1
|
Mwalugelo YA, Mponzi WP, Muyaga LL, Mahenge HH, Katusi GC, Muhonja F, Omondi D, Ochieng AO, Kaindoa EW, Amimo FA. Livestock keeping, mosquitoes and community viewpoints: a mixed methods assessment of relationships between livestock management, malaria vector biting risk and community perspectives in rural Tanzania. Malar J 2024; 23:213. [PMID: 39020392 PMCID: PMC11253484 DOI: 10.1186/s12936-024-05039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Livestock keeping is one of the potential factors related to malaria transmission. To date, the impact of livestock keeping on malaria transmission remains inconclusive, as some studies suggest a zooprophylactic effect while others indicate a zoopotentiation effect. This study assessed the impact of livestock management on malaria transmission risks in rural Tanzania. Additionally, the study explored the knowledge and perceptions of residents about the relationships between livestock keeping and malaria transmission risks in a selected village. METHODS In a longitudinal entomological study in Minepa village, South Eastern Tanzania, 40 households were randomly selected (20 with livestock, 20 without). Weekly mosquito collection was performed from January to April 2023. Indoor and outdoor collections used CDC-Light traps, Prokopack aspirators, human-baited double-net traps, and resting buckets. A subsample of mosquitoes was analysed using PCR and ELISA for mosquito species identification and blood meal detection. Livestock's impact on mosquito density was assessed using negative binomial GLMMs. Additionally, in-depth interviews explored community knowledge and perceptions of the relationship between livestock keeping and malaria transmission risks. RESULTS A total of 48,677 female Anopheles mosquitoes were collected. Out of these, 89% were Anopheles gambiae sensu lato (s.l.) while other species were Anopheles funestus s.l., Anopheles pharoensis, Anopheles coustani, and Anopheles squamosus. The findings revealed a statistically significant increase in the overall number of An. gambiae s.l. outdoors (RR = 1.181, 95%CI 1.050-1.862, p = 0.043). Also, there was an increase of the mean number of An. funestus s.l. mosquitoes collected in households with livestock indoors (RR = 2.866, 95%CI: 1.471-5.582, p = 0.002) and outdoors (RR = 1.579,95%CI 1.080-2.865, p = 0.023). The human blood index of Anopheles arabiensis mosquitoes from houses with livestock was less than those without livestock (OR = 0.149, 95%CI 0.110-0.178, p < 0.001). The majority of participants in the in-depth interviews reported a perceived high density of mosquitoes in houses with livestock compared to houses without livestock. CONCLUSION Despite the potential for zooprophylaxis, this study indicates a higher malaria transmission risk in livestock-keeping communities. It is crucial to prioritize and implement targeted interventions to control vector populations within these communities. Furthermore, it is important to enhance community education and awareness regarding covariates such as livestock that influence malaria transmission.
Collapse
Affiliation(s)
- Yohana A Mwalugelo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210, Bondo, 40601, Kenya.
| | - Winifrida P Mponzi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Letus L Muyaga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Herieth H Mahenge
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and BioEngineering, Tengeru, Arusha, United Republic of Tanzania
| | - Godfrey C Katusi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Faith Muhonja
- School of Public Health, Amref International University, P.O. Box 27691-00506, Nairobi, Kenya
| | - Dickens Omondi
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210, Bondo, 40601, Kenya
| | - Alfred O Ochieng
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210, Bondo, 40601, Kenya
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and BioEngineering, Tengeru, Arusha, United Republic of Tanzania
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Fred A Amimo
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210, Bondo, 40601, Kenya
| |
Collapse
|
2
|
Zhou G, Githure J, Lee MC, Zhong D, Wang X, Atieli H, Githeko AK, Kazura J, Yan G. Malaria transmission heterogeneity in different eco-epidemiological areas of western Kenya: a region-wide observational and risk classification study for adaptive intervention planning. Malar J 2024; 23:74. [PMID: 38475793 PMCID: PMC10935946 DOI: 10.1186/s12936-024-04903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Understanding of malaria ecology is a prerequisite for designing locally adapted control strategies in resource-limited settings. The aim of this study was to utilize the spatial heterogeneity in malaria transmission for the designing of adaptive interventions. METHODS Field collections of clinical malaria incidence, asymptomatic Plasmodium infection, and malaria vector data were conducted from 108 randomly selected clusters which covered different landscape settings including irrigated farming, seasonal flooding area, lowland dryland farming, and highlands in western Kenya. Spatial heterogeneity of malaria was analyzed and classified into different eco-epidemiological zones. RESULTS There was strong heterogeneity and detected hot/cold spots in clinical malaria incidence, Plasmodium prevalence, and vector abundance. The study area was classified into four zones based on clinical malaria incidence, parasite prevalence, vector density, and altitude. The two irrigated zones have either the highest malaria incidence, parasite prevalence, or the highest malaria vector density; the highlands have the lowest vector density and parasite prevalence; and the dryland and flooding area have the average clinical malaria incidence, parasite prevalence and vector density. Different zones have different vector species, species compositions and predominant species. Both indoor and outdoor transmission may have contributed to the malaria transmission in the area. Anopheles gambiae sensu stricto (s.s.), Anopheles arabiensis, Anopheles funestus s.s., and Anopheles leesoni had similar human blood index and malaria parasite sporozoite rate. CONCLUSION The multi-transmission-indicator-based eco-epidemiological zone classifications will be helpful for making decisions on locally adapted malaria interventions.
Collapse
Affiliation(s)
- Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, USA.
| | - John Githure
- Sub-Saharan International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, University of California, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, USA
| | - Xiaoming Wang
- Program in Public Health, University of California, Irvine, CA, USA
| | - Harrysone Atieli
- Sub-Saharan International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James Kazura
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Mbama Ntabi JD, Malda Bali ED, Lissom A, Akoton R, Djontu JC, Missontsa G, Mouzinga FH, Baina MT, Djogbenou L, Ndo C, Wondji C, Adegnika AA, Lenga A, Borrmann S, Ntoumi F. Contribution of Anopheles gambiae sensu lato mosquitoes to malaria transmission during the dry season in Djoumouna and Ntoula villages in the Republic of the Congo. Parasit Vectors 2024; 17:104. [PMID: 38431686 PMCID: PMC10908062 DOI: 10.1186/s13071-023-06102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 12/17/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Mosquitoes belonging to the Anopheles gambiae sensu lato complex play a major role in malaria transmission across Africa. This study assessed the relative importance of members of An. gambiae s.l. in malaria transmission in two rural villages in the Republic of the Congo. METHODS Adult mosquitoes were collected using electric aspirators from June to September 2022 in Djoumouna and Ntoula villages and were sorted by taxa based on their morphological features. Anopheles gambiae s.l. females were also molecularly identified. A TaqMan-based assay and a nested polymerase chain reaction (PCR) were performed to determine Plasmodium spp. in the mosquitoes. Entomological indexes were estimated, including man-biting rate, entomological inoculation rate (EIR), and diversity index. RESULTS Among 176 mosquitoes collected, An. gambiae s.l. was predominant (85.8%), followed by Culex spp. (13.6%) and Aedes spp. (0.6%). Three members of the An. gambiae s.l. complex were collected in both villages, namely An. gambiae sensu stricto (74.3%), Anopheles coluzzii (22.9%) and Anopheles arabiensis (2.8%). Three Plasmodium species were detected in An. gambiae s.s. and An. coluzzii (Plasmodium falciparum, P. malariae and P. ovale), while only P. falciparum and P. malariae were found in An. arabiensis. In general, the Plasmodium infection rate was 35.1% (53/151) using the TaqMan-based assay, and nested PCR confirmed 77.4% (41/53) of those infections. The nightly EIR of An. gambiae s.l. was 0.125 infectious bites per person per night (ib/p/n) in Djoumouna and 0.08 ib/p/n in Ntoula. The EIR of An. gambiae s.s. in Djoumouna (0.11 ib/p/n) and Ntoula (0.04 ib/p/n) was higher than that of An. coluzzii (0.01 and 0.03 ib/p/n) and An. arabiensis (0.005 and 0.0 ib/p/n). CONCLUSIONS This study provides baseline information on the dominant vectors and dynamics of malaria transmission in the rural areas of the Republic of the Congo during the dry season. In the two sampled villages, An. gambiae s.s. appears to play a predominant role in Plasmodium spp. TRANSMISSION
Collapse
Affiliation(s)
- Jacques Dollon Mbama Ntabi
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo.
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo.
| | - Espoir Divin Malda Bali
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Abel Lissom
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
- Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Romaric Akoton
- Fondation Pour La Recherche Scientifique (FORS), ISBA, BP: 88, Cotonou, Bénin
| | - Jean Claude Djontu
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
| | - Georges Missontsa
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
| | - Freisnel Hermeland Mouzinga
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Marcel Tapsou Baina
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Luc Djogbenou
- Tropical Infectious Diseases Research Center (TIDRC), University of Abomey-Calavi, Cotonou, Bénin
| | - Cyrille Ndo
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Department of Parasitology and Microbiology, Center for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Charles Wondji
- Department of Parasitology and Medical Entomology, Center for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Fondation Pour La Recherche Scientifique (FORS), ISBA, BP: 88, Cotonou, Bénin
- Centre de Recherche Médicale de Lambaréné, Lambaréné, Gabon
- German Center of Infection Research (DZIF), Tübingen, Germany
| | - Arsène Lenga
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Steffen Borrmann
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center of Infection Research (DZIF), Tübingen, Germany
| | - Francine Ntoumi
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo.
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Ebhodaghe FI, Sanchez-Vargas I, Isaac C, Foy BD, Hemming-Schroeder E. Sibling species of the major malaria vector Anopheles gambiae display divergent preferences for aquatic breeding sites in southern Nigeria. Malar J 2024; 23:60. [PMID: 38413961 PMCID: PMC10900747 DOI: 10.1186/s12936-024-04871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND When integrated with insecticide-treated bed nets, larval control of Anopheles mosquitoes could fast-track reductions in the incidence of human malaria. However, larval control interventions may deliver suboptimal outcomes where the preferred breeding places of mosquito vectors are not well known. This study investigated the breeding habitat choices of Anopheles mosquitoes in southern Nigeria. The objective was to identify priority sites for mosquito larval management in selected urban and periurban locations where malaria remains a public health burden. METHODS: Mosquito larvae were collected in urban and periurban water bodies during the wet-dry season interface in Edo, Delta, and Anambra States. Field-collected larvae were identified based on PCR gel-electrophoresis and amplicon sequencing, while the associations between Anopheles larvae and the properties and locations of water bodies were assessed using a range of statistical methods. RESULTS Mosquito breeding sites were either man-made (72.09%) or natural (27.91%) and mostly drainages (48.84%) and puddles (25.58%). Anopheles larvae occurred in drainages, puddles, stream margins, and a concrete well, and were absent in drums, buckets, car tires, and a water-holding iron pan, all of which contained culicine larvae. Wild-caught Anopheles larvae comprised Anopheles coluzzii (80.51%), Anopheles gambiae sensu stricto (s.s.) (11.54%), and Anopheles arabiensis (7.95%); a species-specific PCR confirmed the absence of the invasive urban malaria vector Anopheles stephensi among field-collected larvae. Anopheles arabiensis, An. coluzzii, and An. gambiae s.s. displayed preferences for turbid, lowland, and partially sunlit water bodies, respectively. Furthermore, An. arabiensis preferred breeding sites located outside 500 m of households, whereas An. gambiae s.s. and An. coluzzii had increased detection odds in sites within 500 m of households. Anopheles gambiae s.s. and An. coluzzii were also more likely to be present in natural water bodies; meanwhile, 96.77% of An. arabiensis were in man-made water bodies. Intraspecific genetic variations were little in the dominant vector An. coluzzii, while breeding habitat choices of populations made no statistically significant contributions to these variations. CONCLUSION Sibling malaria vectors in the An. gambiae complex display divergent preferences for aquatic breeding habitats in southern Nigeria. The findings are relevant for planning targeted larval control of An. coluzzii whose increasing evolutionary adaptations to urban ecologies are driving the proliferation of the mosquito, and An. arabiensis whose adults typically evade the effects of treated bed nets due to exophilic tendencies.
Collapse
Affiliation(s)
- Faith I Ebhodaghe
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Irma Sanchez-Vargas
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Clement Isaac
- Department of Zoology, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria
| | - Brian D Foy
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth Hemming-Schroeder
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Ashine T, Getachew D, Demisse M, Lobo NF, Tadesse FG. Anopheles arabiensis. Trends Parasitol 2024; 40:91-92. [PMID: 37758632 DOI: 10.1016/j.pt.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Affiliation(s)
| | | | | | - Neil F Lobo
- University of Notre Dame, Notre Dame, IN, USA
| | - Fitsum G Tadesse
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia; London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
6
|
Katusi GC, Hermy MRG, Makayula SM, Ignell R, Mnyone LL, Hill SR, Govella NJ. Effect of non-human hosts on the human biting rate of primary and secondary malaria vectors in Tanzania. Malar J 2023; 22:340. [PMID: 37940967 PMCID: PMC10631174 DOI: 10.1186/s12936-023-04778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Malaria vectors vary in feeding preference depending on their innate behaviour, host availability and abundance. Host preference and human biting rate in malaria vectors are key factors in establishing zooprophylaxis and zoopotentiation. This study aimed at assessing the impact of non-human hosts in close proximity to humans on the human biting rate of primary and secondary malaria vectors, with varying host preferences. METHODS The effect of the presence of non-human hosts in close proximity to the human host on the mean catches per person per night, as a proxy for mosquito biting rate, was measured using mosquito-electrocuting traps (METs), in Sagamaganga, Kilombero Valley, Tanzania. Two experiments were designed: (1) a human versus a calf, each enclosed in a MET, and (2) a human surrounded by three calves versus a human alone, with each human volunteer enclosed individually in a MET spaced 10 m apart. Each experiment was conducted on alternate days and lasted for 36 nights per experiment. During each experiment, the positions of hosts were exchanged daily (except the human in experiment 2). All anopheline mosquitoes caught were assayed for Plasmodium sporozoites using enzyme-linked immunosorbent assay. RESULTS A total of 20,574 mosquitoes were captured and identified during the study, of which 3608 were anophelines (84.4% primary and 15.6% secondary malaria vectors) and 17,146 were culicines. In experiment 1, the primary malaria vector, Anopheles arabiensis, along with Culex spp. demonstrated a preference for cattle, while the primary vectors, Anopheles funestus, preferred humans. In experiment 2, both primary vectors, An. arabiensis and An. funestus, as well as the secondary vector Anopheles rivolurum, demonstrated behaviours amenable to zooprophylaxis, whereas Culex spp. increased their attraction to humans in the presence of nearby cattle. All anopheline mosquitoes tested negative for sporozoites. CONCLUSIONS The findings of this study provide support for the zooprophylaxis model for malaria vectors present in the Kilombero Valley, and for the zoopotentiation model, as it pertains to the Culex spp. in the region. However, the factors regulating zooprophylaxis and zoopotentiation are complex, with different species-dependent mechanisms regulating these behaviours, that need to be considered when designing integrated vector management programmes.
Collapse
Affiliation(s)
- Godfrey C Katusi
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Morogoro, Tanzania
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Marie R G Hermy
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22, Lomma, Sweden
| | - Samwely M Makayula
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Morogoro, Tanzania
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22, Lomma, Sweden
| | - Ladslaus L Mnyone
- Institute of Pest Management, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
| | - Sharon R Hill
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22, Lomma, Sweden.
| | - Nicodem J Govella
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Morogoro, Tanzania
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
7
|
Tarimo FS, Dillip A, Kosia EM, Lwetoijera DW. Community perception of the autodissemination of pyriproxyfen for controlling malaria vectors in south-eastern Tanzania. Malar J 2023; 22:333. [PMID: 37924148 PMCID: PMC10625276 DOI: 10.1186/s12936-023-04773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The efficacy of the autodissemination of pyriproxyfen to control malaria vectors has been demonstrated under semi field environment in Tanzania. However, the information on how best communities should be engaged for its routine and large-scale adoption are lacking. This study assessed the community's level of knowledge, perceptions, acceptability of the autodissemination of pyriproxyfen, and the perceived risks on the safety of pyriproxyfen on the environment. METHODS This was a concurrent mixed methods study, comprised of a community-based survey of 400 household representatives and eight focus group discussions (FGDs). The study was conducted in two villages in Mlimba district in south-eastern Tanzania between June and August 2022. For the quantitative data analysis, descriptive statistics were applied using R software, while inductive approach was used for qualitative data analysis, using NVivo software. RESULTS Knowledge on autodissemination of pyriproxyfen approach was found to be relatively low among both the FGD respondents and surveyed community members (36%, n = 144). Nevertheless, when it was explained to them, the envisioned community support for the autodissemination approach was relatively high (97%, n = 388). One of the major perceived benefits of the autodissemination of pyriproxyfen was the reduction of malaria-transmitting mosquitoes and associated malaria transmission. Environmental impact of pyriproxyfen on non-target organisms and health risk to children were among the major concerns. When provided with information on the safety and its utilization particularly through autodissemination approach, 93.5% (n = 374) of the survey respondents said that they would allow the PPF-contaminated pots to be placed around their homes. Similarly, FGD respondents were receptive towards the autodissemination of pyriproxyfen, but emphasized on the need for raising awareness among community members before related field trials. CONCLUSION This study indicates a low knowledge but high support for scaling up of the autodissemination of pyriproxyfen as a complementary tool for malaria control in rural Tanzania. The Findings of this study suggest that community sensitization activities are required to improve the community's acceptability and trust of the approach before respective field trials.
Collapse
Affiliation(s)
- Felista S Tarimo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, United Republic of Tanzania.
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, P. O. Box 4447, Tengeru, Arusha, United Republic of Tanzania.
| | - Angel Dillip
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, United Republic of Tanzania
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, P. O. Box 4447, Tengeru, Arusha, United Republic of Tanzania
- Apotheker Health Access Initiative, P. O. Box 70022, Dar es Salaam, United Republic of Tanzania
| | - Efraim M Kosia
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, P. O. Box 4447, Tengeru, Arusha, United Republic of Tanzania
| | - Dickson W Lwetoijera
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, United Republic of Tanzania.
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, P. O. Box 4447, Tengeru, Arusha, United Republic of Tanzania.
| |
Collapse
|
8
|
Gueye A, Ngom EHM, Diagne A, Ndoye BB, Dione ML, Sambe BS, Sokhna C, Diallo M, Niang M, Dia I. Host feeding preferences of malaria vectors in an area of low malaria transmission. Sci Rep 2023; 13:16410. [PMID: 37775717 PMCID: PMC10542387 DOI: 10.1038/s41598-023-43761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Studying the behaviour and trophic preferences of mosquitoes is an important step in understanding the exposure of vertebrate hosts to vector-borne diseases. In the case of human malaria, transmission increases when mosquitoes feed more on humans than on other animals. Therefore, understanding the spatio-temporal dynamics of vectors and their feeding preferences is essential for improving vector control measures. In this study, we investigated the feeding behaviour of Anopheles mosquitoes at two sites in the Sudanian areas of Senegal where transmission is low following the implementation of vector control measures. Blood-fed mosquitoes were collected monthly from July to November 2022 by pyrethrum spray catches in sleeping rooms of almost all houses in Dielmo and Ndiop villages, and blood meals were identified as from human, bovine, ovine, equine and chicken by ELISA. Species from the An. gambiae complex were identified by PCR. The types and numbers of potential domestic animal hosts were recorded in each village. The Human Blood Index (HBI) and the Manly Selection Ratio (MSR) were calculated to determine whether hosts were selected in proportion to their abundance. Spatio-temporal variation in HBI was examined using the Moran's index. A total of 1251 endophilic Anopheles females were collected in 115 bedrooms, including 864 blood fed females of 6 species. An. arabiensis and An. funestus were predominant in Dielmo and Ndiop, respectively. Of the 864 blood meals tested, 853 gave a single host positive result mainly on bovine, equine, human, ovine and chicken in decreasing order in both villages. Overall, these hosts were not selected in proportion to their abundance. The human host was under-selected, highlighting a marked zoophily for the vectors. Over time and space, the HBI were low with no obvious trend, with higher and lower values observed in each of the five months at different points in each village. These results highlight the zoophilic and exophagic behaviour of malaria vectors. This behaviour is likely to be a consequence of the distribution and use of LLINs in both villages and may increase risk of residual outdoor transmission. This underlines the need to study the feeding host profile of outdoor resting populations and how domestic animals may influence malaria epidemiology in order to tailor effective malaria vector control strategies in the two villages.
Collapse
Affiliation(s)
- Assiyatou Gueye
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - El Hadji Malick Ngom
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Aissatou Diagne
- Pole Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Baye Bado Ndoye
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mamadou Lamine Dione
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Babacar Souleymane Sambe
- Pole Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Cheikh Sokhna
- UMR Vecteurs Infections Tropicales et Mediterraneennes (VITROME), Campus International UCAD-IRD, Route des Peres Maristes, BP 1386, Dakar, Senegal
| | - Mawlouth Diallo
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Makhtar Niang
- Pole Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ibrahima Dia
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
9
|
Morgan CE, Topazian HM, Brandt K, Mitchell C, Kashamuka MM, Muwonga J, Sompwe E, Juliano JJ, Bobanga T, Tshefu A, Emch M, Parr JB. Association between domesticated animal ownership and Plasmodium falciparum parasite prevalence in the Democratic Republic of the Congo: a national cross-sectional study. THE LANCET. MICROBE 2023; 4:e516-e523. [PMID: 37269868 PMCID: PMC10319634 DOI: 10.1016/s2666-5247(23)00109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 03/17/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Domesticated animal ownership is an understudied aspect of the human environment that influences mosquito biting behaviour and malaria transmission, and is a key part of national economies and livelihoods in malaria-endemic regions. In this study, we aimed to understand differences in Plasmodium falciparum prevalence by ownership status of common domesticated animals in DR Congo, where 12% of the world's malaria cases occur and anthropophilic Anopheles gambiae vectors predominate. METHODS In this cross-sectional study, we used survey data from individuals aged 15-59 years in the most recent (2013-14) DR Congo Demographic and Health Survey and previously performed Plasmodium quantitative real-time PCR (qPCR) to estimate P falciparum prevalence differences by household ownership of cattle; chickens; donkeys, horses, or mules; ducks; goats; sheep; and pigs. We used directed acyclic graphs to consider confounding by age, gender, wealth, modern housing, treated bednet use, agricultural land ownership, province, and rural location. FINDINGS Of 17 701 participants who had qPCR results and covariate data, 8917 (50·4%) of whom owned a domesticated animal, we observed large differences in malaria prevalence across types of animals owned in both crude and adjusted models. Household chicken ownership was associated with 3·9 (95% CI 0·6 to 7·1) more P falciparum infections per 100 people, whereas cattle ownership was associated with 9·6 (-15·8 to -3·5) fewer P falciparum infections per 100 people, even after accounting for bednet use, wealth, and housing structure. INTERPRETATION Our finding of a protective association conferred by cattle ownership suggests that zooprophylaxis interventions might have a role in DR Congo, possibly by drawing An gambiae feeding away from humans. Studies of animal husbandry practices and associated mosquito behaviours could reveal opportunities for new malaria interventions. FUNDING The National Institutes of Health and the Bill & Melinda Gates Foundation. TRANSLATIONS For the French and Lingala translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Camille E Morgan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hillary M Topazian
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Katerina Brandt
- Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cedar Mitchell
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jérémie Muwonga
- Programme National de La Lutte Contre Le SIDA, Kinshasa, DR Congo
| | - Eric Sompwe
- Programme National de La Lutte Contre Le Paludisme, Kinshasa, DR Congo; Faculty of Medicine, School of Public Health, University of Lubumbashi, Kinshasa, DR Congo
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thierry Bobanga
- Department of Tropical Medicine, Faculty of Medicine, University of Kinshasa, Kinshasa, DR Congo
| | | | - Michael Emch
- Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan B Parr
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Sy O, Sarr PC, Assogba BS, Nourdine MA, Ndiaye A, Konaté L, Faye O, Donnelly MJ, Gaye O, Weetman D, Niang EA. Residual malaria transmission and the role of Anopheles arabiensis and Anopheles melas in central Senegal. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:546-553. [PMID: 36932704 PMCID: PMC10179433 DOI: 10.1093/jme/tjad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
Understanding the behavior and ecology of local malaria vectors is essential for the effectiveness of the commonly used vector-targeted malaria control tools in areas of low malaria transmission. This study was conducted to determine species composition, biting behavior and infectivity of the major Anopheles vectors of Plasmodium falciparum in low transmission settings in central Senegal. Adult mosquitoes were collected using human landing catches during 2 consecutive nights and Pyrethrum Spray Catches in 30-40 randomly selected rooms, from July 2017 to December 2018 in 3 villages. Anopheline mosquitoes were morphologically identified using conventional keys; their reproductive status assessed by ovary dissections, and a sub-sample of Anopheles gambiae s.l. were identified to species level using polymerase chain reaction (PCR). Plasmodium sporozoite infections were detected using real-time quantitative PCR. During this study 3684 Anopheles were collected of which 97% were An. gambiae s.l., 0.6% were Anopheles funestus, and 2.4% were Anopheles pharoensis. Molecular identification of 1,877 An. gambiae s.l. revealed a predominance of Anopheles arabiensis (68.7%), followed by Anopheles melas (28.8%), and Anopheles coluzzii (2.1%). The overall human-biting rate of An. gambiae s.l. was highest in the inland site of Keur Martin with 4.92 bites per person per night, while it was similar in the deltaic site, Diofior (0.51) and the coastal site, Mbine Coly (0.67). Parity rates were similar in An. arabiensis (45%) and An. melas (42%). Sporozoite infections were detected in both An. arabiensis and An. melas with the respective infection rates of 1.39% (N = 8) and 0.41% (N = 1). Results suggest that low residual malaria in central Senegal is transmitted by An. arabiensis and An. melas. Consequently, both vectors will need to be targeted as part of malaria elimination efforts in this area of Senegal.
Collapse
Affiliation(s)
- Ousmane Sy
- Laboratoire d'Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP Dakar/Sénégal
- Laboratory of Medical Parasitology (MARCAD program) Faculty of Medicine, Pharmacy and Odontostomatology of Cheikh Anta DIOP University of Dakar/Senegal
| | - Pape C Sarr
- Laboratoire d'Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP Dakar/Sénégal
- Laboratory of Medical Parasitology (MARCAD program) Faculty of Medicine, Pharmacy and Odontostomatology of Cheikh Anta DIOP University of Dakar/Senegal
| | - Benoit S Assogba
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Mouhamed A Nourdine
- Laboratoire d'Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP Dakar/Sénégal
- Laboratory of Medical Parasitology (MARCAD program) Faculty of Medicine, Pharmacy and Odontostomatology of Cheikh Anta DIOP University of Dakar/Senegal
| | - Assane Ndiaye
- Laboratoire d'Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP Dakar/Sénégal
| | - Lassana Konaté
- Laboratoire d'Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP Dakar/Sénégal
| | - Ousmane Faye
- Laboratoire d'Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP Dakar/Sénégal
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Oumar Gaye
- Laboratory of Medical Parasitology (MARCAD program) Faculty of Medicine, Pharmacy and Odontostomatology of Cheikh Anta DIOP University of Dakar/Senegal
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Elhadji A Niang
- Laboratoire d'Écologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP Dakar/Sénégal
| |
Collapse
|
11
|
Kweka EJ, Lyaruu LJ, Temba V, Msangi S, Ouma JO, Karanja W, Mahande AM, Himeidan YE. Impact of MiraNet® long-lasting insecticidal net against Anopheles arabiensis wild population of Northern Tanzania. Parasitol Res 2023; 122:1245-1253. [PMID: 36949289 DOI: 10.1007/s00436-023-07827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
Despite high levels of pyrethroid resistance reported in malaria vectors, long-lasting insecticidal nets (LNs) still play a key role in controlling malaria transmission. This study tested the efficacy of MiraNet®, a pyrethroid-based LN against a wild population of Anopheles arabiensis in northern Tanzania. DuraNet® was used as a positive control in this evaluation. Standard WHO laboratory bioefficacy evaluations of MiraNet and DuraNet that were unwashed or had been washed 20 times indicated optimal knockdown and mortality for both net types against a susceptible strain of Anopheles gambiae s.s. Standard experimental hut evaluations were conducted to evaluate the efficacy of both nets against a wild population of An. arabiensis. The killing effect of MiraNet was 54.5% for unwashed and 50% for 20 times washed while DuraNet achieved 44.4% mortality for unwashed and 47.4% for 20 times washed against wild An. arabiensis. Both DuraNet and MiraNet exhibited significantly higher killing effects (> 44.4%). There was no significant difference in deterrence or induced exophily detected between the treatment arms for either net. Additionally, there were no adverse effects reported among hut sleepers. The results of this study indicate that the pyrethroid net MiraNet can be used effectively against wild populations of An. gambiae s.l. of low to moderate resistant levels from Northern Tanzania.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania.
| | - Lucille J Lyaruu
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| | - Violet Temba
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| | - Shandala Msangi
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| | - Johnson O Ouma
- Africa Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| | - Wycliffe Karanja
- Africa Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| | - Aneth M Mahande
- Mabogini Field Station, Tanzania Plant Health and Pesticides Authority, Moshi, Tanzania
| | - Yousif E Himeidan
- Africa Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| |
Collapse
|
12
|
Mbewe NJ, Kirby MJ, Snetselaar J, Kaaya RD, Small G, Azizi S, Ezekia K, Manunda B, Shirima B, Mosha FW, Rowland MW. A non-inferiority and GLP-compliant study of broflanilide IRS (VECTRON™ T500), a novel meta-diamide insecticide against Anopheles arabiensis. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1126869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Management of insecticide resistance in vector control requires development and evaluation of active ingredients (AIs) with new modes of action. VECTRON™ T500 is a wettable powder formulation used for Indoor Residual Spraying (IRS) containing 50% of broflanilide as an AI. This study evaluated the efficacy of VECTRON™ T500 sprayed on blocks of different substrates (concrete, mud and plywood) against pyrethroid susceptible and resistant Anopheles gambiae sensu stricto (s.s.) strains, and wild An. arabiensis. It also assessed the efficacy of VECTRON™ T500 in experimental huts plastered with mud and concrete against wild free-flying An. arabiensis; and non-inferiority to a World Health Organization listed indoor residual spraying product Actellic® 300CS in terms of mortality in Moshi, Tanzania.Monthly cone bioassays on blocks and in experimental huts (against pyrethroid susceptible and resistant An. gambiae s.s.) were conducted over a 12-month period after spraying of VECTRON™ T500 and Actellic® CS300. Collections of wild free-flying An. arabiensis were also done in the sprayed huts. The main outcome for cone bioassays was mortality while for the wild hut trial collections, it was mortality and blood feeding inhibition. Grouped logistic regressions with random effects were used to analyse all dichotomous outcome variables from wild collections.The results showed residual efficacy of VECTRON™ T500 of at least 80% mortality was longest on concrete, followed by plywood and then mud substrates for all mosquito strains. Furthermore, VECTRON™ T500 significantly increased the likelihood of mortality (OR:> 1.37, P<0.001) in wild collections of An. arabiensis compared to Actellic® 300CS. Blood feeding was not significantly different in the wild collection of An. arabiensis between VECTRON™ T500 and Actellic® 300CS arms.These results show that VECTRON™ T500 is efficacious against pyrethroid-resistant An. gambiae s.s. and non-inferior to Actellic® 300CS. Therefore, it should be an important addition to the current arsenal of insecticides used for insecticide resistance management and vector control.
Collapse
|
13
|
Mawejje HD, Weetman D, Epstein A, Lynd A, Opigo J, Maiteki-Sebuguzi C, Lines J, Kamya MR, Rosenthal PJ, Donnelly MJ, Dorsey G, Staedke SG. Characterizing pyrethroid resistance and mechanisms in Anopheles gambiae ( s.s.) and Anopheles arabiensis from 11 districts in Uganda. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100106. [PMID: 36590346 PMCID: PMC9798136 DOI: 10.1016/j.crpvbd.2022.100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Insecticide resistance threatens recent progress on malaria control in Africa. To characterize pyrethroid resistance in Uganda, Anopheles gambiae (s.s.) and Anopheles arabiensis were analyzed from 11 sites with varied vector control strategies. Mosquito larvae were collected between May 2018 and December 2020. Sites were categorized as receiving no indoor-residual spraying ('no IRS', n = 3); where IRS was delivered from 2009 to 2014 and in 2017 and then discontinued ('IRS stopped', n = 4); and where IRS had been sustained since 2014 ('IRS active', n = 4). IRS included bendiocarb, pirimiphos methyl and clothianidin. All sites received long-lasting insecticidal nets (LLINs) in 2017. Adult mosquitoes were exposed to pyrethroids; with or without piperonyl butoxide (PBO). Anopheles gambiae (s.s.) and An. arabiensis were identified using PCR. Anopheles gambiae (s.s.) were genotyped for Vgsc-995S/F, Cyp6aa1, Cyp6p4-I236M, ZZB-TE, Cyp4j5-L43F and Coeae1d, while An. arabiensis were examined for Vgsc-1014S/F. Overall, 2753 An. gambiae (s.l.), including 1105 An. gambiae (s.s.) and 1648 An. arabiensis were evaluated. Species composition varied by site; only nine An. gambiae (s.s.) were collected from 'IRS active' sites, precluding species-specific comparisons. Overall, mortality following exposure to permethrin and deltamethrin was 18.8% (148/788) in An. gambiae (s.s.) and 74.6% (912/1222) in An. arabiensis. Mortality was significantly lower in An. gambiae (s.s.) than in An. arabiensis in 'no IRS' sites (permethrin: 16.1 vs 67.7%, P < 0.001; deltamethrin: 24.6 vs 83.7%, P < 0.001) and in 'IRS stopped' sites (permethrin: 11.3 vs 63.6%, P < 0.001; deltamethrin: 25.6 vs 88.9%, P < 0.001). When PBO was added, mortality increased for An. gambiae (s.s.) and An. arabiensis. Most An. gambiae (s.s.) had the Vgsc-995S/F mutation (95% frequency) and the Cyp6p4-I236M resistance allele (87%), while the frequency of Cyp4j5 and Coeae1d were lower (52% and 55%, respectively). Resistance to pyrethroids was widespread and higher in An. gambiae (s.s.). Where IRS was active, An. arabiensis dominated. Addition of PBO to pyrethroids increased mortality, supporting deployment of PBO LLINs. Further surveillance of insecticide resistance and assessment of associations between genotypic markers and phenotypic outcomes are needed to better understand mechanisms of pyrethroid resistance and to guide vector control.
Collapse
Affiliation(s)
- Henry Ddumba Mawejje
- Infectious Diseases Research Collaboration, Kampala, Uganda.,London School of Hygiene and Tropical Medicine, London, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Adrienne Epstein
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jimmy Opigo
- National Malaria Control Division, Uganda Ministry of Health, Kampala, Uganda
| | - Catherine Maiteki-Sebuguzi
- Infectious Diseases Research Collaboration, Kampala, Uganda.,National Malaria Control Division, Uganda Ministry of Health, Kampala, Uganda
| | - Jo Lines
- London School of Hygiene and Tropical Medicine, London, UK
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | | |
Collapse
|
14
|
Katusi GC, Hermy MRG, Makayula SM, Ignell R, Govella NJ, Hill SR, Mnyone LL. Seasonal variation in abundance and blood meal sources of primary and secondary malaria vectors within Kilombero Valley, Southern Tanzania. Parasit Vectors 2022; 15:479. [PMID: 36539892 PMCID: PMC9768911 DOI: 10.1186/s13071-022-05586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Existing control tools have significantly reduced malaria over the past two decades. However, progress has been stalled due to increased resistance in primary vectors and the increasing role of secondary vectors. This study aimed to investigate the impact of seasonal change on primary and secondary vector abundance and host preference. Understanding the impact of seasonal dynamics of primary and secondary vectors on disease transmission will inform effective strategies for vector management and control. METHODS Vector abundance was measured through longitudinal collection of mosquitoes, conducted monthly during the wet and dry seasons, in Sagamaganga, a village in the Kilombero Valley, Tanzania. Mosquitoes were collected indoors using CDC light traps and backpack aspirators, and outdoors using resting buckets baited with cattle urine. In addition, a direct measure of host preference was taken monthly using human- and cattle-baited mosquito electrocuting traps. A host census was conducted to provide an indirect measure of host preference together with monthly blood meal source analysis. All collected mosquitoes were assayed for Plasmodium sporozoites. RESULTS A total of 2828 anophelines were collected, of which 78.5% and 21.4%, were primary and secondary vectors, respectively. The abundance of the primary vectors, Anopheles arabiensis and Anopheles funestus, and of the secondary vectors varied seasonally. Indirect measures of host preference indicated that all vectors varied blood meal choice seasonally, with the direct measure confirming this for An. arabiensis. All anopheline mosquitoes tested negative for sporozoites. CONCLUSIONS At the study location, the abundance of both primary and secondary vectors changed seasonally. Indirect and direct measures of host preference demonstrated that An. arabiensis varied from being zoophilic to being more opportunistic during the wet and dry seasons. A similar trend was observed for the other vectors.
Collapse
Affiliation(s)
- Godfrey C. Katusi
- grid.414543.30000 0000 9144 642XDepartment of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O. Box 53, Morogoro, Tanzania ,grid.11887.370000 0000 9428 8105Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Marie R. G. Hermy
- grid.6341.00000 0000 8578 2742Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Samwely M. Makayula
- grid.414543.30000 0000 9144 642XDepartment of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O. Box 53, Morogoro, Tanzania
| | - Rickard Ignell
- grid.6341.00000 0000 8578 2742Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Nicodem J. Govella
- grid.414543.30000 0000 9144 642XDepartment of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O. Box 53, Morogoro, Tanzania ,grid.451346.10000 0004 0468 1595School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Sharon R. Hill
- grid.6341.00000 0000 8578 2742Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Ladslaus L. Mnyone
- grid.11887.370000 0000 9428 8105Pest Management Centre, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
| |
Collapse
|
15
|
Malaria vector feeding, peak biting time and resting place preference behaviors in line with Indoor based intervention tools and its implication: scenario from selected sentinel sites of Ethiopia. Heliyon 2022; 8:e12178. [PMID: 36578426 PMCID: PMC9791363 DOI: 10.1016/j.heliyon.2022.e12178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/27/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
In Ethiopia, malaria incidence has significantly reduced in the past decade through the combined use of conventional vector control approaches and treatment using antimalarial drugs. However, the sustainability of this achievement is threatened by the shift in biting and resting behaviors and emergence of insecticide resistance by the primary malaria vector. Therefore, continuous monitoring of the behaviour of malaria mosquitoes in different sentinel sites is crucial to design effective prevention and control methods in the local context. Entomological investigations were conducted in three sentinel sites for five consecutive months during the major malaria transmission season. The species composition, population dynamics, biting and resting behaviours of malaria vectors were determined using center for disease control and prevention (CDC) light trap, human landing catch (HLC), pyrethrum spray catch (PSC) and Pitfall shelter collection (PFS). Accordingly, 10 households for CDC, 10 households for PSC, 10 households for PFS and 5 households for HLC from each site were randomly enrolled for mosquito collection. A total of 8,297 anopheline mosquitoes were collected from the three sites, out of which 4,525 (54.5 %) were An. gambiae, s.l. 2,028 (24.4 %) were An. pharoensis, 160 (1.9 %) were An. funestus and the rest 1,584 (19 %) were other anophelines (An. coustani, An. cinerus and An. tenebrosus). No significant variation (P = 0.476) was observed between indoor (25.2/trap-night and outdoor collections (20.1/trap-night). Six hundred seventy six (43.3%) of An. gambiae s.l. (primary vector) were collected between 18:00 and 22:00 h. Biting activity declined between 00:00 and 02:00 h. The national malaria control program should pay close attention to the shifting behavior of vector mosquitoes as the observed outdoor feeding tendency of the vector population could pose challenges to the indoor intervention tools IRS and LLINs.
Collapse
|
16
|
Bartilol B, Omuoyo D, Karisa J, Ominde K, Mbogo C, Mwangangi J, Maia M, Rono MK. Vectorial capacity and TEP1 genotypes of Anopheles gambiae sensu lato mosquitoes on the Kenyan coast. Parasit Vectors 2022; 15:448. [PMID: 36457004 PMCID: PMC9713959 DOI: 10.1186/s13071-022-05491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Malaria remains one of the most important infectious diseases in sub-Saharan Africa, responsible for approximately 228 million cases and 602,000 deaths in 2020. In this region, malaria transmission is driven mainly by mosquitoes of the Anopheles gambiae and, more recently, Anopheles funestus complex. The gains made in malaria control are threatened by insecticide resistance and behavioural plasticity among these vectors. This, therefore, calls for the development of alternative approaches such as malaria transmission-blocking vaccines or gene drive systems. The thioester-containing protein 1 (TEP1) gene, which mediates the killing of Plasmodium falciparum in the mosquito midgut, has recently been identified as a promising target for gene drive systems. Here we investigated the frequency and distribution of TEP1 alleles in wild-caught malaria vectors on the Kenyan coast. METHODS Mosquitoes were collected using CDC light traps both indoors and outdoors from 20 houses in Garithe village, along the Kenyan coast. The mosquitoes were dissected, and the different parts were used to determine their species, blood meal source, and sporozoite status. The data were analysed and visualised using the R (v 4.0.1) and STATA (v 17.0). RESULTS A total of 18,802 mosquitoes were collected, consisting of 77.8% (n = 14,631) Culex spp., 21.4% (n = 4026) An. gambiae sensu lato, 0.4% (n = 67) An. funestus, and 0.4% (n = 78) other Anopheles (An. coustani, An. pharoensis, and An. pretoriensis). Mosquitoes collected were predominantly exophilic, with the outdoor catches being higher across all the species: Culex spp. 93% (IRR = 11.6, 95% Cl [5.9-22.9] P < 0.001), An. gambiae s.l. 92% (IRR = 7.2, 95% Cl [3.6-14.5]; P < 0.001), An. funestus 91% (IRR = 10.3, 95% Cl [3.3-32.3]; P < 0.001). A subset of randomly selected An. gambiae s.l. (n = 518) was identified by polymerase chain reaction (PCR), among which 77.2% were An. merus, 22% were An. arabiensis, and the rest were not identified. We were also keen on identifying and describing the TEP1 genotypes of these mosquitoes, especially the *R3/R3 allele that was identified recently in the study area. We identified the following genotypes among An. merus: *R2/R2, *R3/R3, *R3/S2, *S1/S1, and *S2/S2. Among An. arabiensis, we identified *R2/R2, *S1/S1, and *S2/S2. Tests on haplotype diversity showed that the most diverse allele was TEP1*S1, followed by TEP1*R2. Tajima's D values were positive for TEP1*S1, indicating that there is a balancing selection, negative for TEP1*R2, indicating there is a recent selective sweep, and as for TEP1*R3, there was no evidence of selection. Phylogenetic analysis showed two distinct clades: refractory and susceptible alleles. CONCLUSIONS We find that the malaria vectors An. gambiae s.l. and An. funestus are predominantly exophilic. TEP1 genotyping for An. merus revealed five allelic combinations, namely *R2/R2, *R3/R3, *R3/S2, *S1/S1 and *S2/S2, while in An. arabiensis we only identified three allelic combinations: *R2/R2, *S1/S1, and *S2/S2. The TEP1*R3 allele was restricted to only An. merus among these sympatric mosquito species, and we find that there is no evidence of recombination or selection in this allele.
Collapse
Affiliation(s)
- Brian Bartilol
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya ,grid.449370.d0000 0004 1780 4347Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Donwilliams Omuoyo
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Jonathan Karisa
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kelly Ominde
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Charles Mbogo
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Joseph Mwangangi
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Marta Maia
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Martin Kibet Rono
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya ,grid.449370.d0000 0004 1780 4347Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| |
Collapse
|
17
|
Kassam NA, Laswai D, Kulaya N, Kaaya RD, Kajeguka DC, Schmiegelow C, Wang CW, Alifrangis M, Kavishe RA. Human IgG responses to Aedes mosquito salivary peptide Nterm-34kDa and its comparison to Anopheles salivary antigen (gSG6-P1) IgG responses measured among individuals living in Lower Moshi, Tanzania. PLoS One 2022; 17:e0276437. [PMID: 36301860 PMCID: PMC9612500 DOI: 10.1371/journal.pone.0276437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The level of human exposure to arbovirus vectors, the Aedes mosquitoes, is mainly assessed by entomological methods which are labour intensive, difficult to sustain at a large scale and are affected if transmission and exposure levels are low. Alternatively, serological biomarkers which detect levels of human exposure to mosquito bites may complement the existing epidemiologic tools as they seem cost-effective, simple, rapid, and sensitive. This study explored human IgG responses to an Aedes mosquito salivary gland peptide Nterm-34kDa in Lower Moshi, a highland area with evidence of circulating arboviruses and compared the Aedes IgG responses to Anopheles mosquitoes' salivary antigen (GSG6-P1) IgG responses. METHODS Three cross-sectional surveys were conducted in 2019: during the first dry season in March, at the end of the rainy season in June and during the second dry season in September in five villages located in Lower Moshi. Blood samples were collected from enrolled participants above six months of age (age span: 7 months to 94 years) and analysed for the presence of anti-Nterm-34kDa IgG antibodies. Possible associations between Nterm-34kDa seroprevalence and participants' characteristics were determined. Levels of IgG responses and seroprevalence were correlated and compared to the already measured IgG responses and seroprevalence of Anopheles mosquitoes' salivary antigen, GSG6-P1. RESULTS During the first dry season, Nterm-34kDa seroprevalence was 34.1% and significantly increased at the end of the rainy season to 45.3% (Chi square (χ2) = 6.42 p = 0.011). During the second dry season, the seroprevalence significantly declined to 26.5% (χ2 = 15.12 p<0.001). During the rainy season, seroprevalence was significantly higher among residents of Oria village (adjusted odds ratio (AOR) = 2.86; 95% CI = 1.0-7.8; p = 0.041) compared to Newland. Moreover, during the rainy season, the risk of exposure was significantly lower among individuals aged between 16 and 30 years (AOR = 0.25; 95% CI = 0.1 = 0.9; p = 0.036) compared to individuals aged between 0 and 5 years. There was weak to moderate negative correlation between N-term 34kDa IgG and gSG6-P1 antigens. N-term 34kDa seroprevalence were higher compared to gSG6-P1 seroprevalence. CONCLUSION The findings of this study support that IgG antibody responses towards the Aedes mosquito salivary peptide Nterm-34kDa are detectable among individuals living in lower Moshi and vary with season and geographical area. More individuals are exposed to Aedes mosquito bites than Anopheles mosquito and those exposed to Aedes bites are not necessarily exposed to Anopheles mosquitoes.
Collapse
Affiliation(s)
- Nancy A. Kassam
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- * E-mail:
| | - Daniel Laswai
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Neema Kulaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Robert D. Kaaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Pan-African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Debora C. Kajeguka
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Christentze Schmiegelow
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | |
Collapse
|
18
|
Fernández Montoya L, Máquina M, Martí-Soler H, Sherrard-Smith E, Alafo C, Opiyo M, Comiche K, Galatas B, Huijben S, Koekemoer LL, Oliver SV, Maartens F, Marrenjo D, Cuamba N, Aide P, Saúte F, Paaijmans KP. The realized efficacy of indoor residual spraying campaigns falls quickly below the recommended WHO threshold when coverage, pace of spraying and residual efficacy on different wall types are considered. PLoS One 2022; 17:e0272655. [PMID: 36190958 PMCID: PMC9529131 DOI: 10.1371/journal.pone.0272655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Indoor residual spraying (IRS) has been and remains an important malaria control intervention in southern Mozambique, South Africa and Eswatini. A better understanding of the effectiveness of IRS campaigns is critical to guide future elimination efforts. We analyze the three IRS campaigns conducted during a malaria elimination demonstration project in southern Mozambique, the "Magude project", and propose a new method to calculate the efficacy of IRS campaigns adjusting for IRS coverage, pace of house spraying and IRS residual efficacy on different wall types. Anopheles funestus sensu lato (s.l.) and An. gambiae s.l. were susceptible to pirimiphos-methyl and DDT. Anopheles funestus s.l. was resistant to pyrethroids, with 24h post-exposure mortality being lower for An. funestus sensu stricto (s.s.) than for An. parensis (collected indoors). The percentage of structures sprayed was above 90% and percentage of people covered above 86% in all three IRS campaigns. The percentage of households sprayed was above 83% in 2015 and 2016, but not assessed in 2017. Mosquito mortality 24h post-exposure stayed above 80% for 196 days after the 2016 IRS campaign and 222 days after the 2017 campaign and was 1.5 months longer on mud walls than on cement walls. This was extended by up to two months when 120h post-exposure mortality was considered. The district-level realized IRS efficacy was 113 days after the 2016 campaign. While the coverage of IRS campaigns in Magude were high, IRS protection did not remain optimal for the entire high malaria transmissions season. The use of a longer-lasting IRS product could have further supported the interruption of malaria transmission in the district. To better estimate the protection afforded by IRS campaigns, National Malaria Control Programs and partners are encouraged to adjust the calculation of IRS efficacy for IRS coverage, pace of house spraying during the campaign and IRS efficacy on different wall types combined with wall type distribution in the sprayed area.
Collapse
Affiliation(s)
- Lucia Fernández Montoya
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Mercy Opiyo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Kiba Comiche
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Silvie Huijben
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | | | | | - Nelson Cuamba
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Krijn P. Paaijmans
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
19
|
Mbewe NJ, Rowland MW, Snetselaar J, Azizi S, Small G, Nimmo DD, Mosha FW. Efficacy of bednets with dual insecticide-treated netting (Interceptor® G2) on side and roof panels against Anopheles arabiensis in north-eastern Tanzania. Parasit Vectors 2022; 15:326. [PMID: 36109765 PMCID: PMC9479251 DOI: 10.1186/s13071-022-05454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Background Optimising insecticide use and managing insecticide resistance are important to sustain gains against malaria using long-lasting insecticidal nets (LLINs). Restricting insecticides to where mosquitoes are most likely to make multiple contacts could reduce the quantity of insecticide needed to treat the nets. Previous studies have shown that nets partially treated with a pyrethroid insecticide had equivalent mortality compared to a fully treated net. This study compared the efficacy of: (i) whole Interceptor® G2 nets (IG2; a dual-active LLIN containing alpha-cypermethrin and chlorfenapyr), (ii) nets with roof panels made of IG2 netting, (iii) nets with side panels made of IG2 netting and (iv) whole untreated nets as test nets. Methods The study was conducted in cow-baited experimental huts, Moshi Tanzania, using a four-arm Latin square design. Test nets had 30 holes cut in panels to simulate a typical net after 2–3 year use. The trial data were analysed using generalized linear models with mortality, blood-feeding, exophily and deterrence against wild free-flying Anopheles arabiensis as outcomes and test nets as predictors. Results Mortality was significantly higher in the nets with roof IG2 [27%, P = 0.001, odds ratio (OR) = 51.0, 95% CI = 4.8–546.2), side IG2 (44%, P < 0.001, OR = 137.6, 95% CI = 12.2–1553.2] and whole IG2 (53%, P < 0.001, OR = 223.0, 95% CI = 19.07–2606.0) nettings than the untreated (1%) nets. Mortality was also significantly higher in the whole IG2 net compared to the net with roof IG2 netting (P = 0.009, OR = 4.4, 95% CI = 1.4–13.3). Blood feeding was 22% in untreated, 10% in roof IG2, 14% in side IG2 and 19% in whole IG2 nets. Exiting was 92% in untreated, 89% in roof IG2, 97% in side IG2 and 94% whole IG2 nets. Conclusion The results show that although the roof-treated IG2 net induced greater mortality compared to untreated nets, its efficacy was reduced compared to whole IG2 nets. Therefore, there was no benefit to be gained from restricting dual-active ingredient IG2 netting to the roof of nets. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05454-w.
Collapse
|
20
|
Yohana R, Chisulumi PS, Kidima W, Tahghighi A, Maleki-Ravasan N, Kweka EJ. Anti-mosquito properties of Pelargonium roseum (Geraniaceae) and Juniperus virginiana (Cupressaceae) essential oils against dominant malaria vectors in Africa. Malar J 2022; 21:219. [PMID: 35836226 PMCID: PMC9284854 DOI: 10.1186/s12936-022-04220-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND More than 90% of malaria cases occur in Africa where the disease is transmitted by Anopheles gambiae and Anopheles arabiensis. This study evaluated the anti-mosquito properties of Juniperus virginiana (JVO) and Pelargonium roseum (PRO) essential oils (EOs) against larvae and adults of An. gambiae sensu lato (s.l.) from East Africa in laboratory and semi-field conditions. METHODS EOs was extracted from the aerial green parts of Asian herbs by hydrodistillation. Their constituents were characterized by gas chromatography-mass spectrometry (GC-MS). Larvicidal activities of JVO, PRO, and PRO components [citronellol (CO), linalool (LO), and geraniol (GO)] were investigated against An. gambiae sensu stricto (s.s.). The percentage of knockdown effects and mortality rates of all oils were also evaluated in the adults of susceptible An. gambiae s.s. and permethrin-resistant An. arabiensis. RESULTS GC-MS analyses identified major constituents of JVO (sabinene, dl-limonene, β-myrcene, bornyl acetate, and terpinen-4-ol) and PRO (citronellol, citronellyl formate, L-menthone, linalool, and geraniol). Oils showed higher larvicidal activity in the laboratory than semi-field trials. The LC50 values for JVO/PRO were computed as 10.82-2.89/7.13-0.9 ppm and 10.75-9.06/13.63-8.98 ppm in laboratory and semi-field environments, respectively at exposure time of 24-72 h. The percentage of knockdown effects of the oils were also greater in An. gambiae s.s. than in An. arabiensis. Filter papers impregnated with JVO (100 ppm) and PRO (25 ppm) displayed 100% mortality rates for An. gambiae s.s. and 3.75% and 90% mortality rates, for An. arabiensis populations, respectively. Each component of CO, LO, and GO exhibited 98.13%, 97.81%, and 87.5%, respectively, and a mixture of the PRO components indicated 94.69% adult mortality to permethrin-resistant An. arabiensis. CONCLUSIONS The findings of this study show that PRO and its main constituents, compared to JVO, have higher anti-mosquito properties in terms of larvicidal, knockdown, and mortality when applied against susceptible laboratory and resistant wild populations of An. gambiae s.l. Consequently, these oils have the potential for the development of new, efficient, safe, and affordable agents for mosquito control.
Collapse
Affiliation(s)
- Revocatus Yohana
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Paulo S Chisulumi
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Winifrida Kidima
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Azar Tahghighi
- Laboratory of Medicinal Chemistry, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health Sciences, Mwanza, Tanzania.
- Tropical Pesticides Research Institute, Division of Livestock and Human Disease Vector Control Mosquito Section, Arusha, Tanzania.
| |
Collapse
|
21
|
Piedrahita S, Álvarez N, Naranjo-Diaz N, Bickersmith S, Conn JE, Correa MM. nAnopheles blood meal sources and entomological indicators related to Plasmodium transmission in malaria endemic areas of Colombia. Acta Trop 2022; 233:106567. [PMID: 35714924 DOI: 10.1016/j.actatropica.2022.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Malaria is an important public health problem, caused by Plasmodium parasites which are transmitted by female Anopheles mosquitoes that bite humans to obtain blood. The aim of this work was to identify the blood feeding sources of Anopheles female mosquitoes and calculate their entomological indices in relation to Plasmodium transmission. Mosquitoes were collected in malaria endemic localities of the Bajo Cauca and Pacific regions of Colombia using human landing catch and barrier screens, from 18:00 - 24:00 hr, in 2018-2021. Animal censuses within a radius of ∼250 meters were carried out at each sampling site. A total of 2,018 Anopheles specimens were collected and the most abundant species were Anopheles (Nys.) darlingi and Anopheles (Nys.) nuneztovari. The highest human biting rate was 77.5 bites per person per night (b/p/n) for An. nuneztovari in Córdoba-Pacific and 17.5 b/p/n for An. darlingi in Villa Grande-Bajo Cauca. Both species were active mainly in indoor unwalled rooms of the houses. Only An. nuneztovari from Córdoba-Pacific was infected with Plasmodium, with an entomological inoculation rate of 91.25 infective bites per year. Detection of blood feeding sources demonstrate that humans were the most common host, however, An. nuneztovari showed a preference for feeding on dogs and An. darlingi on pigs, dogs and Galliformes, rather than humans. These results contribute to entomological surveillance information and provide valuable data that can be used to tailor effective control interventions to minimize human-vector contact in these malaria endemic regions.
Collapse
Affiliation(s)
- Stefani Piedrahita
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Natalí Álvarez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Nelson Naranjo-Diaz
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Sara Bickersmith
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Jan E Conn
- New York State Department of Health, Wadsworth Center, Albany, NY, USA; Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
22
|
Chan K, Cano J, Massebo F, Messenger LA. Cattle-related risk factors for malaria in southwest Ethiopia: a cross-sectional study. Malar J 2022; 21:179. [PMID: 35689237 PMCID: PMC9188194 DOI: 10.1186/s12936-022-04202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the low to moderate intensity of malaria transmission present in Ethiopia, malaria is still a leading public health problem. Current vector control interventions, principally long-lasting insecticidal nets and indoor residual spraying, when deployed alone or in combination, are insufficient to control the dominant vector species due to their exophagic and exophilic tendencies. Zooprophylaxis presents a potential supplementary vector control method for malaria; however, supporting evidence for its efficacy has been mixed. METHODS To identify risk factors of malaria and to estimate the association between cattle and Anopheles vector abundance as well as malaria risk, a cross-sectional study was conducted in a village near Arba Minch, Ethiopia. Epidemiological surveys (households = 95, individuals = 463), mosquito collections using CDC light traps and a census of cattle and human populations were conducted. To capture environmental conditions, land cover and water bodies were mapped using satellite imagery. Risk factor analyses were performed through logistic, Poisson, negative binomial, and spatial weighted regression models. RESULTS The only risk factor associated with self-reported malaria illness at an individual level was being a child aged 5 or under, where they had three times higher odds than adults. At the household level, variables associated with malaria vector abundance, especially those indoors, included socioeconomic status, the proportion of children in a household and cattle population density. CONCLUSIONS Study results are limited by the low abundance of malaria vectors found and use of self-reported malaria incidence. Environmental factors together with a household's socioeconomic status and host availability played important roles in the risk of malaria infection in southwest Ethiopia. Cattle abundance in the form of higher cattle to human ratios may act as a protective factor against mosquito infestation and malaria risk. Humans should remain indoors to maximize potential protection against vectors and cattle kept outside of homes.
Collapse
Affiliation(s)
- Kallista Chan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jorge Cano
- Expanded Special Project for Elimination of NTDs, World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Fekadu Massebo
- Department of Biology, Collage of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
23
|
Ukawuba I, Shaman J. Inference and dynamic simulation of malaria using a simple climate-driven entomological model of malaria transmission. PLoS Comput Biol 2022; 18:e1010161. [PMID: 35679241 PMCID: PMC9182318 DOI: 10.1371/journal.pcbi.1010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Given the crucial role of climate in malaria transmission, many mechanistic models of malaria represent vector biology and the parasite lifecycle as functions of climate variables in order to accurately capture malaria transmission dynamics. Lower dimension mechanistic models that utilize implicit vector dynamics have relied on indirect climate modulation of transmission processes, which compromises investigation of the ecological role played by climate in malaria transmission. In this study, we develop an implicit process-based malaria model with direct climate-mediated modulation of transmission pressure borne through the Entomological Inoculation Rate (EIR). The EIR, a measure of the number of infectious bites per person per unit time, includes the effects of vector dynamics, resulting from mosquito development, survivorship, feeding activity and parasite development, all of which are moderated by climate. We combine this EIR-model framework, which is driven by rainfall and temperature, with Bayesian inference methods, and evaluate the model’s ability to simulate local transmission across 42 regions in Rwanda over four years. Our findings indicate that the biologically-motivated, EIR-model framework is capable of accurately simulating seasonal malaria dynamics and capturing of some of the inter-annual variation in malaria incidence. However, the model unsurprisingly failed to reproduce large declines in malaria transmission during 2018 and 2019 due to elevated anti-malaria measures, which were not accounted for in the model structure. The climate-driven transmission model also captured regional variation in malaria incidence across Rwanda’s diverse climate, while identifying key entomological and epidemiological parameters important to seasonal malaria dynamics. In general, this new model construct advances the capabilities of implicitly-forced lower dimension dynamical malaria models by leveraging climate drivers of malaria ecology and transmission. Climate plays a fundamental and complex role in malaria transmission, by acting on multiple aspects of mosquito ecology and parasite transmissibility. However, to express malaria transmission pressure, malaria models with implicit vector dynamics have relied on indirect predictors of vector ecology, such as temporal seasonality or interpolations of rainfall/temperature, instead of entomological processes directly informed by ambient conditions. This approach obscures the specific influence of environmental conditions on relevant vector and parasite ecology, as well as meaningful interpretation of climate variability within these models. Here, we demonstrate that both interpretability and ecological effect from climate can be instantiated in lower dimension dynamical models through representation of transmission pressures via a climate-driven Entomological Inoculation Rate (EIR). This process-based model framework is driven by local rainfall and temperature, which regulate multiple aspects of the EIR, namely mosquito density, host-seeking activity, and parasite infectivity. Our results indicate that the climate-driven model construct is able to reproduce regional and local malaria transmission at seasonal and inter-annual time scales, while enabling identification of key entomological determinants of transmission.
Collapse
Affiliation(s)
- Israel Ukawuba
- Columbia University, Mailman School of Public Health, New York, New York, United States of America
- * E-mail:
| | - Jeffrey Shaman
- Columbia University, Mailman School of Public Health, New York, New York, United States of America
| |
Collapse
|
24
|
Musiba RM, Tarimo BB, Monroe A, Msaky D, Ngowo H, Mihayo K, Limwagu A, Chilla GT, Shubis GK, Ibrahim A, Greer G, Mcha JH, Haji KA, Abbas FB, Ali A, Okumu FO, Kiware SS. Outdoor biting and pyrethroid resistance as potential drivers of persistent malaria transmission in Zanzibar. Malar J 2022; 21:172. [PMID: 35672768 PMCID: PMC9171934 DOI: 10.1186/s12936-022-04200-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Low-level of malaria transmission persist in Zanzibar despite high coverage of core vector control interventions. This study was carried out in hot-spot sites to better understand entomological factors that may contribute to residual malaria transmission in Zanzibar. METHODS A total of 135 households were randomly selected from six sites and consented to participate with 20-25 households per site. Mosquito vector surveillance was carried out indoors and outdoors from 6:00 pm-7:00 am using miniaturized double net trap (DN-Mini™). Additional collections were done indoors using mouth aspirators to retrieve resting mosquitoes from wall and ceiling surfaces, and outdoors using resting bucket and pit traps. All collected mosquitoes were morphologically and genetically (PCR) analysed in the laboratory. All collected anopheline and blood-fed mosquitoes were analysed for sporozoite infection and blood meal host preferences by Circumsporozoite Protein ELISA and blood meal ELISA, respectively. The differences between indoor and outdoor mosquito biting rates were analysed using generalized linear mixed models. Levels of resistance to commonly used insecticides were quantified by WHO susceptibility tests. RESULTS Out of 704 malaria vectors collected across 135 households, PCR analysis shows that 98.60% were Anopheles arabiensis, 0.6% Anopheles merus and 0.6% Anopheles gambiae sensu stricto. Sporozoite ELISA analysis indicates that all mosquitoes were negative for the malaria parasite. The results show that more An. arabiensis were collected outdoor (~ 85%) compared to indoor (~ 15%). Furthermore, large numbers of An. arabiensis were caught in outdoor resting sites, where the pit trap (67.2%) collected more mosquitoes compared to the outdoor DN-Mini trap (32.8%). Nearly two-thirds (60.7%) of blood-fed mosquitoes had obtained blood meals from non-human hosts. Mosquitoes displayed non-uniform susceptibility status and resistance intensity among the tested insecticides across the study sites to all WHO recommended insecticides across the study sites. CONCLUSION This study suggests that in contexts such as Zanzibar, testing of novel techniques to complement indoor protection and targeting outdoor biting and/or resting mosquitoes, may be warranted to complement existing interventions and contribute to malaria elimination efforts. The study highlights the need to implement novel interventions and/or adaptations of strategies that can target outdoors biting mosquitoes.
Collapse
Affiliation(s)
| | | | - April Monroe
- PMI VectorWorks Project, Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | | | - Halfan Ngowo
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Alex Limwagu
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | | | | | - George Greer
- US President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, Tanzania
| | - Juma H Mcha
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | - Khamis A Haji
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | - Faiza B Abbas
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, Tanzania
| | | | - Samson S Kiware
- Ifakara Health Institute, Dar es Salaam, Tanzania
- Pan African Mosquito Control Association (PAMCA), Nairobi, Kenya
| |
Collapse
|
25
|
Singh A, Allam M, Kwenda S, Khumalo ZTH, Ismail A, Oliver SV. The dynamic gut microbiota of zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). Sci Rep 2022; 12:1495. [PMID: 35087127 PMCID: PMC8795440 DOI: 10.1038/s41598-022-05437-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022] Open
Abstract
The gut microbiota of mosquitoes plays a critical role in the life history of the animal. There is a growing body of research characterising the gut microbiota of a range of mosquito species, but there is still a paucity of information on some members of the Anopheles gambiae complex. In this study, the gut microbiota of four laboratory strains were characterised. SENN (Anopheles arabiensis-insecticide susceptible major vector), SENN DDT (Anopheles arabiensis-insecticide resistant major vector), MAFUS (Anopheles merus-minor vector) and SANGWE (Anopheles quadriannulatus-non-vector) were used in this study. The microbiota of fourth instar larvae, 3-day old, 15-day old non-blood fed and 15-day old blood fed females were characterised by MALDI-TOF mass spectroscopy and 16 s rRNA gene sequencing by next generation sequencing. The four strains differed in species richness but not diversity. The major vectors differ in β-diversity from that of the minor and non-vectors. There was no difference in α- or β-diversity in 15 non-blood fed females and 15-day old females that had 3 blood meals before day 15. These differences may be related to a mixture of the effect of insecticide resistance phenotype as well as a potential relationship to vector competence to a limited extent. Bacterial diversity is affected by species and age. There is also a potential relationship between the differences in gut microbiota and capacity to transmit parasites. This genetic background of the mosquitoes, however, play a major role, and must be considered in this relationship.
Collapse
Affiliation(s)
- Ashmika Singh
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Stanford Kwenda
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zamantungwa T H Khumalo
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
26
|
Asale A, Abro Z, Enchalew B, Teshager A, Belay A, Kassie M, Mutero CM. Community knowledge, perceptions, and practices regarding malaria and its control in Jabi Tehnan district, Amhara Region, Northwest Ethiopia. Malar J 2021; 20:459. [PMID: 34886848 PMCID: PMC8656029 DOI: 10.1186/s12936-021-03996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background Use of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), community-based malaria education, prompt diagnosis and treatment are key programme components of malaria prevention and control in Ethiopia. However, the effectiveness of these interventions is often undermined by various challenges, including insecticide and drug resistance, the plasticity of malaria vectors feeding and biting behaviour, and certain household factors that lead to misuse and poor utilization of LLINs. The primary objective of this study was to document households’ perceptions towards malaria and assess the prevalence of the disease and the constraints related to the ongoing interventions in Ethiopia (LLINs, IRS, community mobilization house screening). Methods The study was conducted in Jabi Tehnan district, Northwestern Ethiopia, from November 2019 to March 2020. A total of 3010 households from 38 villages were randomly selected for socio-economic and demographic survey. Focus group discussions (FGDs) were conducted in 11 different health clusters considering agro-ecological differences. A total of 1256 children under 10 years of age were screened for malaria parasites using microscopy to determine malaria prevalence. Furthermore, 5-year malaria trend analysis was undertaken based on data obtained from the district health office to understand the disease dynamics. Results Malaria knowledge in the area was high as all FGD participants correctly identified mosquito bites during the night as sources of malaria transmission. Delayed health-seeking behaviour remains a key behavioural challenge in malaria control as it took patients on average 4 days before reporting the case at the nearby health facility. On average, households lost 2.53 working days per person-per malaria episode and they spent US$ 18 per person per episode. Out of the 1256 randomly selected under 10 children tested for malaria parasites, 11 (0.89%) were found to be positive. Malaria disproportionately affected the adult segment of the population more, with 50% of the total cases reported from households being from among individuals who were 15 years or older. The second most affected group was the age group between 5 and 14 years followed by children aged under 5, with 31% and 14% burden, respectively. Conclusion Despite the achievement of universal coverage in terms of LLINs access, utilization of vector control interventions in the area remained low. Using bed nets for unintended purposes remained a major challenge. Therefore, continued community education and communication work should be prioritized in the study area to bring about the desired behavioural changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03996-5.
Collapse
Affiliation(s)
- Abebe Asale
- International Center of Insect Physiology and Ecology, Addis Ababa, Ethiopia.
| | - Zewdu Abro
- International Center of Insect Physiology and Ecology, Addis Ababa, Ethiopia
| | - Bayu Enchalew
- International Center of Insect Physiology and Ecology, Addis Ababa, Ethiopia
| | - Alayu Teshager
- International Center of Insect Physiology and Ecology, Addis Ababa, Ethiopia
| | - Aklilu Belay
- International Center of Insect Physiology and Ecology, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Menale Kassie
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Clifford Maina Mutero
- International Center of Insect Physiology and Ecology, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Use of anti-gSG6-P1 IgG as a serological biomarker to assess temporal exposure to Anopheles' mosquito bites in Lower Moshi. PLoS One 2021; 16:e0259131. [PMID: 34705869 PMCID: PMC8550589 DOI: 10.1371/journal.pone.0259131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria prevalence in the highlands of Northern Tanzania is currently below 1% making this an elimination prone setting. As climate changes may facilitate increasing distribution of Anopheles mosquitoes in such settings, there is a need to monitor changes in risks of exposure to ensure that established control tools meet the required needs. This study explored the use of human antibodies against gambiae salivary gland protein 6 peptide 1 (gSG6-P1) as a biomarker of Anopheles exposure and assessed temporal exposure to mosquito bites in populations living in Lower Moshi, Northern Tanzania. METHODS Three cross-sectional surveys were conducted in 2019: during the dry season in March, at the end of the rainy season in June and during the dry season in September. Blood samples were collected from enrolled participants and analysed for the presence of anti-gSG6-P1 IgG. Mosquitoes were sampled from 10% of the participants' households, quantified and identified to species level. Possible associations between gSG6-P1 seroprevalence and participants' characteristics were determined. RESULTS The total number of Anopheles mosquitoes collected was highest during the rainy season (n = 1364) when compared to the two dry seasons (n = 360 and n = 1075, respectively). The gSG6-P1 seroprevalence increased from 18.8% during the dry season to 25.0% during the rainy season (χ2 = 2.66; p = 0.103) followed by a significant decline to 11.0% during the next dry season (χ2 = 12.56; p = 0.001). The largest number of mosquitoes were collected in one village (Oria), but the seroprevalence was significantly lower among the residents as compared to the rest of the villages (p = 0.039), explained by Oria having the highest number of participants owning and using bed nets. Both individual and household gSG6-P1 IgG levels had no correlation with numbers of Anopheles mosquitoes collected. CONCLUSION Anti-gSG6-P1 IgG is a potential tool in detecting and distinguishing temporal and spatial variations in exposure to Anopheles mosquito bites in settings of extremely low malaria transmission where entomological tools may be obsolete. However studies with larger sample size and extensive mosquito sampling are warranted to further explore the association between this serological marker and abundance of Anopheles mosquito.
Collapse
|
28
|
Transfluthrin eave-positioned targeted insecticide (EPTI) reduces human landing rate (HLR) of pyrethroid resistant and susceptible malaria vectors in a semi-field simulated peridomestic space. Malar J 2021; 20:357. [PMID: 34461911 PMCID: PMC8404287 DOI: 10.1186/s12936-021-03880-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023] Open
Abstract
Background Volatile pyrethroids (VPs) are proven to reduce human–vector contact for mosquito vectors. With increasing resistance to pyrethroids in mosquitoes, the efficacy of VPs, such as transfluthrin, may be compromised. Therefore, experiments were conducted to determine if the efficacy of transfluthrin eave-positioned targeted insecticide (EPTI) depends on the resistance status of malaria vectors. Methods Ribbons treated with 5.25 g transfluthrin or untreated controls were used around the eaves of an experimental hut as EPTI inside a semi-field system. Mosquito strains with different levels of pyrethroid resistance were released simultaneously, recaptured by means of human landing catches (HLCs) and monitored for 24-h mortality. Technical-grade (TG) transfluthrin was used, followed by emulsifiable concentrate (EC) transfluthrin and additional mosquito strains. Generalized linear mixed models with binomial distribution were used to determine the impact of transfluthrin and mosquito strain on mosquito landing rates and 24-h mortality. Results EPTI treated with 5.25 g of either TG or EC transfluthrin significantly reduced HLR of all susceptible and resistant Anopheles mosquitoes (Odds Ratio (OR) ranging from 0.14 (95% Confidence Interval (CI) [0.11–0.17], P < 0.001) to 0.57, (CI [0.42–0.78] P < 0.001). Both TG and EC EPTI had less impact on landing for the resistant Anopheles arabiensis (Mbita strain) compared to the susceptible Anopheles gambiae (Ifakara strain) (OR 1.50 [95% CI 1.18–1.91] P < 0.001) and (OR 1.67 [95% CI 1.29–2.17] P < 0.001), respectively. The EC EPTI also had less impact on the resistant An. arabiensis (Kingani strain) (OR 2.29 [95% CI 1.78–2.94] P < 0.001) compared to the control however the TG EPTI was equally effective against the resistant Kingani strain and susceptible Ifakara strain (OR 1.03 [95% CI 0.82–1.32] P = 0.75). Finally the EC EPTI was equally effective against the susceptible An. gambiae (Kisumu strain) and the resistant An. gambiae (Kisumu-kdr strain) (OR 0.98 [95% CI 0.74–1.30] P = 0.90). Conclusions Transfluthrin-treated EPTI could be useful in areas with pyrethroid-resistant mosquitoes, but it remains unclear whether stronger resistance to pyrethroids will undermine the efficacy of transfluthrin. At this dosage, transfluthrin EPTI cannot be used to kill exposed mosquitoes. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03880-2.
Collapse
|
29
|
Mburu MM, Zembere K, Mzilahowa T, Terlouw AD, Malenga T, van den Berg H, Takken W, McCann RS. Impact of cattle on the abundance of indoor and outdoor resting malaria vectors in southern Malawi. Malar J 2021; 20:353. [PMID: 34446033 PMCID: PMC8390081 DOI: 10.1186/s12936-021-03885-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/16/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Understanding the blood feeding preferences and resting habits of malaria vectors is important for assessing and designing effective malaria vector control tools. The presence of livestock, such as cattle, which are used as blood meal hosts by some malaria vectors, may impact malaria parasite transmission dynamics. The presence of livestock may provide sufficient blood meals for the vectors, thereby reducing the frequency of vectors biting humans. Alternatively, the presence of cattle may enhance the availability of blood meals such that infectious mosquitoes may survive longer, thereby increasing the risk of malaria transmission. This study assessed the effect of household-level cattle presence and distribution on the abundance of indoor and outdoor resting malaria vectors. METHODS Houses with and without cattle were selected in Chikwawa district, southern Malawi for sampling resting malaria vectors. Prokopack aspirators and clay pots were used for indoor and outdoor sampling, respectively. Each house was sampled over two consecutive days. For houses with cattle nearby, the number of cattle and the distances from the house to where the cattle were corralled the previous night were recorded. All data were analysed using generalized linear models fitted with Poisson distribution. RESULTS The malaria vectors caught resting indoors were Anopheles gambiae sensu stricto (s.s.), Anopheles arabiensis and Anopheles funestus s.s. Outdoor collections consisted primarily of An. arabiensis. The catch sizes of indoor resting An. gambiae sensu lato (s.l.) were not different in houses with and without cattle (P = 0.34). The presence of cattle near a house was associated with a reduction in the abundance of indoor resting An. funestus s.l. (P = 0.04). This effect was strongest when cattle were kept overnight ≤ 15 m away from the houses (P = 0.03). The blood meal hosts varied across the species. CONCLUSION These results highlight differences between malaria vector species and their interactions with potential blood meal hosts, which may have implications for malaria risk. Whereas An. arabiensis remained unaffected, the reduction of An. funestus s.s. in houses near cattle suggests a potential protective effect of cattle. However, the low abundance of mosquitoes reduced the power of some analyses and limited the generalizability of the results to other settings. Therefore, further studies incorporating the vectors' host-seeking behaviour/human biting rates are recommended to fully support the primary finding.
Collapse
Affiliation(s)
- Monicah M Mburu
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi.
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands.
- Macha Research Trust, Choma, Zambia.
| | - Kennedy Zembere
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Trust, Blantyre, Malawi
| | - Themba Mzilahowa
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- MAC Communicable Diseases Action Centre, Blantyre, Malawi
| | - Anja D Terlouw
- Malawi-Liverpool-Wellcome Trust, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tumaini Malenga
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robert S McCann
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
30
|
An increasing role of pyrethroid-resistant Anopheles funestus in malaria transmission in the Lake Zone, Tanzania. Sci Rep 2021; 11:13457. [PMID: 34188090 PMCID: PMC8241841 DOI: 10.1038/s41598-021-92741-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Anopheles funestus is playing an increasing role in malaria transmission in parts of sub-Saharan Africa, where An. gambiae s.s. has been effectively controlled by long-lasting insecticidal nets. We investigated vector population bionomics, insecticide resistance and malaria transmission dynamics in 86 study clusters in North-West Tanzania. An. funestus s.l. represented 94.5% (4740/5016) of all vectors and was responsible for the majority of malaria transmission (96.5%), with a sporozoite rate of 3.4% and average monthly entomological inoculation rate (EIR) of 4.57 per house. Micro-geographical heterogeneity in species composition, abundance and transmission was observed across the study district in relation to key ecological differences between northern and southern clusters, with significantly higher densities, proportions and EIR of An. funestus s.l. collected from the South. An. gambiae s.l. (5.5%) density, principally An. arabiensis (81.1%) and An. gambiae s.s. (18.9%), was much lower and closely correlated with seasonal rainfall. Both An. funestus s.l. and An. gambiae s.l. were similarly resistant to alpha-cypermethrin and permethrin. Overexpression of CYP9K1, CYP6P3, CYP6P4 and CYP6M2 and high L1014S-kdr mutation frequency were detected in An. gambiae s.s. populations. Study findings highlight the urgent need for novel vector control tools to tackle persistent malaria transmission in the Lake Region of Tanzania.
Collapse
|
31
|
Eba K, Habtewold T, Yewhalaw D, Christophides GK, Duchateau L. Anopheles arabiensis hotspots along intermittent rivers drive malaria dynamics in semi-arid areas of Central Ethiopia. Malar J 2021; 20:154. [PMID: 33731115 PMCID: PMC7971958 DOI: 10.1186/s12936-021-03697-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Understanding malaria vector’s population dynamics and their spatial distribution is important to define when and where the largest infection risks occur and implement appropriate control strategies. In this study, the seasonal spatio-temporal dynamics of the malaria vector population and transmission intensity along intermittent rivers in a semi-arid area of central Ethiopia were investigated. Methods Mosquitoes were collected monthly from five clusters, 2 close to a river and 3 away from a river, using pyrethrum spray catches from November 2014 to July 2016. Mosquito abundance was analysed by the mixed Poisson regression model. The human blood index and sporozoite rate was compared between seasons by a logistic regression model. Results A total of 2784 adult female Anopheles gambiae sensu lato (s.l.) were collected during the data collection period. All tested mosquitoes (n = 696) were identified as Anopheles arabiensis by polymerase chain reaction. The average daily household count was significantly higher (P = 0.037) in the clusters close to the river at 5.35 (95% CI 2.41–11.85) compared to the clusters away from the river at 0.033 (95% CI 0.02–0.05). Comparing the effect of vicinity of the river by season, a significant effect of closeness to the river was found during the dry season (P = 0.027) and transition from dry to wet season (P = 0.032). Overall, An. arabiensis had higher bovine blood index (62.8%) as compared to human blood index (23.8%), ovine blood index (9.2%) and canine blood index (0.1%). The overall sporozoite rate was 3.9% and 0% for clusters close to and away from the river, respectively. The overall Plasmodium falciparum and Plasmodium vivax entomologic inoculation rates for An. arabiensis in clusters close to the river were 0.8 and 2.2 infective bites per person/year, respectively. Conclusion Mosquito abundance and malaria transmission intensity in clusters close to the river were higher which could be attributed to the riverine breeding sites. Thus, vector control interventions including targeted larval source management should be implemented to reduce the risk of malaria infection in the area. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03697-z.
Collapse
Affiliation(s)
- Kasahun Eba
- Biometrics Research Centre, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Department of Environmental Health Science and Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Jimma University, P.O.Box 378, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, P.O.Box 378, Jimma, Ethiopia
| | | | - Luc Duchateau
- Biometrics Research Centre, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
32
|
Mawejje HD, Kilama M, Kigozi SP, Musiime AK, Kamya M, Lines J, Lindsay SW, Smith D, Dorsey G, Donnelly MJ, Staedke SG. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J 2021; 20:138. [PMID: 33678166 PMCID: PMC7938603 DOI: 10.1186/s12936-021-03675-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. METHODS From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). RESULTS In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18-0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49-0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002-0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005-0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07-0.33, p < 0.001). CONCLUSIONS LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.
Collapse
Affiliation(s)
- Henry Ddumba Mawejje
- Infectious Diseases Research Collaboration, Kampala, Uganda. .,London School of Hygiene and Tropical Medicine, London, UK.
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Simon P Kigozi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Alex K Musiime
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jo Lines
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - David Smith
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place Liverpool, UK
| | | |
Collapse
|
33
|
Finney M, McKenzie BA, Rabaovola B, Sutcliffe A, Dotson E, Zohdy S. Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar. Malar J 2021; 20:25. [PMID: 33413398 PMCID: PMC7791646 DOI: 10.1186/s12936-020-03539-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a top cause of mortality on the island nation of Madagascar, where many rural communities rely on subsistence agriculture and livestock production. Understanding feeding behaviours of Anopheles in this landscape is crucial for optimizing malaria control and prevention strategies. Previous studies in southeastern Madagascar have shown that Anopheles mosquitoes are more frequently captured within 50 m of livestock. However, it remains unknown whether these mosquitoes preferentially feed on livestock. Here, mosquito blood meal sources and Plasmodium sporozoite rates were determined to evaluate patterns of feeding behaviour in Anopheles spp. and malaria transmission in southeastern Madagascar. METHODS Across a habitat gradient in southeastern Madagascar 7762 female Anopheles spp. mosquitoes were collected. Of the captured mosquitoes, 492 were visibly blood fed and morphologically identifiable, and a direct enzyme-linked immunosorbent assay (ELISA) was used to test for swine, cattle, chicken, human, and dog blood among these specimens. Host species identification was confirmed for multiple blood meals using PCR along with Sanger sequencing. Additionally, 1,607 Anopheles spp. were screened for the presence of Plasmodium falciparum, P. vivax-210, and P. vivax 247 circumsporozoites (cs) by ELISA. RESULTS Cattle and swine accounted, respectively, for 51% and 41% of all blood meals, with the remaining 8% split between domesticated animals and humans. Of the 1,607 Anopheles spp. screened for Plasmodium falciparum, Plasmodium vivax 210, and Plasmodium vivax 247 cs-protein, 45 tested positive, the most prevalent being P. vivax 247, followed by P. vivax 210 and P. falciparum. Both variants of P. vivax were observed in secondary vectors, including Anopheles squamosus/cydippis, Anopheles coustani, and unknown Anopheles spp. Furthermore, evidence of coinfection of P. falciparum and P. vivax 210 in Anopheles gambiae sensu lato (s.l.) was found. CONCLUSIONS Here, feeding behaviour of Anopheles spp. mosquitoes in southeastern Madagascar was evaluated, in a livestock rich landscape. These findings suggest largely zoophagic feeding behaviors of Anopheles spp., including An. gambiae s.l. and presence of both P. vivax and P. falciparum sporozoites in Anopheles spp. A discordance between P. vivax reports in mosquitoes and humans exists, suggesting high prevalence of P. vivax circulating in vectors in the ecosystem despite low reports of clinical vivax malaria in humans in Madagascar. Vector surveillance of P. vivax may be relevant to malaria control and elimination efforts in Madagascar. At present, the high proportion of livestock blood meals in Madagascar may play a role in buffering (zooprophylaxis) or amplifying (zoopotentiation) the impacts of malaria. With malaria vector control efforts focused on indoor feeding behaviours, complementary approaches, such as endectocide-aided vector control in livestock may be an effective strategy for malaria reduction in Madagascar.
Collapse
Affiliation(s)
- Micaela Finney
- College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Benjamin A McKenzie
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | | | - Alice Sutcliffe
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ellen Dotson
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah Zohdy
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA. .,College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
34
|
A Model for Assessing the Quantitative Effects of Heterogeneous Affinity in Malaria Transmission along with Ivermectin Mass Administration. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using an agent-based model of malaria, we present numerical evidence that in communities of individuals having an affinity varying within a broad range of values, disease transmission may increase up to 300%. Moreover, our findings provide new insight into how to combine different strategies for the prevention of malaria transmission. In particular, we uncover a relationship between the level of heterogeneity and the level of conventional and unconventional anti-malarial drug administration (ivermectin and gametocidal agents), which, when taken together, will define a control parameter, tuning between disease persistence and elimination. Finally, we also provide evidence that the entomological inoculation rate, as well as the product between parasite and sporozoite rates are both good indicators of malaria incidence in the presence of heterogeneity in disease transmission and may configure a possible improvement in that setting, upon classical standard measures such as the basic reproductive number.
Collapse
|
35
|
The Impact of Insecticide Pre-Exposure on Longevity, Feeding Succession, and Egg Batch Size of Wild Anopheles gambiae s.l. J Trop Med 2020; 2020:8017187. [PMID: 33061994 PMCID: PMC7539113 DOI: 10.1155/2020/8017187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022] Open
Abstract
Background Insecticide resistance among the vector population is the main threat to existing control tools available. The current vector control management options rely on applications of recommended public health insecticides, mainly pyrethroids through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Regular monitoring of insecticide resistance does not provide information on important factors that affect parasite transmission. Such factors include vector longevity, vector competence, feeding success, and fecundity. This study investigated the impacts of insecticide resistance on longevity, feeding behaviour, and egg batch size of Anopheles gambiae s.l. Method The larval sampling was conducted in rice fields using a standard dipper (350 ml) and reared to adults in field insectary. A WHO susceptibility test was conducted using standard treated permethrin (0.75%) and deltamethrin (0.05%) papers. The susceptible Kisumu strain was used for reference. Feeding succession and egg batch size were monitored for all survivors and control. Results The results revealed that mortality rates declined by 52.5 and 59.5% for permethrin and deltamethrin, respectively. The mortality rate for the Kisumu susceptible strain was 100%. The survival rates of wild An. gambiae s.l. was between 24 and 27 days. However, the Kisumu susceptible strain blood meal feeding was significantly higher than resistant colony (t = 2.789, df = 21, P=0.011). Additionally, the susceptible An. gambiae s.s. laid more eggs than the resistant An.gambiae s.l. colony (Χ2 = 1366, df = 1, P ≤ 0.05). Conclusion It can, therefore, be concluded that the wild An. gambiae s.l. had increased longevity, blood feeding, and small egg batch size compared to Kisumu susceptible colonies.
Collapse
|
36
|
Olson MF, Ndeffo-Mbah ML, Juarez JG, Garcia-Luna S, Martin E, Borucki MK, Frank M, Estrada-Franco JG, Rodríguez-Pérez MA, Fernández-Santos NA, Molina-Gamboa GDJ, Carmona Aguirre SD, Reyes-Berrones BDL, Cortés-De la cruz LJ, García-Barrientos A, Huidobro-Guevara RE, Brussolo-Ceballos RM, Ramirez J, Salazar A, Chaves LF, Badillo-Vargas IE, Hamer GL. High Rate of Non-Human Feeding by Aedes aegypti Reduces Zika Virus Transmission in South Texas. Viruses 2020; 12:E453. [PMID: 32316394 PMCID: PMC7232486 DOI: 10.3390/v12040453] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Mosquito-borne viruses are emerging or re-emerging globally, afflicting millions of people around the world. Aedes aegypti, the yellow fever mosquito, is the principal vector of dengue, Zika, and chikungunya viruses, and has well-established populations across tropical and subtropical urban areas of the Americas, including the southern United States. While intense arboviral epidemics have occurred in Mexico and further south in the Americas, local transmission in the United States has been minimal. Here, we study Ae. aegypti and Culex quinquefasciatus host feeding patterns and vertebrate host communities in residential environments of South Texas to identify host-utilization relative to availability. Only 31% of Ae. aegypti blood meals were derived from humans, while 50% were from dogs and 19% from other wild and domestic animals. In Cx. quinquefasciatus, 67% of blood meals were derived from chicken, 22% came from dogs, 9% from various wild avian species, and 2% from other mammals including one human, one cat, and one pig. We developed a model for the reproductive number, R0, for Zika virus (ZIKV) in South Texas relative to northern Mexico using human disease data from Tamaulipas, Mexico. We show that ZIKV R0 in South Texas communities could be greater than one if the risk of human exposure to Ae. aegypti bites in these communities is at least 60% that of Northern Mexico communities. The high utilization of non-human vertebrates and low risk of human exposure in South Texas diminishes the outbreak potential for human-amplified urban arboviruses transmitted by Ae. aegypti.
Collapse
Affiliation(s)
- Mark F. Olson
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (M.F.O.); (J.G.J.); (S.G.-L.); (E.M.); (I.E.B.-V.)
| | - Martial L. Ndeffo-Mbah
- Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA;
| | - Jose G. Juarez
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (M.F.O.); (J.G.J.); (S.G.-L.); (E.M.); (I.E.B.-V.)
| | - Selene Garcia-Luna
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (M.F.O.); (J.G.J.); (S.G.-L.); (E.M.); (I.E.B.-V.)
| | - Estelle Martin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (M.F.O.); (J.G.J.); (S.G.-L.); (E.M.); (I.E.B.-V.)
| | - Monica K. Borucki
- Biosciences and Biotechnology Division, Chemistry, Materials and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.K.B.); (M.F.)
| | - Matthias Frank
- Biosciences and Biotechnology Division, Chemistry, Materials and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.K.B.); (M.F.)
| | - José Guillermo Estrada-Franco
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Cd. Reynosa 88710, Tamaulipas, Mexico; (J.G.E.-F.); (M.A.R.-P.); (N.A.F.-S.)
| | - Mario A. Rodríguez-Pérez
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Cd. Reynosa 88710, Tamaulipas, Mexico; (J.G.E.-F.); (M.A.R.-P.); (N.A.F.-S.)
| | - Nadia A. Fernández-Santos
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Cd. Reynosa 88710, Tamaulipas, Mexico; (J.G.E.-F.); (M.A.R.-P.); (N.A.F.-S.)
| | - Gloria de Jesús Molina-Gamboa
- Secretary of Health of the State of Tamaulipas, Epidemiology Directorate, Cd. Victoria 87000, Tamaulipas, Mexico; (G.d.J.M.-G.); (S.D.C.A.); (B.d.L.R.-B.); (L.J.C.-D.l.c.); (A.G.-B.); (R.E.H.-G.); (R.M.B.-C.)
| | - Santos Daniel Carmona Aguirre
- Secretary of Health of the State of Tamaulipas, Epidemiology Directorate, Cd. Victoria 87000, Tamaulipas, Mexico; (G.d.J.M.-G.); (S.D.C.A.); (B.d.L.R.-B.); (L.J.C.-D.l.c.); (A.G.-B.); (R.E.H.-G.); (R.M.B.-C.)
| | - Bernardita de Lourdes Reyes-Berrones
- Secretary of Health of the State of Tamaulipas, Epidemiology Directorate, Cd. Victoria 87000, Tamaulipas, Mexico; (G.d.J.M.-G.); (S.D.C.A.); (B.d.L.R.-B.); (L.J.C.-D.l.c.); (A.G.-B.); (R.E.H.-G.); (R.M.B.-C.)
| | - Luis Javier Cortés-De la cruz
- Secretary of Health of the State of Tamaulipas, Epidemiology Directorate, Cd. Victoria 87000, Tamaulipas, Mexico; (G.d.J.M.-G.); (S.D.C.A.); (B.d.L.R.-B.); (L.J.C.-D.l.c.); (A.G.-B.); (R.E.H.-G.); (R.M.B.-C.)
| | - Alejandro García-Barrientos
- Secretary of Health of the State of Tamaulipas, Epidemiology Directorate, Cd. Victoria 87000, Tamaulipas, Mexico; (G.d.J.M.-G.); (S.D.C.A.); (B.d.L.R.-B.); (L.J.C.-D.l.c.); (A.G.-B.); (R.E.H.-G.); (R.M.B.-C.)
| | - Raúl E. Huidobro-Guevara
- Secretary of Health of the State of Tamaulipas, Epidemiology Directorate, Cd. Victoria 87000, Tamaulipas, Mexico; (G.d.J.M.-G.); (S.D.C.A.); (B.d.L.R.-B.); (L.J.C.-D.l.c.); (A.G.-B.); (R.E.H.-G.); (R.M.B.-C.)
| | - Regina M. Brussolo-Ceballos
- Secretary of Health of the State of Tamaulipas, Epidemiology Directorate, Cd. Victoria 87000, Tamaulipas, Mexico; (G.d.J.M.-G.); (S.D.C.A.); (B.d.L.R.-B.); (L.J.C.-D.l.c.); (A.G.-B.); (R.E.H.-G.); (R.M.B.-C.)
| | - Josue Ramirez
- Health Department, City of Harlingen, TX 78550, USA;
| | - Aaron Salazar
- Hidalgo County Health & Human Services, Edinburg, TX 78539, USA;
| | - Luis F. Chaves
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Apartado Postal, Tres Ríos, Cartago 4-2250, Costa Rica;
| | - Ismael E. Badillo-Vargas
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (M.F.O.); (J.G.J.); (S.G.-L.); (E.M.); (I.E.B.-V.)
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (M.F.O.); (J.G.J.); (S.G.-L.); (E.M.); (I.E.B.-V.)
| |
Collapse
|
37
|
Orsborne J, Mohammed AR, Jeffries CL, Kristan M, Afrane YA, Walker T, Yakob L. Evidence of extrinsic factors dominating intrinsic blood host preferences of major African malaria vectors. Sci Rep 2020; 10:741. [PMID: 31959845 PMCID: PMC6971008 DOI: 10.1038/s41598-020-57732-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
One of the key determinants of a haematophagous vector’s capacity to transmit pathogens is its selection of which host to secure a blood meal from. This choice is influenced by both intrinsic (genetic) and extrinsic (environmental) factors, but little is known of their relative contributions. Blood fed Anopheles mosquitoes were collected from a malaria endemic village in Ghana. Collections were conducted across a range of different host availabilities and from both indoor and outdoor locations. These environmental factors were shown to impact dramatically the host choice of caught malaria vectors: mosquitoes caught indoors were ten-fold more likely to have sourced their blood meal from humans; and a halving in odds of being human-fed was found for mosquitoes caught only 25 m from the centre of the village. For the first time, we demonstrate that anthropophagy was better explained by extrinsic factors (namely, local host availability and indoor/outdoor trapping location) than intrinsic factors (namely, the (sibling) species of the mosquito caught) (respective Akaike information criterion estimates: 243.0 versus 359.8). Instead of characterizing biting behaviour on a taxonomic level, we illustrate the importance of assessing local entomology. Accounting for this behavioural plasticity is important, both in terms of measuring effectiveness of control programmes and in informing optimal disease control strategies.
Collapse
Affiliation(s)
- James Orsborne
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Claire L Jeffries
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Mojca Kristan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Yaw A Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
38
|
Lubisi BA, Ndouvhada PN, Neiffer D, Penrith ML, Sibanda DR, Bastos A. Seroprevalence of Rift valley fever in South African domestic and wild suids (1999-2016). Transbound Emerg Dis 2019; 67:811-821. [PMID: 31655018 DOI: 10.1111/tbed.13402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023]
Abstract
Rift valley fever (RVF) is a vector-borne viral disease of domestic ruminants, camels and man, characterized by widespread abortions and neonatal deaths in animals, and flu-like symptoms, which can progress to hepatitis and encephalitis in humans. The disease is endemic in Africa, Saudi Arabia and Yemen, and outbreaks occur after periods of high rainfall, or in environments supporting the proliferation of RVF virus (RVFV)-infected mosquito vectors. The domestic and wild animal maintenance hosts of RVFV, which may serve as sources of virus during inter-epidemic periods (IEPs) and contribute to occurrence of sporadic outbreaks, remain unknown, although reports indicate that the African buffalo (Syncerus caffer) may play a role. Due to the close proximity of the habitats of domestic pigs and warthogs to those of known domestic and wild ruminant RVFV maintenance hosts respectively, our study investigated their possible role in the epidemiology of RVF in South Africa by evaluating RVFV exposure and seroconversion in suids. A total of 107 warthog and 3,984 domestic pig sera from 2 and all 9 provinces of South Africa, respectively, were screened for presence of RVFV neutralizing antibodies using the virus neutralization test (VNT). Sero-positivity rates of 1.87% (95% CI: 0.01%-6.9%) and 0.68% (95% CI: 0.49%-1.04%) were observed for warthogs and domestic pigs, respectively, but true prevalence rates, taking test sensitivity and specificity into account, were lower for both groups. There was a strong association between the results of the two groups (χ2 = 0.75, p = .38), and differences in prevalence between the epidemic and IEPs were non-significant for all suid samples tested (p > .05). This study, which provides the first evidence of probable exposure and infection of South African domestic pigs and warthogs to RVFV, indicates that further investigations are warranted, to fully clarify the role of suids in the epidemiology of RVF.
Collapse
Affiliation(s)
- Baratang Alison Lubisi
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa.,Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Phumudzo Nomicia Ndouvhada
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa.,Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa
| | - Donald Neiffer
- Wildlife Health Sciences, National Zoological Park, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Mary Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Donald-Ray Sibanda
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa
| | - Armanda Bastos
- Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa.,Centre for Veterinary Wildlife Studies, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
39
|
Philbert A, Lyantagaye SL, Nkwengulila G. Farmers' pesticide usage practices in the malaria endemic region of North-Western Tanzania: implications to the control of malaria vectors. BMC Public Health 2019; 19:1456. [PMID: 31694595 PMCID: PMC6833290 DOI: 10.1186/s12889-019-7767-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/11/2019] [Indexed: 11/21/2022] Open
Abstract
Background Pesticides remain the mainstay for the control of agricultural pests and disease vectors. However, their indiscriminate use in agriculture has led to development of resistance to both crop pests and disease vectors. This threatens to undermine the success gained through the implementation of chemical based vector control programs. We investigated the practices of farmers with regard to pesticide usage in the vegetable growing areas and their impact on susceptibility status of An. gambiae s.l. Methods A stratified multistage sampling technique using the administrative structure of the Tanzanian districts as sampling frame was used. Wards, villages and then participants with farms where pesticides are applied were purposively recruited at different stages of the process, 100 participants were enrolled in the study. The same villages were used for mosquito larvae sampling from the farms and the surveys were complimented by the entomological study. Larvae were reared in the insectary and the emerging 2–3 days old female adults of Anopheles gambiae s.l were subjected to susceptibility test. Results Forty eight pesticides of different formulations were used for control of crop and Livestock pests. Pyrethroids were the mostly used class of pesticides (50%) while organophosphates and carbamates were of secondary importance. Over 80% of all farmers applied pesticides in mixed form. Susceptibility test results confirmed high phenotypic resistance among An. gambiae populations against DDT and the pyrethroids (Permethrin-0.75%, Cyfluthrin-0.15%, Deltametrin-0.05% and Lambdacyhalothrin-0.05%) with mortality rates 54, 61, 76 and 71%, respectively. Molecular analysis showed An. arabiensis as a dominant species (86%) while An. gambiae s.s constituted only 6%. The kdr genes were not detected in all of the specimens that survived insecticide exposures. Conclusion The study found out that there is a common use of pyrethroids in farms, Livestocks as well as in public health. The study also reports high phenotypic resistance among An. gambiae s.l against most of the pyrethroids tested. The preponderance of pyrethroids in agriculture is of public health concern because this is the class of insecticides widely used in vector control programs and this calls for combined integrated pest and vector management (IPVM).
Collapse
Affiliation(s)
- Anitha Philbert
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania.
| | | | - Gamba Nkwengulila
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
40
|
Patterns of anopheline feeding/resting behaviour and Plasmodium infections in North Cameroon, 2011-2014: implications for malaria control. Parasit Vectors 2019; 12:297. [PMID: 31196161 PMCID: PMC6567421 DOI: 10.1186/s13071-019-3552-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Effective malaria control relies on evidence-based interventions. Anopheline behaviour and Plasmodium infections were investigated in North Cameroon, following long-lasting insecticidal net (LLIN) distribution in 2010. Methods During four consecutive years from 2011 to 2014, adult mosquitoes were collected indoors, outdoors and in exit traps across 38 locations in the Garoua, Pitoa and Mayo-Oulo health districts. Anophelines were morphologically and molecularly identified, then analysed for blood meal origins and Plasmodium falciparum circumsporozoite protein (Pf-CSP). Blood from children under 5 years-old using LLINs was examined for Plasmodium infections. Results Overall, 9376 anophelines belonging to 14 species/sibling species were recorded. Anopheles gambiae (s.l.) [An. arabiensis (73.3%), An. coluzzii (17.6%) and An. gambiae (s.s.) (9.1%)] was predominant (72%), followed by An. funestus (s.l.) (20.5%) and An. rufipes (6.5%). The recorded blood meals were mainly from humans (28%), cattle (15.6%) and sheep (11.6%) or mixed (45%). Pf-CSP rates were higher indoors (3.2–5.4%) versus outdoors (0.8–2.0%), and increased yearly (χ2 < 18, df = 10, P < 0.03). Malaria prevalence in children under 5 years-old, in households using LLINs was 30% (924/3088). Conclusions The present study revealed the variability of malaria vector resting and feeding behaviour, and the persistence of Plasmodium infections regardless the use of LLINs. Supplementary interventions to LLINs are therefore needed to sustain malaria prevention in North Cameroon.
Collapse
|
41
|
Mwanga EP, Mapua SA, Siria DJ, Ngowo HS, Nangacha F, Mgando J, Baldini F, González Jiménez M, Ferguson HM, Wynne K, Selvaraj P, Babayan SA, Okumu FO. Using mid-infrared spectroscopy and supervised machine-learning to identify vertebrate blood meals in the malaria vector, Anopheles arabiensis. Malar J 2019; 18:187. [PMID: 31146762 PMCID: PMC6543689 DOI: 10.1186/s12936-019-2822-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/25/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The propensity of different Anopheles mosquitoes to bite humans instead of other vertebrates influences their capacity to transmit pathogens to humans. Unfortunately, determining proportions of mosquitoes that have fed on humans, i.e. Human Blood Index (HBI), currently requires expensive and time-consuming laboratory procedures involving enzyme-linked immunosorbent assays (ELISA) or polymerase chain reactions (PCR). Here, mid-infrared (MIR) spectroscopy and supervised machine learning are used to accurately distinguish between vertebrate blood meals in guts of malaria mosquitoes, without any molecular techniques. METHODS Laboratory-reared Anopheles arabiensis females were fed on humans, chickens, goats or bovines, then held for 6 to 8 h, after which they were killed and preserved in silica. The sample size was 2000 mosquitoes (500 per host species). Five individuals of each host species were enrolled to ensure genotype variability, and 100 mosquitoes fed on each. Dried mosquito abdomens were individually scanned using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra (4000 cm-1 to 400 cm-1). The spectral data were cleaned to compensate atmospheric water and CO2 interference bands using Bruker-OPUS software, then transferred to Python™ for supervised machine-learning to predict host species. Seven classification algorithms were trained using 90% of the spectra through several combinations of 75-25% data splits. The best performing model was used to predict identities of the remaining 10% validation spectra, which had not been used for model training or testing. RESULTS The logistic regression (LR) model achieved the highest accuracy, correctly predicting true vertebrate blood meal sources with overall accuracy of 98.4%. The model correctly identified 96% goat blood meals, 97% of bovine blood meals, 100% of chicken blood meals and 100% of human blood meals. Three percent of bovine blood meals were misclassified as goat, and 2% of goat blood meals misclassified as human. CONCLUSION Mid-infrared spectroscopy coupled with supervised machine learning can accurately identify multiple vertebrate blood meals in malaria vectors, thus potentially enabling rapid assessment of mosquito blood-feeding histories and vectorial capacities. The technique is cost-effective, fast, simple, and requires no reagents other than desiccants. However, scaling it up will require field validation of the findings and boosting relevant technical capacity in affected countries.
Collapse
Affiliation(s)
- Emmanuel P Mwanga
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania.
| | - Salum A Mapua
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | - Doreen J Siria
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francis Nangacha
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | - Joseph Mgando
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
| | - Francesco Baldini
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Science Thematic Group, Ifakara Health Institute, Morogoro, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
42
|
Fadel AN, Ibrahim SS, Tchouakui M, Terence E, Wondji MJ, Tchoupo M, Wanji S, Wondji CS. A combination of metabolic resistance and high frequency of the 1014F kdr mutation is driving pyrethroid resistance in Anopheles coluzzii population from Guinea savanna of Cameroon. Parasit Vectors 2019; 12:263. [PMID: 31133042 PMCID: PMC6537440 DOI: 10.1186/s13071-019-3523-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The scale-up in the distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying has significantly reduced malaria burden and mortality. However, insecticide resistance, among other factors, is responsible for a recent rebound in malaria transmission in 2015-2016, threatening the progress so far made. As a contribution towards understanding patterns of resistance and its mechanism in the field we characterized a population of Anopheles gambiae (s.l.) from Gounougou, a Guinea savanna of north/central Cameroon. RESULTS Indoor collection conducted in September 2017 identified Anopheles coluzzii and Anopheles arabiensis as the unique Anopheles vector species, with abundances of 83 and 17%, respectively. Analysis of infection with TaqMan assays using heads/thoraces of indoor collected females of An. coluzzii revealed a low Plasmodium falciparum parasite rate of 4.7%. Bioassays conducted with female An. coluzzii revealed extreme resistance, with low mortalities of only 3.75 ± 1.25%, 3.03 ± 1.59% and 1.45 ± 1.45%, respectively, for permethrin, deltamethrin and DDT. In contrast, high susceptibility was obtained with the organophosphates and carbamates, with mortalities in the range of 98-100%. Synergist assays with piperonyl butoxide (PBO) recovered some susceptibility with increased mortality for permethrin to 14.88 ± 8.74%, and for deltamethrin to 32.50 ± 10.51% (~27-fold increase compared to mortalities with deltamethrin alone, χ2 = 29, df = 1, P < 0.0001). These correlated with the results of cone bioassays which revealed complete loss of efficacy of Olyset®Net (0% mortality) and PermaNet®2.0 (0% mortality), and the considerable loss of efficacy of Olyset®Plus (mortality of 2 ± 2%), PermaNet®3.0 side panel (mortality of 2 ± 2%) and PermaNet3.0® roof (mortality of 16 ± 5.1%). Time-course bioassays conducted with deltamethrin established a high intensity of resistance, with LT50 of 309.09 (95% CI 253.07-393.71, Fiducial), and a resistance ratio of 93.09 compared with the fully susceptible Ngoussou laboratory colony. TaqMan genotyping revealed a high frequency of the 1014F allele (65.25%) in the An. coluzzii populations. Sequencing of a fragment of the voltage-gated sodium channel identified a single An. arabiensis female harbouring the 1014S kdr mutation. CONCLUSIONS This finding of high pyrethroid and DDT resistance in An. coluzzii from north-central Cameroon is a major obstacle to malaria control using pyrethroid bednets and indoor residual spraying with DDT.
Collapse
Affiliation(s)
- Amen N Fadel
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA, UK. .,Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria.
| | - Magellan Tchouakui
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Ebai Terence
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Murielle J Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA, UK
| | - Micareme Tchoupo
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Samuel Wanji
- Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Charles S Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA, UK
| |
Collapse
|
43
|
Jeanrenaud ACSN, Brooke BD, Oliver SV. The effects of larval organic fertiliser exposure on the larval development, adult longevity and insecticide tolerance of zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). PLoS One 2019; 14:e0215552. [PMID: 30998732 PMCID: PMC6472872 DOI: 10.1371/journal.pone.0215552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022] Open
Abstract
Zoophilic members of the Anopheles gambiae complex are often associated with cattle. As such, it is likely that the immature aquatic stages will be exposed to cattle faeces as a pollutant. This study aimed to examine the effect of cattle manure on members of the An. gambiae complex found in South Africa. In this study, a commercial organic fertiliser originating from cattle manure was used as a proxy for cattle faeces. Laboratory strains of An. merus, An. quadriannulatus as well as four An. arabiensis strains (SENN and MBN: insecticide susceptible, MBN-DDT: insecticide resistant, unselected, SENN-DDT: insecticide resistant: selected for resistance) were used in this study. The effect of larval fertiliser exposure on larval development rate and adult longevity was assessed in all three species. The effect of larval fertiliser exposure on subsequent adult size, insecticide tolerance and detoxification enzyme activity of the four strains of the malaria vector An. arabiensis was also assessed. Following fertiliser treatment, all strains and species showed a significantly increased rate of larval development, with insecticide susceptible strains gaining the greatest advantage. The adult longevities of An. merus, An. quadriannulatus, insecticide susceptible and resistant An. arabiensis were significantly increased following fertiliser treatment. Insecticide susceptible and resistant An. arabiensis adults were significantly larger after larval organic fertiliser exposure. Larval fertiliser exposure also increased insecticide tolerance in adult An. arabiensis, particularly in the insecticide resistant, selected strain. This 4.7 fold increase in deltamethrin tolerance translated to an increase in pyrethroid resistance intensity, which could exert operational effects. In general, larval exposure to cattle faeces significantly affects the life histories of members of the An. gambiae complex.
Collapse
Affiliation(s)
- Alexander C. S. N. Jeanrenaud
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D. Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V. Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
44
|
Jahan F, Khan NH, Wahid S, Ullah Z, Kausar A, Ali N. Malaria epidemiology and comparative reliability of diagnostic tools in Bannu; an endemic malaria focus in south of Khyber Pakhtunkhwa, Pakistan. Pathog Glob Health 2019; 113:75-85. [PMID: 30894081 DOI: 10.1080/20477724.2019.1595904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The present study was aimed at elucidation of malaria epidemiology and comparing performance of several diagnostic procedures in Bannu, a highly endemic district of Khyber Pakhtunkhwa, Pakistan. Dried blood spots were collected from patients suspected of malaria visiting a hospital and two private laboratories in district Bannu and processed for species-specific PCR (rRNA). Patients were also screened for malaria through microscopy and RDT. A well-structured questionnaire was used to collect patient information to assess risk factors for malaria. Of 2033 individuals recruited, 21.1% (N = 429) were positive for malaria by at least one method. Overall, positivity detected by PCR was 30.5% (95/311) followed by 17.7% by microscopy (359/2033) and 16.4% by RDT (266/1618). Plasmodium vivax (16.9%, N = 343) was detected as the dominant species followed by Plasmodium falciparum (2.3%, N = 47) and mixed infections (1.2%, N = 39). Microscopy and RDT (Cohen's kappa k = 0.968, p = <0.0001, McNemar test p = 0.069) displayed significant agreement with each other. Satisfactory health, sleeping indoors, presence of health-care facility in vicinity (at an accessible range from home), living in upper middle class and in concrete houses significantly reduced malaria risk; whereas, low literacy level, presence of domestic animals indoors and malaria diagnosis recommended by clinician increased the disease risk. Overall, findings from the study provide reasonable basis for use of RDT as a cost-effective screening tool in field and for clinicians who can proceed with timely treatment of malaria patients. Appropriate management of identified risk factors could contribute to reduction of malaria prevalence in Bannu and its peripheries.
Collapse
Affiliation(s)
- Fatima Jahan
- a Department of Zoology , University of Peshawar , Peshawar , Pakistan
| | - Nazma Habib Khan
- a Department of Zoology , University of Peshawar , Peshawar , Pakistan
| | - Sobia Wahid
- a Department of Zoology , University of Peshawar , Peshawar , Pakistan
| | - Zaki Ullah
- b Department of Pharmacy , University of Peshawar , Peshawar , Pakistan
| | - Aisha Kausar
- a Department of Zoology , University of Peshawar , Peshawar , Pakistan
| | - Naheed Ali
- a Department of Zoology , University of Peshawar , Peshawar , Pakistan
| |
Collapse
|
45
|
Meza FC, Kreppel KS, Maliti DF, Mlwale AT, Mirzai N, Killeen GF, Ferguson HM, Govella NJ. Mosquito electrocuting traps for directly measuring biting rates and host-preferences of Anopheles arabiensis and Anopheles funestus outdoors. Malar J 2019; 18:83. [PMID: 30885205 PMCID: PMC6423841 DOI: 10.1186/s12936-019-2726-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
Background Mosquito biting rates and host preferences are crucial determinants of human exposure to vector-borne diseases and the impact of vector control measures. The human landing catch (HLC) is a gold standard method for measuring human exposure to bites, but presents risks to participants by requiring some exposure to mosquito vectors. Mosquito electrocuting traps (METs) represent an exposure-free alternative to HLCs for measuring human exposure to malaria vectors. However, original MET prototypes were too small for measuring whole-body biting rates on humans or large animals like cattle. Here a much larger MET capable of encompassing humans or cattle was designed, and its performance was evaluated relative to both the original small MET and HLC and for quantifying malaria vector host preferences. Methods Human landing catch, small human-baited METs (MET-SH), and large METs baited with either a human (MET-LH) or calves (MET-LC) were simultaneously used to capture wild malaria vectors outdoors in rural southern Tanzania. The four capture methods were compared in a Latin-square design over 20 nights. Malaria vector host preferences were estimated through comparison of the number of mosquitoes caught by large METs baited with either humans or cattle. Results The MET-LH caught more than twice as many Anopheles arabiensis than either the MET-SH or HLC. It also caught higher number of Anopheles funestus sensu lato (s.l.) compared to the MET-SH or HLC. Similar numbers of An. funestus sensu stricto (s.s.) were caught in MET-LH and MET-SH collections. Catches of An. arabiensis with human or cattle-baited large METs were similar, indicating no clear preference for either host. In contrast, An. funestus s.s. exhibited a strong, but incomplete preference for humans. Conclusions METs are a sensitive, practical tool for assessing mosquito biting rates and host preferences, and represent a safer alternative to the HLC. Additionally these findings suggest the HLC underestimate whole-body human exposure. MET collections indicated the An. funestus s.s. population in this setting had a higher than expected attack rate on cattle, potentially making eliminating of this species more difficult with human-targetted control measures. Supplementary vector control tools targetted at livestock may be required to effectively tackle this species.
Collapse
Affiliation(s)
- Felician C Meza
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Tanzania.
| | - Katharina S Kreppel
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Tanzania.,Animal Health and Comparative Medicine, Institute of Biodiversity, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Deodatus F Maliti
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Tanzania.,Animal Health and Comparative Medicine, Institute of Biodiversity, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Amos T Mlwale
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Tanzania
| | - Nosrat Mirzai
- Bioelectronics Unit, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Tanzania.,Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Heather M Ferguson
- Animal Health and Comparative Medicine, Institute of Biodiversity, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Tanzania.,Animal Health and Comparative Medicine, Institute of Biodiversity, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
46
|
Abong'o B, Yu X, Donnelly MJ, Geier M, Gibson G, Gimnig J, Ter Kuile F, Lobo NF, Ochomo E, Munga S, Ombok M, Samuels A, Torr SJ, Hawkes FM. Host Decoy Trap (HDT) with cattle odour is highly effective for collection of exophagic malaria vectors. Parasit Vectors 2018; 11:533. [PMID: 30318015 PMCID: PMC6191991 DOI: 10.1186/s13071-018-3099-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As currently implemented, malaria vector surveillance in sub-Saharan Africa targets endophagic and endophilic mosquitoes, leaving exophagic (outdoor blood-feeding) mosquitoes underrepresented. We evaluated the recently developed host decoy trap (HDT) and compared it to the gold standard, human landing catch (HLC), in a 3 × 3 Latin square study design outdoors in western Kenya. HLCs are considered to represent the natural range of Anopheles biting-behaviour compared to other sampling tools, and therefore, in principle, provide the most reliable profile of the biting population transmitting malaria. The HDT incorporates the main host stimuli that attract blood-meal seeking mosquitoes and can be baited with the odours of live hosts. RESULTS Numbers and species diversity of trapped mosquitoes varied significantly between HLCs and HDTs baited with human (HDT-H) or cattle (HDT-C) odour, revealing important differences in behaviour of Anopheles species. In the main study in Kisian, the HDT-C collected a nightly mean of 43.2 (95% CI: 26.7-69.8) Anopheles, compared to 5.8 (95% CI: 4.1-8.2) in HLC, while HDT-H collected 0.97 (95% CI: 0.4-2.1), significantly fewer than the HLC. Significantly higher proportions of An. arabiensis were caught in HDT-Cs (0.94 ± 0.01; SE) and HDT-Hs (0.76 ± 0.09; SE) than in HLCs (0.45 ± 0.05; SE) per trapping night. The proportion of An. gambiae (s.s.) was highest in HLC (0.55 ± 0.05; SE) followed by HDT-H (0.20 ± 0.09; SE) and least in HDT-C (0.06 ± 0.01; SE). An unbaited HDT placed beside locales where cattle are usually corralled overnight caught mostly An. arabiensis with proportions of 0.97 ± 0.02 and 0.80 ± 0.2 relative to the total anopheline catch in the presence and absence of cattle, respectively. A mean of 10.4 (95% CI: 2.0-55.0) Anopheles/night were trapped near cattle, compared to 0.4 (95% CI: 0.1-1.7) in unbaited HDT away from hosts. CONCLUSIONS The capability of HDTs to combine host odours, heat and visual stimuli to simulate a host provides the basis of a system to sample human- and cattle-biting mosquitoes. HDT-C is particularly effective for collecting An. arabiensis outdoors. The HDT offers the prospect of a system to monitor and potentially control An. arabiensis and other outdoor-biting mosquitoes more effectively.
Collapse
Affiliation(s)
- Bernard Abong'o
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578-40100, Kisumu, Kenya. .,Abt Associates Inc. PMI-VectorLink Kenya, Whitehouse, Milimani, Kisumu, Ojijo Oteko Road, P.O. Box 895-40123, Kisumu, Kenya.
| | - Xiaoyu Yu
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - Gabriella Gibson
- Natural Resources Institute, University of Greenwich at Medway, Chatham Maritime, Kent, ME4 4TB, UK
| | - John Gimnig
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Feiko Ter Kuile
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Neil F Lobo
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578-40100, Kisumu, Kenya
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578-40100, Kisumu, Kenya
| | - Maurice Ombok
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578-40100, Kisumu, Kenya
| | - Aaron Samuels
- Centers for Disease Control and Prevention, Kisian Campus, Off Busia Road, P O Box 1578, Kisumu, 40100, Kenya
| | - Stephen J Torr
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Frances M Hawkes
- Natural Resources Institute, University of Greenwich at Medway, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
47
|
Hakizimana E, Karema C, Munyakanage D, Githure J, Mazarati JB, Tongren JE, Takken W, Binagwaho A, Koenraadt CJ. Spatio-temporal distribution of mosquitoes and risk of malaria infection in Rwanda. Acta Trop 2018; 182:149-157. [PMID: 29476726 DOI: 10.1016/j.actatropica.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/26/2018] [Accepted: 02/11/2018] [Indexed: 11/24/2022]
Abstract
To date, the Republic of Rwanda has not systematically reported on distribution, diversity and malaria infectivity rate of mosquito species throughout the country. Therefore, we assessed the spatial and temporal variation of mosquitoes in the domestic environment, as well as the nocturnal biting behavior and infection patterns of the main malaria vectors in Rwanda. For this purpose, mosquitoes were collected monthly from 2010 to 2013 by human landing catches (HLC) and pyrethrum spray collections (PSC) in seven sentinel sites. Mosquitoes were identified using morphological characteristics and PCR. Plasmodium falciparum sporozoite infection rates were determined using ELISA. A total of 340,684 mosquitoes was collected by HLC and 73.8% were morphologically identified as culicines and 26.2% as anophelines. Of the latter, 94.3% were Anopheles gambiae s.l., 0.4% Anopheles funestus and 5.3% other Anopheles species. Of An. gambiae s.l., An. arabiensis and An. gambiae s.s. represented 84.4% and 15.6%, respectively. Of all An. gambiae s.l. collected indoor and outdoor, the proportion collected indoors was 51.3% in 2010 and 44.9% in 2013. A total of 17,022 mosquitoes was collected by PSC of which 20.5% were An. gambiae s.l. and 79.5% were culicines. For the seven sentinel sites, the mean indoor density for An. gambiae s.l. varied from 0.0 to 1.0 mosquitoes/house/night. P. falciparum infection rates in mosquitoes varied from 0.87 to 4.06%. The entomological inoculation rate (EIR) ranged from 1.0 to 329.8 with an annual average of 99.5 infective bites/person/year. This longitudinal study shows, for the first time, the abundance, species composition, and entomological inoculation rate of malaria mosquitoes collected throughout Rwanda.
Collapse
|
48
|
Ould Lemrabott MA, Ould Ahmedou Salem MS, Ould Brahim K, Brengues C, Rossignol M, Bogreau H, Basco L, Belghyti D, Simard F, Ould Mohamed Salem Boukhary A. Seasonal abundance, blood meal sources and insecticide susceptibility in major anopheline malaria vectors from southern Mauritania. Parasit Vectors 2018; 11:232. [PMID: 29636113 PMCID: PMC5894152 DOI: 10.1186/s13071-018-2819-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/26/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mohamed Aly Ould Lemrabott
- Unité de Recherche Génomes et Milieux, Université de Nouakchott Al-Aasriya, Faculté des Sciences et Techniques, Nouveau Campus Universitaire, BP 5026 Nouakchott, Mauritania
- Laboratoire Biotechnologie et Environnement, Equipe de Parasitologie et Environnement, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, BP 133 Kénitra, Morocco
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de Recherche Génomes et Milieux, Université de Nouakchott Al-Aasriya, Faculté des Sciences et Techniques, Nouveau Campus Universitaire, BP 5026 Nouakchott, Mauritania
| | - Khyarhoum Ould Brahim
- Unité de Recherche Génomes et Milieux, Université de Nouakchott Al-Aasriya, Faculté des Sciences et Techniques, Nouveau Campus Universitaire, BP 5026 Nouakchott, Mauritania
| | - Cecile Brengues
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement - Centre National de la Recherche Scientifique - Université de Montpellier, BP 64501, 34394 Montpellier, France
| | - Marie Rossignol
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement - Centre National de la Recherche Scientifique - Université de Montpellier, BP 64501, 34394 Montpellier, France
| | - Hervé Bogreau
- Aix-Marseille Université, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Service de Santé des Armées, Unité Mixte de Recherche Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire - Méditerranée Infection, 13005 Marseille, France
- Unité de Parasitologie et d’Entomologie, Institut de Recherche Biomédicale des Armées (IRBA), 13005 Marseille, France
| | - Leonardo Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Service de Santé des Armées, Unité Mixte de Recherche Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire - Méditerranée Infection, 13005 Marseille, France
- Unité de Parasitologie et d’Entomologie, Institut de Recherche Biomédicale des Armées (IRBA), 13005 Marseille, France
| | - Driss Belghyti
- Laboratoire Biotechnologie et Environnement, Equipe de Parasitologie et Environnement, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, BP 133 Kénitra, Morocco
| | - Frédéric Simard
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement - Centre National de la Recherche Scientifique - Université de Montpellier, BP 64501, 34394 Montpellier, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche Génomes et Milieux, Université de Nouakchott Al-Aasriya, Faculté des Sciences et Techniques, Nouveau Campus Universitaire, BP 5026 Nouakchott, Mauritania
- Aix-Marseille Université, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Service de Santé des Armées, Unité Mixte de Recherche Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire - Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
49
|
Some aspects of entomological determinants of Phlebotomus orientalis in highland and lowland visceral leishmaniasis foci in northwestern Ethiopia. PLoS One 2018; 13:e0192844. [PMID: 29438419 PMCID: PMC5811031 DOI: 10.1371/journal.pone.0192844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/31/2018] [Indexed: 11/19/2022] Open
Abstract
Visceral leishmaniasis (VL) is one of the major public health problems in northwest Ethiopia, mainly in Libo-Kemkem and Metema districts, where Phlebotomus orientalis is the most probable vector of the disease. The aim of this study was to determine the physiological age, host preference and vectorial potential of P. orientalis in the highland and lowland foci of the region. Sand flies were collected using CDC light traps between May 2011 and April 2012 in Libo-Kemkem and October 2012 and September 2013 in Metema from household compounds, farm field and mixed forest. Females belonging to Phlebotomus were dissected for physiological age determination and Leishmania detection and isolation. Leishmania infections in sand flies were investigated using molecular methods. Freshly fed Phlebotomus females were tested to identify blood meal sources using PCR-RLB and ELISA. A total of 1149 (936 from Libo-Kemkem and 213 from Metema) blood unfed female P. orientalis were dissected for age determination. The parity rate was 45.6% and 66.2% in Libo-Kemkem and Metema, respectively. None of 798 female P. orientalis dissected (578 from Libo-Kemkem and 220 from Metema) was infected with Leishmania parasites. A total of 347 P. orientalis specimens collected from Libo-Kemkem were processed using PCR, of which 10 (2.8%) specimens were found with DNA of Leishmania spp. Of a total 491 freshly fed female P. orientalis analyzed for blood meal origins by RLB-PCR and ELISA, 57.6% (67.8% from Libo-Kemkem and 49.8% from Metema) were found to contain bovine blood while 4.9% (3.7% from Libo-Kemkem and 5.7% from Metema) were of human blood. In conclusion, the present study showed parity difference between the two populations of P. orientalis and that both populations have strong zoophilic behavior. Based on the presented evidences, the species is strongly implicated as a vector of kala-azar in both areas. Therefore, vector control should be a component of a strategy to manage visceral leishmaniasis in both study areas.
Collapse
|
50
|
Sy O, Niang EHA, Ndiaye M, Konaté L, Diallo A, Ba ECC, Tairou F, Diouf E, Cissé B, Gaye O, Faye O. Entomological impact of indoor residual spraying with pirimiphos-methyl: a pilot study in an area of low malaria transmission in Senegal. Malar J 2018; 17:64. [PMID: 29402274 PMCID: PMC5800081 DOI: 10.1186/s12936-018-2212-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
Background Scaling-up of effective anti-malarial control strategies in Central-West region of Senegal has resulted in the sharp decline in malaria prevalence in this area. However, despite these strategies, residual malaria transmission has been observed in some villages (hot spots). The objective of this study was to assess the impact of indoor residual spraying (IRS) with pirimiphos-methyl on malaria transmission in hot spot areas. Methods The malaria vector population dynamics were monitored in each of the six selected villages (4 of which used IRS, 2 were unsprayed control areas) using overnight human landing catches (HLC) and pyrethrum spray catches (PSC). The host source of blood meals from freshly fed females collected using PSC was identified using the direct ELISA method. Females caught through HLC were tested by ELISA for the detection of Plasmodium falciparum circumsporozoite protein and Anopheles gambiae complex was identified using PCR. Results Preliminary data shown that the densities of Anopheles populations were significantly lower in the sprayed areas (179/702) compared to the control. Overall, malaria transmission risk was 14 times lower in the intervention zone (0.94) compared to the control zone (12.7). In the control areas, three Anopheles species belonging to the Gambiae complex (Anopheles arabiensis, Anopheles coluzzii and Anopheles melas) maintained the transmission, while only An. coluzzii was infective in the sprayed areas. Conclusion The preliminary data from this pilot study showed that IRS with the CS formulation of pirimiphos-methyl is likely very effective in reducing malaria transmission risk. However, additional studies including further longitudinal entomological surveys as well as ecological and ethological and genetical characterization of vectors species and their populations are needed to better characterize the entomological impact of indoor residual spraying with pirimiphos-methyl in the residual transmission areas of Senegal.
Collapse
Affiliation(s)
- Ousmane Sy
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal.
| | - El Hadji Amadou Niang
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Magatte Ndiaye
- Laboratoire de Parasitologie Médicale, Faculté de Médecine, Pharmacie et d'Odonto-stomatologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Lassana Konaté
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Abdoulaye Diallo
- Laboratoire de Parasitologie Médicale, Faculté de Médecine, Pharmacie et d'Odonto-stomatologie, Université Cheikh Anta Diop, Dakar, Senegal
| | | | - Fassiath Tairou
- Laboratoire de Parasitologie Médicale, Faculté de Médecine, Pharmacie et d'Odonto-stomatologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Elhadji Diouf
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Badara Cissé
- Laboratoire de Parasitologie Médicale, Faculté de Médecine, Pharmacie et d'Odonto-stomatologie, Université Cheikh Anta Diop, Dakar, Senegal.,London School of Hygiene & Tropical Medicine, London, UK
| | - Oumar Gaye
- Laboratoire de Parasitologie Médicale, Faculté de Médecine, Pharmacie et d'Odonto-stomatologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Ousmane Faye
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| |
Collapse
|