResearchJosef‐Schneider‐Straße 297080WürzburgGermany
- Faculty of MedicineUniversity of WürzburgJosef‐Schneider‐Straße 297080WürzburgGermany
| |
Collapse
|
39
|
Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett 2018; 365:5087731. [DOI: 10.1093/femsle/fny213] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Lu Chen
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81 310 Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
40
|
Yépez A, Russo P, Spano G, Khomenko I, Biasioli F, Capozzi V, Aznar R. In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. Food Microbiol 2018; 77:61-68. [PMID: 30297057 DOI: 10.1016/j.fm.2018.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/19/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023]
Abstract
Cereal-based functional beverages represent social, economic, and environmental sustainable opportunities to cope with emerging trends in food consumption and global nutrition. Here we report, for the first time, the polyphasic characterization of three cereal-based kefir-like riboflavin-enriched beverages, obtained from oat, maize and barley flours, and their comparison with classical milk-based kefir. The four matrices were successfully fermented with commercial starters: i) milk-kefir and ii) water-kefir, proving the potential of cereal ingredients in the formulation of dairy-like fermented beverages with milk-kefir starter behavior better in these matrices. In the light of their potentiality, seven riboflavin-producing Andean Lactic Acid Bacteria (LAB) were tested for tolerance to food stresses commonly encountered during food fermentation. Moreover, the LAB strains investigated were screened for spontaneous riboflavin overproducing derivatives. Lactobacillus plantarum M5MA1-B2 with outstanding response to stress, was selected to improve riboflavin content in an in situ fortification approach. The combination of L. plantarum M5MA1-B2 riboflavin overproducing strain with milk kefir starter in oat, lead to cover, for one serving of 100 g, 11.4% of Recommended Dietary Allowance (RDA). Besides, addition of L. plantarum M5MA1-B2 improved performance of water kefir in oat and maize matrices. Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) analysis provided the on-line Volatile Organic Compounds profiles supporting the best combination of starter, LAB and cereal matrix for novel functional foods development.
Collapse
Affiliation(s)
- Alba Yépez
- Department of Microbiology and Ecology, University of Valencia. Av. Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Pasquale Russo
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71122, Italy
| | - Giuseppe Spano
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71122, Italy
| | - Iuliia Khomenko
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele All' Adige (TN), Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele All' Adige (TN), Italy
| | - Vittorio Capozzi
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71122, Italy
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia. Av. Dr. Moliner 50, 46100, Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies. Institut of Agrochemistry and Food Technology (IATA-CSIC). Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain; Spanish Type Culture Collection (CECT). University of Valencia. Calle Agustín Escardino 9, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
41
|
Li SA, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Yang J, Tang X, Shi HQ, Zhou XQ. Dietary myo-inositol deficiency decreased intestinal immune function related to NF-κB and TOR signaling in the intestine of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 76:333-346. [PMID: 29544771 DOI: 10.1016/j.fsi.2018.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/26/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the effects of dietary myo-inositol on the intestinal immune barrier function and related signaling pathway in young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.33 ± 0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila. The results indicated that compared with the optimal dietary myo-inositol level, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased lysozyme (LZ) and acid phosphatase (ACP) activities, as well as complement 3 (C3), C4 and immunoglobulin M (IgM) contents in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of young grass carp (P < 0.05). (2) down-regulated the mRNA levels of anti-microbial substance: liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, β-defensin-1 and mucin2 in the PI, MI and DI of young grass carp (P < 0.05). (3) up-regulated pro-inflammatory cytokines [IL-1β (not in DI), TNF-α and IL-8], nuclear factor kappa B P65 (not NF-κB P52), c-Rel, IκB kinaseα (IKKα), IKKβ and IKKγ mRNA levels in the PI, MI and DI of young grass carp (P < 0.05); and down-regulated pro-inflammatory cytokines IL-15 (not in DI) and inhibitor of κBα (IκBα) mRNA levels (P < 0.05). (4) down-regulated the mRNA levels of anti-inflammatory cytokines [IL-10 (not in DI), IL-11, IL-4/13B (not IL-4/13A), TGF-β1 and TGF-β2], target of rapamycin (TOR), eIF4E-binding proteins 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6k1) in the PI, MI and DI of young grass carp (P < 0.05). All data indicated that myo-inositol deficiency could decrease fish intestine immunity and cause inflammation under infection of A. hydrophila. Finally, the optimal dietary myo-inositol levels for the ACP and LZ activities in the DI were estimated to be 415.1 and 296.9 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Shuang-An Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Juan Yang
- Enterprise Technology Center, Tongwei Co., Ltd, Chengdu 610041, China
| | - Xu Tang
- Chengdu Mytech Biotech Co., Ltd., Chengdu 610222, Sichuan, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou 510663, Guangdong, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
42
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Effect of riboflavin-producing bacteria against chemically induced colitis in mice. J Appl Microbiol 2017; 124:232-240. [PMID: 29080295 DOI: 10.1111/jam.13622] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022]
Abstract
AIM To assess the anti-inflammatory effect associated with individual probiotic suspensions of riboflavin-producing lactic acid bacteria (LAB) in a colitis murine model. METHODS AND RESULTS Mice intrarectally inoculated with trinitrobenzene sulfonic acid (TNBS) were orally administered with individual suspensions of riboflavin-producing strains: Lactobacillus (Lact.) plantarum CRL2130, Lact. paracasei CRL76, Lact. bulgaricus CRL871 and Streptococcus thermophilus CRL803; and a nonriboflavin-producing strain or commercial riboflavin. The extent of colonic damage and inflammation and microbial translocation to liver were evaluated. iNOs enzyme was analysed in the intestinal tissues and cytokine concentrations in the intestinal fluids. Animals given either one of the four riboflavin-producing strains showed lower macroscopic and histologic damage scores, lower microbial translocation to liver, significant decreases of iNOs+ cells in their large intestines and decreased proinflammatory cytokines, compared with mice without treatment. The administration of pure riboflavin showed similar benefits. Lact. paracasei CRL76 accompanied its anti-inflammatory effect with increased IL-10 levels demonstrating other beneficial properties in addition to the vitamin production. CONCLUSION Administration of riboflavin-producing strains prevented the intestinal damage induced by TNBS in mice. SIGNIFICANCE AND IMPACT OF THE STUDY Riboflavin-producing phenotype in LAB represents a potent tool to select them for preventing/treating IBD.
Collapse
Affiliation(s)
- R Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - G Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - A de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - J G LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
43
|
Zago M, Scaltriti E, Bonvini B, Fornasari M, Penna G, Massimiliano L, Carminati D, Rescigno M, Giraffa G. Genomic diversity and immunomodulatory activity of Lactobacillus plantarum isolated from dairy products. Benef Microbes 2017; 8:597-604. [DOI: 10.3920/bm2016.0223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this study, we aimed to investigate some functional characteristics and the immunomodulatory properties of three strains of Lactobacillus plantarum of dairy origin which, in a previous screening, showed to be candidate probiotics. Genome sequencing and comparative genomics, which confirmed the presence of genes involved in folate and riboflavin production and in the immune response of dendritic cells (DCs), prompted us to investigate the ability of the three strains to accumulate the two vitamins and their immunomodulation properties. The ability of the three strains to release antioxidant components in milk was also investigated. Small amounts of folate and riboflavin were produced by the three strains, while they showed a good antioxidant capacity in milk with FRAP method. The immune response experiments well correlated with the presence of candidate genes influencing in DCs cytokine response to L. plantarum. Specifically, the amounts of secreted cytokins by DCs after stimulation with cells of Lp790, Lp813 and Lp998 resulted pro-inflammatory whereas stimulation with culture supernatants (postbiotics) inhibited the release of interleukin (IL)-12p70 and increased the release of the anti-inflammatory IL-10 cytokine. This study adds further evidence on the importance of L. plantarum in human health. Understanding how probiotics (or postbiotics) work in preclinical models can allow a rational choice of the different strains for clinical and/or commercial use.
Collapse
Affiliation(s)
- M. Zago
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Forage and Dairy Productions (CREA-FLC), via Lombardo11, 26900 Lodi, Italy
| | - E. Scaltriti
- IZSLER, Unit of Parma, via dei Mercati 13, 43126 Parma, Italy
| | - B. Bonvini
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Forage and Dairy Productions (CREA-FLC), via Lombardo11, 26900 Lodi, Italy
| | - M.E. Fornasari
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Forage and Dairy Productions (CREA-FLC), via Lombardo11, 26900 Lodi, Italy
| | - G. Penna
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139 Milan, Italy
| | - L. Massimiliano
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139 Milan, Italy
| | - D. Carminati
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Forage and Dairy Productions (CREA-FLC), via Lombardo11, 26900 Lodi, Italy
| | - M. Rescigno
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139 Milan, Italy
| | - G. Giraffa
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Forage and Dairy Productions (CREA-FLC), via Lombardo11, 26900 Lodi, Italy
| |
Collapse
|
44
|
LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 2017; 16:79. [PMID: 28482838 PMCID: PMC5423028 DOI: 10.1186/s12934-017-0691-z] [Citation(s) in RCA: 526] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.
Collapse
Affiliation(s)
- Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Florian Chain
- Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Rebeca Martín
- Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Philippe Langella
- Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
45
|
Afolake AO, Olaoluwa I, Sunday AO. Riboflavin enriched iru: A fermented vegetable protein. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajmr2016.8317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Thakur K, Tomar SK, Wei ZJ. Comparative mRNA Expression Profiles of Riboflavin Biosynthesis Genes in Lactobacilli Isolated from Human Feces and Fermented Bamboo Shoots. Front Microbiol 2017; 8:427. [PMID: 28367143 PMCID: PMC5356473 DOI: 10.3389/fmicb.2017.00427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/28/2017] [Indexed: 12/23/2022] Open
Abstract
With the aim to bioprospect potent riboflavin producing lactobacilli, the present study was carried out to evaluate the relative mRNA expression of riboflavin biosynthesis genes namely Rib 1, Rib 2, Rib 3, and Rib 4 from potent riboflavin producers obtained from our previous studies. All the four genes were successfully cloned and sequenced for further analysis by in silico procedures. As studied by non-denaturing Polyacrylamide gel electrophoresis, no difference in size of all the four genes among those of various lactobacilli was observed. The relative fold increase in mRNA expression in Rib 1, Rib 2, Rib 3, and Rib 4 genes has been observed to be 10-, 1-, 0.7-, and 8.5-fold, respectively. Due to increase in relative mRNA expression for all the Rib genes as well as phenotypic production attribute, KTLF1 strain was used further for expression studies in milk and whey. The fold increase in mRNA expression for all the four Rib genes was higher at 12 and 18 h in milk and whey respectively. After exposure to roseoflavin, resistant variant of KTLF1 showed considerable increase in expression of all the targets genes. This is the first ever study to compare the mRNA expression of riboflavin biosynthesis pathway genes in lactobacilli and it also under lines the effect of media and harvesting time which significantly affect the expression of rib genes. The use of roseoflavin-resistant strains capable of synthesizing riboflavin in milk and whey paves a way for an exciting and economically viable biotechnological approach to develop novel riboflavin bio-enriched functional foods.
Collapse
Affiliation(s)
- Kiran Thakur
- Dairy Microbiology Division, Indian Council of Agricultural Research - National Dairy Research InstituteKarnal, India; School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Sudhir K Tomar
- Dairy Microbiology Division, Indian Council of Agricultural Research - National Dairy Research Institute Karnal, India
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology Hefei, China
| |
Collapse
|
47
|
Wu C, Huang J, Zhou R. Genomics of lactic acid bacteria: Current status and potential applications. Crit Rev Microbiol 2017; 43:393-404. [PMID: 28502225 DOI: 10.1080/1040841x.2016.1179623] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.
Collapse
Affiliation(s)
- Chongde Wu
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| | - Jun Huang
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| | - Rongqing Zhou
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| |
Collapse
|
48
|
Juarez Del Valle M, Laiño JE, Savoy de Giori G, LeBlanc JG. Factors stimulating riboflavin produced by Lactobacillus plantarum CRL 725 grown in a semi-defined medium. J Basic Microbiol 2016; 57:245-252. [PMID: 27966212 DOI: 10.1002/jobm.201600573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/19/2016] [Indexed: 11/07/2022]
Abstract
Riboflavin (vitamin B2 ) is one of the B-group water-soluble vitamins and is essential for energy metabolism of the cell. The aim of this study was to determine factors that affect riboflavin production by Lactobacillus (L.) plantarum CRL 725 grown in a semi defined medium and evaluate the expression of its rib genes. The factors found to enhance riboflavin production in this medium were incubation at 30 °C, and the addition of specific medium constituents, such as casamino acids (10 g L-1 ), guanosine (0.04 g L-1 ), and sucrose as carbon source (20 g L-1 ). In these conditions, higher riboflavin concentrations were directly associated with significant increases in the expression of ribA, ribB, and ribC genes. The culture conditions defined in this work and its application to a roseoflavin resistant mutant of L. plantarum allowed for a sixfold increase in riboflavin concentrations in our semi-defined medium which were also significantly higher than those obtained previously using the same strain to ferment soymilk. These conditions should thus be evaluated to increase vitamin production in fermented foods.
Collapse
Affiliation(s)
| | | | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
- Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
49
|
Ruiz-Rodríguez L, Bleckwedel J, Eugenia Ortiz M, Pescuma M, Mozzi F. Lactic Acid Bacteria. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Luciana Ruiz-Rodríguez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Juliana Bleckwedel
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Maria Eugenia Ortiz
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Micaela Pescuma
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
50
|
Soyamilk fermented with riboflavin-producing Lactobacillus plantarum CRL 2130 reverts and prevents ariboflavinosis in murine models. Br J Nutr 2016; 116:1229-1235. [PMID: 27641762 DOI: 10.1017/s0007114516003378] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been previously shown that Lactobacillus plantarum CRL 2130 is able to produce riboflavin in soyamilk. The aim of the present study was to evaluate the efficiency of this riboflavin-bio-enriched soyamilk to revert and/or prevent the nutritional deficiency of riboflavin using different animal models. When used to supplement the diets of previously depleted animals, it was shown that the growth, riboflavin status and morphology of the small intestines reverted to normal parameters and were similar to animals supplemented with commercial riboflavin. In the prevention model, the same tendency was observed, where animals that received soyamilk fermented with L. plantarum CRL 2130 did not show signs of riboflavin deficiency. This new bio-fortified soya-based product could be used as part of normal diets to provide a more natural alternative to mandatory fortification with riboflavin for the prevention of its deficiency.
Collapse
|