1
|
Takata K, Miyata-Takata T, Sato Y. Frequent CDKN2B/P15 and DAPK1 methylation in duodenal follicular lymphoma is related to duodenal reactive lymphoid hyperplasia. J Clin Exp Hematop 2024; 64:129-137. [PMID: 38925973 PMCID: PMC11303960 DOI: 10.3960/jslrt.24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Duodenal type follicular lymphoma (DFL), a rare entity of follicular lymphoma (FL), is clinically indolent and is characterized by a low histological grade compared with nodal follicular lymphoma (NFL). Our previous reports revealed that DFL shares characteristics of both NFL and mucosa-associated lymphoid tissue (MALT) lymphoma in terms of clinical and biological aspects, suggesting its pathogenesis may involve antigenic stimulation. In contrast to NFL, the genomic methylation status of DFL is still challenging. Here, we determined the methylation profiles of DNAs from patients with DFL (n = 12), NFL (n = 10), duodenal reactive lymphoid hyperplasia (D-RLH) (n = 7), nodal reactive lymphoid hyperplasia (N-RLH) (n = 5), and duodenal samples from normal subjects (NDU) (n = 5) using methylation specific PCR of targets previously identified in MALT lymphoma (CDKN2B/P15, CDKN2A/P16, CDKN2C/P18, MGMT, hMLH-1, TP73, DAPK, HCAD). DAPK1 was frequently methylated in DFL (9/12; 75%), NFL (9/10; 90%), and D-RLH (5/7; 71%). CDKN2B/P15 sequences were methylated in six DFL samples and in only one NFL sample. Immunohistochemical analysis showed that p15 expression inversely correlated with methylation status. Genes encoding other cyclin-dependent kinase inhibitors (CDKN2A/P16, CDKN2C/P18) were not methylated in DFL samples. Methylation of the genes of interest was not detected in DNAs from D-RLH, except for DAPK1, and the difference in the extent of methylation between NDU and D-RLH was statistically significant (P = 0.013). Our results suggest that D-RLH serves as a reservoir for the development of DFL and that methylation of CDKN2B/P15 plays an important role in this process.
Collapse
|
2
|
Luo L, Fu S, Du W, He LN, Zhang X, Wang Y, Zhou Y, Hong S. LRRC3B and its promoter hypomethylation status predicts response to anti-PD-1 based immunotherapy. Front Immunol 2023; 14:959868. [PMID: 36798137 PMCID: PMC9928207 DOI: 10.3389/fimmu.2023.959868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Background The leucine rich repeat containing 3B (LRRC3B) gene is a tumor suppressor gene involved in the anti-tumor immune microenvironment. Expression of LRRC3B and DNA methylation at the LRRC3B promoter region may serve as a useful marker to predict response to anti-PD-1 therapy. However, no studies have yet systematically explored the protective role of LRRC3B methylation in tumor progression and immunity. Methods Expression of LRRC3B of 33 cancer types in The Cancer Genome Atlas (TCGA) was downloaded from UCSC Xena (http://xena.ucsc.edu/). And, we evaluated the differential expression of LRRC3B according to tumor stage, overall survival, and characteristics of the tumor microenvironment. The immunotherapeutic cohorts included IMvigor21, GSE119144, and GSE72308 which were obtained from the Gene Expression Omnibus database. We conducted pearson correlation analysis of LRRC3B and tumor microenvironment (TME) in pan-cancer. Also, six immune cell types (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) and tumor purity were analyzed using the Tumor IMmune Estimation Resource (TIMER1.0) (Tumor IMmune Estimation Resource (TIMER2.0). And, a "silencing score" model base on LRRC3B promoter methylation to predict overall survival (OS) by multivariate Cox regression analysis was constructed. Finally, the model was applied to predict anti-PD-1 therapy in non-small cell lung cancer (NSCLC) and breast cancer (BRCA). Results LRRC3B expression associated with less tumor invasion, less severe tumor stage, and decreased metastasis. The inactivation of LRRC3B promoted the enrichment of immuneosuppressive cells, including myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), M2 subtype of tumor-associated macrophages (M2-TAMs), M1 subtype of tumor-associated macrophages (M1-TAMs), and regulatory T (Treg) cells. A high silencing score was significantly associated with immune inhibition, low expression of LRRC3B, poor patient survival, and activation of cancer-related pathways. Conclusion Our comprehensive analysis demonstrated the potential role of LRRC3B in the anti-tumor microenvironment, clinicopathological features of cancer, and disease prognosis. It suggested that LRRC3B methylation could be used as a powerful biomarker to predict immunotherapy responses in NSCLC and BRCA.
Collapse
Affiliation(s)
- Linfeng Luo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha Fu
- Department of Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen University, Guangzhou, China
| | - Wei Du
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Na He
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuanye Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixing Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixin Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaodong Hong
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Xu J, Zhong Y, Yin H, Linneman J, Luo Y, Xia S, Xia Q, Yang L, Huang X, Kang K, Wang J, Niu Y, Li L, Gou D. Methylation-mediated silencing of PTPRD induces pulmonary hypertension by promoting pulmonary arterial smooth muscle cell migration via the PDGFRB/PLCγ1 axis. J Hypertens 2022; 40:1795-1807. [PMID: 35848503 PMCID: PMC9451921 DOI: 10.1097/hjh.0000000000003220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Pulmonary hypertension is a lethal disease characterized by pulmonary vascular remodeling and is mediated by abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Platelet-derived growth factor BB (PDGF-BB) is the most potent mitogen for PASMCs and is involved in vascular remodeling in pulmonary hypertension development. Therefore, the objective of our study is to identify novel mechanisms underlying vascular remodeling in pulmonary hypertension. METHODS We explored the effects and mechanisms of PTPRD downregulation in PASMCs and PTPRD knockdown rats in pulmonary hypertension induced by hypoxia. RESULTS We demonstrated that PTPRD is dramatically downregulated in PDGF-BB-treated PASMCs, pulmonary arteries from pulmonary hypertension rats, and blood and pulmonary arteries from lung specimens of patients with hypoxic pulmonary arterial hypertension (HPAH) and idiopathic PAH (iPAH). Subsequently, we found that PTPRD was downregulated by promoter methylation via DNMT1. Moreover, we found that PTPRD knockdown altered cell morphology and migration in PASMCs via modulating focal adhesion and cell cytoskeleton. We have demonstrated that the increase in cell migration is mediated by the PDGFRB/PLCγ1 pathway. Furthermore, under hypoxic condition, we observed significant pulmonary arterial remodeling and exacerbation of pulmonary hypertension in heterozygous PTPRD knock-out rats compared with the wild-type group. We also demonstrated that HET group treated with chronic hypoxia have higher expression and activity of PLCγ1 in the pulmonary arteries compared with wild-type group. CONCLUSION We propose that PTPRD likely plays an important role in the process of pulmonary vascular remodeling and development of pulmonary hypertension in vivo .
Collapse
Affiliation(s)
- Junhua Xu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanfeng Zhong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Haoyang Yin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - John Linneman
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yixuan Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Sijian Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Qinyi Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Lei Yang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Xingtao Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Kang Kang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| |
Collapse
|
4
|
Wang J, Zhang W, Hou W, Zhao E, Li X. Molecular Characterization, Tumor Microenvironment Association, and Drug Susceptibility of DNA Methylation-Driven Genes in Renal Cell Carcinoma. Front Cell Dev Biol 2022; 10:837919. [PMID: 35386197 PMCID: PMC8978676 DOI: 10.3389/fcell.2022.837919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that DNA methylation has essential roles in the development of renal cell carcinoma (RCC). Aberrant DNA methylation acts as a vital role in RCC progression through regulating the gene expression, yet little is known about the role of methylation and its association with prognosis in RCC. The purpose of this study is to explore the DNA methylation-driven genes for establishing prognostic-related molecular clusters and providing a basis for survival prediction. In this study, 5,198 differentially expressed genes (DEGs) and 270 DNA methylation-driven genes were selected to obtain 146 differentially expressed DNA methylation-driven genes (DEMDGs). Two clusters were distinguished by consensus clustering using 146 DEMDGs. We further evaluated the immune status of two clusters and selected 106 DEGs in cluster 1. Cluster-based immune status analysis and functional enrichment analysis of 106 DEGs provide new insights for the development of RCC. To predict the prognosis of patients with RCC, a prognostic model based on eight DEMDGs was constructed. The patients were divided into high-risk groups and low-risk groups based on their risk scores. The predictive nomogram and the web-based survival rate calculator (http://127.0.0.1:3496) were built to validate the predictive accuracy of the prognostic model. Gene set enrichment analysis was performed to annotate the signaling pathways in which the genes are enriched. The correlation of the risk score with clinical features, immune status, and drug susceptibility was also evaluated. These results suggested that the prognostic model might be a promising prognostic tool for RCC and might facilitate the management of patients with RCC.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Hou
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Ruan X, Zhang R, Zhu H, Ye C, Wang Z, Dong E, Li R, Cheng Z, Peng H. Research progress on epigenetics of small B-cell lymphoma. Clin Transl Oncol 2022; 24:1501-1514. [PMID: 35334078 DOI: 10.1007/s12094-022-02820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Small B-cell lymphoma is the classification of B-cell chronic lymphoproliferative disorders that include chronic lymphocytic leukaemia/small lymphocytic lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. The clinical presentation is somewhat heterogeneous, and its occurrence and development mechanisms are not yet precise and may involve epigenetic changes. Epigenetic alterations mainly include DNA methylation, histone modification, and non-coding RNA, which are essential for genetic detection, early diagnosis, and assessment of treatment resistance in small B-cell lymphoma. As chronic lymphocytic leukemia/small lymphocytic lymphoma has already been reported in the literature, this article focuses on small B-cell lymphomas such as follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, and Waldenstrom macroglobulinemia. It discusses recent developments in epigenetic research to diagnose and treat this group of lymphomas. This review provides new ideas for the treatment and prognosis assessment of small B-cell lymphoma by exploring the connection between small B-cell lymphoma and epigenetics.
Collapse
Affiliation(s)
- Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Rong Zhang
- Division of Cancer Immunotherapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chiba, Japan
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - En Dong
- Blood Center, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Farooq A, Trøen G, Delabie J, Wang J. Integrating whole genome sequencing, methylation, gene expression, topological associated domain information in regulatory mutation prediction: a study of follicular lymphoma. Comput Struct Biotechnol J 2022; 20:1726-1742. [PMID: 35495111 PMCID: PMC9024376 DOI: 10.1016/j.csbj.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
A major challenge in human genetics is of the analysis of the interplay between genetic and epigenetic factors in a multifactorial disease like cancer. Here, a novel methodology is proposed to investigate genome-wide regulatory mechanisms in cancer, as studied with the example of follicular Lymphoma (FL). In a first phase, a new machine-learning method is designed to identify Differentially Methylated Regions (DMRs) by computing six attributes. In a second phase, an integrative data analysis method is developed to study regulatory mutations in FL, by considering differential methylation information together with DNA sequence variation, differential gene expression, 3D organization of genome (e.g., topologically associated domains), and enriched biological pathways. Resulting mutation block-gene pairs are further ranked to find out the significant ones. By this approach, BCL2 and BCL6 were identified as top-ranking FL-related genes with several mutation blocks and DMRs acting on their regulatory regions. Two additional genes, CDCA4 and CTSO, were also found in top rank with significant DNA sequence variation and differential methylation in neighboring areas, pointing towards their potential use as biomarkers for FL. This work combines both genomic and epigenomic information to investigate genome-wide gene regulatory mechanisms in cancer and contribute to devising novel treatment strategies.
Collapse
|
7
|
Tang L, Zhu S, Peng W, Yin X, Tan C, Yang Y. Epigenetic identification of mitogen-activated protein kinase 10 as a functional tumor suppressor and clinical significance for hepatocellular carcinoma. PeerJ 2021; 9:e10810. [PMID: 33604188 PMCID: PMC7863782 DOI: 10.7717/peerj.10810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mitogen-activated protein kinase 10 (Mapk10) is a member of the c-jun N-terminal kinases (jnk) subgroup in the MAPK superfamily, and was proposed as a tumor suppressor inactivated epigenetically. Its role in hepatocellular carcinoma (HCC) has not yet been illustrated. We aimed to investigate the expression and epigenetic regulation of mapk10 as well as its clinical significance in HCC. Results Mapk10 was expressed in almost all the normal tissues including liver, while we found that the protein expression of MAPK10 was significantly downregulated in clinical samples of HCC patients compared with these levels in adjacent normal tissues (29/46, P < 0.0001). Clinical significance of MAPK10 expression was then assessed in a cohort of 59 HCC cases, which indicated its negative expression was significantly correlated with advanced tumor stage (P = 0.001), more microsatellite nodules (P = 0.025), higher serum AFP (P = 0.001) and shorter overall survival time of HCC patients. Methylation was further detected in 58% of the HCC cell lines we tested and in 66% of primary HCC tissues by methylation-specific PCR (MSP), which was proved to be correlated with the silenced or downregulated expression of mapk10. To get the mechanisms more clear, the transcriptional silencing of mapk10 was reversed by pharmacological demethylation, and ectopic expression of mapk10 in silenced HCC cell lines significantly inhibited the colony formation ability, induced apoptosis, or enhanced the chemosensitivity of HCC cells to 5-fluorouracil. Conclusion Mapk10 appears to be a functional tumor suppressor gene frequently methylated in HCC, which could be a valuable biomarker or a new diagnosis and therapy target in a clinical setting.
Collapse
Affiliation(s)
- Liping Tang
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Shasha Zhu
- The Center for Clinical Molecular Medical Detection, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xuedong Yin
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cui Tan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Hu MH, Chen LJ, Chen YL, Tsai MS, Shiau CW, Chao TI, Liu CY, Kao JH, Chen KF. Targeting SHP-1-STAT3 signaling: A promising therapeutic approach for the treatment of cholangiocarcinoma. Oncotarget 2017; 8:65077-65089. [PMID: 29029413 PMCID: PMC5630313 DOI: 10.18632/oncotarget.17779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
Sorafenib is a multiple kinase inhibitor which targets Raf kinases, VEGFR, and PDGFR and is approved for the treatment of hepatocellular carcinoma (HCC). Previously, we found that p-STAT3 is a major target of SC-43, a sorafenib derivative. In this study, we report that SC-43-induced apoptosis in cholangiocarcinoma (CCA) via a novel mechanism. Three CCA cell lines (HuCCT-1, KKU-100 and CGCCA) were treated with SC-43 to determine their sensitivity to SC-43-induced cell death and apoptosis. We found that SC-43 activated SH2 domain-containing phosphatase 1 (SHP-1) activity, leading to p-STAT3 and downstream cyclin B1 and Cdc2 downregulation, which induced G2-M arrest and apoptotic cell death. Importantly, SC-43 augmented SHP-1 activity by direct binding to N-SH2 and relief of its autoinhibition. Deletion of the N-SH2 domain (dN1) or point mutation (D61A) of SHP-1 counteracted the effect of SC-43-induced SHP-1 phosphatase activation and antiproliferation ability in CCA cells. In vivo assay revealed that SC-43 exhibited xenograft tumor growth inhibition, p-STAT3 reduction and SHP-1 activity elevation. In conclusion, SC-43 induced apoptosis in CCA cells through the SHP-1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ming-Hung Hu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Ming-Shen Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-I Chao
- Transplant Medicine and Surgery Research Centre, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Yu Liu
- Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
9
|
Alhosin M, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mousli M, Bronner C. Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:174. [PMID: 27839516 PMCID: PMC5108085 DOI: 10.1186/s13046-016-0453-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022]
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) through DNA methylation and histone changes is a main hallmark of cancer. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a potent oncogene overexpressed in various solid and haematological tumors and its high expression levels are associated with decreased expression of several TSGs including p16INK4A, BRCA1, PPARG and KiSS1. Using its several functional domains, UHRF1 creates a strong coordinated dialogue between DNA methylation and histone post-translation modification changes causing the epigenetic silencing of TSGs which allows cancer cells to escape apoptosis. To ensure the silencing of TSGs during cell division, UHRF1 recruits several enzymes including histone deacetylase 1 (HDAC1), DNA methyltransferase 1 (DNMT1) and histone lysine methyltransferases G9a and Suv39H1 to the right place at the right moment. Several in vitro and in vivo works have reported the direct implication of the epigenetic player UHRF1 in tumorigenesis through the repression of TSGs expression and suggested UHRF1 as a promising target for cancer treatment. This review describes the molecular mechanisms underlying UHRF1 regulation in cancer and discusses its importance as a therapeutic target to induce the reactivation of TSGs and subsequent apoptosis.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. .,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. .,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Biochemistry Department, Faculty of Sciences, Cancer and Mutagenesis Unit, King Fahd Centre for Medical Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Kingdom of Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marc Mousli
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.
| |
Collapse
|
10
|
Lue JK, Amengual JE, O'Connor OA. Epigenetics and Lymphoma: Can We Use Epigenetics to Prime or Reset Chemoresistant Lymphoma Programs? Curr Oncol Rep 2016; 17:40. [PMID: 26141799 DOI: 10.1007/s11912-015-0464-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Non-Hodgkin lymphoma is a diverse group of lymphocyte-derived neoplasms. Although a heterogeneous group of malignancies, it has become apparent that epigenetic alterations, such as disturbances of DNA methylation and histone modification, are a common occurrence in both B cell and T cell lymphomas, contributing to lymphomagenesis. As a result, the use of epigenetic targeted therapy has been incorporated into various pre-clinical and clinical studies, demonstrating significant efficacy in lymphoma, with vorinostat becoming the first epigenetic therapy to receive FDA approval in any malignancy. The role of epigenetic drugs is evolving, with its potential use in combination therapy as well as a means of overcoming chemotherapy resistance. In this review, we discuss the epigenetic alterations in non-Hodgkin lymphomas as well as provide an overview of current epigenetic drugs and their role in clinical practice, and on-going clinical trials.
Collapse
Affiliation(s)
- Jennifer K Lue
- Center for Lymphoid Malignancies, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
11
|
Bisikirska B, Bansal M, Shen Y, Teruya-Feldstein J, Chaganti R, Califano A. Elucidation and Pharmacological Targeting of Novel Molecular Drivers of Follicular Lymphoma Progression. Cancer Res 2016; 76:664-74. [PMID: 26589882 PMCID: PMC4738055 DOI: 10.1158/0008-5472.can-15-0828] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022]
Abstract
Follicular lymphoma, the most common indolent subtype of non-Hodgkin lymphoma, is associated with a relatively long overall survival rate ranging from 6 to 10 years from the time of diagnosis. However, in 20% to 60% of follicular lymphoma patients, transformation to aggressive diffuse large B-cell lymphoma (DLBCL) reduces median survival to only 1.2 years. The specific functional and genetic determinants of follicular lymphoma transformation remain elusive, and genomic alterations underlying disease advancement have only been identified for a subset of cases. Therefore, to identify candidate drivers of follicular lymphoma transformation, we performed systematic analysis of a B-cell-specific regulatory model exhibiting follicular lymphoma transformation signatures using the Master Regulator Inference algorithm (MARINa). This analysis revealed FOXM1, TFDP1, ATF5, HMGA1, and NFYB to be candidate master regulators (MR) contributing to disease progression. Accordingly, validation was achieved through synthetic lethality assays in which RNAi-mediated silencing of MRs individually or in combination reduced the viability of (14;18)-positive DLBCL (t-DLBCL) cells. Furthermore, specific combinations of small-molecule compounds targeting synergistic MR pairs induced loss of viability in t-DLBCL cells. Collectively, our findings indicate that MR analysis is a valuable method for identifying bona fide contributors to follicular lymphoma transformation and may therefore guide the selection of compounds to be used in combinatorial treatment strategies.
Collapse
Affiliation(s)
| | - Mukesh Bansal
- Department of Systems Biology, Columbia University, New York, New York
| | - Yao Shen
- Department of Systems Biology, Columbia University, New York, New York
| | - Julie Teruya-Feldstein
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York. Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Raju Chaganti
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York.
| |
Collapse
|
12
|
Kuscu C, Kuscu C. Pyrosequencing Analysis for Breast Cancer DNA Methylome. Methods Mol Biol 2016; 1406:89-104. [PMID: 26820948 DOI: 10.1007/978-1-4939-3444-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Unraveling DNA methylation profile of tumor is important for the diagnosis and treatment of cancer patients. Because of the heterogeneity of clinical samples, it is very difficult to get methylation profile of only tumor cells. Laser capture Microdissection (LCM) is giving us a chance to isolate the DNA only from the tumor cells without any stroma cell's DNA contamination. Once we capture the breast tumor cells, we can isolate the genomic DNA which is followed by the bisulfite treatment in which unmethylated cytosines of the CG pairs are converted into uracil; however, methylated cytosine does not go into any chemical change during this reaction. Next, bisulfite treated DNA is used in the regular PCR reaction to get a single band PCR amplicon which will be used as a template for the pyrosequencing. Pyrosequencing is a powerful method to make a quantitative methylation analysis for each specific CG pair.
Collapse
Affiliation(s)
- Cem Kuscu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 800733, 22908, USA.
| | - Canan Kuscu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 800733, 22908, USA
| |
Collapse
|
13
|
Ward A, Sivakumar G, Kanjeekal S, Hamm C, Labute BC, Shum D, Hudson JW. The deregulated promoter methylation of the Polo-like kinases as a potential biomarker in hematological malignancies. Leuk Lymphoma 2015; 56:2123-33. [PMID: 25347426 DOI: 10.3109/10428194.2014.971407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Deregulation of Polo-like kinase (PLK) transcription via promoter methylation results in perturbations at the protein level, which has been associated with oncogenesis. Our objective was to further characterize the methylation profile for PLK1-4 in bone marrow aspirates displaying blood neoplasms as well as in cells grown in vitro. Clinically, we have determined that more than 70% of lymphoma and myelodysplastic syndrome (MDS)/leukemia bone marrow extracts display a hypermethylated PLK4 promoter region in comparison to the normal. Decreased PLK4 protein expression due to promoter hypermethylation was negatively correlated with JAK2 overexpression, a common occurrence in hematological malignancies. In vitro examination of the PLKs under biologically relevant condition of 5% O2 revealed that the highly conserved PLKs respond to lower oxygen tension at both the DNA and the protein level. These findings suggest that PLK promoter methylation status correlates with disease and tumorigenesis in blood neoplasms and could serve as a biomarker.
Collapse
Affiliation(s)
- Alejandra Ward
- Department of Biology, University of Windsor , Windsor, ON , Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Conceição ALG, Babeto E, Candido NM, Franco FC, de Campos Zuccari DAP, Bonilha JL, Cordeiro JA, Calmon MF, Rahal P. Differential Expression of ADAM23, CDKN2A (P16), MMP14 and VIM Associated with Giant Cell Tumor of Bone. J Cancer 2015; 6:593-603. [PMID: 26078788 PMCID: PMC4466407 DOI: 10.7150/jca.11238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
Though benign, giant cell tumor of bone (GCTB) can become aggressive and can exhibit a high mitotic rate, necrosis and rarely vascular invasion and metastasis. GCTB has unique histologic characteristics, a high rate of multinucleated cells, a variable and unpredictable growth potential and uncertain biological behavior. In this study, we sought to identify genes differentially expressed in GCTB, thus building a molecular profile of this tumor. We performed quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry and analyses of methylation to identify genes that are putatively associated with GCTB. The expression of the ADAM23 and CDKN2A genes was decreased in GCTB samples compared to normal bone tissue, measured by qPCR. Additionally, a high hypermethylation frequency of the promoter regions of ADAM23 and CDKN2A in GCTB was observed. The expression of the MAP2K3, MMP14, TIMP2 and VIM genes was significantly higher in GCTB than in normal bone tissue, a fact that was confirmed by qPCR and immunohistochemistry. The set of genes identified here furthers our understanding of the molecular basis of GCTB.
Collapse
Affiliation(s)
| | - Erica Babeto
- 1. Laboratory of Genomics Studies, UNESP, São José do Rio Preto, Brazil
| | | | | | | | | | - José Antônio Cordeiro
- 4. Department of Epidemiology and Collective Health, FAMERP, São José do Rio Preto, Brazil
| | | | - Paula Rahal
- 1. Laboratory of Genomics Studies, UNESP, São José do Rio Preto, Brazil
| |
Collapse
|
15
|
Abstract
Follicular lymphoma (FL) is the most common indolent lymphoma. The vast majority of cases are associated with the chromosome translocation t(14;18), a somatic rearrangement that leads to constitutive expression of the anti-apoptotic BCL2 protein. Although t(14;18) clearly represents an important early event in FL pathogenesis, abundant evidence indicates that it is not sufficient. In particular, the recent application of next-generation DNA sequencing technology has uncovered numerous recurrent somatic genomic alterations associated with FL, most of which affect tumor suppressor genes (TSGs). In this article we review the existing literature on TSGs involved in the development and progression of FL. We consider the genes that are most frequently targeted by deleterious mutation, deletion or epigenetic silencing, along with strategies for developing new treatments that exploit the susceptibilities that may be conferred on lymphoma cells by the loss of particular TSGs.
Collapse
|
16
|
Liu Z, Mai C, Yang H, Zhen Y, Yu X, Hua S, Wu Q, Jiang Q, Zhang Y, Song X, Fang W. Candidate tumour suppressor CCDC19 regulates miR-184 direct targeting of C-Myc thereby suppressing cell growth in non-small cell lung cancers. J Cell Mol Med 2014; 18:1667-79. [PMID: 24976536 PMCID: PMC4190912 DOI: 10.1111/jcmm.12317] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/03/2014] [Indexed: 12/25/2022] Open
Abstract
We previously reported and revised the nasopharyngeal epithelium specific protein CCDC19 and identified it as a potential tumour suppressor in nasopharyngeal carcinoma. The purpose of this study was to investigate the involvement of CCDC19 in the pathogenesis of human non-small cell lung cancers (NSCLC). Down-regulated CCDC19 expression was observed in NSCLC tissues and cells compared to normal tissues. However, reduced protein expression did not correlate with the status of NSCLC progression. Instead, we observed that patients with lower CCDC19 expression had a shorter overall survival than did patients with higher CCDC19 expression. Lentiviral-mediated CCDC19 overexpression significantly suppressed cell proliferation and cell cycle transition from G1 to S and G2 phases in NSCLC cells. Knocking down CCDC19 expression significantly restored the ability of cell growth in CCDC19 overexpressing NSCLC cells. Mechanistically CCDC19 functions as a potential tumour suppressor by stimulating miR-184 suppression of C-Myc thus blocking cell growth mediated by the PI3K/AKT/C-Jun pathway. Our studies are the first to demonstrate that reduced expression of CCDC19 is an unfavourable factor in NSCLC.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Pathology, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China; Cancer Research Institute, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Alhejaily A, Day AG, Feilotter HE, Baetz T, Lebrun DP. Inactivation of the CDKN2A tumor-suppressor gene by deletion or methylation is common at diagnosis in follicular lymphoma and associated with poor clinical outcome. Clin Cancer Res 2014; 20:1676-86. [PMID: 24449825 DOI: 10.1158/1078-0432.ccr-13-2175] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Follicular lymphoma, the most common indolent lymphoma, is clinically heterogeneous. CDKN2A encodes the tumor suppressors p16(INK4a) and p14(ARF) and frequently suffers deleterious alterations in cancer. We investigated the hypothesis that deletion or hypermethylation of CDKN2A might identify follicular lymphoma cases with distinct clinical or pathologic features potentially amenable to tailored clinical management. EXPERIMENTAL DESIGN Deletion of CDKN2A was detected in pretreatment biopsy specimens using a single nucleotide polymorphism-based approach or endpoint PCR, and methylation of CpG elements in CDKN2A was quantified by methylation-specific PCR. Correlations between CDKN2A status and pathologic or clinical characteristics, including overall survival (OS), were investigated in 106 cases using standard statistical methods. RESULTS Deletion of CDKN2A was detected in 9 of 111 samples (8%) and methylation was detectable in 22 of 113 (19%). CDKN2A was either deleted or methylated in 29 of 106 cases (27%) and this status was associated with inferior OS especially among patients treated with rituximab (P = 0.004). CDKN2A deletion or methylation was associated with more advanced age (P = 0.012) and normal hemoglobin (P = 0.05) but not with sex, FLIPI score, ECOG stage, LDH, performance status, number of involved nodal sites, B symptoms, histologic grade, the presence of a component of diffuse large B-cell lymphoma, proliferation index, or other pathologic factors. CONCLUSIONS Our results show that deletion or methylation of CDKN2A is relatively common in pretreatment follicular lymphoma biopsy specimens and defines a group of cases associated with reduced survival in the rituximab era presumably on the basis of more aggressive disease biology.
Collapse
Affiliation(s)
- Abdulmohsen Alhejaily
- Authors' Affiliations: Department of Pathology and Molecular Medicine, Queen's University; Clinical Research Centre; and Cancer Centre of Southeastern Ontario, Kingston General Hospital, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
18
|
Ma L, Su M, Li T, Wang Z. Microarray-based resonance light scattering assay for detecting DNA methylation and human DNA methyltransferase simultaneously with high sensitivity. Analyst 2014; 139:3537-40. [DOI: 10.1039/c4an00336e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microarray-based resonance light scattering assay has been proposed for sensitively detecting DNA methylation and DNA methyltransferase.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
- University of Chinese Academy of Sciences
| | - Min Su
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
- University of Chinese Academy of Sciences
| | - Tao Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| |
Collapse
|
19
|
Bethge N, Lothe RA, Honne H, Andresen K, Trøen G, Eknæs M, Liestøl K, Holte H, Delabie J, Smeland EB, Lind GE. Colorectal cancer DNA methylation marker panel validated with high performance in Non-Hodgkin lymphoma. Epigenetics 2013; 9:428-36. [PMID: 24362313 PMCID: PMC4053461 DOI: 10.4161/epi.27554] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genes with altered DNA methylation can be used as biomarkers for cancer detection and assessment of prognosis. Here we analyzed the methylation status of a colorectal cancer biomarker panel (CNRIP1, FBN1, INA, MAL, SNCA, and SPG20) in 97 cancer cell lines, derived from 17 different cancer types. Interestingly, the genes were frequently methylated also in hematological cancer types and were therefore subjected to analyses in primary tumor samples from the major types of non-Hodgkin lymphomas (NHL) and in healthy controls. In total, the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 were methylated in 53%, 23%, 52%, 69%, 97%, and 92% of the tumor samples, respectively, and were unmethylated in all healthy controls. With the exception of a single tumor sample, a correct prediction of lymphoma or normal sample was made in a blinded analysis of the validation series using a combination of SNCA and SPG20. The combined ROC-curve analysis of these genes resulted in an area under the curve of 0.999 (P = 4.2 × 10−18), and a sensitivity and specificity of 98% and 100%, respectively, across the test and validation series. Interestingly, the promoter methylation of CNRIP1 was associated with decreased overall survival in diffuse large B-cell lymphoma (DLBCL) (P = 0.03).
In conclusion, our results demonstrate that SNCA and SPG20 methylation might be suitable for early detection and monitoring of NHL. Furthermore, CNRIP1 could potentially be used as a prognostic factor in DLBCL.
Collapse
Affiliation(s)
- Nicole Bethge
- Department of Immunology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway; Centre for Cancer Biomedicine; University of Oslo; Oslo, Norway
| | - Ragnhild A Lothe
- Centre for Cancer Biomedicine; University of Oslo; Oslo, Norway; Department of Cancer Prevention; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway
| | - Hilde Honne
- Centre for Cancer Biomedicine; University of Oslo; Oslo, Norway; Department of Cancer Prevention; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway
| | - Kim Andresen
- Centre for Cancer Biomedicine; University of Oslo; Oslo, Norway; Department of Cancer Prevention; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway
| | - Gunhild Trøen
- Department of Pathology; Oslo University Hospital; Oslo, Norway
| | - Mette Eknæs
- Centre for Cancer Biomedicine; University of Oslo; Oslo, Norway; Department of Cancer Prevention; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway
| | - Knut Liestøl
- Centre for Cancer Biomedicine; University of Oslo; Oslo, Norway; Department of Informatics; University of Oslo; Oslo, Norway
| | - Harald Holte
- Centre for Cancer Biomedicine; University of Oslo; Oslo, Norway; Department of Oncology; The Norwegian Radium Hospital; Oslo University Hospital; Oslo, Norway
| | - Jan Delabie
- Department of Pathology; Oslo University Hospital; Oslo, Norway
| | - Erlend B Smeland
- Department of Immunology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway; Centre for Cancer Biomedicine; University of Oslo; Oslo, Norway
| | - Guro E Lind
- Centre for Cancer Biomedicine; University of Oslo; Oslo, Norway; Department of Cancer Prevention; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway
| |
Collapse
|
20
|
Bethge N, Honne H, Hilden V, Trøen G, Eknæs M, Liestøl K, Holte H, Delabie J, Smeland EB, Lind GE. Identification of highly methylated genes across various types of B-cell non-hodgkin lymphoma. PLoS One 2013; 8:e79602. [PMID: 24260260 PMCID: PMC3834187 DOI: 10.1371/journal.pone.0079602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022] Open
Abstract
Epigenetic alterations of gene expression are important in the development of cancer. In this study, we identified genes which are epigenetically altered in major lymphoma types. We used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified 233 genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples (n = 480) when compared to normal B cells (n = 5). The top 30 genes were further analyzed by methylation specific PCR (MSP) in 18 lymphoma cell lines. Seven of the genes were methylated in more than 70% of the cell lines and were further subjected to quantitative MSP in 37 B-cell lymphoma patient samples (diffuse large B-cell lymphoma (activated B-cell like and germinal center B-cell like subtypes), follicular lymphoma and Burkitt`s lymphoma) and normal B lymphocytes from 10 healthy donors. The promoters of DSP, FZD8, KCNH2, and PPP1R14A were methylated in 28%, 67%, 22%, and 78% of the 36 tumor samples, respectively, but not in control samples. Validation using a second series of healthy donor controls (n = 42; normal B cells, peripheral blood mononuclear cells, bone marrow, tonsils and follicular hyperplasia) and fresh-frozen lymphoma biopsies (n = 25), confirmed the results. The DNA methylation biomarker panel consisting of DSP, FZD8, KCNH2, and PPP1R14A was positive in 89% (54/61) of all lymphomas. Receiver operating characteristic analysis to determine the discriminative power between lymphoma and healthy control samples showed a c-statistic of 0.96, indicating a possible role for the biomarker panel in monitoring of lymphoma patients.
Collapse
Affiliation(s)
- Nicole Bethge
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Hilde Honne
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vera Hilden
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Gunhild Trøen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mette Eknæs
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Knut Liestøl
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Harald Holte
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jan Delabie
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Erlend B. Smeland
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Guro E. Lind
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
21
|
Lee MC, Kuo YY, Chou WC, Hou HA, Hsiao M, Tien HF. Gfi-1 is the transcriptional repressor of SOCS1in acute myeloid leukemia cells. J Leukoc Biol 2013; 95:105-115. [DOI: 10.1189/jlb.0912475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
ABSTRACTSilencing of SOCS1, a TSG, has been detected in various malignancies, including AML. However, the underlying mechanism of SOCS1 inactivation remains elusive. In this study, we explored the role of histone methylation in SOCS1 expression in AML cells. By ChIP assay, we demonstrated that G9a and SUV39H1, two enzymes catalyzing H3K9 methylation, were physically associated with the SOCS1 promoter, and treatment with chaetocin, a histone methyltransferase inhibitor, suppressed H3K9 methylation on the SOCS1 promoter and enhanced SOCS1 expression. Furthermore, knockdown of G9a and SUV39H1 by siRNA could also induce SOCS1 expression. On the other hand, SOCS1 knockdown by shRNA eliminated chaetocin-induced cell apoptosis. To investigate further whether any transcription factor was involved in H3K9 methylation-related SOCS1 repression, we scanned the sequences of the SOCS1 gene promoter and found two binding sites for Gfi-1, a transcription repressor. By DNA pull-down and ChIP assays, we showed that Gfi-1 directly bound the SOCS1 promoter, and ectopic Gfi-1 expression suppressed STAT5-induced SOCS1 promoter activation. In contrast, Gfi-1 knockdown by shRNA enhanced SOCS1 expression and inhibited STAT5 expression. Moreover, the knockdown of G9a completely rescued the repressive effect of Gfi-1 on STAT5A-induced SOCS1 promoter activation. Collectively, our study indicates that the expression of Gfi-1 contributes to SOCS1 silencing in AML cells through epigenetic modification, and suppression of histone methyltransferase can provide new insight in AML therapy.
Collapse
Affiliation(s)
- Ming-Cheng Lee
- Division of Hematology, Department of Internal Medicine, National Taiwan University , Taipei, Taiwan
| | - Yuan-Yeh Kuo
- Graduate Institutes of Oncology, National Taiwan University , Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University , Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University , Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University , Taipei, Taiwan
- Clinical Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica , Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University , Taipei, Taiwan
| |
Collapse
|
22
|
Mendoza-Rodriguez M, Arreola H, Valdivia A, Peralta R, Serna H, Villegas V, Romero P, Alvarado-Hernández B, Paniagua L, Marrero-Rodríguez D, Meraz MA, Salcedo M. Cellular retinol binding protein 1 could be a tumor suppressor gene in cervical cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1817-1825. [PMID: 24040446 PMCID: PMC3759488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
AIMS Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC. METHODS To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region. RESULTS The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status. CONCLUSIONS The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- DNA Copy Number Variations
- DNA Methylation
- Female
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- HeLa Cells
- Humans
- Middle Aged
- Phenotype
- Promoter Regions, Genetic
- Retinol-Binding Proteins, Cellular/genetics
- Retinol-Binding Proteins, Cellular/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Mónica Mendoza-Rodriguez
- Laboratorio de Oncogenómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de OncologíaCMN SXXI, IMSS Av. Cuauhtémoc 330, Col. Doctores, México D.F. 06720
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios AvanzadosIPN, México
- Actual address: AV, Centro Interdisciplinario de Ciencias de la Salud, Unidad Milpa Alta, Instituto Politécnico NacionalMéx
| | - Hugo Arreola
- Laboratorio de Oncogenómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de OncologíaCMN SXXI, IMSS Av. Cuauhtémoc 330, Col. Doctores, México D.F. 06720
- Actual address: AV, Centro Interdisciplinario de Ciencias de la Salud, Unidad Milpa Alta, Instituto Politécnico NacionalMéx
| | - Alejandra Valdivia
- Laboratorio de Oncogenómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de OncologíaCMN SXXI, IMSS Av. Cuauhtémoc 330, Col. Doctores, México D.F. 06720
| | - Raúl Peralta
- Laboratorio de Oncogenómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de OncologíaCMN SXXI, IMSS Av. Cuauhtémoc 330, Col. Doctores, México D.F. 06720
| | - Humberto Serna
- Clínica de Colposcopía, Hospital General de MéxicoS.S., México
| | - Vanessa Villegas
- Laboratorio de Oncogenómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de OncologíaCMN SXXI, IMSS Av. Cuauhtémoc 330, Col. Doctores, México D.F. 06720
| | - Pablo Romero
- Laboratorio de Oncogenómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de OncologíaCMN SXXI, IMSS Av. Cuauhtémoc 330, Col. Doctores, México D.F. 06720
| | | | - Lucero Paniagua
- Laboratorio de Oncogenómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de OncologíaCMN SXXI, IMSS Av. Cuauhtémoc 330, Col. Doctores, México D.F. 06720
| | - Daniel Marrero-Rodríguez
- Laboratorio de Oncogenómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de OncologíaCMN SXXI, IMSS Av. Cuauhtémoc 330, Col. Doctores, México D.F. 06720
| | - Marco A Meraz
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios AvanzadosIPN, México
| | - Mauricio Salcedo
- Laboratorio de Oncogenómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de OncologíaCMN SXXI, IMSS Av. Cuauhtémoc 330, Col. Doctores, México D.F. 06720
| |
Collapse
|
23
|
Irshaid F, Tarawneh K, Alshdefat A, Dilmi F, Jaran A, Al-Hadithi R, Al-Khatib A. Loss of P16 Protein Expression and Its Association with Epstein-Barr Virus LMP-1 Expression in Hodgkin's Lymphoma. IRANIAN JOURNAL OF CANCER PREVENTION 2013; 6:78-84. [PMID: 25250115 PMCID: PMC4142916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/23/2013] [Indexed: 11/08/2022]
Abstract
Background Expression of Epstein-Barr virus Latent Member Protein-1 (EBV LMP-1) and loss of P16 protein expression are documented in lymphoma, indicating a relationship between them, but this relationship is not clear and sometimes contradictory. Thus, this study was conducted to examine the relationship between the loss of P16 and EBV LMP-1 expression in Jordanian patients diagnosed with lymphoma. Methods Sections were made from archival formalin-fixed and paraffin-embedded blocks from 55 patients diagnosed with lymphoma. P16 expression and LMP-1 expression were detected by immunohistochemistry using monoclonal antibodies. Results In Hodgkin's Lymphoma (HL), the loss of P16 was higher in LMP-1 positive cases (61%) than LMP-1 negative cases (25%; P = 0.072). Conversely, in Non-Hodgkin's Lymphoma (NHL), none of LMP-1 positive samples showed loss of P16. Furthermore, among LMP-1 HL positive cases, the loss of P16 was more frequent in male (75%) than female (33%). Also, there was a significantly higher proportion of LMP-1 positive cases showing loss of P16 in HL (11:18), compared to those in NHL (0:8, P < 0.001), confirming a difference between HL and NHL, concerning the LMP-1/P16 relationship. Conclusion A trend for an association between loss of P16 and LMP-1 expression was observed in HL but not NHL patients. These findings suggest that there are molecular and clinical differences in the pathogenesis and development of different subtypes of lymphoma.
Collapse
Affiliation(s)
- Fawzi Irshaid
- Dept. of Biological Sciences, Faculty of Science, Al al-Bayt University, Al-Mafraq, Jordan
| | - Khaled Tarawneh
- Dept. of Biological Sciences, Faculty of Science, Al al-Bayt University, Al-Mafraq, Jordan
| | - Aisha Alshdefat
- Dept. of Biological Sciences, Faculty of Science, Al al-Bayt University, Al-Mafraq, Jordan
| | - Fatiha Dilmi
- Dept. of Biological Sciences, Faculty of Science, Al al-Bayt University, Al-Mafraq, Jordan
| | - Adnan Jaran
- Dept. of Biological Sciences, Faculty of Science, Al al-Bayt University, Al-Mafraq, Jordan
| | - Raji Al-Hadithi
- Dept. of Biological Sciences, Faculty of Science, Al al-Bayt University, Al-Mafraq, Jordan
| | - Ahad Al-Khatib
- Dept. of Biological Sciences, Faculty of Science, Al al-Bayt University, Al-Mafraq, Jordan
| |
Collapse
|
24
|
Jung SP, Kim S, Nam SJ, Kim I, Bae JW. The role of the CDH1 promoter hypermethylation in the axillary lymph node metastasis and prognosis. J Breast Cancer 2013; 16:16-22. [PMID: 23593077 PMCID: PMC3625765 DOI: 10.4048/jbc.2013.16.1.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/06/2013] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Hypermethylation of the tumor suppressor genes is frequently observed in the tumor development and progression. However, the correlation between the hypermethylation of the tumor suppressor genes, CDH1 and the axillary lymph node (ALN) metastasis is not fully elucidated. To verify the role of the CDH1 promoter hypermethylation in the ALN metastasis and prognosis, we compared the methylation status of the CDH1 genes in the primary lesion and the paired metastatic ALNs. METHODS We selected a total of 122 paraffin-embedded specimens of the primary and paired metastatic lymph node from 61 breast cancer patients and analyzed the frequency of hypermethylation in the primary and metastatic lymph node using the methylation-specific polymerase chain reaction. In addition, the methylation status of CDH1 was analyzed with the clinicopathologic characteristics, the disease-free survival and disease-specific survival. RESULTS The hypermethylation of CDH1 gene was identified in 54 (88.5%) of the 61 patients who had axillary metastasis. The hypermethylation status of the CDH1 gene was significantly increased in the metastatic ALNs compared with that in the primary tumors (60.7% vs. 45.9%, p<0.001). The hypermethylation status of the CDH1 genes in the metastatic ALNs was associated with a poor histologic grade (p=0.041) and the patients who had methylated tumor in the primary lesion showed worse disease-free survival than the patients who did not have methylated tumor (p=0.046). CONCLUSION This study suggests that hypermethylation of the CDH1 gene may play a pivotal role in the metastasis of the axillary lymph node and the breast cancer recurrence.
Collapse
Affiliation(s)
- Seung Pil Jung
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sangmin Kim
- Division of Breast and Endocrine Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Nam
- Division of Breast and Endocrine Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Insun Kim
- Department of Pathology, Korea University Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jeoung Won Bae
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Abstract
INTRODUCTION: Non-Hodgkin Lymphoma (NHL) is a heterogeneous group of malignancies with over thirty different subtypes. Follicular lymphoma (FL) is the most common form of indolent NHL and the second most common form of NHL overall. It has morphologic, immunophenotypic and clinical features significantly different from other subtypes. Considerable effort has been devoted to the identification of risk factors for etiology and prognosis of FL. These risk factors may advance our understanding of the biology of FL and have an impact on clinical practice. AREAS COVERED: The epidemiology of NHL and FL is briefly reviewed. For FL etiology and prognosis separately, we review clinical, environmental and molecular (including genetic, genomic, epigenetic and others) risk factors suggested in the literature. EXPERT OPINION: A large number of potential risk factors have been suggested in recent studies. However, there is a lack of consensus, and many of the suggested risk factors have not been rigorously validated in independent studies. There is a need for large-scale, prospective studies to consolidate existing findings and discover new risk factors. Some of the identified risk factors are successful at the population level. More effective individual-level risk factors and models remain to be identified.
Collapse
|
26
|
A genomic approach to predict synergistic combinations for breast cancer treatment. THE PHARMACOGENOMICS JOURNAL 2011; 13:94-104. [PMID: 22083351 PMCID: PMC4450767 DOI: 10.1038/tpj.2011.48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We leverage genomic and biochemical data to identify synergistic drug regimens for breast cancer. In order to study the mechanism of the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) in breast cancer, we generated and validated genomic profiles of drug response using a series of breast cancer cell lines sensitive to each drug. These genomic profiles were then used to model drug response in human breast tumors and show significant correlation between VPA and SAHA response profiles in multiple breast tumor data sets, highlighting their similar mechanism of action. The genes deregulated by VPA and SAHA converge on the cell cycle pathway (Bayes factor 5.21 and 5.94, respectively; P-value 10(-8.6) and 10(-9), respectively). In particular, VPA and SAHA upregulate key cyclin-dependent kinase (CDK) inhibitors. In two independent datasets, cancer cells treated with CDK inhibitors have similar gene expression profile changes to the cellular response to HDAC inhibitors. Together, these results led us to hypothesize that VPA and SAHA may interact synergistically with CDK inhibitors such as PD-033299. Experiments show that HDAC and CDK inhibitors have statistically significant synergy in both breast cancer cell lines and primary 3-dimensional cultures of cells from pleural effusions of patients. Therefore, synergistic relationships between HDAC and CDK inhibitors may provide an effective combinatorial regimen for breast cancer. Importantly, these studies provide an example of how genomic analysis of drug-response profiles can be used to design rational drug combinations for cancer treatment.
Collapse
|
27
|
Abstract
Aberrant DNA hypermethylation of tumor suppressor genes is thought to be an early event in tumorigenesis. Many studies have reported the methylation status of individual genes with known involvement in cancer, but an unbiased assessment of the biological function of the collective of hypermethylated genes has not been conducted so far. Based on the observation that a variety of human cancers recapitulate developmental gene expression patterns (that is activate genes normally expressed in early development and suppress late developmental genes), we hypothesized that the silencing of differentiation-associated genes in cancer could be attributed in part to DNA hypermethylation. To this end, we investigated the developmental expression patterns of genes with hypermethylated CpG islands in primary human lung carcinomas and lung cancer cell lines. We found that DNA hypermethylation primarily affects genes that are expressed in late stages of murine lung development. Gene ontology characterization of these genes shows that they are almost exclusively involved in morphogenetic differentiation processes. Our results indicate that DNA hypermethylation in cancer functions as a selective silencing mechanism of genes that are required for the maintenance of a differentiated state. The process of cellular de-differentiation that is evident on both the microscopic and transcriptional level in cancer might at least partly be mediated by these epigenetic events. Our observations provide a mechanistic explanation for induction of differentiation upon treatment with DNA methyltransferase inhibitors.
Collapse
|
28
|
Aberrant methylation of Polo-like kinase CpG islands in Plk4 heterozygous mice. BMC Cancer 2011; 11:71. [PMID: 21324136 PMCID: PMC3047422 DOI: 10.1186/1471-2407-11-71] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 02/15/2011] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the most common cancers world-wide occurs twice as often in men compared to women. Predisposing conditions such as alcoholism, chronic viral hepatitis, aflatoxin B1 ingestion, and cirrhosis all contribute to the development of HCC. Methods We used a combination of methylation specific PCR and bisulfite sequencing, qReal-Time PCR (qPCR), and Western blot analysis to examine epigenetic changes for the Polo-like kinases (Plks) during the development of hepatocellular carcinoma (HCC) in Plk4 heterozygous mice and murine embryonic fibroblasts (MEFs). Results Here we report that the promoter methylation of Plk4 CpG islands increases with age, was more prevalent in males and that Plk4 epigenetic modification and subsequent downregulation of expression was associated with the development of HCC in Plk4 mutant mice. Interestingly, the opposite occurs with another Plk family member, Plk1 which was typically hypermethylated in normal liver tissue but became hypomethylated and upregulated in liver tumours. Furthermore, upon alcohol exposure murine embryonic fibroblasts exhibited increased Plk4 hypermethylation and downregulation along with increased centrosome numbers and multinucleation. Conclusions These results suggest that aberrant Plk methylation is correlated with the development of HCC in mice.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Although karyotypic events in follicular lymphoma and its transformation to aggressive lymphoma have been well described, the underlying genetic changes have until recently remained obscure. Both germline and acquired molecular events are now known to predict disease risk and outcome, respectively. Recent developments in these fields are covered within this review. RECENT FINDINGS Identification of a region of germline predisposition on chromosome 6p together with pesticide influence on disease-related changes suggests specific risk factors for follicular lymphoma. The profiling of S(mu) and immunoglobulin heavy-chain locus (IgH-VH) mutations in follicular lymphoma and relapse/transformed samples suggests divergent evolution from a common progenitor, whereas modular expression profiling highlights the stem cell-like origin of disease. Furthermore, methylation profiling indicates a significant epigenetic influence on disease and novel gene mutations provide exciting new targets for investigation. SUMMARY Recent insights into follicular lymphoma identify constitutional and environmental predisposition further unravelling the concept of a lymphoma-initiating cell and the acquired events defining this disease. The major challenge remains successful translation of these findings into routine clinical practice.
Collapse
|
30
|
Cheung KJJ, Delaney A, Ben-Neriah S, Schein J, Lee T, Shah SP, Cheung D, Johnson NA, Mungall AJ, Telenius A, Lai B, Boyle M, Connors JM, Gascoyne RD, Marra MA, Horsman DE. High resolution analysis of follicular lymphoma genomes reveals somatic recurrent sites of copy-neutral loss of heterozygosity and copy number alterations that target single genes. Genes Chromosomes Cancer 2010; 49:669-81. [PMID: 20544841 DOI: 10.1002/gcc.20780] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A multiplatform approach, including conventional cytogenetic techniques, BAC array comparative genomic hybridization, and Affymetrix 500K SNP arrays, was applied to the study of the tumor genomes of 25 follicular lymphoma biopsy samples with paired normal DNA samples to characterize balanced translocations, copy number imbalances, and copy-neutral loss of heterozygosity (cnLOH). In addition to the t(14;18), eight unique balanced translocations were found. Commonly reported FL-associated copy number regions were revealed including losses of 1p32-36, 6q, and 10q, and gains of 1q, 6p, 7, 12, 18, and X. The most frequent regions affected by copy-neutral loss of heterozygosity were 1p36.33 (28%), 6p21.3 (20%), 12q21.2-q24.33 (16%), and 16p13.3 (24%). We also identified by SNP analysis, 45 aberrant regions that each affected one gene, including CDKN2A, CDKN2B, FHIT, KIT, PEX14, and PTPRD, which were associated with canonical pathways involved in tumor development. This study illustrates the power of using complementary high-resolution platforms on paired tumor/normal specimens and computational analysis to provide potential insights into the significance of single-gene somatic aberrations in FL tumorigenesis.
Collapse
Affiliation(s)
- K-John J Cheung
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cheng Y, Geng H, Cheng SH, Liang P, Bai Y, Li J, Srivastava G, Ng MH, Fukagawa T, Wu X, Chan AT, Tao Q. KRAB Zinc Finger Protein ZNF382 Is a Proapoptotic Tumor Suppressor That Represses Multiple Oncogenes and Is Commonly Silenced in Multiple Carcinomas. Cancer Res 2010; 70:6516-26. [DOI: 10.1158/0008-5472.can-09-4566] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
SOX11 expression correlates to promoter methylation and regulates tumor growth in hematopoietic malignancies. Mol Cancer 2010; 9:187. [PMID: 20624318 PMCID: PMC2913986 DOI: 10.1186/1476-4598-9-187] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/12/2010] [Indexed: 12/31/2022] Open
Abstract
Background The transcription factor SOX11 plays an important role in embryonic development of the central nervous system (CNS) and is expressed in the adult immature neuron but is normally not expressed in any other adult tissue. It has recently been reported to be implicated in various malignant neoplasms, including several lymphoproliferative diseases, by its specific expression and in some cases correlation to prognosis. SOX11 has been shown to prevent gliomagenesis in vivo but the causes and consequences of aberrant expression of SOX11 outside the CNS remain unexplained. Results We now show the first function of SOX11 in lymphoproliferative diseases, by demonstrating in vitro its direct involvement in growth regulation, as assessed by siRNA-mediated silencing and ectopic overexpression in hematopoietic malignancies. Gene Chip analysis identified cell cycle regulatory pathways, including Rb-E2F, to be associated with SOX11-induced growth reduction. Furthermore, promoter analysis revealed that SOX11 is silenced through DNA methylation in B cell lymphomas, suggesting that its regulation is epigenetically controlled. Conclusions The data show that SOX11 is not a bystander but an active and central regulator of cellular growth, as both siRNA-mediated knock-down and ectopic overexpression of SOX11 resulted in altered proliferation. Thus, these data demonstrate a tumor suppressor function for SOX11 in hematopoietic malignancies and revealed a potential epigenetic regulation of this developmentally involved gene.
Collapse
|
33
|
Abstract
Rituximab (RTX), a monoclonal antibody directed against the CD20 protein, is a drug commonly used in the treatment of B-cell-derived lymphoid neoplasias and of antibody-mediated autoimmune diseases. In addition to cell- and complement-mediated B-cell depletion, RTX is thought to inhibit B-cell survival and proliferation through negative regulation of canonical signaling pathways involving Akt, ERK, and mammalian target of rapamycin. However, surprisingly, although B-cell receptor (BCR) signaling has been considered critical for normal and more recently, for neoplastic B cells, the hypothesis that RTX could target BCR has never been investigated. Using follicular lymphoma cell lines as models, as well as normal B cells, we show here, for the first time, that pretreatment with RTX results in a time-dependent inhibition of the BCR-signaling cascade involving Lyn, Syk, PLC gamma 2, Akt, and ERK, and calcium mobilization. The inhibitory effect of RTX correlates with decrease of raft-associated cholesterol, complete inhibition of BCR relocalization into lipid raft microdomains, and down-regulation of BCR immunoglobulin expression. Thus, RTX-mediated alteration of BCR expression, dynamics, and signaling might contribute to the immunosuppressive activity of the drug.
Collapse
|
34
|
Abstract
Quantitative methylation profiling was performed using the Illumina GoldenGate Assay in untreated Follicular Lymphoma (FL) (164), paired pre- and post-transformation FL (20), benign haematopoietic (24) samples and purified B & T cells from two FL cases. Methylation values allowed separation of untreated FL samples from controls with one exception based primarily on tumour-specific gains of methylation typically occurring within CpG islands. Genes which are targets for epigenetic repression in stem cells by Polycomb Repressor Complex 2 were significantly overrepresented among hypermethylated genes. Methylation profiles were conserved in sequential FL and t-FL biopsies suggesting that widespread methylation represents an early event in lymphomagenesis and may not contribute substantially to transformation. Significant (p<0.05) correlation between FL methylation values and reduced gene expression was demonstrated for up to 28% of loci. Methylation changes occurred predominantly in B cells with variability in the amount of non-malignant tissue between samples preventing conclusive correlation with survival. This represents an important caveat in attributing prognostic relevance to methylation and future studies in cancer will optimally require purified tumour populations to address the impact of methylation on clinical outcome.
Collapse
|
35
|
Schwaenen C, Viardot A, Berger H, Barth TFE, Bentink S, Döhner H, Enz M, Feller AC, Hansmann ML, Hummel M, Kestler HA, Klapper W, Kreuz M, Lenze D, Loeffler M, Möller P, Müller-Hermelink HK, Ott G, Rosolowski M, Rosenwald A, Ruf S, Siebert R, Spang R, Stein H, Truemper L, Lichter P, Bentz M, Wessendorf S. Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status. Genes Chromosomes Cancer 2009; 48:39-54. [DOI: 10.1002/gcc.20617] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
36
|
Bernal C, Aguayo F, Villarroel C, Vargas M, Díaz I, Ossandon FJ, Santibáñez E, Palma M, Aravena E, Barrientos C, Corvalan AH. Reprimo as a potential biomarker for early detection in gastric cancer. Clin Cancer Res 2008; 14:6264-9. [PMID: 18829507 DOI: 10.1158/1078-0432.ccr-07-4522] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Gastric cancer is a curable disease if diagnosed at early stage. However, most cases are diagnosed at advanced stage because of the lack of screening programs. Therefore, the identification of plasma biomarkers for early detection is necessary. EXPERIMENTAL DESIGN To search for these biomarkers, we evaluated the DNA methylation patterns of 24 genes by Methylation-specific PCR in primary tissues from 32 retrospectively collected gastric cancer cases (testing group). Correlation between methylation and gene expression was evaluated in the MKN-45 cell line after treatment with 5-aza-2'-deoxycytidine. The most frequently hypermethylated genes were next evaluated in primary tissues and plasma samples from 43 prospectively collected gastric cancer cases as well as plasma samples from 31 asymptomatic age- and gender-matched controls (validation group). RESULTS In the testing group, 11 genes were hypermethylated in at least 50% of cases (APC, SHP1, E-cadherin, ER, Reprimo, SEMA3B, 3OST2, p14, p15, DAPK, and p16). Eight genes (BRCA1, p73, RARbeta, hMLH1, RIZI, RUNX3, MGMT, and TIMP3) were statistically associated with a particular variant of gastric cancer, the signet-ring cell type (P = 0.03). Seven genes (APC, SHP1, E-cadherin, ER, Reprimo, SEMA3B, and 3OST2) were next evaluated in the validation group. We confirm the high frequency of methylation in primary tumors for all seven genes. However, only APC and Reprimo were frequently methylated in pair plasma samples. In asymptomatic controls, only Reprimo was infrequently methylated in comparison with plasma from gastric cancer cases (P < 0.001). CONCLUSION Our results identified specific methylation profile associated to signet-ring cell-type histology and aberrant hypermethylation of Reprimo as a potential biomarker for early detection of gastric cancer.
Collapse
Affiliation(s)
- Carolina Bernal
- Department of Anatomic Pathology, Centro Investigaciones Medicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hatzimichael E, Dasoula A, Benetatos L, Makis A, Stebbing J, Crook T, Syrrou M, Bourantas KL. The absence of CDKN1C (p57KIP2) promoter methylation in myeloid malignancies also characterizes plasma cell neoplasms. Br J Haematol 2008; 141:557-8. [DOI: 10.1111/j.1365-2141.2008.07034.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Aberrant gene promoter methylation in plasma cell dyscrasias. Exp Mol Pathol 2008; 84:256-61. [PMID: 18410922 DOI: 10.1016/j.yexmp.2008.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 02/18/2008] [Indexed: 12/31/2022]
Abstract
The aberrant methylation of promoter CpG island is known to be a major inactivation mechanism of tumour-related genes. To determine the clinicopathological significance of gene promoter methylation in monoclonal gammopathies, we analysed the methylation status of 6 tumour suppressor genes and their association with loss of gene function. Methylation status of the genes p14, p15, p16, hMLH1, MGMT, and DAPK was determined by methylation-specific PCR in 52 cases: 30 MM, 13 MGUS, and 9 plasmacytomas, comparing them with their protein expression by immunohistochemistry, and association between methylation status, protein expression, and clinical characteristics was assessed. The methylation frequencies were 50% for p16, 17% for p15, 10% for hMLH1, 23% for MGMT and 30% for DAPK in MM samples, and 38%, 15%, 8%, and 15% for p16, p15, MGMT and DAPK respectively in MGUS samples. In plasmacytomas samples we found methylation of p16 in 55%, p15 in 22%, MGMT in 67% and DAPK in 44%. hMLH1 was unmethylated in all cases of MGUS and plasmacytomas. Immunohistochemistry showed that gene methylation was closely associated with a loss of protein expression. Our study demonstrates that methylation-mediated silencing is a frequent event in monoclonal gammopathies: 83% of MM, 46% of MGUS and 77% of plasmacytomas have at least one gene methylated, affecting different molecular pathways involved in cell cycle, DNA repair and apoptosis. This high prevalence of aberrant promoter hypermethylation suggests that monoclonal gammopathies carry a CpG island methylator phenotype, therefore the development of new DNA demethylation agents may be a potential therapeutic use in this disease.
Collapse
|
39
|
NIELÄNDER INGA, BUG STEFANIE, RICHTER JULIA, GIEFING MACIEJ, IGNACIO MARTÍN-SUBERO JOSÉ, SIEBERT REINER. Combining array-based approaches for the identification of candidate tumor suppressor loci in mature lymphoid neoplasms. APMIS 2007; 115:1107-34. [DOI: 10.1111/j.1600-0463.2007.apm_883.xml.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Abstract
The past decade has seen an explosion of interest in the epigenetics of cancer, with an increasing understanding that this form of genomic modification plays a critical role in pathogenesis. The malignant phenotype results from a step-wise increase of both genetic abnormalities and epigenetic modifications, leading to dysregulation of critical genes controlling cell growth, differentiation and apoptosis. The methylation of CpG islands within gene promoters is a major epigenetic transcriptional control mechanism that is frequently dysregulated in human cancer. This phenomenon (methylation of CpG islands) plays a critical role in the transcriptional silencing of tumour suppressor genes in cancer and has prompted the development and testing of several demethylating agents aimed at reversing this process. Clinical trials using epigenetically targeted therapies have yielded particularly promising results in the myelodysplastic syndromes (MDS), in which tumour suppressor gene silencing by promoter methylation is a frequent event. Several genes and gene pathways disrupted by aberrant CpG island methylation have now been identified in haematological malignancies, the most frequently studied being the cell cycle inhibitors p16 (now termed CDKN2A; mostly methylated in lymphoid malignancy) and p15 (now termed CDKN2B; commonly methylated in lymphoid and myeloid malignancies). This review will discuss the role that aberrant gene silencing by promoter hypermethylation plays in the molecular pathogenesis of haematological malignancies and assess the clinical potential of demethylating agents for the management of patients.
Collapse
|