1
|
Cho E, Hyung KE, Choi YH, Chun H, Kim D, Jun SH, Kang NG. Modulating OCA2 Expression as a Promising Approach to Enhance Skin Brightness and Reduce Dark Spots. Biomolecules 2024; 14:1284. [PMID: 39456217 PMCID: PMC11506640 DOI: 10.3390/biom14101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The oculocutaneous albinism II (OCA2) gene encodes a melanosomal transmembrane protein involved in melanogenesis. Recent genome-wide association studies have identified several single nucleotide polymorphisms within OCA2 genes that are involved in skin pigmentation. Nevertheless, there have been no attempts to modulate this gene to improve skin discoloration. Accordingly, our aim was to identify compounds that can reduce OCA2 expression and to develop a formula that can improve skin brightness and reduce hyperpigmented spots. In this study, we investigated the effects of OCA2 expression reduction on melanin levels, melanosome pH, and autophagy induction through siRNA knockdown. Additionally, we identified several bioactives that effectively reduce OCA2 expression. Ultimately, in a clinical trial, we demonstrated that topical application of those compounds significantly improved skin tone and dark spots compared to vitamin C, a typical brightening agent. These findings demonstrate that OCA2 is a promising target for the development of efficacious cosmetics and therapeutics designed to treat hyperpigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung-Hyun Jun
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| | - Nae-Gyu Kang
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| |
Collapse
|
2
|
Alharithi YJ, Phillips EA, Wilson TD, Couvillion SP, Nicora CD, Darakjian P, Rakshe S, Fei SS, Counts B, Metz TO, Searles R, Kumar S, Maloyan A. Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608809. [PMID: 39229218 PMCID: PMC11370391 DOI: 10.1101/2024.08.20.608809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, using a mouse model of maternal high-fat diet (HFD)-induced obesity, we show that whole body fat content of the offspring of HFD-fed mothers (Off-HFD) increases significantly from very early age when compared to the offspring regular diet-fed mothers (Off-RD). We have previously shown significant metabolic and immune perturbations in the bone marrow of newly-weaned offspring of obese mothers. Therefore, we hypothesized that lipid metabolism is altered in the bone marrow Off-HFD in newly-weaned offspring of obese mothers when compared to the Off-RD. To test this hypothesis, we investigated the lipidomic profile of bone marrow cells collected from three-week-old offspring of regular and high fat diet-fed mothers. Diacylgycerols (DAGs), triacylglycerols (TAGs), sphingolipids and phospholipids, including plasmalogen, and lysophospholipids were remarkably different between the groups, independent of fetal sex. Levels of cholesteryl esters were significantly decreased in offspring of obese mothers, suggesting reduced delivery of cholesterol to bone marrow cells. This was accompanied by age-dependent progression of mitochondrial dysfunction in bone marrow cells. We subsequently isolated CD11b+ myeloid cells from three-week-old mice and conducted metabolomics, lipidomics, and transcriptomics analyses. The lipidomic profiles of these bone marrow myeloid cells were largely similar to that seen in bone marrow cells and included increases in DAGs and phospholipids alongside decreased TAGs, except for long-chain TAGs, which were significantly increased. Our data also revealed significant sex-dependent changes in amino acids and metabolites related to energy metabolism. Transcriptomic analysis revealed altered expression of genes related to major immune pathways including macrophage alternative activation, B-cell receptor signaling, TGFβ signaling, and communication between the innate and adaptive immune systems. All told, this study revealed lipidomic, metabolomic, and gene expression abnormalities in bone marrow cells broadly, and in bone marrow myeloid cells particularly, in the newly-weaned offspring of obese mothers, which might at least partially explain the progression of metabolic and cardiovascular diseases in their adulthood.
Collapse
|
3
|
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, Feng Q, Wang Z, Liu Z, Zhou Y, Ma X. Macrophage fatty acid oxidation in atherosclerosis. Biomed Pharmacother 2024; 170:116092. [PMID: 38157642 DOI: 10.1016/j.biopha.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid β-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.
Collapse
Affiliation(s)
- Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxu Qi
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinyi Zhou
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqin Gong
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Duhui Wei
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guangneng Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qilun Feng
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhou Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiren Zhou
- The Affiliated Nanhua Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Zhao J, Xu X, Wei X, Zhang S, Xu H, Wei X, Zhang Y, Zhang J. SAMM50- rs2073082, - rs738491 and - rs3761472 Interactions Enhancement of Susceptibility to Non-Alcoholic Fatty Liver Disease. Biomedicines 2023; 11:2416. [PMID: 37760857 PMCID: PMC10525902 DOI: 10.3390/biomedicines11092416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND AIM Several studies have identified that three SAMM50 polymorphisms (rs2073082, rs738491, rs3761472) are associated with an increased risk of non-alcoholic fatty liver disease (NAFLD). However, the clinical significance of the SAMM50 SNP in relation to NAFLD remains largely unknown. Therefore, we conducted a clinical study and SNP-SNP interaction analysis to further elucidate the effect of the SAMM50 SNP on the progression of NAFLD in the elderly. METHODS A total of 1053 patients over the age of 65 years were recruited. Liver fat and fibrosis were detected by abdominal ultrasound or FibroScan, respectively. Genomic DNA was extracted and then genotyped by Fluidigm 96.96 Dynamic Array. Multivariable logistic regression was used to evaluate the association between NAFLD and SNP. SNP-SNP interactions were analyzed using generalized multivariate dimensionality reduction (GMDR). RESULTS The risk of NAFLD was substantially higher in people who carried SAMM50-rs2073082 G and -rs738491 T alleles (OR, 1.962; 95% CI, 1.448-2.659; p < 0.001; OR, 1.532; 95% CI, 1.246-1.884; p = 0.021, respectively) compared to noncarriers. Carriers of the rs738491 T and rs3761472 G alleles in the cohort showed a significant increase in liver stiffness measurements (LSM). The combination of the three SNPs showed the highest predictive power for NAFLD. The rs2073082 G allele, rs738491 T allele and rs3761472 G carriers had a two-fold higher risk of NAFLD compared to noncarriers. CONCLUSIONS Our research has demonstrated a strong correlation between the genetic polymorphism of SAMM50 and NAFLD in the elderly, which will contribute to a better understanding of the impact of age and genetics on this condition. Additionally, this study provides a potential predictive model for the early clinical warning of NAFLD.
Collapse
Affiliation(s)
- Jinhan Zhao
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoyi Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xinhuan Wei
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
| | - Shuang Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
- Menkuang Hospital, Beijing Jingmei Group General Hospital, Beijing Energy Holding Company Limited, Beijing 102399, China
| | - Hangfei Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaodie Wei
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
| |
Collapse
|
5
|
Becker PH, Thérond P, Gaignard P. Targeting mitochondrial function in macrophages: A novel treatment strategy for atherosclerotic cardiovascular disease? Pharmacol Ther 2023; 247:108441. [PMID: 37201736 DOI: 10.1016/j.pharmthera.2023.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Atherosclerotic cardiovascular disease is a major cause of morbidity and mortality due to chronic arterial injury caused by hyperlipidemia, hypertension, inflammation and oxidative stress. Recent studies have shown that the progression of this disease is associated with mitochondrial dysfunction and with the accumulation of mitochondrial alterations within macrophages of atherosclerotic plaques. These alterations contribute to processes of inflammation and oxidative stress. Among the many players involved, macrophages play a pivotal role in atherogenesis as they can exert both beneficial and deleterious effects due to their anti- and pro-inflammatory properties. Their atheroprotective functions, such as cholesterol efflux and efferocytosis, as well as the maintenance of their polarization towards an anti-inflammatory state, are particularly dependent on mitochondrial metabolism. Moreover, in vitro studies have demonstrated deleterious effects of oxidized LDL on macrophage mitochondrial function, resulting in a switch to a pro-inflammatory state and to a potential loss of atheroprotective capacity. Therefore, preservation of mitochondrial function is now considered a legitimate therapeutic strategy. This review focuses on the potential therapeutic strategies that could improve the mitochondrial function of macrophages, enabling them to maintain their atheroprotective capacity. These emerging therapies could play a valuable role in counteracting the progression of atherosclerotic lesions and possibly inducing their regression.
Collapse
Affiliation(s)
- Pierre-Hadrien Becker
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France.
| | - Patrice Thérond
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France
| | - Pauline Gaignard
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France
| |
Collapse
|
6
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
7
|
Li J, Meng Q, Fu Y, Yu X, Ji T, Chao Y, Chen Q, Li Y, Bian H. Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis. J Cell Physiol 2021; 236:6154-6167. [PMID: 33507545 DOI: 10.1002/jcp.30300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis can be regarded as a chronic disease derived from the interaction between disordered lipoproteins and an unsuitable immune response. The evolution of foam cells is not only a significant pathological change in the early stage of atherosclerosis but also a key stage in the occurrence and development of atherosclerosis. The formation of foam cells is mainly caused by the imbalance among lipids uptake, lipids treatment, and reverse cholesterol transport. Although a large number of studies have summarized the source of foam cells and the mechanism of foam cells formation, we propose a new idea about foam cells in atherosclerosis. Rather than an isolated microenvironment, the macrophage multiple lipid uptake pathways, lipid internalization, lysosome, mitochondria, endoplasmic reticulum, neutral cholesterol ester hydrolase (NCEH), acyl-coenzyme A-cholesterol acyltransferase (ACAT), and reverse cholesterol transport are mutually influential, and form a dynamic process under multi-factor regulation. The macrophage takes on different uptake lipid statuses depending on multiple uptake pathways and intracellular lipids, lipid metabolites versus pro-inflammatory factors. Except for NCEH and ACAT, the lipid internalization of macrophages also depends on multicellular organelles including the lysosome, mitochondria, and endoplasmic reticulum, which are associated with each other. A dynamic balance between esterification and hydrolysis of cholesterol for macrophages is essential for physiology and pathology. Therefore, we propose that the foam cell in the process of atherosclerosis may be dynamic under multi-factor regulation, and collate this study to provide a holistic and dynamic idea of the foam cell.
Collapse
Affiliation(s)
- Jun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xichao Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Ji
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Chao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Bian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
9
|
Caridis AM, Lightbody RJ, Tarlton JMR, Dolan S, Graham A. Genetic obesity increases pancreatic expression of mitochondrial proteins which regulate cholesterol efflux in BRIN-BD11 insulinoma cells. Biosci Rep 2019; 39:BSR20181155. [PMID: 30819824 PMCID: PMC6430727 DOI: 10.1042/bsr20181155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/29/2019] [Accepted: 02/26/2019] [Indexed: 11/24/2022] Open
Abstract
Pancreatic β-cells are sensitive to fluctuations in cholesterol content, which can damage the insulin secretion pathway, contributing to the aetiology of type 2 diabetes mellitus. Cholesterol efflux to (apo)lipoproteins, via ATP-binding cassette (ABC) transporter A1 (ABCA1), can prevent intracellular cholesterol accumulation; in some peripheral cells, ABCA1-dependent efflux is enhanced by promotion of cholesterol trafficking to, and generation of Liver X receptor (LXR) ligands by, mitochondrial sterol 27-hydroxylase (Cyp27A1 (cytochrome P450 27 A1/sterol 27-hydroxylase)) and its redox partners, adrenodoxin (ADX) and ADX reductase (ADXR). Despite this, the roles of mitochondrial cholesterol trafficking (steroidogenic acute regulatory protein [StAR] and 18-kDa translocator protein [TSPO]) and metabolising proteins in insulin-secreting cells remain wholly uncharacterised. Here, we demonstrate an increase in pancreatic expression of Cyp27A1, ADXR, TSPO and LXRα, but not ADX or StAR, in obese (fa/fa) rodents compared with lean (Fa/?) controls. Overexpression of Cyp27A1 alone in BRIN-BD11 cells increased INS2 expression, without affecting lipid metabolism; however, after exposure to low-density lipoprotein (LDL), cholesterol efflux to (apo)lipoprotein acceptors was enhanced in Cyp27A1-overexpressing cells. Co-transfection of Cyp27A1, ADX and ADXR, at a ratio approximating that in pancreatic tissue, stimulated cholesterol efflux to apolipoprotein A-I (apoA-I) in both basal and cholesterol-loaded cells; insulin release was stimulated equally by all acceptors in cholesterol-loaded cells. Thus, genetic obesity increases pancreatic expression of Cyp27A1, ADXR, TSPO and LXRα, while modulation of Cyp27A1 and its redox partners promotes cholesterol efflux from insulin-secreting cells to acceptor (apo)lipoproteins; this response may help guard against loss of insulin secretion caused by accumulation of excess intracellular cholesterol.
Collapse
Affiliation(s)
- Anna-Maria Caridis
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Richard J Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jamie M R Tarlton
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Sharron Dolan
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
10
|
Zheng S, Du Y, Peng Q, Fan X, Li J, Chen M. Trimetazidine Protects Against Atherosclerosis by Changing Energy Charge and Oxidative Stress. Med Sci Monit 2018; 24:8459-8468. [PMID: 30468686 PMCID: PMC6266541 DOI: 10.12659/msm.911317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study investigated the effect and the possible mechanism of trimetazidine in atherosclerosis. MATERIAL AND METHODS We established an atherosclerotic rat model by high-fat diet and vitamin D injection. Rats were separated into 3 different groups: control, atherosclerosis, and trimetazidine (n=10). The aortic artery was isolated and its morphological features were examined by hematoxylin and eosin (HE) staining. Serum low-density lipoprotein cholesterol (LDL-c), total cholesterol (TC), and triglycerides (TG) were analyzed using an automatic biochemical analyzer. Human aortic smooth muscle cells (HASMCs) were cultured and divided into 5 groups: no treatment, H₂O₂ treatment only, trimetazidine preincubation before H₂O₂ treatment, oxidized low-density lipoprotein (oxLDL) treatment only, and trimetazidine preincubation before oxLDL treatment. HASMCs proliferation was tested using the Cell Counting Kit-8. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity of the aortic artery, and HASMCs were measured using commercially available kits. RESULTS HE staining assay showed that trimetazidine suppressed the progression of atherosclerosis and reduced foam cell formation in the aortic artery without affecting serum lipid levels. HASMCs proliferation assay revealed that trimetazidine alleviated the inhibitory effect of H₂O₂ on HASMCs proliferation and inhibited oxLDL-induced proliferation of HASMCs. Moreover, trimetazidine ameliorated ROS up-regulation elicited by H₂O₂ or oxLDL in HASMCs. Additionally, trimetazidine restored SOD activity and reduced MDA content of HASMCs. CONCLUSIONS Trimetazidine suppressed the progression of atherosclerosis by enhancing energy value, decreasing ROS level of aortic artery, modulating HASMCs proliferation, and reducing oxidative stress in HASMCs.
Collapse
Affiliation(s)
- Shuzhan Zheng
- West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yanfei Du
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Qiqi Peng
- Nanxin Community Health Center, Gaoxin District, Chengdu, Sichuan, P.R. China
| | - Xinrong Fan
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jiafu Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Mao Chen
- West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
11
|
Alhamdi J, Jacobs E, Gronowicz G, Benkirane-Jessel N, Hurley M, Kuhn L. Cell Type Influences Local Delivery of Biomolecules from a Bioinspired Apatite Drug Delivery System. MATERIALS 2018; 11:ma11091703. [PMID: 30217000 PMCID: PMC6163578 DOI: 10.3390/ma11091703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Abstract
Recently, the benefit of step-wise sequential delivery of fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein-2 from a bioinspired apatite drug delivery system on mouse calvarial bone repair was demonstrated. The thicknesses of the nanostructured poly-l-Lysine/poly-l-Glutamic acid polyelectrolyte multilayer (PEM) and the bone-like apatite barrier layer that make up the delivery system, were varied. The effects of the structural variations of the coating on the kinetics of cell access to a cytotoxic factor delivered by the layered structure were evaluated. FGF-2 was adsorbed into the outer PEM, and cytotoxic antimycin-A (AntiA) was adsorbed to the substrate below the barrier layer to detect the timing of the cell access. While MC3T3-E1 osteoprogenitor cells accessed AntiA after three days, the RAW 264.7 macrophage access occurred within 4 h, unless the PEM layer was removed, in which case the results were reversed. Pits were created in the coating by the RAW 264.7 macrophages and initiated delivery, while the osteoprogenitor cell access to drugs occurred through a solution-mediated coating dissolution, at junctions between the islands of crystals. Macrophage-mediated degradation is therefore a mechanism that controls drug release from coatings containing bioinspired apatite.
Collapse
Affiliation(s)
- Jumana Alhamdi
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Emily Jacobs
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Gloria Gronowicz
- Department of Surgery, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Nadia Benkirane-Jessel
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Faculté de Médecine, University of Strasbourg, 67085 Strasbourg, France.
| | - Marja Hurley
- Department of Medicine, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Liisa Kuhn
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
12
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol 2016; 227:66-82. [PMID: 27852009 DOI: 10.1016/j.ijcard.2016.11.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) retains a leadership as a major cause of human death worldwide. Although a substantial progress was attained in the development of cardioprotective and vasculoprotective drugs, a search for new efficient therapeutic strategies and promising targets is under way. Modulation of epigenetic CVD mechanisms through administration epigenetically active agents is one of such new approaches. Epigenetic mechanisms involve heritable changes in gene expression that are not linked to the alteration of DNA sequence. Pathogenesis of CVDs is associated with global genome-wide changes in DNA methylation and histone modifications. Epigenetically active compounds that influence activity of epigenetic modulators such as DNA methyltransferases (DNMTs), histone acetyltransferases, histone deacetylases (HDACs), etc. may correct these pathogenic changes in the epigenome and therefore be used for CVD therapy. To date, many epigenetically active natural substances (such as polyphenols and flavonoids) and synthetic compounds such as DNMT inhibitors or HDAC inhibitors are known. Both native and chemical DNMT and HDAC inhibitors possess a wide range of cytoprotective activities such as anti-inflammatory, antioxidant, anti-apoptotic, anti-anfibrotic, and anti-hypertrophic properties, which are beneficial of treatment of a variety of CVDs. However, so far, only synthetic DNMT inhibitors enter clinical trials while synthetic HDAC inhibitors are still under evaluation in preclinical studies. In this review, we consider epigenetic mechanisms such as DNA methylation and histone modifications in cardiovascular pathology and the epigenetics-based therapeutic approaches focused on the implementation of DNMT and HDAC inhibitors.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, 121609, Russia; National Research Center for Preventive Medicine, Moscow, 101000, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
13
|
Alaarg A, Zheng KH, van der Valk FM, da Silva AE, Versloot M, van Ufford LCQ, Schulte DM, Storm G, Metselaar JM, Stroes ESG, Hamers AAJ. Multiple pathway assessment to predict anti-atherogenic efficacy of drugs targeting macrophages in atherosclerotic plaques. Vascul Pharmacol 2016; 82:51-9. [PMID: 27189780 DOI: 10.1016/j.vph.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/26/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Macrophages play a central role in atherosclerosis development and progression, hence, targeting macrophage activity is considered an attractive therapeutic. Recently, we documented nanomedicinal delivery of the anti-inflammatory compound prednisolone to atherosclerotic plaque macrophages in patients, which did however not translate into therapeutic efficacy. This unanticipated finding calls for in-depth screening of drugs intended for targeting plaque macrophages. METHODS AND RESULTS We evaluated the effect of several candidate drugs on macrophage activity, rating overall performance with respect to changes in cytokine release, oxidative stress, lipid handling, endoplasmic reticulum (ER) stress, and proliferation of macrophages. Using this in vitro approach, we observed that the anti-inflammatory effect of prednisolone was counterbalanced by multiple adverse effects on other key pathways. Conversely, pterostilbene, T0901317 and simvastatin had an overall anti-atherogenic effect on multiple pathways, suggesting their potential for liposomal delivery. CONCLUSION This dedicated assay setup provides a framework for high-throughput assessment. Further in vivo studies are warranted to determine the predictive value of this macrophage-based screening approach and its potential value in nanomedicinal drug development for cardiovascular patients.
Collapse
Affiliation(s)
- Amr Alaarg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands; Department of Biomaterials Science and Technology, Targeted Therapeutics section, MIRA Institute, University of Twente, Enschede, The Netherlands.
| | - Kang He Zheng
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Fleur M van der Valk
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Acarilia Eduardo da Silva
- Department of Biomaterials Science and Technology, Targeted Therapeutics section, MIRA Institute, University of Twente, Enschede, The Netherlands.
| | - Miranda Versloot
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Linda C Quarles van Ufford
- Medicinal Chemistry & Chemical Biology - Biomolecular Analysis, Department of Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | - Dominik M Schulte
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine I, UKSH, 24105 Kiel, Germany.
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands; Department of Biomaterials Science and Technology, Targeted Therapeutics section, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Josbert M Metselaar
- Department of Biomaterials Science and Technology, Targeted Therapeutics section, MIRA Institute, University of Twente, Enschede, The Netherlands; Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany.
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Anouk A J Hamers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. RECENT FINDINGS Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potential for clinical use. These studies have identified structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia, which may have implications for the design of other HDL mimetic peptides. SUMMARY ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.
Collapse
Affiliation(s)
- John K Bielicki
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
15
|
Money KM, Olah Z, Korade Z, Garbett KA, Shelton RC, Mirnics K. An altered peripheral IL6 response in major depressive disorder. Neurobiol Dis 2016; 89:46-54. [PMID: 26804030 DOI: 10.1016/j.nbd.2016.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent major psychiatric disorders with a lifetime prevalence of 17%. Recent evidence suggests MDD is not only a brain dysfunction, but a systemic disease affecting the whole body. Central and peripheral inflammatory changes seem to be a centerpiece of MDD pathology: a subset of patients show elevated blood cytokine and chemokine levels that partially normalize with symptom improvement over the course of anti-depressant treatment. As this inflammatory process in MDD is poorly understood, we hypothesized that the peripheral tissues of MDD patients will respond differently to inflammatory stimuli, resulting in an aberrant transcriptional response to elevated pro-inflammatory cytokines. To test this, we used MDD patient- and control-derived dermal fibroblast cultures to investigate their response to an acute treatment with IL6, IL1β, TNFα, or vehicle. Following RNA isolation and subsequent cDNA synthesis, quantitative PCR was used to determine the relative expression level of several families of inflammation-responsive genes. Our results showed comparable expression of the tested genes between MDD patients and controls at baseline. In contrast, MDD patient fibroblasts had a diminished transcriptional response to IL6 in all the gene sets tested (oxidative stress response, mitochondrial function, and lipid metabolism). We also found a significant increase in baseline and IL6 stimulated transcript levels of the IL6 receptor gene. This IL6 receptor transcript increase in MDD fibroblasts was accompanied by an IL6 stimulated increase in induction of SOCS3, which dampens IL6 receptor signaling. Altogether our results demonstrate that there is an altered transcriptional response to IL6 in MDD, which may represent one of the molecular mechanisms contributing to disease pathophysiology. Ultimately we hope that these studies will lead to validation of novel MDD drug targets focused on normalizing the altered IL6 response in patients.
Collapse
Affiliation(s)
- Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Zita Olah
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt International Scholar Program, Vanderbilt University, Nashville, TN 37232, USA; Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Zeljka Korade
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Richard C Shelton
- Department of Psychiatry, University of Alabama, Birmingham, AL 35294, USA
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
17
|
Affiliation(s)
- Nathan L Price
- From the Section of Comparative Medicine, Department of Pathology, Program in Integrative Cell Signaling and Neurobiology of Metabolism and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT
| | - Carlos Fernández-Hernando
- From the Section of Comparative Medicine, Department of Pathology, Program in Integrative Cell Signaling and Neurobiology of Metabolism and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
18
|
Sheng S, Kang Y, Guo Y, Pu Q, Cai M, Tu Z. Overexpression of Sirt3 inhibits lipid accumulation in macrophages through mitochondrial IDH2 deacetylation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9196-9201. [PMID: 26464666 PMCID: PMC4583898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
This study aims to explore the relationship between Sirt3 expression and lipid accumulation in macrophages by inducing mitochondrial IDH2 deacetylation. In this study, Sirt3 interference and overexpression lentiviral vectors were constructed. Macrophages collected from C57BL/6J mice by peritoneal lavage were used to construct Sirt3 gene interference and overexpression models, and cultured in medium containing 1 mg/ml ox-LDL for 72 h to observe the enrichment of ox-LDL. Reverse transcription PCR was used to detect the expression of Sirt3 mRNA, western blot to detect Sirt3 and acetylated IDH2 proteins, and Nile Red staining and flow cytometry to detect intracellular lipids in macrophages. The results indicated that as compared to Sirt3 overexpressed and normal groups, the acetylation of IDH2 and accumulation of ox-LDL were significantly higher in the Sirt3 inhibited group. In conclusion, the expression of Sirt3 can inhibit lipid accumulation in macrophages by inducing mitochondrial IDH2 deacetylation.
Collapse
Affiliation(s)
- Shangchun Sheng
- The Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing, China
| | - Yi Kang
- The Molecular Diagnosis Laboratory of No. 2 People’s Hospital of YibinYibin, China
| | - Yongchan Guo
- The Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing, China
| | - Qinli Pu
- The Molecular Diagnosis Laboratory of No. 2 People’s Hospital of YibinYibin, China
| | - Miao Cai
- The Molecular Diagnosis Laboratory of No. 2 People’s Hospital of YibinYibin, China
| | - Zhiguang Tu
- The Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing, China
| |
Collapse
|
19
|
Graham A, Allen AM. Mitochondrial function and regulation of macrophage sterol metabolism and inflammatory responses. World J Cardiol 2015; 7:277-286. [PMID: 26015858 PMCID: PMC4438467 DOI: 10.4330/wjc.v7.i5.277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/25/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to explore the role of mitochondria in regulating macrophage sterol homeostasis and inflammatory responses within the aetiology of atherosclerosis. Macrophage generation of oxysterol activators of liver X receptors (LXRs), via sterol 27-hydroxylase, is regulated by the rate of flux of cholesterol to the inner mitochondrial membrane, via a complex of cholesterol trafficking proteins. Oxysterols are key signalling molecules, regulating the transcriptional activity of LXRs which coordinate macrophage sterol metabolism and cytokine production, key features influencing the impact of these cells within atherosclerotic lesions. The precise identity of the complex of proteins mediating mitochondrial cholesterol trafficking in macrophages remains a matter of debate, but may include steroidogenic acute regulatory protein and translocator protein. There is clear evidence that targeting either of these proteins enhances removal of cholesterol via LXRα-dependent induction of ATP binding cassette transporters (ABCA1, ABCG1) and limits the production of inflammatory cytokines; interventions which influence mitochondrial structure and bioenergetics also impact on removal of cholesterol from macrophages. Thus, molecules which can sustain or improve mitochondrial structure, the function of the electron transport chain, or increase the activity of components of the protein complex involved in cholesterol transfer, may therefore have utility in limiting or regressing atheroma development, reducing the incidence of coronary heart disease and myocardial infarction.
Collapse
|
20
|
Karunakaran D, Thrush AB, Nguyen MA, Richards L, Geoffrion M, Singaravelu R, Ramphos E, Shangari P, Ouimet M, Pezacki JP, Moore KJ, Perisic L, Maegdefessel L, Hedin U, Harper ME, Rayner KJ. Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis. Circ Res 2015; 117:266-78. [PMID: 26002865 DOI: 10.1161/circresaha.117.305624] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/22/2015] [Indexed: 12/30/2022]
Abstract
RATIONALE Therapeutically targeting macrophage reverse cholesterol transport is a promising approach to treat atherosclerosis. Macrophage energy metabolism can significantly influence macrophage phenotype, but how this is controlled in foam cells is not known. Bioinformatic pathway analysis predicts that miR-33 represses a cluster of genes controlling cellular energy metabolism that may be important in macrophage cholesterol efflux. OBJECTIVE We hypothesized that cellular energy status can influence cholesterol efflux from macrophages, and that miR-33 reduces cholesterol efflux via repression of mitochondrial energy metabolism pathways. METHODS AND RESULTS In this study, we demonstrated that macrophage cholesterol efflux is regulated by mitochondrial ATP production, and that miR-33 controls a network of genes that synchronize mitochondrial function. Inhibition of mitochondrial ATP synthase markedly reduces macrophage cholesterol efflux capacity, and anti-miR33 required fully functional mitochondria to enhance ABCA1-mediated cholesterol efflux. Specifically, anti-miR33 derepressed the novel target genes PGC-1α, PDK4, and SLC25A25 and boosted mitochondrial respiration and production of ATP. Treatment of atherosclerotic Apoe(-/-) mice with anti-miR33 oligonucleotides reduced aortic sinus lesion area compared with controls, despite no changes in high-density lipoprotein cholesterol or other circulating lipids. Expression of miR-33a/b was markedly increased in human carotid atherosclerotic plaques compared with normal arteries, and there was a concomitant decrease in mitochondrial regulatory genes PGC-1α, SLC25A25, NRF1, and TFAM, suggesting these genes are associated with advanced atherosclerosis in humans. CONCLUSIONS This study demonstrates that anti-miR33 therapy derepresses genes that enhance mitochondrial respiration and ATP production, which in conjunction with increased ABCA1 expression, works to promote macrophage cholesterol efflux and reduce atherosclerosis.
Collapse
Affiliation(s)
- Denuja Karunakaran
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - A Brianne Thrush
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - My-Anh Nguyen
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Laura Richards
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Michele Geoffrion
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Ragunath Singaravelu
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Eleni Ramphos
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Prakriti Shangari
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Mireille Ouimet
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - John P Pezacki
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Kathryn J Moore
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Ljubica Perisic
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Ulf Hedin
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Mary-Ellen Harper
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden
| | - Katey J Rayner
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
21
|
Rajkovic A, Grootaert C, Butorac A, Cucu T, Meulenaer BD, van Camp J, Bracke M, Uyttendaele M, Bačun-Družina V, Cindrić M. Sub-emetic toxicity of Bacillus cereus toxin cereulide on cultured human enterocyte-like Caco-2 cells. Toxins (Basel) 2014; 6:2270-90. [PMID: 25093386 PMCID: PMC4147582 DOI: 10.3390/toxins6082270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/16/2022] Open
Abstract
Cereulide (CER) intoxication occurs at relatively high doses of 8 µg/kg body weight. Recent research demonstrated a wide prevalence of low concentrations of CER in rice and pasta dishes. However, the impact of exposure to low doses of CER has not been studied before. In this research, we investigated the effect of low concentrations of CER on the behavior of intestinal cells using the Caco-2 cell line. The MTT (mitochondrial 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and the SRB (sulforhodamine B) reactions were used to measure the mitochondrial activity and cellular protein content, respectively. Both assays showed that differentiated Caco-2 cells were sensitive to low concentrations of CER (in a MTT reaction of 1 ng/mL after three days of treatment; in an SRB reaction of 0.125 ng/mL after three days of treatment). Cell counts revealed that cells were released from the differentiated monolayer at 0.5 ng/mL of CER. Additionally, 0.5 and 2 ng/mL of CER increased the lactate presence in the cell culture medium. Proteomic data showed that CER at a concentration of 1 ng/mL led to a significant decrease in energy managing and H2O2 detoxification proteins and to an increase in cell death markers. This is amongst the first reports to describe the influence of sub-emetic concentrations of CER on a differentiated intestinal monolayer model showing that low doses may induce an altered enterocyte metabolism and membrane integrity.
Collapse
Affiliation(s)
- Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Ghent University, Ghent B-9000, Belgium; E-Mail:
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - Ana Butorac
- Laboratory for Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology, Zagreb University, Zagreb HR-10000, Croatia; E-Mails: (A.B.); (V.B.-D.)
| | - Tatiana Cucu
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - Bruno De Meulenaer
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - John van Camp
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, University Hospital Ghent, Ghent B-9000, Belgium; E-Mail:
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Ghent University, Ghent B-9000, Belgium; E-Mail:
| | - Višnja Bačun-Družina
- Laboratory for Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology, Zagreb University, Zagreb HR-10000, Croatia; E-Mails: (A.B.); (V.B.-D.)
| | - Mario Cindrić
- Laboratory for System Biomedicine and Centre for Proteomics and Mass Spectrometry, “Ruđer Bošković” Institute, Zagreb HR-10000, Croatia; E-Mail:
| |
Collapse
|
22
|
Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ. Biochem Biophys Res Commun 2014; 450:500-6. [PMID: 24928385 DOI: 10.1016/j.bbrc.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/01/2014] [Indexed: 02/08/2023]
Abstract
Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.
Collapse
|