1
|
Shin J, Liao S, Kuanyshev N, Xin Y, Kim C, Lu T, Jin YS. Compositional and temporal division of labor modulates mixed sugar fermentation by an engineered yeast consortium. Nat Commun 2024; 15:781. [PMID: 38278783 PMCID: PMC10817915 DOI: 10.1038/s41467-024-45011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Synthetic microbial communities have emerged as an attractive route for chemical bioprocessing. They are argued to be superior to single strains through microbial division of labor (DOL), but the exact mechanism by which DOL confers advantages remains unclear. Here, we utilize a synthetic Saccharomyces cerevisiae consortium along with mathematical modeling to achieve tunable mixed sugar fermentation to overcome the limitations of single-strain fermentation. The consortium involves two strains with each specializing in glucose or xylose utilization for ethanol production. By controlling initial community composition, DOL allows fine tuning of fermentation dynamics and product generation. By altering inoculation delay, DOL provides additional programmability to parallelly regulate fermentation characteristics and product yield. Mathematical models capture observed experimental findings and further offer guidance for subsequent fermentation optimization. This study demonstrates the functional potential of DOL in bioprocessing and provides insight into the rational design of engineered ecosystems for various applications.
Collapse
Affiliation(s)
- Jonghyeok Shin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Siqi Liao
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nurzhan Kuanyshev
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yongping Xin
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chanwoo Kim
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ting Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Vargas BDO, dos Santos JR, Pereira GAG, de Mello FDSB. An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae. PeerJ 2023; 11:e16340. [PMID: 38047029 PMCID: PMC10691383 DOI: 10.7717/peerj.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/03/2023] [Indexed: 12/05/2023] Open
Abstract
Xylose is the second most abundant carbohydrate in nature, mostly present in lignocellulosic material, and representing an appealing feedstock for molecule manufacturing through biotechnological routes. However, Saccharomyces cerevisiae-a microbial cell widely used industrially for ethanol production-is unable to assimilate this sugar. Hence, in a world with raising environmental awareness, the efficient fermentation of pentoses is a crucial bottleneck to producing biofuels from renewable biomass resources. In this context, advances in the genetic mapping of S. cerevisiae have contributed to noteworthy progress in the understanding of xylose metabolism in yeast, as well as the identification of gene targets that enable the development of tailored strains for cellulosic ethanol production. Accordingly, this review focuses on the main strategies employed to understand the network of genes that are directly or indirectly related to this phenotype, and their respective contributions to xylose consumption in S. cerevisiae, especially for ethanol production. Altogether, the information in this work summarizes the most recent and relevant results from scientific investigations that endowed S. cerevisiae with an outstanding capability for commercial ethanol production from xylose.
Collapse
Affiliation(s)
- Beatriz de Oliveira Vargas
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Jade Ribeiro dos Santos
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | | |
Collapse
|
3
|
Zhang J, Yuan Y, Wang Z, Chen T. Metabolic engineering of Halomonas bluephagenesis for high-level mevalonate production from glucose and acetate mixture. Metab Eng 2023; 79:203-213. [PMID: 37657641 DOI: 10.1016/j.ymben.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Mevalonate (MVA) plays a crucial role as a building block for the biosynthesis of isoprenoids. In this study, we engineered Halomonas bluephagenesis to efficiently produce MVA. Firstly, by screening MVA synthetases from eight different species, the two efficient candidate modules, specifically NADPH-dependent mvaESEfa from Enterococcus faecalis and NADH-dependent mvaESLca from Lactobacillus casei, were integrated into the chromosome, leading to the construction of the H. bluephagenesis MVA11. Through the synergetic utilization of glucose and acetate as mixed carbon sources, MVA11 produced 11.2 g/L MVA with a yield of 0.45 g/g (glucose + acetic acid) in the shake flask. Subsequently, 10 beneficial genes out of 50 targets that could promote MVA production were identified using CRISPR interference. The simultaneous repression of rpoN (encoding RNA polymerase sigma-54 factor) and IldD (encoding L-lactate dehydrogenase) increased MVA titer (13.3 g/L) by 19.23% and yield (0.53 g/g (glucose + acetic acid)) by 17.78%, respectively. Furthermore, introducing the non-oxidative glycolysis (NOG) pathway into MVA11 enhanced MVA yield by 12.20%. Ultimately, by combining these strategies, the resultant H. bluephagenesis MVA13/pli-63 produced 13.9 g/L MVA in the shake flask, and the yield increased to 0.56 g/g (glucose + acetic acid), which was the highest reported so far. Under open fed-batch fermentation conditions, H. bluephagenesis MVA13/pli-63 produced 121 g/L of MVA with a yield of 0.42 g/g (glucose + acetic acid), representing the highest reported titer and yield in the bioreactor to date. This study demonstrates that H. bluephagenesis is one of the most favorable chassis for MVA production.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China
| | - Yue Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300072, China.
| |
Collapse
|
4
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
5
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
6
|
Liu L, Jin M, Huang M, Zhu Y, Yuan W, Kang Y, Kong M, Ali S, Jia Z, Xu Z, Xiao W, Cao L. Engineered Polyploid Yeast Strains Enable Efficient Xylose Utilization and Ethanol Production in Corn Hydrolysates. Front Bioeng Biotechnol 2021; 9:655272. [PMID: 33748094 PMCID: PMC7973232 DOI: 10.3389/fbioe.2021.655272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 02/01/2023] Open
Abstract
The reported haploid Saccharomyces cerevisiae strain F106 can utilize xylose for ethanol production. After a series of XR and/or XDH mutations were introduced into F106, the XR-K270R mutant was found to outperform others. The corresponding haploid, diploid, and triploid strains were then constructed and their fermentation performance was compared. Strains F106-KR and the diploid produced an ethanol yield of 0.45 and 0.48 g/g total sugars, respectively, in simulated corn hydrolysates within 36 h. Using non-detoxicated corncob hydrolysate as the substrate, the ethanol yield with the triploid was approximately sevenfold than that of the diploid at 40°C. After a comprehensive evaluation of growth on corn stover hydrolysates pretreated with diluted acid or alkali and different substrate concentrations, ethanol yields of the triploid strain were consistently higher than those of the diploid using acid-pretreatment. These results demonstrate that the yeast chromosomal copy number is positively correlated with increased ethanol production under our experimental conditions.
Collapse
Affiliation(s)
- Lulu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yixuan Zhu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Meilin Kong
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Sajid Ali
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Zefang Jia
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China.,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Limin Cao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
7
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
8
|
Biorefinery: The Production of Isobutanol from Biomass Feedstocks. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental issues have prompted the vigorous development of biorefineries that use agricultural waste and other biomass feedstock as raw materials. However, most current biorefinery products are cellulosic ethanol. There is an urgent need for biorefineries to expand into new bioproducts. Isobutanol is an important bulk chemical with properties that are close to gasoline, making it a very promising biofuel. The use of microorganisms to produce isobutanol has been extensively studied, but there is still a considerable gap to achieving the industrial production of isobutanol from biomass. This review summarizes current metabolic engineering strategies that have been applied to biomass isobutanol production and recent advances in the production of isobutanol from different biomass feedstocks.
Collapse
|
9
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Li B, Tang YQ. The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Atzmüller D, Ullmann N, Zwirzitz A. Identification of genes involved in xylose metabolism of Meyerozyma guilliermondii and their genetic engineering for increased xylitol production. AMB Express 2020; 10:78. [PMID: 32314068 PMCID: PMC7171046 DOI: 10.1186/s13568-020-01012-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Meyerozyma guilliermondii, a non-conventional yeast that naturally assimilates xylose, is considered as a candidate for biotechnological production of the sugar alternative xylitol. Because the genes of the xylose metabolism were yet unknown, all efforts published so far to increase the xylitol yield of this yeast are limited to fermentation optimization. Hence, this study aimed to genetically engineer this organism for the first time with the objective to increase xylitol production. Therefore, the previously uncharacterized genes of M. guilliermondii ATCC 6260 encoding for xylose reductase (XR) and xylitol dehydrogenase (XDH) were identified by pathway investigations and sequence similarity analysis. Cloning and overexpression of the putative XR as well as knockout of the putative XDH genes generated strains with about threefold increased xylitol yield. Strains that combined both genetic modifications displayed fivefold increase in overall xylitol yield. Enzymatic activity assays with lysates of XR overexpressing and XDH knockout strains underlined the presumed functions of the respective genes. Furthermore, growth evaluation of the engineered strains on xylose as sole carbon source provides insights into xylose metabolism and its utilization for cell growth.![]()
Collapse
|
11
|
The Xylose Metabolizing Yeast Spathaspora passalidarum is a Promising Genetic Treasure for Improving Bioethanol Production. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Currently, the fermentation technology for recycling agriculture waste for generation of alternative renewable biofuels is getting more and more attention because of the environmental merits of biofuels for decreasing the rapid rise of greenhouse gas effects compared to petrochemical, keeping in mind the increase of petrol cost and the exhaustion of limited petroleum resources. One of widely used biofuels is bioethanol, and the use of yeasts for commercial fermentation of cellulosic and hemicellulosic agricultural biomasses is one of the growing biotechnological trends for bioethanol production. Effective fermentation and assimilation of xylose, the major pentose sugar element of plant cell walls and the second most abundant carbohydrate, is a bottleneck step towards a robust biofuel production from agricultural waste materials. Hence, several attempts were implemented to engineer the conventional Saccharomyces cerevisiae yeast to transport and ferment xylose because naturally it does not use xylose, using genetic materials of Pichia stipitis, the pioneer native xylose fermenting yeast. Recently, the nonconventional yeast Spathaspora passalidarum appeared as a founder member of a new small group of yeasts that, like Pichia stipitis, can utilize and ferment xylose. Therefore, the understanding of the molecular mechanisms regulating the xylose assimilation in such pentose fermenting yeasts will enable us to eliminate the obstacles in the biofuels pipeline, and to develop industrial strains by means of genetic engineering to increase the availability of renewable biofuel products from agricultural biomass. In this review, we will highlight the recent advances in the field of native xylose metabolizing yeasts, with special emphasis on S. passalidarum for improving bioethanol production.
Collapse
|
12
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
13
|
Suzuki T, Hoshino T, Matsushika A. High-temperature ethanol production by a series of recombinant xylose-fermenting Kluyveromyces marxianus strains. Enzyme Microb Technol 2019; 129:109359. [DOI: 10.1016/j.enzmictec.2019.109359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
|
14
|
Veras HCT, Campos CG, Nascimento IF, Abdelnur PV, Almeida JRM, Parachin NS. Metabolic flux analysis for metabolome data validation of naturally xylose-fermenting yeasts. BMC Biotechnol 2019; 19:58. [PMID: 31382948 PMCID: PMC6683545 DOI: 10.1186/s12896-019-0548-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Efficient xylose fermentation still demands knowledge regarding xylose catabolism. In this study, metabolic flux analysis (MFA) and metabolomics were used to improve our understanding of xylose metabolism. Thus, a stoichiometric model was constructed to simulate the intracellular carbon flux and used to validate the metabolome data collected within xylose catabolic pathways of non-Saccharomyces xylose utilizing yeasts. RESULTS A metabolic flux model was constructed using xylose fermentation data from yeasts Scheffersomyces stipitis, Spathaspora arborariae, and Spathaspora passalidarum. In total, 39 intracellular metabolic reactions rates were utilized validating the measurements of 11 intracellular metabolites, acquired by mass spectrometry. Among them, 80% of total metabolites were confirmed with a correlation above 90% when compared to the stoichiometric model. Among the intracellular metabolites, fructose-6-phosphate, glucose-6-phosphate, ribulose-5-phosphate, and malate are validated in the three studied yeasts. However, the metabolites phosphoenolpyruvate and pyruvate could not be confirmed in any yeast. Finally, the three yeasts had the metabolic fluxes from xylose to ethanol compared. Xylose catabolism occurs at twice-higher flux rates in S. stipitis than S. passalidarum and S. arborariae. Besides, S. passalidarum present 1.5 times high flux rate in the xylose reductase reaction NADH-dependent than other two yeasts. CONCLUSIONS This study demonstrated a novel strategy for metabolome data validation and brought insights about naturally xylose-fermenting yeasts. S. stipitis and S. passalidarum showed respectively three and twice higher flux rates of XR with NADH cofactor, reducing the xylitol production when compared to S. arborariae. Besides then, the higher flux rates directed to pentose phosphate pathway (PPP) and glycolysis pathways resulted in better ethanol production in S. stipitis and S. passalidarum when compared to S. arborariae.
Collapse
Affiliation(s)
- Henrique C. T. Veras
- Grupo Engenharia de Biocatalisadores, Universidade de Brasília - UnB , Campus Darcy Ribeiro, Instituto de Ciências Biológicas, Bloco K, 1° andar, Asa Norte, Brasilia, 70.790-900 Brazil
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
| | - Christiane G. Campos
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, Brazil
| | - Igor F. Nascimento
- Programa de Pós-Graduação em Administração, Universidade de Brasília - UnB, Brasília, Brazil
| | - Patrícia V. Abdelnur
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, Brazil
| | - João R. M. Almeida
- Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Agroenergia, Brasília-DF, Brazil
- Programa de Pós-Graduação em Biologia Microbiana, Instituto de Biologia, Universidade de Brasília - UnB, Brasilia, Brazil
| | - Nádia S. Parachin
- Grupo Engenharia de Biocatalisadores, Universidade de Brasília - UnB , Campus Darcy Ribeiro, Instituto de Ciências Biológicas, Bloco K, 1° andar, Asa Norte, Brasilia, 70.790-900 Brazil
- Programa de Pós-Graduação em Biologia Microbiana, Instituto de Biologia, Universidade de Brasília - UnB, Brasilia, Brazil
| |
Collapse
|
15
|
Borelli G, Fiamenghi MB, dos Santos LV, Carazzolle MF, Pereira GAG, José J. Positive Selection Evidence in Xylose-Related Genes Suggests Methylglyoxal Reductase as a Target for the Improvement of Yeasts' Fermentation in Industry. Genome Biol Evol 2019; 11:1923-1938. [PMID: 31070742 PMCID: PMC6637916 DOI: 10.1093/gbe/evz036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Xylose assimilation and fermentation are important traits for second generation ethanol production. However, some genomic features associated with this pentose sugar's metabolism remain unknown in yeasts. Comparative genomics studies have led to important insights in this field, but we are still far from completely understanding endogenous yeasts' xylose metabolism. In this work, we carried out a deep evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Our investigation detected positive selection fingerprints at this clade not only among sequences of important genes for xylose metabolism, such as xylose reductase and xylitol dehydrogenase, but also in genes expected to undergo neutral evolution, such as the glycolytic gene phosphoglycerate mutase. In addition, we present expansion, positive selection marks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the little studied methylglyoxal reductases. We propose a metabolic model suggesting that selected codons among these proteins caused a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance. These findings provide a wider look into pentose metabolism of yeasts and add this previously overlooked piece into the intricate puzzle of oxidative imbalance. Although being extensively discussed in evolutionary works the awareness of selection patterns is recent in biotechnology researches, rendering insights to surpass the reached status quo in many of its subareas.
Collapse
Affiliation(s)
- Guilherme Borelli
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
| | - Mateus Bernabe Fiamenghi
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
| | - Leandro Vieira dos Santos
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Juliana José
- Genomics and bioEnergy Laboratory (LGE), Institute of Biology, Unicamp, São Paulo, Campinas, Brazil
| |
Collapse
|
16
|
Gao M, Ploessl D, Shao Z. Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts. Front Microbiol 2019; 9:3264. [PMID: 30723464 PMCID: PMC6349770 DOI: 10.3389/fmicb.2018.03264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Plant biomass is a promising carbon source for producing value-added chemicals, including transportation biofuels, polymer precursors, and various additives. Most engineered microbial hosts and a select group of wild-type species can metabolize mixed sugars including oligosaccharides, hexoses, and pentoses that are hydrolyzed from plant biomass. However, most of these microorganisms consume glucose preferentially to non-glucose sugars through mechanisms generally defined as carbon catabolite repression. The current lack of simultaneous mixed-sugar utilization limits achievable titers, yields, and productivities. Therefore, the development of microbial platforms capable of fermenting mixed sugars simultaneously from biomass hydrolysates is essential for economical industry-scale production, particularly for compounds with marginal profits. This review aims to summarize recent discoveries and breakthroughs in the engineering of yeast cell factories for improved mixed-sugar co-utilization based on various metabolic engineering approaches. Emphasis is placed on enhanced non-glucose utilization, discovery of novel sugar transporters free from glucose repression, native xylose-utilizing microbes, consolidated bioprocessing (CBP), improved cellulase secretion, and creation of microbial consortia for improving mixed-sugar utilization. Perspectives on the future development of biorenewables industry are provided in the end.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,The Ames Laboratory, Iowa State University, Ames, IA, United States.,The Interdisciplinary Microbiology Program, Biorenewables Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Quehenberger J, Reichenbach T, Baumann N, Rettenbacher L, Divne C, Spadiut O. Kinetics and Predicted Structure of a Novel Xylose Reductase from Chaetomium thermophilum. Int J Mol Sci 2019; 20:ijms20010185. [PMID: 30621365 PMCID: PMC6337131 DOI: 10.3390/ijms20010185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 11/16/2022] Open
Abstract
While in search of an enzyme for the conversion of xylose to xylitol at elevated temperatures, a xylose reductase (XR) gene was identified in the genome of the thermophilic fungus Chaetomium thermophilum. The gene was heterologously expressed in Escherichia coli as a His6-tagged fusion protein and characterized for function and structure. The enzyme exhibits dual cofactor specificity for NADPH and NADH and prefers D-xylose over other pentoses and investigated hexoses. A homology model based on a XR from Candida tenuis was generated and the architecture of the cofactor binding site was investigated in detail. Despite the outstanding thermophilicity of its host the enzyme is, however, not thermostable.
Collapse
Affiliation(s)
- Julian Quehenberger
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Faculty of Technical Chemistry, TU Wien, 1060 Vienna, Austria.
| | - Tom Reichenbach
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health, SE-100 44 Stockholm, Sweden.
| | - Niklas Baumann
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Faculty of Technical Chemistry, TU Wien, 1060 Vienna, Austria.
| | - Lukas Rettenbacher
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Faculty of Technical Chemistry, TU Wien, 1060 Vienna, Austria.
| | - Christina Divne
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health, SE-100 44 Stockholm, Sweden.
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Faculty of Technical Chemistry, TU Wien, 1060 Vienna, Austria.
| |
Collapse
|
18
|
Haase MAB, Kominek J, Langdon QK, Kurtzman CP, Hittinger CT. Genome sequence and physiological analysis of Yamadazyma laniorum f.a. sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species, Candida tenuis. FEMS Yeast Res 2018; 17:3737663. [PMID: 28419220 DOI: 10.1093/femsyr/fox019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
Xylose fermentation is a rare trait that is immensely important to the cellulosic biofuel industry, and Candida tenuis is one of the few yeasts that has been reported with this trait. Here we report the isolation of two strains representing a candidate sister species to C. tenuis. Integrated analysis of genome sequence and physiology suggested the genetic basis of a number of traits, including variation between the novel species and C. tenuis in lactose metabolism due to the loss of genes encoding lactose permease and β-galactosidase in the former. Surprisingly, physiological characterization revealed that neither the type strain of C. tenuis nor this novel species fermented xylose in traditional assays. We reexamined three xylose-fermenting strains previously identified as C. tenuis and found that these strains belong to the genus Scheffersomyces and are not C. tenuis. We propose Yamadazyma laniorum f.a. sp. nov. to accommodate our new strains and designate its type strain as yHMH7 (=CBS 14780 = NRRL Y-63967T). Furthermore, we propose the transfer of Candida tenuis to the genus Yamadazyma as Yamadazyma tenuis comb. nov. This approach provides a roadmap for how integrated genome sequence and physiological analysis can yield insight into the mechanisms that generate yeast biodiversity.
Collapse
Affiliation(s)
- Max A B Haase
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Quinn K Langdon
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cletus P Kurtzman
- National Center for Agricultural Utilization Research, ARS-USDA, 1815 North University St., Peoria, IL 61604, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Novy V, Brunner B, Nidetzky B. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Microb Cell Fact 2018; 17:59. [PMID: 29642896 PMCID: PMC5894196 DOI: 10.1186/s12934-018-0905-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/31/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae, engineered for L-lactic acid production from glucose and xylose, is a promising production host for lignocellulose-to-lactic acid processes. However, the two principal engineering strategies-pyruvate-to-lactic acid conversion with and without disruption of the competing pyruvate-to-ethanol pathway-have not yet resulted in strains that combine high lactic acid yields (YLA) and productivities (QLA) on both sugar substrates. Limitations seemingly arise from a dependency on the carbon source and the aeration conditions, but the underlying effects are poorly understood. We have recently presented two xylose-to-lactic acid converting strains, IBB14LA1 and IBB14LA1_5, which have the L-lactic acid dehydrogenase from Plasmodium falciparum (pfLDH) integrated at the pdc1 (pyruvate decarboxylase) locus. IBB14LA1_5 additionally has its pdc5 gene knocked out. In this study, the influence of carbon source and oxygen on YLA and QLA in IBB14LA1 and IBB14LA1_5 was investigated. RESULTS In anaerobic fermentation IBB14LA1 showed a higher YLA on xylose (0.27 g g Xyl-1 ) than on glucose (0.18 g g Glc-1 ). The ethanol yields (YEtOH, 0.15 g g Xyl-1 and 0.32 g g Glc-1 ) followed an opposite trend. In IBB14LA1_5, the effect of the carbon source on YLA was less pronounced (~ 0.80 g g Xyl-1 , and 0.67 g g Glc-1 ). Supply of oxygen accelerated glucose conversions significantly in IBB14LA1 (QLA from 0.38 to 0.81 g L-1 h-1) and IBB14LA1_5 (QLA from 0.05 to 1.77 g L-1 h-1) at constant YLA (IBB14LA1 ~ 0.18 g g Glc-1 ; IBB14LA1_5 ~ 0.68 g g Glc-1 ). In aerobic xylose conversions, however, lactic acid production ceased completely in IBB14LA1 and decreased drastically in IBB14LA1_5 (YLA aerobic ≤ 0.25 g g Xyl-1 and anaerobic ~ 0.80 g g Xyl-1 ) at similar QLA (~ 0.04 g L-1 h-1). Switching from aerobic to microaerophilic conditions (pO2 ~ 2%) prevented lactic acid metabolization, observed for fully aerobic conditions, and increased QLA and YLA up to 0.11 g L-1 h-1 and 0.38 g g Xyl-1 , respectively. The pfLDH and PDC activities in IBB14LA1 were measured and shown to change drastically dependent on carbon source and oxygen. CONCLUSION Evidence from conversion time courses together with results of activity measurements for pfLDH and PDC show that in IBB14LA1 the distribution of fluxes at the pyruvate branching point is carbon source and oxygen dependent. Comparison of the performance of strain IBB14LA1 and IBB14LA1_5 in conversions under different aeration conditions (aerobic, anaerobic, and microaerophilic) further suggest that xylose, unlike glucose, does not repress the respiratory response in both strains. This study proposes new genetic engineering targets for rendering genetically engineering S. cerevisiae better suited for lactic acid biorefineries.
Collapse
Affiliation(s)
- Vera Novy
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Bernd Brunner
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria. .,Austrian Centre of Industrial Biotechnology, Graz, Austria.
| |
Collapse
|
20
|
Defosse TA, Le Govic Y, Courdavault V, Clastre M, Vandeputte P, Chabasse D, Bouchara JP, Giglioli-Guivarc'h N, Papon N. [Yeasts from the CTG clade (Candida clade): Biology, impact in human health, and biotechnological applications]. J Mycol Med 2018; 28:257-268. [PMID: 29545121 DOI: 10.1016/j.mycmed.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 11/29/2022]
Abstract
Among the subdivision of Saccharomycotina (ascomycetes budding yeasts), the CTG clade (formerly the Candida clade) includes species that display a particular genetic code. In these yeasts, the CTG codon is predominantly translated as a serine instead of a leucine residue. It is now well-known that some CTG clade species have a major impact on human and its activities. Some of them are recognized as opportunistic agents of fungal infections termed candidiasis. In addition, another series of species belonging to the CTG clade draws the attention of some research groups because they exhibit a strong potential in various areas of biotechnology such as biological control, bioremediation, but also in the production of valuable biocompounds (biofuel, vitamins, sweeteners, industrial enzymes). Here we provide an overview of recent advances concerning the biology, clinical relevance, and currently tested biotechnological applications of species of the CTG clade. Future directions for scientific research on these particular yeasts are also discussed.
Collapse
Affiliation(s)
- T A Defosse
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - Y Le Govic
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - V Courdavault
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - M Clastre
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - P Vandeputte
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - D Chabasse
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - J-P Bouchara
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - N Giglioli-Guivarc'h
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - N Papon
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France.
| |
Collapse
|
21
|
You C, Huang R, Wei X, Zhu Z, Zhang YHP. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synth Syst Biotechnol 2017; 2:208-218. [PMID: 29318201 PMCID: PMC5655348 DOI: 10.1016/j.synbio.2017.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023] Open
Abstract
Two natural nicotinamide-based coenzymes (NAD and NADP) are indispensably required by the vast majority of oxidoreductases for catabolism and anabolism, respectively. Most NAD(P)-dependent oxidoreductases prefer one coenzyme as an electron acceptor or donor to the other depending on their different metabolic roles. This coenzyme preference associated with coenzyme imbalance presents some challenges for the construction of high-efficiency in vivo and in vitro synthetic biology pathways. Changing the coenzyme preference of NAD(P)-dependent oxidoreductases is an important area of protein engineering, which is closely related to product-oriented synthetic biology projects. This review focuses on the methodology of nicotinamide-based coenzyme engineering, with its application in improving product yields and decreasing production costs. Biomimetic nicotinamide-containing coenzymes have been proposed to replace natural coenzymes because they are more stable and less costly than natural coenzymes. Recent advances in the switching of coenzyme preference from natural to biomimetic coenzymes are also covered in this review. Engineering coenzyme preferences from natural to biomimetic coenzymes has become an important direction for coenzyme engineering, especially for in vitro synthetic pathways and in vivo bioorthogonal redox pathways.
Collapse
Affiliation(s)
- Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Rui Huang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yi-Heng Percival Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
22
|
Novy V, Wang R, Westman JO, Franzén CJ, Nidetzky B. Saccharomyces cerevisiae strain comparison in glucose-xylose fermentations on defined substrates and in high-gravity SSCF: convergence in strain performance despite differences in genetic and evolutionary engineering history. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:205. [PMID: 28878820 PMCID: PMC5584037 DOI: 10.1186/s13068-017-0887-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The most advanced strains of xylose-fermenting Saccharomyces cerevisiae still utilize xylose far less efficiently than glucose, despite the extensive metabolic and evolutionary engineering applied in their development. Systematic comparison of strains across literature is difficult due to widely varying conditions used for determining key physiological parameters. Here, we evaluate an industrial and a laboratory S. cerevisiae strain, which has the assimilation of xylose via xylitol in common, but differ fundamentally in the history of their adaptive laboratory evolution development, and in the cofactor specificity of the xylose reductase (XR) and xylitol dehydrogenase (XDH). RESULTS In xylose and mixed glucose-xylose shaken bottle fermentations, with and without addition of inhibitor-rich wheat straw hydrolyzate, the specific xylose uptake rate of KE6-12.A (0.27-1.08 g gCDW-1 h-1) was 1.1 to twofold higher than that of IBB10B05 (0.10-0.82 g gCDW-1 h-1). KE6-12.A further showed a 1.1 to ninefold higher glycerol yield (0.08-0.15 g g-1) than IBB10B05 (0.01-0.09 g g-1). However, the ethanol yield (0.30-0.40 g g-1), xylitol yield (0.08-0.26 g g-1), and maximum specific growth rate (0.04-0.27 h-1) were in close range for both strains. The robustness of flocculating variants of KE6-12.A (KE-Flow) and IBB10B05 (B-Flow) was analyzed in high-gravity simultaneous saccharification and co-fermentation. As in shaken bottles, KE-Flow showed faster xylose conversion and higher glycerol formation than B-Flow, but final ethanol titres (61 g L-1) and cell viability were again comparable for both strains. CONCLUSIONS Individual specific traits, elicited by the engineering strategy, can affect global physiological parameters of S. cerevisiae in different and, sometimes, unpredictable ways. The industrial strain background and prolonged evolution history in KE6-12.A improved the specific xylose uptake rate more substantially than the superior XR, XDH, and xylulokinase activities were able to elicit in IBB10B05. Use of an engineered XR/XDH pathway in IBB10B05 resulted in a lower glycerol rather than a lower xylitol yield. However, the strain development programs were remarkably convergent in terms of the achieved overall strain performance. This highlights the importance of comparative strain evaluation to advance the engineering strategies for next-generation S. cerevisiae strain development.
Collapse
Affiliation(s)
- Vera Novy
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
| | - Ruifei Wang
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Johan O Westman
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
23
|
Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 2017; 17:3868933. [PMID: 28899031 PMCID: PMC5812533 DOI: 10.1093/femsyr/fox044] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022] Open
Abstract
The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions.
Collapse
Affiliation(s)
- Mickel L. A. Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jasmine M. Bracher
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Ioannis Papapetridis
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Maarten D. Verhoeven
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Hans de Bruijn
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Paul P. de Waal
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Paul Klaassen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
24
|
Miskovic L, Alff-Tuomala S, Soh KC, Barth D, Salusjärvi L, Pitkänen JP, Ruohonen L, Penttilä M, Hatzimanikatis V. A design-build-test cycle using modeling and experiments reveals interdependencies between upper glycolysis and xylose uptake in recombinant S. cerevisiae and improves predictive capabilities of large-scale kinetic models. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:166. [PMID: 28674555 PMCID: PMC5485749 DOI: 10.1186/s13068-017-0838-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/06/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Recent advancements in omics measurement technologies have led to an ever-increasing amount of available experimental data that necessitate systems-oriented methodologies for efficient and systematic integration of data into consistent large-scale kinetic models. These models can help us to uncover new insights into cellular physiology and also to assist in the rational design of bioreactor or fermentation processes. Optimization and Risk Analysis of Complex Living Entities (ORACLE) framework for the construction of large-scale kinetic models can be used as guidance for formulating alternative metabolic engineering strategies. RESULTS We used ORACLE in a metabolic engineering problem: improvement of the xylose uptake rate during mixed glucose-xylose consumption in a recombinant Saccharomyces cerevisiae strain. Using the data from bioreactor fermentations, we characterized network flux and concentration profiles representing possible physiological states of the analyzed strain. We then identified enzymes that could lead to improved flux through xylose transporters (XTR). For some of the identified enzymes, including hexokinase (HXK), we could not deduce if their control over XTR was positive or negative. We thus performed a follow-up experiment, and we found out that HXK2 deletion improves xylose uptake rate. The data from the performed experiments were then used to prune the kinetic models, and the predictions of the pruned population of kinetic models were in agreement with the experimental data collected on the HXK2-deficient S. cerevisiae strain. CONCLUSIONS We present a design-build-test cycle composed of modeling efforts and experiments with a glucose-xylose co-utilizing recombinant S. cerevisiae and its HXK2-deficient mutant that allowed us to uncover interdependencies between upper glycolysis and xylose uptake pathway. Through this cycle, we also obtained kinetic models with improved prediction capabilities. The present study demonstrates the potential of integrated "modeling and experiments" systems biology approaches that can be applied for diverse applications ranging from biotechnology to drug discovery.
Collapse
Affiliation(s)
- Ljubisa Miskovic
- Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Keng Cher Soh
- Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dorothee Barth
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | | | | | - Laura Ruohonen
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | | |
Collapse
|
25
|
Zhao C, Zhao Q, Li Y, Zhang Y. Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories. Microb Cell Fact 2017; 16:115. [PMID: 28646866 PMCID: PMC5483285 DOI: 10.1186/s12934-017-0728-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
The biosynthetic pathways of most alcohols are linked to intracellular redox homeostasis, which is crucial for life. This crucial balance is primarily controlled by the generation of reducing equivalents, as well as the (reduction)-oxidation metabolic cycle and the thiol redox homeostasis system. As a main oxidation pathway of reducing equivalents, the biosynthesis of most alcohols includes redox reactions, which are dependent on cofactors such as NADH or NADPH. Thus, when engineering alcohol-producing strains, the availability of cofactors and redox homeostasis must be considered. In this review, recent advances on the engineering of cellular redox homeostasis systems to accelerate alcohol biosynthesis are summarized. Recent approaches include improving cofactor availability, manipulating the affinity of redox enzymes to specific cofactors, as well as globally controlling redox reactions, indicating the power of these approaches, and opening a path towards improving the production of a number of different industrially-relevant alcohols in the near future.
Collapse
Affiliation(s)
- Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qiuwei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| |
Collapse
|
26
|
Zhang GC, Turner TL, Jin YS. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. ACTA ACUST UNITED AC 2017; 44:387-395. [DOI: 10.1007/s10295-016-1899-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/25/2016] [Indexed: 12/22/2022]
Abstract
Abstract
Accumulation of reduced byproducts such as glycerol and xylitol during xylose fermentation by engineered Saccharomyces cerevisiae hampers the economic production of biofuels and chemicals from cellulosic hydrolysates. In particular, engineered S. cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD+-linked xylitol dehydrogenase (XDH) produces substantial amounts of the reduced byproducts under anaerobic conditions due to the cofactor difference of XR and XDH. While the additional expression of a water-forming NADH oxidase (NoxE) from Lactococcus lactis in engineered S. cerevisiae with the XR/XDH pathway led to reduced glycerol and xylitol production and increased ethanol yields from xylose, volumetric ethanol productivities by the engineered yeast decreased because of growth defects from the overexpression of noxE. In this study, we introduced noxE into an engineered yeast strain (SR8) exhibiting near-optimal xylose fermentation capacity. To overcome the growth defect caused by the overexpression of noxE, we used a high cell density inoculum for xylose fermentation by the SR8 expressing noxE. The resulting strain, SR8N, not only showed a higher ethanol yield and lower byproduct yields, but also exhibited a high ethanol productivity during xylose fermentation. As noxE overexpression elicits a negligible growth defect on glucose conditions, the beneficial effects of noxE overexpression were substantial when a mixture of glucose and xylose was used. Consumption of glucose led to rapid cell growth and therefore enhanced the subsequent xylose fermentation. As a result, the SR8N strain produced more ethanol and fewer byproducts from a mixture of glucose and xylose than the parental SR8 strain without noxE overexpression. Our results suggest that the growth defects from noxE overexpression can be overcome in the case of fermenting lignocellulose-derived sugars such as glucose and xylose.
Collapse
Affiliation(s)
- Guo-Chang Zhang
- grid.35403.31 0000000419369991 Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign 1206 W. Gregory Drive 61801 Urbana IL USA
- grid.35403.31 0000000419369991 Department of Food Science and Human Nutrition University of Illinois at Urbana-Champaign 61801 Urbana IL USA
| | - Timothy L Turner
- grid.35403.31 0000000419369991 Department of Food Science and Human Nutrition University of Illinois at Urbana-Champaign 61801 Urbana IL USA
| | - Yong-Su Jin
- grid.35403.31 0000000419369991 Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign 1206 W. Gregory Drive 61801 Urbana IL USA
- grid.35403.31 0000000419369991 Department of Food Science and Human Nutrition University of Illinois at Urbana-Champaign 61801 Urbana IL USA
| |
Collapse
|
27
|
Guo W, Sheng J, Feng X. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 162:265-299. [PMID: 28424826 DOI: 10.1007/10_2017_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jiayuan Sheng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
28
|
Moreno AD, Alvira P, Ibarra D, Tomás-Pejó E. Production of Ethanol from Lignocellulosic Biomass. PRODUCTION OF PLATFORM CHEMICALS FROM SUSTAINABLE RESOURCES 2017. [DOI: 10.1007/978-981-10-4172-3_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Bommer GT, Baldin F, Van Schaftingen E. Accumulation of metabolic side products might favor the production of ethanol in Pho13 knockout strains. MICROBIAL CELL 2016; 3:495-499. [PMID: 28357317 PMCID: PMC5348983 DOI: 10.15698/mic2016.10.532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Guido T Bommer
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO) and Laboratory of Physiological Chemistry, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Francesca Baldin
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO) and Laboratory of Physiological Chemistry, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Emilie Van Schaftingen
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO) and Laboratory of Physiological Chemistry, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
30
|
Lemmerer M, Schmölzer K, Gutmann A, Nidetzky B. Downstream Processing of Nucleoside-Diphospho-Sugars from Sucrose Synthase Reaction Mixtures at Decreased Solvent Consumption. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Lemmerer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology; NAWI Graz; Petersgasse 12/I 8010 Graz Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology; NAWI Graz; Petersgasse 12/I 8010 Graz Austria
| |
Collapse
|
31
|
Novy V, Brunner B, Müller G, Nidetzky B. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Biotechnol Bioeng 2016; 114:163-171. [PMID: 27426989 DOI: 10.1002/bit.26048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
l-Lactic acid is an important platform chemical and its production from the lignocellulosic sugars glucose and xylose is, therefore, of high interest. Tolerance to low pH and a generally high robustness make Saccharomyces cerevisiae a promising host for l-lactic acid fermentation but strain development for effective utilization of both sugars is an unsolved problem. The herein used S. cerevisiae strain IBB10B05 incorporates a NADH-dependent pathway for oxidoreductive xylose assimilation within CEN.PK113-7D background and was additionally evolved for accelerated xylose-to-ethanol fermentation. Selecting the Plasmodium falciparum l-lactate dehydrogenase (pfLDH) for its high kinetic efficiency, strain IBB14LA1 was derived from IBB10B05 by placing the pfldh gene at the pdc1 locus under control of the pdc1 promotor. Strain IBB14LA1_5 additionally had the pdc5 gene disrupted. With both strains, continued l-lactic acid formation from glucose or xylose, each at 50 g/L, necessitated stabilization of pH. Using calcium carbonate (11 g/L), anaerobic shaken bottle fermentations at pH ≥ 5 resulted in l-lactic acid yields (YLA ) of 0.67 g/g glucose and 0.80 g/g xylose for strain IBB14LA1_5. Only little xylitol was formed (≤0.08 g/g) and no ethanol. In pH stabilized aerobic conversions of glucose, strain IBB14LA1_5 further showed excellent l-lactic acid productivities (1.8 g/L/h) without losses in YLA (0.69 g/g glucose). In strain IBB14LA1, the YLA was lower (≤0.18 g/g glucose; ≤0.27 g/g xylose) due to ethanol as well as xylitol formation. Therefore, this study shows that a S. cerevisiae strain originally optimized for xylose-to-ethanol fermentation was useful to implement l-lactic acid production from glucose and xylose; and with the metabolic engineering strategy applied, advance toward homolactic fermentation of both sugars was made. Biotechnol. Bioeng. 2017;114: 163-171. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vera Novy
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| | - Bernd Brunner
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| | - Gerdt Müller
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| | - Bernd Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
32
|
Nielsen F, Zacchi G, Galbe M, Wallberg O. Prefermentation improves ethanol yield in separate hydrolysis and cofermentation of steam-pretreated wheat straw. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40508-016-0054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
|
34
|
Jo SE, Seong YJ, Lee HS, Lee SM, Kim SJ, Park K, Park YC. Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6 MUT expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6. J Biotechnol 2016; 227:72-78. [DOI: 10.1016/j.jbiotec.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/27/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022]
|
35
|
Zhang L, Ma Y, Zhao C, He B, Zhu X, Yang W. Entrapment of Xylanase within a Polyethylene Glycol Net-Cloth Grafted on Polypropylene Nonwoven Fabrics with Exceptional Operational Stability and Its Application for Hydrolysis of Corncob Hemicelluloses. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lihua Zhang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin He
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Zhu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
36
|
13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production. Bioengineering (Basel) 2015; 3:bioengineering3010003. [PMID: 28952565 PMCID: PMC5597161 DOI: 10.3390/bioengineering3010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms
Collapse
|
37
|
Pratter SM, Eixelsberger T, Nidetzky B. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form. BIORESOURCE TECHNOLOGY 2015; 198:732-738. [PMID: 26452180 DOI: 10.1016/j.biortech.2015.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production.
Collapse
Affiliation(s)
- S M Pratter
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - T Eixelsberger
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - B Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
38
|
Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Appl Microbiol Biotechnol 2015; 100:1531-1542. [PMID: 26603762 DOI: 10.1007/s00253-015-7167-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/19/2015] [Accepted: 11/06/2015] [Indexed: 01/01/2023]
Abstract
Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.
Collapse
|
39
|
Qi X, Zha J, Liu GG, Zhang W, Li BZ, Yuan YJ. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Front Microbiol 2015; 6:1165. [PMID: 26539187 PMCID: PMC4612707 DOI: 10.3389/fmicb.2015.01165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/08/2015] [Indexed: 12/24/2022] Open
Abstract
Xylose utilization is one key issue for the bioconversion of lignocelluloses. It is a promising approach to engineering heterologous pathway for xylose utilization in Saccharomyces cerevisiae. Here, we constructed a xylose-fermenting yeast SyBE001 through combinatorial fine-tuning the expression of XylA and endogenous XKS1. Additional overexpression of genes RKI1, RPE1, TKL1, and TAL1 in the non-oxidative pentose phosphate pathway (PPP) in SyBE001 increased the xylose consumption rate by 1.19-fold. By repetitive adaptation, the xylose utilization rate was further increased by ∼10-fold in the resultant strain SyBE003. Gene expression analysis identified a variety of genes with significantly changed expression in the PPP, glycolysis and the tricarboxylic acid cycle in SyBE003.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Jian Zha
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Gao-Gang Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Weiwen Zhang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| |
Collapse
|
40
|
Trausinger G, Gruber C, Krahulec S, Magnes C, Nidetzky B, Klimacek M. Identification of novel metabolic interactions controlling carbon flux from xylose to ethanol in natural and recombinant yeasts. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:157. [PMID: 26413156 PMCID: PMC4582818 DOI: 10.1186/s13068-015-0340-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/09/2015] [Indexed: 05/31/2023]
Abstract
BACKGROUND Unlike xylose-converting natural yeasts, recombinant strains of Saccharomyces cerevisiae expressing the same xylose assimilation pathway produce under anaerobic conditions xylitol rather than ethanol from xylose at low specific xylose conversion rates. Despite intense research efforts over the last two decades, differences in these phenotypes cannot be explained by current metabolic and kinetic models. To improve our understanding how metabolic flux of xylose carbon to ethanol is controlled, we developed a novel kinetic model based on enzyme mechanisms and applied quantitative metabolite profiling together with enzyme activity analysis to study xylose-to-ethanol metabolisms of Candida tenuis CBS4435 (q xylose = 0.10 g/gdc/h, 25 °C; Y ethanol = 0.44 g/g; Y xylitol = 0.09 g/g) and the recombinant S. cerevisiae strain BP000 (q xylose = 0.07 g/gdc/h, 30 °C; Y ethanol = 0.24 g/g; Y xylitol = 0.43 g/g), both expressing the same xylose reductase (XR), comprehensively. RESULTS Results from strain-to-strain metabolic control analysis indicated that activity levels of XR and the maximal flux capacity of the upper glycolysis (UG; both ≥ tenfold higher in CBS4435) contributed predominantly to phenotype differentiation while reactions from the oxidative pentose phosphate pathway played minor roles. Intracellular metabolite profiles supported results obtained from kinetic modeling and indicated a positive correlation between pool sizes of UG metabolites and carbon flux through the UG. For CBS4435, fast carbon flux through the UG could be associated with an allosteric control of 6-phosphofructokinase (PFK) activity by fructose 6-phosphate. The ability of CBS4435 to keep UG metabolites at high levels could be explained by low glycerol 3-phosphate phosphatase (GPP, 17-fold lower in CBS4435) and high XR activities. CONCLUSIONS By applying a systems biology approach in which we combined results obtained from metabolic control analysis based on kinetic modeling with data obtained from quantitative metabolite profiling and enzyme activity analyses, we could provide new insights into metabolic and kinetic interactions contributing to the control of carbon flux from xylose to ethanol. Supported by evidences presented two new targets, PFK and GPP, could be identified that aside from XR play pivotal roles in phenotype differentiation. Design of efficient and fast microbial ethanol producers in the future can certainly benefit from results presented in this study.
Collapse
Affiliation(s)
- Gert Trausinger
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010 Graz, Austria
- />HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H., Graz, Austria
| | - Christoph Gruber
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010 Graz, Austria
| | - Stefan Krahulec
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010 Graz, Austria
| | - Christoph Magnes
- />HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H., Graz, Austria
| | - Bernd Nidetzky
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010 Graz, Austria
| | - Mario Klimacek
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010 Graz, Austria
| |
Collapse
|
41
|
Challenges for the production of bioethanol from biomass using recombinant yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:89-125. [PMID: 26003934 DOI: 10.1016/bs.aambs.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels.
Collapse
|
42
|
Su Y, Willis LB, Jeffries TW. Effects of aeration on growth, ethanol and polyol accumulation by
Spathaspora passalidarum
NRRL Y‐27907 and
Scheffersomyces stipitis
NRRL Y‐7124. Biotechnol Bioeng 2015; 112:457-69. [DOI: 10.1002/bit.25445] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Yi‐Kai Su
- Department of Biological Systems EngineeringUniversity of WisconsinMadisonWisconsin
- DOE Great Lakes Bioenergy Research CenterUniversity of WisconsinMadison53703Wisconsin
| | - Laura B. Willis
- DOE Great Lakes Bioenergy Research CenterUniversity of WisconsinMadison53703Wisconsin
- Department of BacteriologyUniversity of WisconsinMadisonWisconsin
- Forest Products LaboratoryUSDA Forest ServiceMadisonWisconsin
| | - Thomas W. Jeffries
- DOE Great Lakes Bioenergy Research CenterUniversity of WisconsinMadison53703Wisconsin
- Department of BacteriologyUniversity of WisconsinMadisonWisconsin
- Forest Products LaboratoryUSDA Forest ServiceMadisonWisconsin
| |
Collapse
|
43
|
Cho SJ, Lee SB. Identification and characterization of 3,6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0830-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Tsai CS, Kwak S, Turner TL, Jin YS. Yeast synthetic biology toolbox and applications for biofuel production. FEMS Yeast Res 2015; 15:1-15. [PMID: 25195615 DOI: 10.1111/1567-1364.12206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 01/04/2023] Open
Abstract
Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Suryang Kwak
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy L Turner
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
45
|
Novy V, Longus K, Nidetzky B. From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:46. [PMID: 25883680 PMCID: PMC4399083 DOI: 10.1186/s13068-015-0232-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/24/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND Lignocellulosic ethanol has a high potential as renewable energy source. In recent years, much research effort has been spent to optimize parameters involved in the production process. Despite that, there is still a lack of comprehensive studies on process integration. Single parameters and process configurations are, however, heavily interrelated and can affect the overall process efficiency in a multitude of ways. Here, we present an integrative approach for bioethanol production from wheat straw at a representative laboratory scale using a separate hydrolysis and co-fermentation (SHCF) process. The process does not rely on commercial (hemi-) cellulases but includes enzyme production through Hypocrea jecorina (formerly Trichoderma reesei) on the pre-treated feedstock as key unit operation. Hydrolysis reactions are run with high solid loadings of 15% dry mass pre-treated wheat straw (DM WS), and hydrolyzates are utilized without detoxification for mixed glucose-xylose fermentation with the genetically and evolutionary engineered Saccharomyces cerevisiae strain IBB10B05. RESULTS Process configurations of unit operations in the benchtop SHCF were varied and evaluated with respect to the overall process ethanol yield (Y Ethanol-Process). The highest Y Ethanol-Process of 71.2 g ethanol per kg raw material was reached when fungal fermentations were run as batch, and the hydrolysis reaction was done with an enzyme loading of 30 filter paper units (FPU)/gDM WS. 1.7 ± 0.1 FPU/mL were produced, glucose and xylose were released with a conversion efficiency of 67% and 95%, respectively, and strain IBB10B05 showed an ethanol yield of 0.4 g/gGlc + Xyl in 15% hydrolyzate fermentations. Based on the detailed process analysis, it was further possible to identify the enzyme yield, the glucose conversion efficiency, and the mass losses between the unit operations as key process parameters, exhibiting a major influence on Y Ethanol-Process. CONCLUSIONS Y Ethanol-Process is a measure for the efficiency of the lignocellulose-to-bioethanol process. Based on mass balance analysis, the correlations between single process parameters and Y Ethanol-Process were elucidated. The optimized laboratory scale SHCF process showed efficiencies similar to pilot scale plants. The herein presented process analysis can serve as effective and simple tool to identify key process parameters, bottlenecks, and future optimization targets.
Collapse
Affiliation(s)
- Vera Novy
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| | - Karin Longus
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| | - Bernd Nidetzky
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
- />Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
46
|
Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 2014; 42:1-20. [DOI: 10.1007/s10295-014-1535-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/02/2014] [Indexed: 12/27/2022]
|
47
|
Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 2014; 25:20-9. [DOI: 10.1016/j.ymben.2014.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/07/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
|
48
|
Yamasaki-Yashiki S, Komeda H, Hoshino K, Asano Y. Molecular analysis of NAD⁺-dependent xylitol dehydrogenase from the zygomycetous fungus Rhizomucor pusillus and reversal of the coenzyme preference. Biosci Biotechnol Biochem 2014; 78:1943-53. [PMID: 25082263 DOI: 10.1080/09168451.2014.943646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The zygomycetous fungus Rhizomucor pusillus NBRC 4578 is able to ferment not only d-glucose but also d-xylose into ethanol. Xylitol dehydrogenase from R. pusillus NBRC 4578 (RpXDH), which catalyzes the second step of d-xylose metabolism, was purified, and its enzymatic properties were characterized. The purified RpXDH preferred NAD(+) as its coenzyme and showed substrate specificity for xylitol, d-sorbitol, and ribitol. cDNA cloning of xyl2 gene encoding RpXDH revealed that the gene included a coding sequence of 1,092 bp with a molecular mass of 39,185 kDa. Expression of the xyl2 in R. pusillus NBRC 4578 was induced by d-xylose, and the expression levels were increased with accumulation of xylitol. The xyl2 gene was expressed in Escherichia coli, and coenzyme preference of the recombinant RpXDH was reversed from NAD(+) to NADP(+) in the double mutant D205A/I206R by site-directed mutagenesis.
Collapse
|
49
|
Ethanol Production from Xylose by a RecombinantCandida utilisStrain Expressing Protein-Engineered Xylose Reductase and Xylitol Dehydrogenase. Biosci Biotechnol Biochem 2014; 75:1994-2000. [DOI: 10.1271/bbb.110426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Novy V, Krahulec S, Wegleiter M, Müller G, Longus K, Klimacek M, Nidetzky B. Process intensification through microbial strain evolution: mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:49. [PMID: 24708666 PMCID: PMC4234986 DOI: 10.1186/1754-6834-7-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/18/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lignocellulose hydrolyzates present difficult substrates for ethanol production by the most commonly applied microorganism in the fermentation industries, Saccharomyces cerevisiae. High resistance towards inhibitors released during pretreatment and hydrolysis of the feedstock as well as efficient utilization of hexose and pentose sugars constitute major challenges in the development of S. cerevisiae strains for biomass-to-ethanol processes. Metabolic engineering and laboratory evolution are applied, alone and in combination, to adduce desired strain properties. However, physiological requirements for robust performance of S. cerevisiae in the conversion of lignocellulose hydrolyzates are not well understood. The herein presented S. cerevisiae strains IBB10A02 and IBB10B05 are descendants of strain BP10001, which was previously derived from the widely used strain CEN.PK 113-5D through introduction of a largely redox-neutral oxidoreductive xylose assimilation pathway. The IBB strains were obtained by a two-step laboratory evolution that selected for fast xylose fermentation in combination with anaerobic growth before (IBB10A02) and after adaption in repeated xylose fermentations (IBB10B05). Enzymatic hydrolyzates were prepared from up to 15% dry mass pretreated (steam explosion) wheat straw and contained glucose and xylose in a mass ratio of approximately 2. RESULTS With all strains, yield coefficients based on total sugar consumed were high for ethanol (0.39 to 0.40 g/g) and notably low for fermentation by-products (glycerol: ≤0.10 g/g; xylitol: ≤0.08 g/g; acetate: 0.04 g/g). In contrast to the specific glucose utilization rate that was similar for all strains (qGlucose ≈ 2.9 g/gcell dry weight (CDW)/h), the xylose consumption rate was enhanced by a factor of 11.5 (IBB10A02; qXylose = 0.23 g/gCDW/h) and 17.5 (IBB10B05; qXylose = 0.35 g/gCDW/h) as compared to the qXylose of the non-evolved strain BP10001. In xylose-supplemented (50 g/L) hydrolyzates prepared from 5% dry mass, strain IBB10B05 displayed a qXylose of 0.71 g/gCDW/h and depleted xylose in 2 days with an ethanol yield of 0.30 g/g. Under the conditions used, IBB10B05 was also capable of slow anaerobic growth. CONCLUSIONS Laboratory evolution of strain BP10001 resulted in effectively enhanced qXylose at almost complete retention of the fermentation capabilities previously acquired by metabolic engineering. Strain IBB10B05 is a sturdy candidate for intensification of lignocellulose-to-bioethanol processes.
Collapse
Affiliation(s)
- Vera Novy
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Stefan Krahulec
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Manfred Wegleiter
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Gerdt Müller
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Karin Longus
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| |
Collapse
|