1
|
Al Zahrani AJ, Shori AB, Al-Judaibi E. Fermented Soymilk with Probiotic Lactobacilli and Bifidobacterium Strains Ameliorates Dextran-Sulfate-Sodium-Induced Colitis in Rats. Nutrients 2024; 16:3478. [PMID: 39458472 PMCID: PMC11510403 DOI: 10.3390/nu16203478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Current treatments for inflammatory bowel disease (IBD) are relatively futile and the extended use of drugs may reduce effectiveness. Several probiotic strains have shown promise in relieving/treating IBD symptoms. Objectives: The current study investigated the impact of fermented soymilk with a mixture of probiotic starter cultures containing Lactobacillus rhamnosus, L. casei, L. plantarum, L. acidophilus, Bifidobacterium longum, and B. animalis subsp. lactis in rats with dextran sulfate sodium (DSS)-induced colitis compared to control. Methods: Rats were randomly assigned to five groups (5 rats/group; n = 25): G1: negative normal control; G2: positive control (DSS); G3: DSS with sulfasalazine (DSS-Z); G4: DSS with soymilk (DSS-SM), and G5: DSS with fermented soymilk (DSS-FSM). Parameters monitored included the following: the disease activity index (DAI), macroscopic and histological assessments of colitis, and a fecal microbial analysis performed to assess the severity of inflammation and ulceration. Results: The DSS-FSM rats group exhibited lower DAI scores (p < 0.05) than other treated groups during the induction period. A macroscopical examination revealed no ulceration or swelling in the intestinal mucosa of rats in the DSS-FSM-treated group, resembling the findings in the negative control group. In the positive control (DSS group), the colon tissue showed increased inflammation (p < 0.05), whereas those in the DSS-SM- and DSS-FSM-treated rats groups did not show significant macroscopic scores of colitis. The positive DSS control and DSS-Z groups had crypt erosion and ulceration areas, severe crypt damage, and epithelial surface erosion, which were absent in the negative control and DSS-FSM groups. The counts of Lactobacillus spp. and Bifidobacterium spp. remained stable in both G1 and G5 over 4 weeks. The consumption of fermented soymilk with a mixture of probiotics could minimize the severity of DSS-induced colitis in rats. Conclusion, it was found that fermented soymilk containing Lactobacilli and Bifidobacterium might be an effective vehicle for reducing the severity of DSS-induced colitis in rats.
Collapse
Affiliation(s)
- Ashwag Jaman Al Zahrani
- Faculty of Science, Department of Biological Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Amal Bakr Shori
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Effat Al-Judaibi
- Faculty of Science, Department of Biological Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
2
|
Yousefi M, Naderi Farsani M, Ghafarifarsani H, Raeeszadeh M. Dietary Lactobacillus helveticus and Gum Arabic improves growth indices, digestive enzyme activities, intestinal microbiota, innate immunological parameters, antioxidant capacity, and disease resistance in common carp. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108652. [PMID: 36863498 DOI: 10.1016/j.fsi.2023.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The present study aimed at determining the effects of Lactobacillus helveticus (LH), Gum Arabic (GA; natural prebiotic), and their combination as synbiotic on growth performance, digestive enzymes activity, gut microbiota, innate immunity status, antioxidant capacity, and disease resistance against Aeromonas hydrophyla in common carp, Cyprinus carpio for 8 weeks. For this, 735 common carp juveniles (Mean ± standard deviation; 22.51 ± 0.40 g) were fed with 7 different diets including basal diet (C), LH1 (1 × 107 CFU/g), LH2 (1 × 109 CFU/g), GA1 (0.5%), GA2 (1%), LH1+GA1 (1 × 107 CFU/g + 0.5%), and LH2+GA2 (1 × 109 CFU/g + 1%) for 8 weeks. Dietary supplementation with GA and/or LH significantly increased growth performance, WBC, serum total immunoglobulin, superoxide dismutase and catalase activities, skin mucus lysozyme and total immunoglobulin and intestinal lactic acid bacteria. Whereas there were significant improvements in various parameters tested in different treatments, the highest improvement in growth performance, WBC, monocyte/neutrophil percentages, serum lysozyme, alternative complement, glutathione peroxidase and malondialdehyde, skin mucosal alkaline phosphatase, protease, and immunoglobulin, intestinal total bacterial count, protease and amylase activities were observed in the synbiotic treatments, particularly LH1+GA1. After an experimental infection with Aeromonas hydrophila, all experimental treatments exhibited significantly higher survival, compared to the control treatment. The highest survival was related to the synbiotic (particularly LH1+GA1), followed by prebiotic, and probiotic treatments. Overall, synbiotic containing 1 × 107 CFU/g LH + 0.5% GA can improve growth rate and feed efficiency in common carp. Moreover, the synbiotic can improve the antioxidant/innate immune systems and dominate lactic acid bacteria in the fish intestine that may be the reasons of the highest resistance against A. hydrophila infection.
Collapse
Affiliation(s)
- Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198, Moscow, Russia.
| | - Mehdi Naderi Farsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
3
|
Liu Y, Dou C, Wei G, Zhang L, Xiong W, Wen L, Xiang C, Chen C, Zhang T, Altamirano A, Chen Y, Zhang TE, Yan Z. Usnea improves high-fat diet- and vitamin D3-induced atherosclerosis in rats by remodeling intestinal flora homeostasis. Front Pharmacol 2022; 13:1064872. [PMID: 36506546 PMCID: PMC9732435 DOI: 10.3389/fphar.2022.1064872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Usnea has various pharmacological properties, including anti-inflammatory, antitumor, antioxidant, antiviral, and cardiovasculoprotective effects. Aim of the study: To investigate the potential mechanisms underlying the anti-atherosclerosis (AS) activity of Usnea ethanol extract (UEE) via the regulation of intestinal flora. Materials and Methods: The chemical composition of UEE was determined using ultra-performance liquid chromatography with quadrupole exactive orbitrap mass spectrometry (UPLC-Q-EOMS). Thirty-six male Sprague-Dawley rats were divided into six groups. A high-fat diet and intraperitoneal vitamin D3 injections were used to establish a rat model of AS. After 4 weeks of treatment with UEE, hematoxylin-eosin staining was performed to evaluate the pathomorphology of the aorta, liver, and colon. The composition and diversity of the rat intestinal flora were determined using high-throughput 16S rRNA sequencing. Enzyme-linked immunosorbent assays were used to measure the levels of plasma trimethylamine oxide (TMAO), serum bile acid (BA), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). The protein expression of cholesterol 7α-hydroxylase (CYP7A1) and flavin monooxygenase 3 (FMO3) in the liver and zonula occludens-1 (ZO-1) and occludin in colon tissue was detected via western blotting. Results: Forty-four compounds were identified in UEE. In the rat model of AS, UEE significantly prevented calcium deposition; decreased the serum levels of TC, TG, LDL-C, LPS, TNF-α, and IL-6; and increased the serum level of HDL-C. Additionally, all UEE dosages decreased the relative abundance of Verrucomicrobiota while increased that of Bacteroidetes. FMO3 protein expression and TMAO levels decreased, whereas CYP7A1 protein expression and BA levels increased. The absorption of intestinal-derived LPS was minimized. Furthermore, the protein expression of ZO-1 and occludin was upregulated. Conclusion: UEE ameliorated AS. The underlying mechanism was the reversal of imbalances in the intestinal flora by Usnea, thereby inhibiting calcium deposition, abnormal lipid metabolism, and inflammatory response.
Collapse
Affiliation(s)
- Yanjun Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Chongyang Dou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Liudai Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Wei Xiong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lingmiao Wen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Chunxiao Xiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Chunlan Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Tinglan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Alvin Altamirano
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, United States
| | - Yunhui Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian-e Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Tian-e Zhang, ; Zhiyong Yan,
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China,*Correspondence: Tian-e Zhang, ; Zhiyong Yan,
| |
Collapse
|
4
|
Differential Response of Ileal and Colonic Microbiota in Rats with High-Fat Diet-Induced Atherosclerosis. Int J Mol Sci 2022; 23:ijms231911154. [PMID: 36232451 PMCID: PMC9569969 DOI: 10.3390/ijms231911154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Growing evidence suggests that gut microbiota are associated with atherosclerosis (AS). However, the functional heterogeneity of each gut segment gives rise to regional differences in gut microbiota. We established a rat model of AS by feeding the rats a high-fat diet for a long period. The pathological and microbiota changes in the ileum and colon of the rats were examined, and correlations between AS and microbiota were analyzed. The aortic mesothelium of the experimental rats was damaged. The intima showed evident calcium salt deposition, indicating that the AS rat model was successfully developed. We noted varying degrees of pathological damage in the ileum and colon of the experimental rats. The 16S rDNA high-throughput sequencing showed significant differences in α-diversity, β-diversity, and microbiota comparisons in the ileum and colon. Furthermore, the ileum and colon of AS rats showed varying degrees of intestinal microbiota disturbance. This article contributes to the study of the relationship between the microbiota in different regions of the gut and AS, and provides new approaches in gut microbiota intervention for the treatment of AS.
Collapse
|
5
|
Lacticaseibacillus rhamnosus FM9 and Limosilactobacillus fermentum Y57 Are as Effective as Statins at Improving Blood Lipid Profile in High Cholesterol, High-Fat Diet Model in Male Wistar Rats. Nutrients 2022; 14:nu14081654. [PMID: 35458216 PMCID: PMC9027066 DOI: 10.3390/nu14081654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Elevated serum cholesterol is a major risk factor for coronary heart diseases. Some Lactobacillus strains with cholesterol-lowering potential have been isolated from artisanal food products. The purpose of this study was to isolate probiotic Lactobacillus strains from traditional yoghurt (dahi) and yogurt milk (lassi) and investigate the impact of these strains on the blood lipid profile and anti-obesity effect in a high cholesterol high fat diet model in Wistar rats. Eight candidate probiotic strains were chosen based on in vitro probiotic features and cholesterol reduction ability. By 16S rDNA sequencing, these strains were identified as Limosilactibacillus fermentum FM6, L. fermentum FM16, L. fermentum FM12, Lacticaseibacillus rhamnosus FM9, L. fermentum Y55, L. fermentum Y57, L. rhamnosus Y59, and L. fermentum Y63. The safety of these strains was investigated by feeding 2 × 108 CFU/mL in saline water for 28 days in a Wistar rat model. No bacterial translocation or any other adverse effects were observed in animals after administration of strains in water, which indicates the safety of strains. The cholesterol-lowering profile of these probiotics was evaluated in male Wistar rats using a high-fat, high-cholesterol diet (HFCD) model. For 30 days, animals were fed probiotic strains in water with 2 × 108 CFU/mL/rat/day, in addition to a high fat, high cholesterol diet. The cholesterol-lowering effects of various probiotic strains were compared to those of statin. All strains showed improvement in total cholesterol, LDL, HDL, triglycerides, and weight gain. Serum cholesterol levels were reduced by 9% and 8% for L. rhamnosus FM9 and L. fermentum Y57, respectively, compared to 5% for the statin-treated group. HDL levels significantly improved by 46 and 44% for L. rhamnosus FM9 and L. fermentum Y57, respectively, compared to 46% for the statin-treated group. Compared to the statin-treated group, FM9 and Y57 significantly reduced LDL levels by almost twofold. These findings show that these strains can improve blood lipid profiles as effectively as statins in male Wistar rats. Furthermore, probiotic-fed groups helped weight control in animals on HFCD, indicating the possible anti-obesity potential of these strains. These strains can be used to develop food products and supplements to treat ischemic heart diseases and weight management. Clinical trials, however, are required to validate these findings.
Collapse
|
6
|
de Souza Correia Cozentino I, Veloso de Paula A, Augusto Ribeiro C, Duran Alonso J, Grimaldi R, Luccas V, Taranto MP, Cardoso Umbelino Cavallini D. Development of a potentially functional chocolate spread containing probiotics and structured triglycerides. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Li X, Jiang L, Xia Q, Zeng X, Wang W, Pan D, Wu Z. Effects of novel flavonoid-enriched yogurt on the diversity of intestinal microbiota in mice. Braz J Microbiol 2021; 52:2287-2298. [PMID: 34449069 DOI: 10.1007/s42770-021-00598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022] Open
Abstract
Soy isoflavone glycoside cannot be effectively absorbed by the human intestinal tract, but probiotics with related hydrolases can transform it into aglycone to promote its absorption. In this study, a novel flavonoid-enriched yogurt was developed using an isolated β-glucosidase-producing strain (Lactiplantibacillus plantarum GY). The flavonoid aglycone-enhanced yogurt was fed to ICR mice for 21 days, and its effects were observed. The yogurt can affect the gut microbial diversity of mice, especially increasing the abundance of Parasutterella, the Bacteroidales S24-7 group, and Phascolarctobacterium in the intestinal tract of mice. Meanwhile, the ratio of Bacteroidetes/Firmicutes in the intestinal tract of mice fed with the flavonoid aglycone-enriched yogurt increased. The difference in the content of butyric acid between the L-GY + IS and the control groups was significant (P < 0.05). Therefore, milk fermentation with β-glucosidase-producing strains is a promising approach for developing flavonoid glycoside-enriched yogurt products.
Collapse
Affiliation(s)
- Xiefei Li
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, 315211, Ningbo, Zhejiang, People's Republic of China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Lan Jiang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, 315211, Ningbo, Zhejiang, People's Republic of China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, 315211, Ningbo, Zhejiang, People's Republic of China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Weijun Wang
- Zhejiang Yiming Food Company, Wenzhou, Zhejiang, People's Republic of China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, 315211, Ningbo, Zhejiang, People's Republic of China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, Zhejiang, People's Republic of China. .,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, 330022, People's Republic of China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, 315211, Ningbo, Zhejiang, People's Republic of China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Lordello VB, Meneguin AB, de Annunzio SR, Taranto MP, Chorilli M, Fontana CR, Cavallini DCU. Orodispersible Film Loaded with Enterococcus faecium CRL183 Presents Anti- Candida albicans Biofilm Activity In Vitro. Pharmaceutics 2021; 13:pharmaceutics13070998. [PMID: 34209453 PMCID: PMC8309053 DOI: 10.3390/pharmaceutics13070998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Probiotic bacteria have been emerging as a trustworthy choice for the prevention and treatment of Candida spp. infections. This study aimed to develop and characterize an orodispersible film (ODF) for delivering the potentially probiotic Enterococcus faecium CRL 183 into the oral cavity, evaluating its in vitro antifungal activity against Candida albicans. Methods and Results: The ODF was composed by carboxymethylcellulose, gelatin, and potato starch, and its physical, chemical, and mechanical properties were studied. The probiotic resistance and viability during processing and storage were evaluated as well as its in vitro antifungal activity against C. albicans. The ODFs were thin, resistant, and flexible, with neutral pH and microbiologically safe. The probiotic resisted the ODF obtaining process, demonstrating high viability (>9 log10 CFU·g−1), up to 90 days of storage at room temperature. The Probiotic Film promoted 68.9% of reduction in fungal early biofilm and 91.2% in its mature biofilm compared to the group stimulated with the control film. Those results were confirmed through SEM images. Conclusion: The probiotic ODF developed is a promising strategy to prevent oral candidiasis, since it permits the local probiotic delivery, which in turn was able to reduce C. albicans biofilm formation.
Collapse
Affiliation(s)
- Virgínia Barreto Lordello
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Sarah Raquel de Annunzio
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Maria Pía Taranto
- Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145, Tucumán T4000 ILC, Argentina;
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Carla Raquel Fontana
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
- Correspondence: (C.R.F.); (D.C.U.C.)
| | - Daniela Cardoso Umbelino Cavallini
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
- Correspondence: (C.R.F.); (D.C.U.C.)
| |
Collapse
|
9
|
Wang L, Zhou W, Guo M, Hua Y, Zhou B, Li X, Zhang X, Dong J, Yang X, Wang Y, Wu Y, She J, Mu J. The gut microbiota is associated with clinical response to statin treatment in patients with coronary artery disease. Atherosclerosis 2021; 325:16-23. [PMID: 33878520 DOI: 10.1016/j.atherosclerosis.2021.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/06/2021] [Accepted: 03/11/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND The structure and composition of the gut microbiota influence patients' response to therapeutic interventions. It is also known that the response to statin treatment can vary greatly from one patient to another, suggesting a possible connection between microbiome composition and response to statins. In the present study, we aim to explore the influence of the microbiome composition on the response to statin treatment among patients with coronary artery disease (CAD). METHODS A prospective cohort of 836 CAD patients enrolled from January 2016 to December 2017 was used to perform a nested case-control study. We divided 110 CAD patients into two groups according to their response to statins (good response group and poor response group) and compared their gut microbiota. RESULTS Our analysis reveals no significant difference in microbiome between the two groups. However, significant differences were found in the relative proportion of numerous genera between GR and PR groups. Most remarkably, we could observe that a poor response to statin treatment correlates to a significant decrease in the abundance of beneficial bacteria for the lipid metabolism (Akkermansia muciniphila (A. muciniphila) and Lactobacillus) and a significant increase in the abundance of bacteria (Holdemanella and Facecallibacterium). CONCLUSIONS Gut microbiota structure is associated with the response to statin. Our results suggest that manipulation of the gut microbiota composition can be an interesting and effective treatment strategy to blood lipid control among CAD patients.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian 116001, China
| | - Weiwei Zhou
- Department of Gastroenterology, First Affiliated Hospital of South China University, Hengyang, Hunan Province, China
| | - Manyun Guo
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yiming Hua
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Baihua Zhou
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian 116001, China
| | - Xinyin Li
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian 116001, China
| | - Xinxin Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian 116001, China
| | - Jiakun Dong
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian 116001, China
| | - Xiumei Yang
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian 116001, China
| | - Yang Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yue Wu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianqing She
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jianjun Mu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
10
|
Weng YJ, Jiang DX, Liang J, Ye SC, Tan WK, Yu CY, Zhou Y. Effects of Pretreatment with Bifidobacterium bifidum Using 16S Ribosomal RNA Gene Sequencing in a Mouse Model of Acute Colitis Induced by Dextran Sulfate Sodium. Med Sci Monit 2021; 27:e928478. [PMID: 33686049 PMCID: PMC7959103 DOI: 10.12659/msm.928478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Bifidobacterium is a potentially effective and safe treatment for patients with inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease. However, information on the influence of B. bifidum on gut microbial diversity of treated and pretreated IBD patients is limited. Material/Methods Our study investigated therapeutic and preventive effects of B. bifidum ATCC 29521 on C57BL/6 mice with dextran sulfate sodium (DSS)-induced acute colitis via 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Results Treatment and pretreatment of mice with B. bifidum ATCC 29521 significantly alleviated the severity of acute colitis on the basis of clinical and pathologic indicators. 16S rRNA gene sequencing showed that administration of B. bifidum shifted composition of the gut microbiome in mice with DSS-induced colitis in both treated and pretreated groups. Mice pretreated with B. bifidum ATCC 29521 for 21 days exhibited a significant increase in diversity of the gut microbiome. Principal coordinate analysis showed that gut microbiota structure was shaped by different treatments and time points. On the basis of linear discriminant analysis of effect size, the abundance of the genus Escherichia-Shigella, belonging to the family Enterobacteriaceae, was reduced in the B. bifidum-treated group, indicating that pathogens were inhibited by the B. bifidum treatment. Furthermore, the genera Intestinimonas and Bacteroides were significantly associated with the B. bifidum-pretreated group. Conclusions 16S rRNA gene sequencing showed that pretreatment with B. bifidum ATCC 29521 reduced intestinal inflammation and altered the gut microbiota to favor the genera Intestinimonas and Bacteroides.
Collapse
Affiliation(s)
- Yi-Jie Weng
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Dan-Xian Jiang
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Jian Liang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Shi-Cai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Wen-Kai Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Cai-Yuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| |
Collapse
|
11
|
Fukuchi M, Yasutake T, Matsumoto M, Mizuno R, Fujita K, Sasuga Y. Effect of Lactic Acid Bacteria-Fermented Soy Milk Extract (LEX) on Urinary 3-Indoxyl Sulfate in Japanese Healthy Adult Women: An Open-Label Pilot Study. NUTRITION AND DIETARY SUPPLEMENTS 2020. [DOI: 10.2147/nds.s281180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
12
|
Roselino MN, Sakamoto IK, Tallarico Adorno MA, Márcia Canaan JM, de Valdez GF, Rossi EA, Sivieri K, Umbelino Cavallini DC. Effect of fermented sausages with probiotic Enterococcus faecium CRL 183 on gut microbiota using dynamic colonic model. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Bacterial community succession and metabolite changes during the fermentation of koumiss, a traditional Mongolian fermented beverage. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Al-Gamal MS, Ibrahim GA, Sharaf OM, Radwan AA, Dabiza NM, Youssef AM, El-Ssayad MF. The protective potential of selected lactic acid bacteria against the most common contaminants in various types of cheese in Egypt. Heliyon 2019; 5:e01362. [PMID: 30949606 PMCID: PMC6429812 DOI: 10.1016/j.heliyon.2019.e01362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/03/2019] [Accepted: 03/13/2019] [Indexed: 11/29/2022] Open
Abstract
Dairy products, especially cheeses have a great nutritional value and a high consumption level around the world. Considering a widespread consumption of cheeses, there is a growing concern regarding safety and microbiological quality. The current study was designed to conduct a recent evaluation of cheeses microbiological quality. Sixty cheese samples from retailing Egyptian markets were analyzed on different selective microbiological media and 64 bacteria, 35 yeasts and 8 molds were isolated. Out of 60 samples; 26.6% were contaminated with Escherichia coli, 73.3% with Staphylococcus scuiri, 3.33% with Bacillus cereus, 1.66% with Salmonella enterica, and 1.66% with Pseudomonas aeruginosa. The presence of such microorganisms in cheeses referred to the wrong management in cheese manufacturing. These organisms are significant from public health view as they have been associated with the base of human food poisoning. Promising antagonistic behavior was observed using the tested lactic acid bacteria (LAB) either single or in combinations toward the undesired isolates. Lactobacillus helveticus CNRZ 32 (Lb. helveticus) was the most potent culture; recording ≥95% reduction in undesired microbial counts.
Collapse
Affiliation(s)
- Mamdouh S Al-Gamal
- Botany and Microbiology Dept., Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Gamal A Ibrahim
- Dairy Science Dept., (Dairy Microbiol. Lab.), National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.) Dokki, Giza, Egypt
| | - Osama M Sharaf
- Dairy Science Dept., (Dairy Microbiol. Lab.), National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.) Dokki, Giza, Egypt
| | - Ahmed A Radwan
- Botany and Microbiology Dept., Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Nadia M Dabiza
- Dairy Science Dept., (Dairy Microbiol. Lab.), National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.) Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packing and Packaging Materials Dept., National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.) Dokki, Giza, Egypt
| | - Mohamed F El-Ssayad
- Dairy Science Dept., (Dairy Microbiol. Lab.), National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.) Dokki, Giza, Egypt
| |
Collapse
|
15
|
Maternal dyslipidaemic diet induces sex-specific alterations in intestinal function and lipid metabolism in rat offspring. Br J Nutr 2019; 121:721-734. [DOI: 10.1017/s0007114519000011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThis study investigated the effects of a maternal dyslipidaemic (DLP) diet on lipid metabolism, microbial counts in faeces and hepatic and intestinal morphology in rat offspring with respect to sex during different phases of life. Wistar rats (dams) were fed a control (CTL) or DLP during gestation and lactation. After weaning, CTL and DLP offspring were fed a standard diet. The effects of a maternal DLP on body composition, biochemical parameters, faecal microbiota and intestinal and hepatic histomorphometric characteristics in rat offspring were evaluated at 30 and 90 d of age. The DLP diet during gestation and lactation caused lower birth weight and a greater weight gain percentage at the end of the 90-d period in both male and female offspring. Female pups from DLP dams had higher liver fat levels compared with CTL (P≤0·001) at 90 d of age. Males from DLP dams had greater visceral fat weight and lower Lactobacillus spp. faecal counts at 90 d of age (P≤0·001) as well as lower faecal fat excretion (P≤0·05) and Bacteroides spp. faecal counts (P≤0·001) at 30 d of age when compared with pups from CTL dams. However, both dams and DLP pups showed damage to intestinal villi. A maternal DLP alters intestinal function and lipid metabolism in a sex-specific manner and is a potential predisposing factor for health complications in offspring from the juvenile period to the adult period.
Collapse
|
16
|
Cao ZH, Green-Johnson JM, Buckley ND, Lin QY. Bioactivity of soy-based fermented foods: A review. Biotechnol Adv 2019; 37:223-238. [PMID: 30521852 DOI: 10.1016/j.biotechadv.2018.12.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022]
Abstract
For centuries, fermented soy foods have been dietary staples in Asia and, now, in response to consumer demand, they are available throughout the world. Fermentation bestows unique flavors, boosts nutritional values and increases or adds new functional properties. In this review, we describe the functional properties and underlying action mechanisms of soy-based fermented foods such as Natto, fermented soy milk, Tempeh and soy sauce. When possible, the contribution of specific bioactive components is highlighted. While numerous studies with in vitro and animal models have hinted at the functionality of fermented soy foods, ascribing health benefits requires well-designed, often complex human studies with analysis of diet, lifestyle, family and medical history combined with long-term follow-ups for each subject. In addition, the contribution of the microbiome to the bioactivities of fermented soy foods, possibly mediated through direct action or bioactive metabolites, needs to be studied. Potential synergy or other interactions among the microorganisms carrying out the fermentation and the host's microbial community may also contribute to food functionality, but the details still require elucidation. Finally, safety evaluation of fermented soy foods has been limited, but is essential in order to provide guidelines for consumption and confirm lack of toxicity.
Collapse
Affiliation(s)
- Zhen-Hui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Julia M Green-Johnson
- Faculty of Science, University of Ontario Institute of Technology (UOIT), Oshawa L1H 7K4, Canada
| | | | - Qiu-Ye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
17
|
Mendonça LABM, Dos Santos Ferreira R, de Cássia Avellaneda Guimarães R, de Castro AP, Franco OL, Matias R, Carvalho CME. The Complex Puzzle of Interactions Among Functional Food, Gut Microbiota, and Colorectal Cancer. Front Oncol 2018; 8:325. [PMID: 30234008 PMCID: PMC6133950 DOI: 10.3389/fonc.2018.00325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer exerts a strong influence on the epidemiological panorama worldwide, and it is directly correlated to etiologic factors that are substantiated by genetic and environmental elements. This complex mixture of factors also has a relationship involving the structural dependence and composition of the gut microbiome, leading to a dysbacteriosis process that may evolve to serious modifications in the intestinal lining, eventually causing the development of a neoplasm. The gastrointestinal tract presents defense strategies and immunological properties that interfere in intestinal permeability, inhibiting the bacterial translocation, thus maintaining the integrity of intestinal homeostasis. The modulation of the intestinal microbiome and the extinction of risk factors associated with intestinal balance losses, especially of environmental factors, make cell and defense alterations impossible. This modulation may be conducted by means of functional foods in the diet, especially soluble fibers, polyunsaturated fatty acids, antioxidants and prebiotics that signal immunomodulatory effects in the intestinal microbiota, with preventive and therapeutic action for colorectal cancer. In summary, this review focuses on the importance of dietary modulation of the intestinal microbiota as an instrument for dysbacteriosis and, consequently, for the prevention of colorectal cancer, suggesting anticarcinogenic, and antiangiogenic properties. Among the intestinal modulating agents considered here are functional foods, especially flaxseed, oat and soy, composing a Bioactive Food Compound.
Collapse
Affiliation(s)
- Lígia A B M Mendonça
- S-Inova Biotech Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| | - Rosângela Dos Santos Ferreira
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Alinne P de Castro
- S-Inova Biotech Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| | - Octávio L Franco
- S-Inova Biotech Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil.,Center of Proteomic and Biochemical Analysis, Post Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Brazil
| | - Rosemary Matias
- Post Graduate Program in Environmental Sciences and Agricultural Sustainability, Catholic University Dom Bosco, Campo Grande, Brazil.,Post Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande, Brazil
| | - Cristiano M E Carvalho
- S-Inova Biotech Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil.,Post Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande, Brazil
| |
Collapse
|
18
|
Choe U, Li Y, Gao B, Yu L, Wang TTY, Sun J, Chen P, Liu J, Yu L. Chemical Compositions of Cold-Pressed Broccoli, Carrot, and Cucumber Seed Flours and Their in Vitro Gut Microbiota Modulatory, Anti-inflammatory, and Free Radical Scavenging Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9309-9317. [PMID: 30068076 DOI: 10.1021/acs.jafc.8b03343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carrot, cucumber, and broccoli seed flours were extracted with 50% acetone and evaluated for their phytochemical compositions along with their potential gut microbiota modulating, free radical scavenging, and anti-inflammatory capacities. Nine and ten compounds were detected in the broccoli and carrot seed flour extracts, with kaempferol-3- O-rutinoside and glucoraphanin as the primary component of each, respectively. All three seed flour extracts enhanced total number of gut bacteria and altered the abundance of specific bacterial phylum or genus in vitro. The broccoli seed flour extract had the greatest relative DPPH radical scavenging capacity, oxygen radical absorbing capacity, and hydroxyl radical (HO•) scavenging capacity values of 85, 634, and 270 μmol trolox equivalent (TE)/g, respectively. Carrot seed flour extract showed the greatest ABTS•+ scavenging capacity of 250 μmol TE/g. Also, three seed flour extracts suppressed LPS induced IL-1β and COX-2 mRNA expressions in J774A.1 cells. The results might be used to promote the value-added utilization of these vegetable seed flours in improving human health.
Collapse
Affiliation(s)
- Uyory Choe
- Department of Nutrition and Food Science , University of Maryland , College Park , Maryland 20742 , United States
| | - Yanfang Li
- Department of Nutrition and Food Science , University of Maryland , College Park , Maryland 20742 , United States
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Lu Yu
- Department of Nutrition and Food Science , University of Maryland , College Park , Maryland 20742 , United States
| | | | | | | | - Jie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| | - Liangli Yu
- Department of Nutrition and Food Science , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
19
|
de Carvalho Marchesin J, Celiberto LS, Orlando AB, de Medeiros AI, Pinto RA, Zuanon JAS, Spolidorio LC, dos Santos A, Taranto MP, Cavallini DCU. A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Seura T, Yoshino Y, Fukuwatari T. The Relationship between Habitual Dietary Intake and Gut Microbiota in Young Japanese Women. J Nutr Sci Vitaminol (Tokyo) 2018; 63:396-404. [PMID: 29332901 DOI: 10.3177/jnsv.63.396] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies have shown that dietary content affects the health of the host by changing the gut microbiota. However, little is known about the association of microbiota composition with habitual diet in Japanese people. Here, we aimed to clarify the relationship between the fecal microbiota and habitual dietary intake of micronutrients, macronutrients and food groups in healthy young Japanese women. Analysis of fecal microbiota was performed by the terminal restriction fragment length polymorphism (T-RFLP) method, and a dietary survey was conducted over three consecutive days using a weighed food record method. T-RFLP pattern analysis divided the subjects into two clusters, where cluster A group had a high relative abundance of Bacteroides and Clostridium cluster IV, and cluster B group had a high relative abundance of Bifidobacterium and Lactobacillales. Cluster A group also had lower intakes of iron and vitamin K and higher intakes of mushrooms and snacks than cluster B group. Analysis of Spearman rank correlations found several significant relationships between fecal microbiota and intake of nutrients and food groups. Bifidobacterium was correlated with iron intake, and Clostridium cluster XI was negatively correlated with intakes of cholesterol and eggs. These results suggest that dietary habits may strongly affect Bifidobacterium, Bacteroides and Clostridium abundance in the gut microbiota of young Japanese women. This is the first study to show relationships between fecal microbiota and habitual dietary intake in Japanese people. Accumulation of results from similar studies will help to elucidate the relationships between dietary intake and diseases in Japanese people.
Collapse
Affiliation(s)
- Takahiro Seura
- Department of Sports and Health Sciences, Faculty of Health and Medical Sciences, Aichi Shukutoku University.,Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture
| | - Yoko Yoshino
- Department of Nutritional Management, Faculty of Nutritional Science, Sagami Women's University
| | - Tsutomu Fukuwatari
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture
| |
Collapse
|
21
|
Wang L, Wang Y, Wang H, Zhou X, Wei X, Xie Z, Zhang Z, Wang K, Mu J. The influence of the intestinal microflora to the efficacy of Rosuvastatin. Lipids Health Dis 2018; 17:151. [PMID: 29960598 PMCID: PMC6026514 DOI: 10.1186/s12944-018-0801-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background Intestinal microflora has been shown to play essential roles in the clinical therapies of metabolic diseases. The present study is aiming to investigate the potential roles and mechanisms of how intestinal microflora mediates lipid-reduction efficacy of Rosuvastatin. Methods To investigate the correlation between the intestinal microflora and efficacy of Rosuvastatin, we analyzed the diversity of intestinal microflora using PCR-DGGE analysis and 16S rDNA sequencing approaches. Furthermore, we compared the blood lipid levels of rat models with dysbiosis of intestinal microflora and control rats upon the Rosuvastatin administration. Results The diversity of the intestinal flora was obviously decreased upon the antibiotic treatment, this effect could be maintained for 2 weeks after establishment of the models. Importantly, the results from 16S rDNA sequencing demonstrated that the abundance of Lactobacillus and Bifidobacterium was remarkably diminished upon the antibiotic treatment in antibiotic+Rosuvastatin-treated group compared to that of Rosuvastatin-treated group and control group. Correspondently, the lipid-reduction efficacy of Rosuvastatin was significantly compromised. However, the diversity of the intestinal flora was recovered 4 weeks after the antibiotic treatment. Subsequently, the lipid-reduction efficacy of Rosuvastatin was also recovered to level of the control rats treated with Rosuvastatin alone. Conclusion Intestinal flora could play an essential role in mediating the lipid-reduction efficacy of Rosuvastatin.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China. .,Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China.
| | - Yang Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongwei Wang
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China
| | - Xue Zhou
- Department of Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, 314000, China
| | - Xianjing Wei
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China
| | - Zezhou Xie
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China
| | - Zhipeng Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University, Dalian, 116001, China
| | - Keke Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jianjun Mu
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
22
|
ROSELINO MN, ALMEIDA JFD, COZENTINO IC, CANAAN JMM, PINTO RA, VALDEZ GFD, ROSSI EA, CAVALLINI DCU. Probiotic salami with fat and curing salts reduction: physicochemical, textural and sensory characteristics. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.24216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Liu S, Tun HM, Leung FC, Bennett DC, Zhang H, Cheng KM. Interaction of genotype and diet on small intestine microbiota of Japanese quail fed a cholesterol enriched diet. Sci Rep 2018; 8:2381. [PMID: 29402949 PMCID: PMC5799165 DOI: 10.1038/s41598-018-20508-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
Our previous study has shown that genetic selection for susceptibility/resistance to diet-induced atherosclerosis has affected the Japanese quail's cecal environment to accommodate distinctly different cecal microbiota. In this study, we fed the Atherosclerosis-resistant (RES) and -susceptable (SUS) quail a regular and a cholesterol enriched diet to examine the interaction of host genotype and diet on the diversity, composition, and metabolic functions of the duodenal and ileal microbiota with relations to atherosclerosis development. In the duodenal content, 9 OTUs (operational taxonomic units) were identified whose abundance had significant positive correlations with plasma total cholesterol, LDL level and/or LDL/HDL ratio. In the ileal content, 7 OTUs have significant correlation with plasma HDL. Cholesterol fed RES hosted significantly less Escherichia and unclassified Enterobacteriaceae (possibly pathogenic) in their duodenum than SUS fed the same diet. Dietary cholesterol significantly decreased the duodenal microbiome of SUS's biosynthesis of Ubiquinone and other terpenoid-quinone. Cholesterol fed RES had significantly more microbiome genes for Vitamin B6, selenocompound, taurine and hypotaurine, and Linoleic acid metabolism; Bisphenol degradation; primary bile acid, and butirosin and neomycin biosynthesis than SUS on the same diet. Microbiome in the ileum and ceca of RES contributed significantly towards the resistance to diet induced atherosclerosis.
Collapse
Affiliation(s)
- Shasha Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hein Min Tun
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Hong Kong SAR, China
- Department of Pediatrics, University of Alberta, Alberta, Canada
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Hong Kong SAR, China
| | - Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
Rizzo G, Baroni L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018; 10:E43. [PMID: 29304010 PMCID: PMC5793271 DOI: 10.3390/nu10010043] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Soy is a basic food ingredient of traditional Asian cuisine used for thousands of years. In Western countries, soybeans have been introduced about a hundred years ago and recently they are mainly used for surrogate foods production. Soy and soy foods are common nutritional solutions for vegetarians, due to their high protein content and versatility in the production of meat analogues and milk substitutes. However, there are some doubts about the potential effects on health, such as the effectiveness on cardiovascular risk reduction or, conversely, on the possible disruption of thyroid function and sexual hormones. The soy components that have stimulated the most research interest are isoflavones, which are polyphenols with estrogenic properties highly contained in soybeans. In this review, we discuss the characteristics of soy and soy foods, focusing on their nutrient content, including phytoestrogens and other bioactive substances that are noteworthy for vegetarians, the largest soy consumers in the Western countries. The safety of use will also be discussed, given the growing trend in adoption of vegetarian styles and the new soy-based foods availability.
Collapse
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2, 31100 Treviso, Italy.
| |
Collapse
|
25
|
Celiberto LS, Bedani R, Dejani NN, Ivo de Medeiros A, Sampaio Zuanon JA, Spolidorio LC, Tallarico Adorno MA, Amâncio Varesche MB, Carrilho Galvão F, Valentini SR, Font de Valdez G, Rossi EA, Cavallini DCU. Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis. PLoS One 2017; 12:e0175935. [PMID: 28437455 PMCID: PMC5402984 DOI: 10.1371/journal.pone.0175935] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Some probiotic strains have the potential to assist in relieving the symptoms of inflammatory bowel disease. The impact of daily ingestion of a soy-based product fermented by Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 with the addition of Bifidobacterium longum ATCC 15707 on chemically induced colitis has been investigated thereof within a period of 30 days. Methods Colitis was induced by dextran sulfate sodium. The animals were randomly assigned into five groups: Group C: negative control; Group CL: positive control; Group CLF: DSS with the fermented product; Group CLP: DSS with the non-fermented product (placebo); Group CLS: DSS with sulfasalazine. The following parameters were monitored: disease activity index, fecal microbial analyses, gastrointestinal survival of probiotic microorganisms and short-chain fatty acids concentration in the feces. At the end of the protocol the animals’ colons were removed so as to conduct a macroscopical and histopathological analysis, cytokines and nitrite quantification. Results Animals belonging to the CLF group showed fewer symptoms of colitis during the induction period and a lower degree of inflammation and ulceration in their colon compared to the CL, CLS and CLP groups (p<0.05). The colon of the animals in groups CL and CLS presented severe crypt damage, which was absent in CLF and CLP groups. A significant increase in the population of Lactobacillus spp. and Bifidobacterium spp. at the end of the protocol was verified only in the CLF animals (p<0.05). This group also showed an increase in short-chain fatty acids (propionate and acetate). Furthermore, the intestinal survival of E. faecium CRL 183 and B. longum ATCC 15707 in the CLF group has been confirmed by biochemical and molecular analyzes. Conclusions The obtained results suggest that a regular intake of the probiotic product, and placebo to a lesser extent, can reduce the severity of DSS-induced colitis on rats.
Collapse
Affiliation(s)
- Larissa Sbaglia Celiberto
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Alimentos e Nutrição, SP, Brasil
| | - Raquel Bedani
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naiara Naiana Dejani
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto. Departamento de Bioquimica e Imunologia, SP, Brasil
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Ciências Biológicas, SP, Brasil
| | - Alexandra Ivo de Medeiros
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Ciências Biológicas, SP, Brasil
| | - José Antonio Sampaio Zuanon
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araraquara. Departametno de Fisiologia e Patologia, SP, Brasil
| | - Luis Carlos Spolidorio
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araraquara. Departametno de Fisiologia e Patologia, SP, Brasil
| | - Maria Angela Tallarico Adorno
- Universidade de São Paulo (USP), Faculdade de Engenharia, São Carlos. Departamento de Hidraúlica e Saneamento, SP, Brasil
| | | | - Fábio Carrilho Galvão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Ciências Biológicas, SP, Brasil
| | - Sandro Roberto Valentini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Ciências Biológicas, SP, Brasil
| | | | - Elizeu Antonio Rossi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Alimentos e Nutrição, SP, Brasil
| | - Daniela Cardoso Umbelino Cavallini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Alimentos e Nutrição, SP, Brasil
- * E-mail:
| |
Collapse
|
26
|
Witzler JJP, Pinto RA, Font de Valdez G, de Castro AD, Cavallini DCU. Development of a potential probiotic lozenge containing Enterococcus faecium CRL 183. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Celiberto LS, Bedani R, Rossi EA, Cavallini DCU. Probiotics: The scientific evidence in the context of inflammatory bowel disease. Crit Rev Food Sci Nutr 2017; 57:1759-1768. [PMID: 25996176 DOI: 10.1080/10408398.2014.941457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammatory bowel disease (IBD) generally comprises Crohn's disease (CD) and ulcerative colitis (UC), and their main characteristic is the intestinal mucosa inflammation. Although its origin is not yet fully known, there is growing evidence related to genetics, intestinal microbiota composition, and the immune system factors such as precursors for the initiation and progression of intestinal conditions. The use of certain probiotic microorganisms has been touted as a possible and promising therapeutic approach in reducing the risk of inflammatory bowel disease, specifically ulcerative colitis. Several mechanisms have been proposed to explain the benefits of probiotics, indicating that some bacterial strains are able to positively modulate the intestinal microbiota and the immune system, and to produce metabolites with anti-inflammatory properties. The aim of this paper is to bring together the various results and information, based on scientific evidence, that are related to probiotics and inflammatory bowel disease, emphasizing the possible mechanisms involved in this action.
Collapse
Affiliation(s)
- Larissa Sbaglia Celiberto
- a Department of Food & Nutrition , Faculty of Pharmaceutical Sciences, São Paulo State University (UNESP) , Araraquara , SP , Brazil
| | - Raquel Bedani
- b Departament of Biochemical and Pharmaceutical Technology , Faculty of Pharmaceutical Sciences, University of São Paulo (USP) Properties , SP , Brazil
| | - Elizeu Antonio Rossi
- a Department of Food & Nutrition , Faculty of Pharmaceutical Sciences, São Paulo State University (UNESP) , Araraquara , SP , Brazil
| | | |
Collapse
|
28
|
Liao ZL, Zeng BH, Wang W, Li GH, Wu F, Wang L, Zhong QP, Wei H, Fang X. Impact of the Consumption of Tea Polyphenols on Early Atherosclerotic Lesion Formation and Intestinal Bifidobacteria in High-Fat-Fed ApoE -/- Mice. Front Nutr 2016; 3:42. [PMID: 28066771 PMCID: PMC5175490 DOI: 10.3389/fnut.2016.00042] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 09/20/2016] [Indexed: 01/10/2023] Open
Abstract
There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of some cardiovascular diseases, such as atherosclerosis (AS). However, limited information is available on how these polyphenols affect the gut microbiota and AS development. This study was designed to evaluate the modulation of dietary tea polyphenols (TPs) on intestinal Bifidobacteria (IB) and its correlation with AS development in apolipoprotein E-deficient (ApoE−/−) mice. Fifty C57BL/6 ApoE−/− mice were randomized into one of the five treatment groups (n = 10/group): control group fed normal diet (CK); a group fed a high-fat diet (HFD); and the other three groups fed the same HFD supplemented with TPs in drinking water for 16 weeks. The total cholesterol and low-density lipoprotein cholesterol (LDL-C) were decreased significantly (P < 0.05) after TP interference. In addition, the TP diet also decreased the plaque area/lumen area (PA/LA) ratios (P < 0.01) in the TP diet group. Interestingly, copies of IB in the gut of ApoE−/− mice were notably increased with TP interference. This increase was dose dependent (P < 0.01) and negatively correlated with the PA/LA ratio (P < 0.05). We conclude that TPs could promote the proliferation of the IB, which is partially responsible for the reduction of AS plaque induced by HFD.
Collapse
Affiliation(s)
- Zhen-Lin Liao
- College of Food Science, South China Agricultural University , Guangzhou , China
| | - Ben-Hua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University , Chongqing , China
| | - Wei Wang
- College of Food Science, South China Agricultural University , Guangzhou , China
| | - Gui-Hua Li
- College of Food Science, South China Agricultural University , Guangzhou , China
| | - Fei Wu
- College of Food Science, South China Agricultural University , Guangzhou , China
| | - Li Wang
- College of Food Science, South China Agricultural University , Guangzhou , China
| | - Qing-Ping Zhong
- College of Food Science, South China Agricultural University , Guangzhou , China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University , Chongqing , China
| | - Xiang Fang
- College of Food Science, South China Agricultural University , Guangzhou , China
| |
Collapse
|
29
|
Huang H, Krishnan HB, Pham Q, Yu LL, Wang TTY. Soy and Gut Microbiota: Interaction and Implication for Human Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8695-8709. [PMID: 27798832 DOI: 10.1021/acs.jafc.6b03725] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soy (Glycine max) is a major commodity in the United States, and soy foods are gaining popularity due to their reported health-promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health-promoting/disease-preventing activities and potential mechanisms of action. Recent studies have identified gut microbiota as an important component in the human body ecosystem and possibly a critical modulator of human health. Soy foods' interaction with the gut microbiota may critically influence many aspects of human development, physiology, immunity, and nutrition at different stages of life. This review summarizes current knowledge on the effects of soy foods and soy components on gut microbiota population and composition. It was found, although results vary in different studies, in general, both animal and human studies have shown that consumption of soy foods can increase the levels of bifidobacteria and lactobacilli and alter the ratio between Firmicutes and Bacteroidetes. These changes in microbiota are consistent with reported reductions in pathogenic bacteria populations in the gut, thereby lowering the risk of diseases and leading to beneficial effects on human health.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| | - Hari B Krishnan
- Plant Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, University of Missouri , Columbia, Missouri 65211, United States
| | - Quynhchi Pham
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland , College Park, Maryland 20742, United States
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| |
Collapse
|
30
|
Chan YK, Brar MS, Kirjavainen PV, Chen Y, Peng J, Li D, Leung FCC, El-Nezami H. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE -/- mice. BMC Microbiol 2016; 16:264. [PMID: 27821063 PMCID: PMC5100306 DOI: 10.1186/s12866-016-0883-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 10/29/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Atherosclerosis appears to have multifactorial causes - microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceuticals telmisartan (TLM) could improve atherosclerosis in a gut microbiota associated manner. METHODS Atherosclerotic phenotype was established by 12 weeks feeding of high fat (HF) diet as opposed to normal chow diet (ND) in apolipoprotein E knockout (ApoE-/-) mice. LGG or TLM supplementation to HF diet was studied. RESULTS Both LGG and TLM significantly reduced atherosclerotic plaque size and improved various biomarkers including endotoxin to different extents. Colonial microbiota analysis revealed that TLM restored HF diet induced increase in Firmicutes/Bacteroidetes ratio and decrease in alpha diversity; and led to a more distinct microbial clustering closer to ND in PCoA plot. Eubacteria, Anaeroplasma, Roseburia, Oscillospira and Dehalobacteria appeared to be protective against atherosclerosis and showed significant negative correlation with atherosclerotic plaque size and plasma adipocyte - fatty acid binding protein (A-FABP) and cholesterol. CONCLUSION LGG and TLM improved atherosclerosis with TLM having a more distinct alteration in the colonic gut microbiota. Altered bacteria genera and reduced alpha diversity had significant correlations to atherosclerotic plaque size, plasma A-FABP and cholesterol. Future studies on such bacterial functional influence in lipid metabolism will be warranted.
Collapse
Affiliation(s)
- Yee Kwan Chan
- 5S12, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Manreetpal Singh Brar
- 5N01, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Pirkka V Kirjavainen
- Food and Research Health Centre, University of Eastern Finland, Joensuu, Finland
| | - Yan Chen
- L943, Laboratory Block, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Jiao Peng
- L943, Laboratory Block, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Daxu Li
- L943, Laboratory Block, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Frederick Chi-Ching Leung
- 5N01, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Hani El-Nezami
- 5S12, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong. .,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland. .,5S13, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
31
|
Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr 2016; 10:S150-S157. [PMID: 26916014 DOI: 10.1016/j.dsx.2016.01.024] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
The gut microbiome contributes approximately 2kg of the whole body weight, and recent studies suggest that gut microbiota has a profound effect on human metabolism, potentially contributing to several features of the metabolic syndrome. Metabolic syndrome is defined by a clustering of metabolic disorders that include central adiposity with visceral fat accumulation, dyslipidemia, insulin resistance, dysglycemia and non-optimal blood pressure levels. Metabolic syndrome is associated with an increased risk of cardiovascular diseases and type 2 diabetes. It is estimated that around 20-25 percent of the world's adult population has metabolic syndrome. In this manuscript, we have reviewed the existing data linking gut microbiome with metabolic syndrome. Existing evidence from studies both in animals and humans support a link between gut microbiome and various components of metabolic syndrome. Possible pathways include involvement with energy homeostasis and metabolic processes, modulation of inflammatory signaling pathways, interferences with the immune system, and interference with the renin-angiotensin system. Modification of gut microbiota via prebiotics, probiotics or other dietary interventions has provided evidence to support a possible beneficial effect of interventions targeting gut microbiota modulation to treat components or complications of metabolic syndrome.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China; Institute of Genetics and Developmental Biology, International College, University of Chinese Academy of Science (IC-UCAS), West Beichen Road, Chaoyang, China
| | - Peyman Rezaie
- Biochemistry and Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Andre Pascal Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Majid Ghayour Mobarhan
- Biochemistry and Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Cardiovascular Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Rm 342, Mayfield House, University of Brighton, BN1 9PH, UK
| |
Collapse
|
32
|
Probiotic Soy Product Supplemented with Isoflavones Improves the Lipid Profile of Moderately Hypercholesterolemic Men: A Randomized Controlled Trial. Nutrients 2016; 8:nu8010052. [PMID: 26797632 PMCID: PMC4728664 DOI: 10.3390/nu8010052] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/03/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023] Open
Abstract
Background: Cardiovascular disease is the leading cause of worldwide morbidity and mortality. Several studies have demonstrated that specific probiotics affect the host’s metabolism and may influence the cardiovascular disease risk. Objectives: The aim of this study was to investigate the influence of an isoflavone-supplemented soy product fermented with Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 on cardiovascular risk markers in moderately hypercholesterolemic subjects. Design: Randomized placebo-controlled double-blind trial Setting: São Paulo State University in Araraquara, SP, Brazil. Participants: 49 male healthy men with total cholesterol (TC) >5.17 mmol/L and <6.21 mmol/L Intervention: The volunteers have consumed 200 mL of the probiotic soy product (group SP-1010 CFU/day), isoflavone-supplemented probiotic soy product (group ISP–probiotic plus 50 mg of total isoflavones/100 g) or unfermented soy product (group USP-placebo) for 42 days in a randomized, double-blind study. Main outcome measures: Lipid profile and additional cardiovascular biomarkers were analyzed on days 0, 30 and 42. Urine samples (24 h) were collected at baseline and at the end of the experiment so as to determine the isoflavones profile. Results: After 42 days, the ISP consumption led to improved total cholesterol, non-HDL-C (LDL + IDL + VLDL cholesterol fractions) and electronegative LDL concentrations (reduction of 13.8%, 14.7% and 24.2%, respectively, p < 0.05). The ISP and SP have prevented the reduction of HDL-C level after 42 days. The C-reactive protein and fibrinogen levels were not improved. The equol production by the ISP group subjects was inversely correlated with electronegative LDL concentration. Conclusions: The results suggest that a regular consumption of this probiotic soy product, supplemented with isoflavones, could contribute to reducing the risk of cardiovascular diseases in moderately hypercholesterolemic men, through the an improvement in lipid profile and antioxidant properties.
Collapse
|
33
|
Metabolomic study on the faecal extracts of atherosclerosis mice and its application in a Traditional Chinese Medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1007:140-8. [PMID: 26596842 DOI: 10.1016/j.jchromb.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023]
Abstract
The intestinal microbiota and their metabolites are closely related to the formation of atherosclerosis (AS). In this study, a metabolomic approach based on the reversed-phase liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) platform was established to analyze the metabolic profiling of fecal extracts from AS mice model. The established metabolomic platform was also used for clearing the effective mechanism of a Traditional Chinese Medicine (TCM) named Sishen granule (SSKL). Totally, sixteen potential biomarkers in faeces of AS mice were identified and 5 of them could be reversed by SSKL. Through functional analysis of these biomarkers and the established network, lipid metabolism, cholesterol metabolism, energy cycle, and inflammation reaction were considered as the most relevant pathological changes in gastrointestinal tract of AS mice. The metabolomic study not only revealed the potential biomarkers in AS mice' faeces but also supplied a systematic view of the pathological changes in gastrointestinal metabolite in AS mice. This metabolomic study also demonstrated that SSKL had the therapeutic effectiveness on AS through partly reversing the lipid metabolism, inflammation and energy metabolism.
Collapse
|
34
|
LeBlanc ADMD, LeBlanc JG. Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World J Gastroenterol 2014; 20:16518-16528. [PMID: 25469019 PMCID: PMC4248194 DOI: 10.3748/wjg.v20.i44.16518] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/22/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Although it is now known that the human body is colonized by a wide variety of microbial populations in different parts (such as the mouth, pharynx and respiratory system, the skin, the gastro- and urogenital tracts), many effects of the complex interactions between the human host and microbial symbionts are still not completely understood. The dysbiosis of the gastrointestinal tract microbiota is considered to be one of the most important contributing factors in the development of many gastrointestinal diseases such as inflammatory bowel disease, irritable bowel syndrome and colorectal cancer, as well as systemic diseases like obesity, diabetes, atherosclerosis and non-alcoholic fatty liver disease. Fecal microbial transplantations appear to be promising therapies for dysbiosis-associated diseases; however, probiotic microorganisms have been growing in popularity due to increasing numbers of studies proving that certain strains present health promoting properties, among them the beneficial balance of the intestinal microbiota. Inflammatory bowel diseases and obesity are the pathologies in which there are more studies showing this beneficial association using animal models and even in human clinical trials. In this review, the association of the human gut microbiota and human health will be discussed along with the benefits that probiotics can confer on this symbiotic activity and on the prevention or treatment of associated diseases.
Collapse
|
35
|
Pérez-Cano FJ, Massot-Cladera M, Rodríguez-Lagunas MJ, Castell M. Flavonoids Affect Host-Microbiota Crosstalk through TLR Modulation. Antioxidants (Basel) 2014; 3:649-70. [PMID: 26785232 PMCID: PMC4665504 DOI: 10.3390/antiox3040649] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/07/2014] [Accepted: 09/26/2014] [Indexed: 12/18/2022] Open
Abstract
Interaction between host cells and microbes is known as crosstalk. Among other mechanisms, this takes place when certain molecules of the micro-organisms are recognized by the toll-like receptors (TLRs) in the body cells, mainly in the intestinal epithelial cells and in the immune cells. TLRs belong to the pattern-recognition receptors and represent the first line of defense against pathogens, playing a pivotal role in both innate and adaptive immunity. Dysregulation in the activity of such receptors can lead to the development of chronic and severe inflammation as well as immunological disorders. Among components present in the diet, flavonoids have been suggested as antioxidant dietary factors able to modulate TLR-mediated signaling pathways. This review focuses on the molecular targets involved in the modulatory action of flavonoids on TLR-mediated signaling pathways, providing an overview of the mechanisms involved in such action. Particular flavonoids have been able to modify the composition of the microbiota, to modulate TLR gene and protein expression, and to regulate the downstream signaling molecules involved in the TLR pathway. These synergistic mechanisms suggest the role of some flavonoids in the preventive effect on certain chronic diseases.
Collapse
Affiliation(s)
- Francisco J Pérez-Cano
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), E-08028 Barcelona, Spain.
| | - Malen Massot-Cladera
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), E-08028 Barcelona, Spain.
| | - Maria J Rodríguez-Lagunas
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), E-08028 Barcelona, Spain.
- Departament de Ciències Fisiològiques II, Facultat de Medicina, Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain.
| | - Margarida Castell
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), E-08028 Barcelona, Spain.
| |
Collapse
|
36
|
Satoh H, Kudoh A, Hasegawa K, Hirai H, Watanabe T. Yacon supplementation reduces serum free fatty acids and tumor necrosis factor alpha concentrations in patients with type 2 diabetes. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0150-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9517-33. [PMID: 24033291 DOI: 10.1021/jf402506c] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gut microbiota plays a key role in host physiology and metabolism. Indeed, the relevance of a well-balanced gut microbiota composition to an individual's health status is essential for the person's well-being. Currently, investigations are focused on analyzing the effects of pre- and probiotics as new therapeutic tools to counteract the disruption of intestinal bacterial balance occurring in several diseases. Polyphenols exert a wide range of beneficial health effects. However, although specific attention has been paid in recent years to the function of this "biological entity" in the metabolism of polyphenols, less is known about the modulatory capacity of these bioactive compounds on gut microbiota composition. This review provides an overview of the latest investigations carried out with pure polyphenols, extracts rich in polyphenols, and polyphenol-rich dietary sources (such as cocoa, tea, wine, soy products, and fruits) and critically discusses the consequences to gut microbiota composition which are produced.
Collapse
Affiliation(s)
- Usune Etxeberria
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra , 31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Chen L, Liu W, Li Y, Luo S, Liu Q, Zhong Y, Jian Z, Bao M. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process. Int Immunopharmacol 2013; 17:108-15. [PMID: 23747589 DOI: 10.1016/j.intimp.2013.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the effect of Lactobacillus (L.) acidophilus ATCC 4356 on the progression of atherosclerosis in Apoliprotein-E knockout (ApoE(-/-)) mice and the underlying mechanisms. Eight week-old ApoE(-/-) mice were treated with L. acidophilus ATCC 4356 daily for 12 weeks. The wild type (WT) mice or ApoE(-/-) mice in the vehicle group were treated with saline only. Body weights, serum lipid levels, aortic atherosclerotic lesions, and tissue oxidative and inflammatory statuses were examined among the groups. As compared to ApoE(-/-) mice in the vehicle group, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 had no changes in body weights and serum lipid profiles, but showed decreased atherosclerotic lesion size in en face aorta. In comparison with WT mice, ApoE(-/-) mice in the vehicle group showed higher levels of serum malondialdehyde (MDA), oxidized low density lipoprotein (oxLDL) and tumor necrosis factor-alpha (TNF-α), but lower levels of interleukin-10 (IL-10) and superoxide dismutase (SOD) activities in serum. Administration of L. acidophilus ATCC 4356 could reverse these trends in a dose-dependent manner in ApoE(-/-) mice. Furthermore, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 showed an inhibition of translocation of NF-κB p65 from cytoplasm to nucleus, suppression of degradation of aortic IκB-α, and improvements of gut microbiota distribution, as compared to ApoE(-/-) mice in the vehicle group. Our findings suggest that administration of L. acidophilus ATCC 4356 can attenuate the development of atherosclerotic lesions in ApoE(-/-) mice through reducing oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yacon diet (Smallanthus sonchifolius, Asteraceae) improves hepatic insulin resistance via reducing Trb3 expression in Zucker fa/fa rats. Nutr Diabetes 2013; 3:e70. [PMID: 23712282 PMCID: PMC3671746 DOI: 10.1038/nutd.2013.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Yacon is a perennial plant forming a clump of >20 big, edible underground tubers. Yacon, which originates from South America, has become increasingly popular in the Japanese diet for tubers have a lower caloric value and a high fiber content. Recent studies have suggested that yacon feeding ameliorates diabetes as indicated by reduced blood glucose. METHODS We fed male Zucker fa/fa rats for 5 weeks with isocaloric normal chow diet containing from 6.5% control aroid or 6.5% yacon. Insulin sensitivity was evaluated by euglycemic-hyperinsulinemic clamp study. RESULTS Body weight was comparable between yacon- and aroid-fed rats. In the basal state, yacon feeding had an effect to lower fasting glucose levels from 184.1±4.1 to 167.8±2.7 mg dl(-1) (P<0.01), as well as basal hepatic glucose output (HGO) from 9.9±0.4 to 7.4 ± 0.2 mg kg(-1) per min (P<0.01). During the clamp studies, the glucose infusion rate required to maintain euglycemia was increased by 12.3% in yacon-fed rat. The insulin suppression of HGO was also increased in yacon-fed rats compared with control rats (85.3±2.4% vs 77.0±3.0%; P<0.05), whereas the glucose disposal rate was not different between the two groups. Consistent with the clamp data, the insulin-stimulated phosphorylation of Akt was significantly enhanced in liver but not in skeletal muscle. Furthermore, tribbles 3 (Trb3) expression, which is a negative regulator of Akt activity, was markedly reduced in the liver of yacon-fed rats compared with control rats. CONCLUSION These results indicate that the effect of yacon feeding to reduce blood glucose is likely due to its beneficial effects on hepatic insulin sensitivity in the insulin resistant state.
Collapse
|
40
|
Abstract
Lactobacillus helveticus is an important industrial thermophilic starter that is predominantly employed in the fermentation of milk for the manufacture of several cheeses. In addition to its technological importance, a growing body of scientific evidence shows that strains belonging to the L. helveticus species have health-promoting properties. In this review, we synthesize the results of numerous primary literature papers concerning the ability of L. helveticus strains to positively influence human health. Several in vitro studies showed that L. helveticus possesses many common probiotic properties, such as the ability to survive gastrointestinal transit, adhere to epithelial cells, and antagonize pathogens. In vivo studies in murine models showed that L. helveticus could prevent gastrointestinal infections, enhance protection against pathogens, modulate host immune responses, and affect the composition of the intestinal microbiota. Interventional studies and clinical trials have also demonstrated a number of health-promoting properties of L. helveticus. Finally, several studies suggested that specific enzymatic activities of L. helveticus could indirectly benefit the human host by enhancing the bioavailability of nutrients, removing allergens and other undesired molecules from food, and producing bioactive peptides through the digestion of food proteins. In conclusion, this review demonstrates that in light of the scientific literature presented, L. helveticus can be included among the bacterial species that are generally considered to be probiotic.
Collapse
Affiliation(s)
- Valentina Taverniti
- Division of Food Microbiology and Bioprocesses, Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano Milan, Italy
| | | |
Collapse
|
41
|
Martinez-Villaluenga C, Torino MI, Martín V, Arroyo R, Garcia-Mora P, Estrella Pedrola I, Vidal-Valverde C, Rodriguez JM, Frias J. Multifunctional properties of soy milk fermented by Enterococcus faecium strains isolated from raw soy milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10235-10244. [PMID: 22978423 DOI: 10.1021/jf302751m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lactic acid bacteria (LAB) isolated from soy milk were used to produce a multifunctional fermented food. Seven isolates were screened for their ability to produce peptides and free isoflavones in soy milk. The antihypertensive, antioxidant, and anti-inflammatory properties of the resulting fermented soy milks were evaluated in vitro using biochemical assays. Isolates 1-5 were found to be producers of fermented soy milk with angiotensin I converting enzyme inhibitory activity (ACEI). Isolate 3 was found to be a producer of free isoflavones that increased the antioxidant and anti-inflammatory potential of fermented soy milk. LAB isolates 2-5 were submitted to genetic profiling and a characterization scheme. These isolates were identified as Enterococcus faecium , and none of them contained virulence determinants or resistance to antibiotics. In conclusion, this study shows that the application of E. faecium isolate 3 for multifunctional food production from soy milk could be a promising strategy in the prevention therapy against cardiovascular disease.
Collapse
|
42
|
|