1
|
Zhao J, Ma X, Gao P, Han X, Zhao P, Xie F, Liu M. Advancing glioblastoma treatment by targeting metabolism. Neoplasia 2024; 51:100985. [PMID: 38479191 PMCID: PMC10950892 DOI: 10.1016/j.neo.2024.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Alterations in cellular metabolism are important hallmarks of glioblastoma(GBM). Metabolic reprogramming is a critical feature as it meets the higher nutritional demand of tumor cells, including proliferation, growth, and survival. Many genes, proteins, and metabolites associated with GBM metabolism reprogramming have been found to be aberrantly expressed, which may provide potential targets for cancer treatment. Therefore, it is becoming increasingly important to explore the role of internal and external factors in metabolic regulation in order to identify more precise therapeutic targets and diagnostic markers for GBM. In this review, we define the metabolic characteristics of GBM, investigate metabolic specificities such as targetable vulnerabilities and therapeutic resistance, as well as present current efforts to target GBM metabolism to improve the standard of care.
Collapse
Affiliation(s)
- Jinyi Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xuemei Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Peixian Gao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xueqi Han
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Pengxiang Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Fei Xie
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Mengyu Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China; Beijing Molecular Hydrogen Research Center, Beijing, China.
| |
Collapse
|
2
|
Philipsen MH, Hansson E, Manaprasertsak A, Lange S, Jennische E, Carén H, Gatzinsky K, Jakola A, Hammarlund EU, Malmberg P. Distinct Cholesterol Localization in Glioblastoma Multiforme Revealed by Mass Spectrometry Imaging. ACS Chem Neurosci 2023; 14:1602-1609. [PMID: 37040529 PMCID: PMC10161228 DOI: 10.1021/acschemneuro.2c00776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor in adults and is highly resistant to chemo- and radiotherapies. GBM has been associated with alterations in lipid contents, but lipid metabolism reprogramming in tumor cells is not fully elucidated. One of the key hurdles is to localize the lipid species that are correlated with tumor growth and invasion. A better understanding of the localization of abnormal lipid metabolism and its vulnerabilities may open up to novel therapeutic approaches. Here, we use time-of-flight secondary ion mass spectrometry (ToF-SIMS) to spatially probe the lipid composition in a GBM biopsy from two regions with different histopathologies: one region with most cells of uniform size and shape, the homogeneous part, and the other with cells showing a great variation in size and shape, the heterogeneous part. Our results reveal elevated levels of cholesterol, diacylglycerols, and some phosphatidylethanolamine in the homogeneous part, while the heterogeneous part was dominated by a variety of fatty acids, phosphatidylcholine, and phosphatidylinositol species. We also observed a high expression of cholesterol in the homogeneous tumor region to be associated with large cells but not with macrophages. Our findings suggest that ToF-SIMS can distinguish in lipid distribution between parts within a human GBM tumor, which can be linked to different molecular mechanisms.
Collapse
Affiliation(s)
- Mai H. Philipsen
- Tissue
Development and Evolution (TiDE) Division, Department of Laboratory
Medicine, Lund University, SE22100 Lund, Sweden
- Lund
Stem Cell Center, Department of Laboratory Medicine, Lund University, SE22100 Lund, Sweden
| | - Ellinor Hansson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE41296 Gothenburg, Sweden
| | - Auraya Manaprasertsak
- Tissue
Development and Evolution (TiDE) Division, Department of Laboratory
Medicine, Lund University, SE22100 Lund, Sweden
- Lund
Stem Cell Center, Department of Laboratory Medicine, Lund University, SE22100 Lund, Sweden
| | - Stefan Lange
- Institute
of Biomedicine, University of Gothenburg, SE41390 Gothenburg, Sweden
| | - Eva Jennische
- Institute
of Biomedicine, University of Gothenburg, SE41390 Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska
Centre for Cancer Research, Department of Medical Biochemistry and
Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE41390 Gothenburg, Sweden
- Institute
of Biomedicine, University of Gothenburg, SE41390 Gothenburg, Sweden
| | - Kliment Gatzinsky
- Department
of Neurosurgery, Sahlgrenska University
Hospital, SE41345 Gothenburg, Sweden
| | - Asgeir Jakola
- Department
of Neurosurgery, Sahlgrenska University
Hospital, SE41345 Gothenburg, Sweden
- Institute
of Neuroscience and physiology, Department of clinical neuroscience, Sahlgrenska Academy, SE41345 Gothenburg, Sweden
| | - Emma U. Hammarlund
- Tissue
Development and Evolution (TiDE) Division, Department of Laboratory
Medicine, Lund University, SE22100 Lund, Sweden
- Lund
Stem Cell Center, Department of Laboratory Medicine, Lund University, SE22100 Lund, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE41296 Gothenburg, Sweden
| |
Collapse
|
3
|
An D, Zhai D, Wan C, Yang K. The role of lipid metabolism in cancer radioresistance. Clin Transl Oncol 2023:10.1007/s12094-023-03134-4. [PMID: 37079212 DOI: 10.1007/s12094-023-03134-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 04/21/2023]
Abstract
Radiotherapy is one of the main therapies for cancer. The process leading to radioresistance is still not fully understood. Cancer radiosensitivity is related to the DNA reparation of cancer cells and the tumor microenvironment (TME), which supports cancer cell survival. Factors that affect DNA reparation and the TME can directly or indirectly affect the radiosensitivity of cancer. Recent studies have shown that lipid metabolism in cancer cells, which is involved in the stability of cell membrane structure, energy supply and signal transduction of cancer cells, can also affect the phenotype and function of immune cells and stromal cells in the TME. In this review, we discussed the effects of lipid metabolism on the radiobiological characteristics of cancer cells and the TME. We also summarized recent advances in targeted lipid metabolism as a radiosensitizer and discussed how these scientific findings could be translated into clinical practice to improve the radiosensitivity of cancer.
Collapse
Affiliation(s)
- Dandan An
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danyi Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
5
|
Fakhri S, Piri S, Moradi SZ, Khan H. Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation. Curr Neuropharmacol 2022; 20:836-856. [PMID: 34370636 PMCID: PMC9881105 DOI: 10.2174/1570159x19666210809103346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| |
Collapse
|
6
|
The Clinical Value of High-Quality Nursing in Concurrent Radiotherapy and Chemotherapy after Glioma Surgery and Its Influence on the Stress Indicators Cor, ACTH, and CRP. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8335400. [PMID: 35126950 PMCID: PMC8808127 DOI: 10.1155/2022/8335400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022]
Abstract
Objective The purpose of this study is to explore the clinical value of high-quality nursing in concurrent radiotherapy and chemotherapy after glioma surgery and its influence on the stress indicators such as cortisol (Cor), adrenocorticotrophic hormone (ACTH), and C-reactive protein (CRP). Methods A total of 94 glioma patients diagnosed and treated in our hospital were randomly divided into a research group and a control group, with 47 cases in each group. Both groups of patients were given concurrent radiotherapy and chemotherapy. On this basis, patients in the control group were given basic care, while patients in the research group were given a combination of basic care and high-quality care. The nursing satisfaction and adverse reactions of the two groups were compared. The pain degree and the levels of stress indicators Cor, ACTH, and CRP at different time points were compared between the two groups. The sleep quality, bad mood, and quality of life before and after nursing were compared between the two groups. Results After nursing, the nursing satisfaction of the research group (95.74%) was higher than that of the control group (80.85%), and the difference between the two groups was statistically significant (X2 = 11.678, P < 0.05). There was no significant difference between patients in the Visual Analogue Scale (VAS) score and the levels of stress indicators Cor, ACTH, and CRP at the T1 time point between the two groups (P > 0.05). With the passage of time, the levels of Cor and ACTH of the two groups showed an upward trend. At T4, the increased levels of Cor and ACTH in the research group were less than those in the control group, and the difference was statistically significant (P < 0.05). The VAS scores and CRP levels of the two groups showed an upward trend at T1 and T2 and a downward trend at T3 and T4. And, at T4, the decrease in CRP level of the research group was greater than that in the control group, and the difference was statistically significant (P < 0.05). Before nursing, there was no statistically significant difference between two groups of patients in the time to fall asleep, sleep time, number of awakenings, SAS score, self-rating depression scale (SDS) score, quality of life index scores, and total scores (P > 0.05). After nursing, the time to fall asleep and the number of awakenings in the two groups of patients showed an upward trend, and the increase in the control group was higher (P < 0.05). The sleep time of the two groups showed a downward trend, and the degree of decline in the control group was higher (P < 0.05). After nursing, the SAS score and SDS score of the two groups of patients decreased (∗P < 0.05), and the decrease in the research group was more obvious (#P < 0.05). After nursing, the scores of all indicators of the quality of life and the total score of the two groups increased and the score of the research group increased more significantly (P < 0.05). After nursing, the control group had 5 cases of gastrointestinal reactions, 7 cases of bone marrow suppression, 6 cases of leukopenia, 6 cases of thrombocytopenia, and 10 cases of dizziness and nausea. In the research group, there were 1 case of gastrointestinal reaction, 2 cases of bone marrow suppression, 1 case of leukopenia, 1 case of thrombocytopenia, and 2 cases of dizziness and nausea. The difference between the two groups was statistically significant (P < 0.05). Conclusion Glioma patients are given high-quality care during the course of concurrent radiotherapy and chemotherapy, which can reduce the pain and bad mood of the patient, reduce the stress response of the patient, and improve the quality of sleep and the quality of life of the patient, thereby improving nursing satisfaction and patients compliance, reducing adverse reactions, and having a good prognosis.
Collapse
|
7
|
Soni V, Adhikari M, Simonyan H, Lin L, Sherman JH, Young CN, Keidar M. In Vitro and In Vivo Enhancement of Temozolomide Effect in Human Glioblastoma by Non-Invasive Application of Cold Atmospheric Plasma. Cancers (Basel) 2021; 13:4485. [PMID: 34503293 PMCID: PMC8430547 DOI: 10.3390/cancers13174485] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive forms of adult brain cancers and is highly resistant to treatment, with a median survival of 12-18 months after diagnosis. The poor survival is due to its infiltrative pattern of invasion into the normal brain parenchyma, the diffuse nature of its growth, and its ability to quickly grow, spread, and relapse. Temozolomide is a well-known FDA-approved alkylating chemotherapy agent used for the treatment of high-grade malignant gliomas, and it has been shown to improve overall survival. However, in most cases, the tumor relapses. In recent years, CAP has been used as an emerging technology for cancer therapy. The purpose of this study was to implement a combination therapy of CAP and TMZ to enhance the effect of TMZ and apparently sensitize GBMs. In vitro evaluations in TMZ-sensitive and resistant GBM cell lines established a CAP chemotherapy enhancement and potential sensitization effect across various ranges of CAP jet application. This was further supported with in vivo findings demonstrating that a single CAP jet applied non-invasively through the skull potentially sensitizes GBM to subsequent treatment with TMZ. Gene functional enrichment analysis further demonstrated that co-treatment with CAP and TMZ resulted in a downregulation of cell cycle pathway genes. These observations indicate that CAP can be potentially useful in sensitizing GBM to chemotherapy and for the treatment of glioblastoma as a non-invasive translational therapy.
Collapse
Affiliation(s)
- Vikas Soni
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| | - Manish Adhikari
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Li Lin
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| | - Jonathan H. Sherman
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| | - Colin N. Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, MPNL, The George Washington University, Washington, DC 20052, USA; (V.S.); (M.A.); (L.L.); (J.H.S.)
| |
Collapse
|
8
|
Choi WS, Xu X, Goruk S, Wang Y, Patel S, Chow M, Field CJ, Godbout R. FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells. Nutrients 2021; 13:2664. [PMID: 34444824 PMCID: PMC8402214 DOI: 10.3390/nu13082664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like cells contribute to GBM's poor prognosis by driving drug resistance and maintaining cellular heterogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increasing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neurosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment increases DHA levels and the DHA:AA ratio in GBM neural stem-like cells, with FABP7 facilitating the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenvironment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Samir Patel
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Michael Chow
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| |
Collapse
|
9
|
Yuan ZH, Liu T, Wang H, Xue LX, Wang JJ. Fatty Acids Metabolism: The Bridge Between Ferroptosis and Ionizing Radiation. Front Cell Dev Biol 2021; 9:675617. [PMID: 34249928 PMCID: PMC8264768 DOI: 10.3389/fcell.2021.675617] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure of tumor cells to ionizing radiation (IR) alters the microenvironment, particularly the fatty acid (FA) profile and activity. Moreover, abnormal FA metabolism, either catabolism or anabolism, is essential for synthesizing biological membranes and delivering molecular signals to induce ferroptotic cell death. The current review focuses on the bistable regulation characteristics of FA metabolism and explains how FA catabolism and anabolism pathway crosstalk harmonize different ionizing radiation-regulated ferroptosis responses, resulting in pivotal cell fate decisions. In summary, targeting key molecules involved in lipid metabolism and ferroptosis may amplify the tumor response to IR.
Collapse
Affiliation(s)
- Zhu-hui Yuan
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Tong Liu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Li-xiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Biobank, Peking University Third Hospital, Beijing, China
| | - Jun-jie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Assessing fatty acid-induced lipotoxicity and its therapeutic potential in glioblastoma using stimulated Raman microscopy. Sci Rep 2021; 11:7422. [PMID: 33795756 PMCID: PMC8016949 DOI: 10.1038/s41598-021-86789-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor. The effectiveness of traditional therapies for GBM is limited and therefore new therapies are highly desired. Previous studies show that lipid metabolism reprogramming may be a potential therapeutic target in GBM. This study aims to evaluate the therapeutic potential of free fatty acid-induced lipotoxicity for the suppression of glioma growth. U87 glioma cells are treated with three fatty acids (FAs): palmitic acid (PA), oleic acid (OA), and eicosapentaenoic acid (EPA). Uptake of the FAs and formation of lipid droplets (LDs) are imaged and quantified using a lab-built stimulated Raman scattering (SRS) microscope. Our results show that a supply of 200 µM PA, OA, and EPA leads to efficient LDs accumulation in glioma cells. We find that inhibition of triglycerides (TAGs) synthesis depletes LDs and enhances lipotoxicity, which is evidenced by the reduced cell proliferation rates. In particular, our results suggest that EPA treatment combined with depletion of LDs significantly reduces the survival rate of glioma cells by more than 50%, indicating the therapeutic potential of this approach. Future work will focus on understanding the metabolic mechanism of EPA-induced lipotoxicity to further enhance its anticancer effects.
Collapse
|
11
|
Slavik H, Balik V, Vrbkova J, Rehulkova A, Vaverka M, Hrabalek L, Ehrmann J, Vidlarova M, Gurska S, Hajduch M, Srovnal J. Identification of Meningioma Patients at High Risk of Tumor Recurrence Using MicroRNA Profiling. Neurosurgery 2021; 87:1055-1063. [PMID: 32125436 PMCID: PMC7566524 DOI: 10.1093/neuros/nyaa009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Meningioma growth rates are highly variable, even within benign subgroups, with some remaining stable, whereas others grow rapidly. OBJECTIVE To identify molecular-genetic markers for more accurate prediction of meningioma recurrence and better-targeted therapy. METHODS Microarrays identified microRNA (miRNA) expression in primary and recurrent meningiomas of all World Health Organization (WHO) grades. Those found to be deregulated were further validated by quantitative real-time polymerase chain reaction in a cohort of 172 patients. Statistical analysis of the resulting dataset revealed predictors of meningioma recurrence. RESULTS Adjusted and nonadjusted models of time to relapse identified the most significant prognosticators to be miR-15a-5p, miR-146a-5p, and miR-331-3p. The final validation phase proved the crucial significance of miR-146a-5p and miR-331-3p, and clinical factors such as type of resection (total or partial) and WHO grade in some selected models. Following stepwise selection in a multivariate model on an expanded cohort, the most predictive model was identified to be that which included lower miR-331-3p expression (hazard ratio [HR] 1.44; P < .001) and partial tumor resection (HR 3.90; P < .001). Moreover, in the subgroup of total resections, both miRNAs remained prognosticators in univariate models adjusted to the clinical factors. CONCLUSION The proposed models might enable more accurate prediction of time to meningioma recurrence and thus determine optimal postoperative management. Moreover, combining this model with current knowledge of molecular processes underpinning recurrence could permit the identification of distinct meningioma subtypes and enable better-targeted therapies.
Collapse
Affiliation(s)
- Hanus Slavik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Vladimir Balik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic.,Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Jana Vrbkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Alona Rehulkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Miroslav Vaverka
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Lumir Hrabalek
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Jiri Ehrmann
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic.,Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic, Czech Republic
| | - Monika Vidlarova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Sona Gurska
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Marian Hajduch
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Josef Srovnal
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| |
Collapse
|
12
|
Zhang Q, Guan G, Cheng P, Cheng W, Yang L, Wu A. Characterization of an endoplasmic reticulum stress-related signature to evaluate immune features and predict prognosis in glioma. J Cell Mol Med 2021; 25:3870-3884. [PMID: 33611848 PMCID: PMC8051731 DOI: 10.1111/jcmm.16321] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has considerable impact on cell growth, proliferation, metastasis, invasion, angiogenesis and chemoradiotherapy resistance in various cancers. However, the effect of ER stress on the outcomes of glioma patients remains unclear. In this study, we established an ER stress risk model based on The Cancer Genome Atlas (TCGA) glioma data set to reflect immune characteristics and predict the prognosis of glioma patients. Survival analysis indicated that there were significant differences in the overall survival (OS) of glioma patients with different ER stress-related risk scores. Moreover, the ER stress-related risk signature, which was markedly associated with the clinicopathological properties of glioma patients, could serve as an independent prognostic indicator. Functional enrichment analysis revealed that the risk model correlated with immune and inflammation responses, as well as biosynthesis and degradation. In addition, the ER stress-related risk model indicated an immunosuppressive microenvironment. In conclusion, we present an ER stress risk model that is an independent prognostic factor and indicates the general immune characteristics in the glioma microenvironment.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Lianhe Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Liu K, Tsung K, Attenello FJ. Characterizing Cell Stress and GRP78 in Glioma to Enhance Tumor Treatment. Front Oncol 2020; 10:608911. [PMID: 33363039 PMCID: PMC7759649 DOI: 10.3389/fonc.2020.608911] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor, carrying a very poor prognosis, with median overall survival at about 12 to 15 months despite surgical resection, chemotherapy with temozolomide (TMZ), and radiation therapy. GBM recurs in the vast majority of patients, with recurrent tumors commonly displaying increase in resistance to standard of care chemotherapy, TMZ, as well as radiotherapy. One of the most commonly cited mechanisms of chemotherapeutic and radio-resistance occurs via the glucose-regulated protein 78 (GRP78), a well-studied mediator of the unfolded protein response (UPR), that has also demonstrated potential as a biomarker in GBM. Overexpression of GRP78 has been directly correlated with malignant tumor characteristics, including higher tumor grade, cellular proliferation, migration, invasion, poorer responses to TMZ and radiation therapy, and poorer patient outcomes. GRP78 expression is also higher in GBM tumor cells upon recurrence. Meanwhile, knockdown or suppression of GRP78 has been shown to sensitize cells to TMZ and radiation therapy. In light of these findings, various novel developing therapies are targeting GRP78 as monotherapies, combination therapies that enhance the effects of TMZ and radiation therapy, and as treatment delivery modalities. In this review, we delineate the mechanisms by which GRP78 has been noted to specifically modulate glioblastoma behavior and discuss current developing therapies involving GRP78 in GBM. While further research is necessary to translate these developing therapies into clinical settings, GRP78-based therapies hold promise in improving current standard-of-care GBM therapy and may ultimately lead to improved patient outcomes.
Collapse
Affiliation(s)
- Kristie Liu
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Kathleen Tsung
- Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Frank J Attenello
- Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
González-Fernández MJ, Ortea I, Guil-Guerrero JL. α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicol Res (Camb) 2020; 9:474-483. [PMID: 32905142 DOI: 10.1093/toxres/tfaa046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
α-Linolenic acid (ALA, 18:3n-3) and γ-gamma linolenic acid (GLA, 18:3n-6) are polyunsaturated fatty acids (PUFA) that improve the human health. The present study focused on testing the in vitro antitumor actions of pure ALA and GLA on the HT-29 human colorectal cancer cell line. Cell viability was checked by MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, cell membrane damage by the lactate dehydrogenase assay, apoptosis was tested by both caspase-3 activity trial and transmission electron microscopy images, and protein composition was analyzed by quantitative proteomics analysis. MTT test revealed IC50 values of 230 and 255 μM for ALA and GLA, respectively, at 72 h. After 24 h of incubation, both ALA and GLA induced apoptosis on HT-29 colorectal cancer cells according to the caspase-3 assay and microscopy images. SWATH/MS analysis evidenced that ALA significantly affected the mitochondrial protein import pathway and the citric acid cycle pathway, while GLA did not significantly affect any particular pathway. In summary, both ALA and GLA showed concentration-dependent inhibitory effects on HT-29 cells viability and induced cell death by apoptosis. ALA significantly affected cellular pathways, while GLA does not have specific actions on either pathway. Both n-3 and n-6 C18 PUFA are bioactive food components useful in the colorectal cancer prevention.
Collapse
Affiliation(s)
- María José González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120 Almería, Spain
| | - Ignacio Ortea
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz 11009, Spain
| | - José Luis Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120 Almería, Spain
| |
Collapse
|
15
|
Palma A, Grande S, Ricci-Vitiani L, Luciani AM, Buccarelli M, Biffoni M, Dini V, Cirrone GAP, Ciocca M, Guidoni L, Pallini R, Viti V, Rosi A. Different Mechanisms Underlie the Metabolic Response of GBM Stem-Like Cells to Ionizing Radiation: Biological and MRS Studies on Effects of Photons and Carbon Ions. Int J Mol Sci 2020; 21:ijms21145167. [PMID: 32708312 PMCID: PMC7404344 DOI: 10.3390/ijms21145167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with very poor prognosis, high recurrence rate, and failure of chemo-radiotherapy, mainly due to a small fraction of cells with stem-like properties (GSCs). To study the mechanisms of GSCs resistance to radiation, two GSC lines, named line #1 and line #83, with different metabolic patterns and clinical outcome, were irradiated with photon beams and carbon ions and assessed by 1H Magnetic Resonance Spectroscopy (MRS). Both irradiation modalities induced early cytotoxic effects in line #1 with small effects on cell cycle, whereas a proliferative G2/M cytostatic block was observed in line #83. MR spectroscopy signals from mobile lipids (ML) increased in spectra of line #1 after photon and C-ion irradiation with effects on lipid unsaturation level, whereas no effects were detected in line #83 spectra. Gamma-Aminobutyric Acid (GABA), glutamic acid (glu) and Phosphocreatine (pCr) signals showed a significant variation only for line #1 after carbon ion irradiation. Glucose (glc) level and lactate (Lac) extrusion behaved differently in the two lines. Our findings suggest that the differences in irradiation response of GSCs #1 and #83 lines are likely attributable to their different metabolic fingerprint rather than to the different radiation types.
Collapse
Affiliation(s)
- Alessandra Palma
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Sveva Grande
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.R.-V.); (M.B.); (M.B.)
| | - Anna Maria Luciani
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.R.-V.); (M.B.); (M.B.)
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.R.-V.); (M.B.); (M.B.)
| | - Valentina Dini
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
- Istituto Nazionale di Fisica Nucleare INFN Sez. di Roma, 00185 Rome, Italy
| | - Giuseppe A. P. Cirrone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy;
| | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica (CNAO)-National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Laura Guidoni
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Roberto Pallini
- Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Vincenza Viti
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Antonella Rosi
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
- Correspondence: ; Tel.: +39-06-49903159
| |
Collapse
|
16
|
Zhang M, Hong AM. The human papillomavirus confers radiosensitivity in oropharyngeal cancer cells by enhancing DNA double strand break. Oncotarget 2020; 11:1417-1426. [PMID: 32362999 PMCID: PMC7185066 DOI: 10.18632/oncotarget.27535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Patients with Human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC) has better outcomes than those with HPV-negative OPSCC. This may be related to its enhanced radiosensitivity. This study examined the effect of HPV and its E6 oncoprotein on the morphology, radiosensitivity, and repair of radiation-induced DNA damage. Materials and Methods: HPV-negative UM-SCC4 with and without transfection of HPV E6 oncoprotein, HPV-negative UPCI-SCC-089 and HPV-positive UPCI-SCC-099 cell lines were used in this study. The radiosensitivity and morphological changes after radiation were determined by clonogenic assay. Radiation-induced double-strand breaks in the DNA was measured by γ-H2AX foci immunofluorescent assay. Results: The survival fraction after 10 Gy was significantly lower for the HPV-positive SCC-099 cells than for the HPV-negative cells (p = 0.03). The levels of γ-H2AX foci formation and retention were time and cell line-dependent. The γ-H2AX level started to increase at 1 hour and peaked at 4 hours after 10 Gy radiation in the HPV-negative SCC-089 and UM-SCC4 cells before reducing to negligible level (p = 0.0001). In contrast, the HPV-positive UPCI-SCC-099 cells displayed persistent γ-H2AX activity; the expression of γ-H2AX remained high at 48 hours post radiation (p = 0.001). Transfection with the E6 oncoprotein prolonged γ-H2AX formation up to 24 hours in HPV-negative SCC4 cells. HPV-positive SCC-099 cells were more likely to show the classical apoptotic changes of increased cell thickness and increased motility after radiation. Conclusions: This in vitro study confirmed that HPV-positive OPSCC was more radiosensitive. Transfection with the E6 oncoprotein enhanced the radiosensitivity in HPV-negative OPSCC by impairing the DNA repair mechanism and enhancing apoptotic cell death.
Collapse
Affiliation(s)
- Mei Zhang
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, NSW, Australia
- Department of Radiation Oncology, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Angela M. Hong
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, NSW, Australia
- Department of Radiation Oncology, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| |
Collapse
|
17
|
Markouli M, Strepkos D, Papavassiliou AG, Piperi C. Targeting of endoplasmic reticulum (ER) stress in gliomas. Pharmacol Res 2020; 157:104823. [PMID: 32305494 DOI: 10.1016/j.phrs.2020.104823] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Gliomas remain a group of malignant brain tumors with dismal prognosis and limited treatment options with molecular mechanisms being constantly investigated. The past decade, extracellular stress and intracellular DNA damage have been shown to disturb proteostasis leading to Endoplasmic Reticulum (ER) stress that is implicated in the regulation of gene expression and the pathogenesis of several tumor types, including gliomas. Upon ER stress induction, neoplastic cells activate the adaptive mechanism of unfolded protein response (UPR), an integrated signaling system that either restores ER homeostasis or induces cell apoptosis. Recently, the manipulation of the UPR has emerged as a new therapeutic target in glioma treatment. General UPR activators or selective GRP78, ATF6 and PERK inducers have been detected to modulate cell proliferation and induce apoptosis of glioma cells. At the same time, target-specific UPR inhibitors and small molecule proteostasis disruptors, work in reverse to increase misfolded proteins and cause a dysregulation in protein maturation and sorting, thus preventing the growth of neoplastic cells. Herein, we discuss the pathogenic implication of ER stress in gliomas onset and progression, providing an update on the current UPR modifying agents that can be potentially used in glioma treatment.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
18
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Hackler L, Gyuris M, Huzián O, Alföldi R, Szebeni GJ, Madácsi R, Knapp L, Kanizsai I, Puskás LG. Enantioselective Synthesis of 8-Hydroxyquinoline Derivative, Q134 as a Hypoxic Adaptation Inducing Agent. Molecules 2019; 24:molecules24234269. [PMID: 31771153 PMCID: PMC6930632 DOI: 10.3390/molecules24234269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Hypoxia is a common feature of neurodegenerative diseases, including Alzheimer’s disease that may be responsible for disease pathogenesis and progression. Therefore, the hypoxia-inducible factor (HIF)1 system, responsible for hypoxic adaptation, is a potential therapeutic target to combat these diseases by activators of cytoprotective protein induction. We have selected a candidate molecule from our cytoprotective hydroxyquinoline library and developed a novel enantioselective synthesis for the production of its enantiomers. The use of quinidine or quinine as a catalyst enabled the preparation of enantiomer-pure products. We have utilized in vitro assays to evaluate cytoprotective activity, a fluorescence-activated cell sorting (FACS) based assay measuring mitochondrial membrane potential changes, and gene and protein expression analysis. Our data showed that the enantiomers of Q134 showed potent and similar activity in all tested assays. We have concluded that the enantiomers exert their cytoprotective activity via the HIF1 system through HIF1A protein stabilization.
Collapse
Affiliation(s)
- László Hackler
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Márió Gyuris
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Orsolya Huzián
- Avicor Ltd., 6726 Szeged, Hungary; (O.H.); (R.A.); (L.K.)
| | - Róbert Alföldi
- Avicor Ltd., 6726 Szeged, Hungary; (O.H.); (R.A.); (L.K.)
| | - Gábor J. Szebeni
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Ramóna Madácsi
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Levente Knapp
- Avicor Ltd., 6726 Szeged, Hungary; (O.H.); (R.A.); (L.K.)
| | - Iván Kanizsai
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - László G. Puskás
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
- Aperus Pharma Co. Ltd., 6726 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-202107
| |
Collapse
|
20
|
Camargo CQ, Brunetta HS, Nunes EA. Effects of cotreatment with omega-3 polyunsaturated fatty acids and anticancer agents on oxidative stress parameters: a systematic review of in vitro, animal, and human studies. Nutr Rev 2019; 76:765-777. [PMID: 30010957 DOI: 10.1093/nutrit/nuy029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid and eicosapentaenoic acid, demonstrate possible beneficial effects as adjuvants in cancer treatment. One mechanism seems to be related to alterations in the redox status of cancer cells. Such alterations are thought to act in synergy with conventional anticancer agents. Objective This review examines published data on the effects of cotreatment with anticancer agents and n-3 PUFAS on oxidative stress parameters to determine whether any patterns of oxidative stress alterations can be identified. Data Sources A systematic search of MEDLINE (via PubMed) was conducted to identify articles published in English, Spanish, or Portuguese until November 2017. Study Selection The following inclusion criteria were applied: (1) individuals or animals with cancer or malignant cell lines supplemented with some source of n-3 PUFAs; (2) concomitant use of anticancer treatment; and (3) evaluation of oxidative stress-related variables. Data Extraction A standardized outline was used to extract the following data: study type, supplement used, type of cells, tumor or patient characteristics, study design, anticancer treatment used, and oxidative stress-related outcomes. Results After the literature search and screening of 1563 citations, 28 studies were included for data extraction and evaluation: 16 in vitro studies (2 of which also used in vivo studies), 8 animal studies, and 4 human studies (3 clinical trials and 1 case series). In most in vitro and animal studies, intervention groups receiving cotreatment with n-3 PUFAs showed enhanced lipid peroxidation and cytotoxicity compared with groups receiving anticancer treatment alone. Eleven of the 12 studies that investigated the effect of vitamin E on the sensitivity of cancer cells to the oxidative stress caused by n-3 PUFAs showed that vitamin E abolished the positive effects of cotreatment. Conclusions Alterations in oxidative stress caused by cotreatment with anticancer agents and n-3 PUFAs can exert positive effects on the efficacy of conventional treatment. This seems to occur in most cells and tumors tested thus far, but not all. Identifying tumors that are sensitive to these oxidative effects may provide support for the rational use of n-3 PUFAs as an adjuvant treatment in specific types of cancer.
Collapse
Affiliation(s)
- Carolina Q Camargo
- Physiological Sciences Department, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Henver S Brunetta
- Physiological Sciences Department, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Everson A Nunes
- Physiological Sciences Department, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
21
|
Zhu L, Xue F, Cui Y, Liu S, Li G, Li J, Guan B, Zeng H, Bian W, Yang C, Zhao C. miR-155-5p and miR-760 mediate radiation therapy suppressed malignancy of non-small cell lung cancer cells. Biofactors 2019; 45:393-400. [PMID: 30901121 DOI: 10.1002/biof.1500] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) play important roles in tumorigenesis of various cancers. Recent study suggested that miRNAs are involved in the therapeutic functions of radiation during cancer treatment. We found that radiation can decrease the migration and invasion of non-small cell lung cancer (NSCLC) cells. Mechanistically, radiation can significantly increase the expression of miR-155-5p and miR-760 in NSCLC cells. Knockdown of miR-155-5p and miR-760 can attenuate radiation suppressed proliferation of NSCLC cells. Among the various targets of miR-155-5p, radiation can decrease the expression of HIF-1α. Similarly, radiation can also suppress the expression of IL-6 via a miR-760 dependent pathway. Gain and loss of function studies confirmed that both HIF-1α and IL-6 were involved in the radiation suppressed proliferation of NSCLC cells. Collectively, our data showed that radiation can regulate the expression of miR-155-5p and miR-760 to suppress the malignancy of NSCLC cells. © 2019 BioFactors, 45(3):393-400, 2019.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Feng Xue
- Department of Medical Oncology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Ying Cui
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shanshan Liu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Gen Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jian Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Bixi Guan
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hai Zeng
- Department of General surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Weixin Bian
- Department of Medical Oncology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Chuan Yang
- Department of Medical Oncology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Chunbo Zhao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
22
|
Zhang Z, Yu HJ, Wu S, Huang H, Si LP, Liu HY, Shi L, Zhang HT. Synthesis, characterization, and photodynamic therapy activity of 5,10,15,20-Tetrakis(carboxyl)porphyrin. Bioorg Med Chem 2019; 27:2598-2608. [PMID: 30992204 DOI: 10.1016/j.bmc.2019.03.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023]
Abstract
Water-soluble porphyrins are considered promising drug candidates for photodynamic therapy (PDT). This study investigated the PDT activity of a new water-soluble, anionic porphyrin (1-Zn), which possesses four negative charges. The photodynamic anticancer activity of 1-Zn was investigated by the MTT assay, with mTHPC as a positive control. The cellular distribution was determined by fluorescence microscopy. Holographic and phase contrast images were recorded after 1-Zn treatment with a HoloMonitor™ M3 instrument. The inhibition of A549 cell growth achieved by inducing apoptosis was investigated by flow cytometry and fluorescence microscopy. DNA damage was investigated by the comet assay. The expression of apoptosis-related proteins was also measured by western blot assays. 1-Zn had better phototoxicity against A549 cells than HeLa and HepG2 cancer cells. Interestingly, 1-Zn was clearly located almost entirely in the cell cytoplasmic region/organelles. The late apoptotic population was less than 1.0% at baseline in the untreated and only light-treated cells and increased to 40.5% after 1-Zn treatment and irradiation (P < 0.05). 1-Zn triggered significant ROS generation after irradiation, causing ΔΨm disruption (P < 0.01) and DNA damage. 1-Zn induced A549 cell apoptosis via the mitochondrial apoptosis pathway. In addition, 1-Zn bound in the groove of DNA via an outside binding mode by pi-pi stacking and hydrogen bonding. 1-Zn exhibits good photonuclease activity and might serve as a potential photosensitizer (PS) for lung cancer cells.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Hua-Jun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Shang Wu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Li-Ping Si
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, PR China
| | - Hai-Yang Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, PR China.
| | - Lei Shi
- Department of Chemistry, Guangdong University of Education, Guangzhou 510303, PR China.
| | - Hai-Tao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, PR China.
| |
Collapse
|
23
|
Bencsik P, Kiss K, Ágg B, Baán JA, Ágoston G, Varga A, Gömöri K, Mendler L, Faragó N, Zvara Á, Sántha P, Puskás LG, Jancsó G, Ferdinandy P. Sensory Neuropathy Affects Cardiac miRNA Expression Network Targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2 mRNAs. Int J Mol Sci 2019; 20:ijms20040991. [PMID: 30823517 PMCID: PMC6412859 DOI: 10.3390/ijms20040991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Here we examined myocardial microRNA (miRNA) expression profile in a sensory neuropathy model with cardiac diastolic dysfunction and aimed to identify key mRNA molecular targets of the differentially expressed miRNAs that may contribute to cardiac dysfunction. Methods: Male Wistar rats were treated with vehicle or capsaicin for 3 days to induce systemic sensory neuropathy. Seven days later, diastolic dysfunction was detected by echocardiography, and miRNAs were isolated from the whole ventricles. Results: Out of 711 known miRNAs measured by miRNA microarray, the expression of 257 miRNAs was detected in the heart. As compared to vehicle-treated hearts, miR-344b, miR-466b, miR-98, let-7a, miR-1, miR-206, and miR-34b were downregulated, while miR-181a was upregulated as validated also by quantitative real time polymerase chain reaction (qRT-PCR). By an in silico network analysis, we identified common mRNA targets (insulin-like growth factor 1 (IGF-1), solute carrier family 2 facilitated glucose transporter member 12 (SLC2a-12), eukaryotic translation initiation factor 4e (EIF-4e), and Unc-51 like autophagy activating kinase 2 (ULK-2)) targeted by at least three altered miRNAs. Predicted upregulation of these mRNA targets were validated by qRT-PCR. Conclusion: This is the first demonstration that sensory neuropathy affects cardiac miRNA expression network targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2, which may contribute to cardiac diastolic dysfunction. These results further support the need for unbiased omics approach followed by in silico prediction and validation of molecular targets to reveal novel pathomechanisms.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary.
| | - Krisztina Kiss
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
| | - Bence Ágg
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary.
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary.
| | - Júlia A Baán
- Muscle Adaptation Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
| | - Gergely Ágoston
- Institute of Family Medicine, University of Szeged, Tisza Lajos krt. 109., H-6720 Szeged, Hungary.
| | - Albert Varga
- Institute of Family Medicine, University of Szeged, Tisza Lajos krt. 109., H-6720 Szeged, Hungary.
| | - Kamilla Gömöri
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary.
| | - Luca Mendler
- Muscle Adaptation Group, Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary.
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Nóra Faragó
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | - Péter Sántha
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - László G Puskás
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Péter Ferdinandy
- Pharmahungary Group, Graphisoft Park, Záhony utca 7, H-1031 Budapest, Hungary.
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary.
| |
Collapse
|
24
|
Murad LB, da Silva Nogueira P, de Araújo WM, Sousa-Squiavinato ACM, Rocha MR, de Souza WF, de-Freitas-Junior J, Barcellos-de-Souza P, Bastos LG, Morgado-Díaz JA. Docosahexaenoic acid promotes cell cycle arrest and decreases proliferation through WNT/β-catenin modulation in colorectal cancer cells exposed to γ-radiation. Biofactors 2019; 45:24-34. [PMID: 30521071 DOI: 10.1002/biof.1455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
The effects of radiation are known to be potentiated by N-3 polyunsaturated fatty acids, which modulate several signaling pathways, but the molecular mechanisms through which these fatty acids enhance the anticancer effects of irradiation in colorectal cancer (CRC) treatment remain poorly elucidated. Here, we aimed to ascertain whether the fatty acid docosahexaenoic acid (DHA) exerts a modulating effect on the response elicited by radiation treatment (RT). Two CRC cell lines, Caco-2 and HT-29, were exposed to RT, DHA, or both (DHA + RT) for various times, and then cell viability, proliferation, and clonogenicity were assessed. Moreover, cell cycle, apoptosis, and necrosis were analyzed using flow cytometry, and the involvement of WNT/β-catenin signaling was investigated by immunofluorescence to determine nuclear β-catenin, GSK3β phosphorylation status, and TCF/LEF-activity reporter. DHA and RT applied separately diminished the viability of both HT-29 and Caco-2 cells, and DHA + RT caused a further reduction in proliferation mainly in HT-29 cells, particularly in terms of colony formation. Concomitantly, our results verified cell cycle arrest in G0/G1 phase, a reduction of cyclin D1 expression, and a decrease in GSK3β phosphorylation after the combined treatment. Furthermore, immunofluorescence quantification revealed that nuclear β-catenin was increased in RT-exposed cells, but this effect was abrogated in cells exposed to DHA + RT, and the results of TCF/LEF-activity assays confirmed that DHA attenuated the increase in nuclear β-catenin activity induced by irradiation. Our finding shows that DHA applied in combination with RT enhanced the antitumor effects of irradiation on CRC cells, and that the underlying mechanism involved the WNT/β-catenin pathway. © 2018 BioFactors, 45(1):24-34, 2019.
Collapse
Affiliation(s)
- Leonardo Borges Murad
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Perôny da Silva Nogueira
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Wallace Martins de Araújo
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | | | - Murilo Ramos Rocha
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | | | - Júlio de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Pedro Barcellos-de-Souza
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Lilian Gonçalves Bastos
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Jose Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Synthesis and Cytoprotective Characterization of 8-Hydroxyquinoline Betti Products. Molecules 2018; 23:molecules23081934. [PMID: 30072653 PMCID: PMC6222637 DOI: 10.3390/molecules23081934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
The 8-hydroxyquinoline pharmacophore scaffold has been shown to possess a range of activities as metal chelation, enzyme inhibition, cytotoxicity, and cytoprotection. Based on our previous findings we set out to optimize the scaffold for cytoprotective activity for its potential application in central nervous system related diseases. A 48-membered Betti-library was constructed by the utilization of formic acid mediated industrial-compatible coupling with sets of aromatic primary amines such as anilines, oxazoles, pyridines, and pyrimidines, with (hetero)aromatic aldehydes and 8-hydroxiquinoline derivatives. After column chromatography and re-crystallization, the corresponding analogues were obtained in yields of 13–90%. The synthesized analogs were optimized with the utilization of a cytoprotection assay with chemically induced oxidative stress, and the most active compounds were further tested in orthogonal assays, a real time cell viability method, a fluorescence-activated cell sorting (FACS)-based assay measuring mitochondrial membrane potential changes, and gene expression analysis. The best candidates showed potent, nanomolar activity in all test systems and support the need for future studies in animal models of central nervous system (CNS) disorders.
Collapse
|
26
|
Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Ortea I, González-Fernández MJ, Ramos-Bueno RP, Guil-Guerrero JL. Proteomics Study Reveals That Docosahexaenoic and Arachidonic Acids Exert Different In Vitro Anticancer Activities in Colorectal Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6003-6012. [PMID: 29804451 DOI: 10.1021/acs.jafc.8b00915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two polyunsaturated fatty acids, docosahexaenoic acid (DHA) and arachidonic acid (ARA), as well as derivatives, such as eicosanoids, regulate different activities, affecting transcription factors and, therefore, DNA transcription, being a critical step for the functioning of fatty-acid-derived signaling. This work has attempted to determine the in vitro anticancer activities of these molecules linked to the gene transcription regulation of HT-29 colorectal cancer cells. We applied the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test along with lactate dehydrogenase and caspase-3 assays; proteome changes were assessed by "sequential windowed acquisition of all theoretical mass spectra" quantitative proteomics, followed by pathway analysis, to determine the affected molecular mechanisms. In all assays, DHA inhibited cell proliferation of HT-29 cells to a higher extent than ARA and acted primarily by downregulating proteasome particles, while ARA presented a dramatic effect on all six DNA replication helicase particles. The results indicated that both DHA and ARA are potential chemopreventive agent candidates.
Collapse
Affiliation(s)
- Ignacio Ortea
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía , Universidad de Córdoba , E14004 Córdoba , Spain
| | - María José González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| | - Rebeca P Ramos-Bueno
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| | - José Luis Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| |
Collapse
|
28
|
Demjén A, Alföldi R, Angyal A, Gyuris M, Hackler L, Szebeni GJ, Wölfling J, Puskás LG, Kanizsai I. Synthesis, cytotoxic characterization, and SAR study of imidazo[1,2-b
]pyrazole-7-carboxamides. Arch Pharm (Weinheim) 2018; 351:e1800062. [DOI: 10.1002/ardp.201800062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
- András Demjén
- AVIDIN Ltd.; Szeged Hungary
- Department of Organic Chemistry; University of Szeged; Szeged Hungary
| | | | - Anikó Angyal
- AVIDIN Ltd.; Szeged Hungary
- Department of Organic Chemistry; University of Szeged; Szeged Hungary
| | | | | | - Gábor J. Szebeni
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | - János Wölfling
- Department of Organic Chemistry; University of Szeged; Szeged Hungary
| | - László G. Puskás
- AVIDIN Ltd.; Szeged Hungary
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Centre; Hungarian Academy of Sciences; Szeged Hungary
| | | |
Collapse
|
29
|
Ghadiri M, Canney F, Pacciana C, Colombo G, Young PM, Traini D. The use of fatty acids as absorption enhancer for pulmonary drug delivery. Int J Pharm 2018; 541:93-100. [DOI: 10.1016/j.ijpharm.2018.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/15/2018] [Accepted: 02/15/2018] [Indexed: 01/12/2023]
|
30
|
Erukainure OL, Ashraf N, Naqvi AS, Zaruwa MZ, Muhammad A, Odusote AD, Elemo GN. Fatty Acids Rich Extract From Clerodendrum volubile Suppresses Cell Migration; Abates Oxidative Stress; and Regulates Cell Cycle Progression in Glioblastoma Multiforme (U87 MG) Cells. Front Pharmacol 2018; 9:251. [PMID: 29615913 PMCID: PMC5870396 DOI: 10.3389/fphar.2018.00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary type of brain cancer with high proliferation and metastasis rates due to involvement of the microglial cell. It is resistant against available chemotherapy. Many strategic protocols have been developed but prognosis and patient life has not improved substantially. In this study, the anti-metastatic and antioxidant effect of fatty acids from Clerodendrum volubile leaves were investigated in U87-MG (Human Glioblastoma Multiforme) cell lines. The extracted fatty acids were incubated with U87-MG cells for 48 h. The anti-proliferative effect was determined by MTT assay, while apoptosis and cell cycle were analyzed with BD FACSCalibur. The transwell assay protocol was utilized in the analysis of cell migration and invasion. The treated cell lines were also assessed for reduced glutathione (GSH) level, catalase, superoxide dismutase (SOD) and lipid peroxidation. The fatty acid extract showed significant inhibitory activity on cell proliferation and cell cycle progression, mitigated oxidative stress, and suppressed migration and invasion in U-87 MG cell lines. These results give credence to the therapeutic potential of this plant against cancer, especially GBM.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Nutrition and Toxicology Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Nadia Ashraf
- Faculty of Pharmacy, Barrett Hodgson University, Karachi, Pakistan
| | - Asma S Naqvi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Moses Z Zaruwa
- Department of Biochemistry, Adamawa State University, Mubi, Nigeria
| | - Aliyu Muhammad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Adenike D Odusote
- Analytical Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Gloria N Elemo
- Nutrition and Toxicology Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| |
Collapse
|
31
|
Lajkó E, Tuka B, Fülöp F, Krizbai I, Toldi J, Magyar K, Vécsei L, Kőhidai L. Kynurenic acid and its derivatives are able to modulate the adhesion and locomotion of brain endothelial cells. J Neural Transm (Vienna) 2018; 125:899-912. [PMID: 29332257 DOI: 10.1007/s00702-018-1839-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/03/2018] [Indexed: 01/26/2023]
Abstract
The neuroprotective actions of kynurenic acid (KYNA) and its derivatives in several neurodegenerative disorders [characterized by damage to the cerebral endothelium and to the blood-brain barrier (BBB)] are well established. Cell-extracellular matrix (ECM) adhesion is supposedly involved in recovery of impaired cerebral endothelium integrity (endothelial repair). The present work aimed to investigate the effects of KYNA and its synthetic derivatives on cellular behaviour (e.g. adhesion and locomotion) and on morphology of the GP8 rat brain endothelial cell line, modeling the BBB endothelium. The effects of KYNA and its derivatives on cell adhesion were measured using an impedance-based technique, the xCELLigence SP system. Holographic microscopy (Holomonitor™ M4) was used to analyse both chemokinetic responses and morphometry. The GP8 cells proved to be a suitable model cell line for investigating cell adhesion and the locomotion modulator effects of kynurenines. KYNA enhanced cell adhesion and spreading, and also decreased the migration/motility of GP8 cells at physiological concentrations (10-9 and 10-7 mol/L). The derivatives containing an amide side-chain at the C2 position (KYNA-A1 and A2) had lower adhesion inducer effects compared to KYNA. All synthetic analogues (except KYNA-A5) had a time-dependent inhibitory effect on GP8 cell adhesion at a supraphysiological concentration (10-3 mol/L). The immobilization promoting effect of KYNA and the adhesion inducer activity of its derivatives indicate that these compounds could contribute to maintaining or restoring the protective function of brain endothelium; they also suggest that cell-ECM adhesion and related cell responses (e.g. migration/motility) could be potential new targets of KYNA.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, Szeged, 6720, Hungary
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, Szeged, H-6720, Hungary
| | - István Krizbai
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - József Toldi
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Kálmán Magyar
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
32
|
Polavarapu S, Dwarakanath BS, Das UN. Differential action of polyunsaturated fatty acids and eicosanoids on bleomycin-induced cytotoxicity to neuroblastoma cells and lymphocytes. Arch Med Sci 2018; 14:207-229. [PMID: 29379552 PMCID: PMC5778433 DOI: 10.5114/aoms.2018.72244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION This study was conducted to examine whether bleomycin-induced growth inhibitory action on human neuroblastoma cells (IMR-32) is influenced by anti-inflammatory metabolites of polyunsaturated fatty acids (PUFAs): lipoxin A4 (LXA4), resolvin D1 and protectin D1 in vitro. MATERIAL AND METHODS The in vitro study was conducted using monolayer cultures of exponentially growing IMR-32 cells. The effects of various PUFAs and eicosanoids and anti-inflammatory metabolites of PUFAs such as lipoxin A4 (LXA4), resolvin D1 and protectin D1 on the growth of IMR-32 cells and human lymphocytes in vitro were investigated. The potential of PUFAs, eicosanoids and LXA4, resolvin D1 and protectin D1 to modify the growth inhibitory effects of bleomycin was also studied in IMR-32 cells and human lymphocytes. RESULTS PUFAs inhibited the growth of IMR-32 cells (EPA > DHA = AA > GLA = ALA > DGLA = LA) significantly (p < 0.001) while prostaglandins were found to be not effective. Bleomycin-induced growth inhibitory action on IMR-32 cells was augmented by PUFAs and its metabolites (p < 0.05). PUFAs and LXA4 did not inhibit the growth of human lymphocytes and bleomycin-induced growth inhibitory action was also not enhanced by these bioactive lipids. CONCLUSIONS Bioactive lipids have differential action on normal human lymphocytes and tumor cells in vitro. The apparent lack of effect of PUFAs in combination with bleomycin on the growth of human lymphocytes in comparison to their growth inhibitory action on IMR-32 cells suggests that PUFAs can be used in combination with bleomycin to target tumor cells with little concern over this combination's effect on the growth of human lymphocytes. Further studies are warranted to evaluate these differential effects under in vivo conditions.
Collapse
Affiliation(s)
- Sailaja Polavarapu
- BioScience Research Centre, Gayatri Vidya Parishad College of Engineering Campus, Madhurawada, Andhra Pradesh, India
| | | | - Undurti N. Das
- BioScience Research Centre, Gayatri Vidya Parishad College of Engineering Campus, Madhurawada, Andhra Pradesh, India
- UND Life Sciences, Battle Ground, USA
| |
Collapse
|
33
|
Talarico C, Dattilo V, D'Antona L, Barone A, Amodio N, Belviso S, Musumeci F, Abbruzzese C, Bianco C, Trapasso F, Schenone S, Alcaro S, Ortuso F, Florio T, Paggi MG, Perrotti N, Amato R. SI113, a SGK1 inhibitor, potentiates the effects of radiotherapy, modulates the response to oxidative stress and induces cytotoxic autophagy in human glioblastoma multiforme cells. Oncotarget 2017; 7:15868-84. [PMID: 26908461 PMCID: PMC4941283 DOI: 10.18632/oncotarget.7520] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive CNS tumor and is characterized by a very high frequency of clinical relapse after therapy and thus by a dismal prognosis, which strongly compromises patients survival. We have recently identified the small molecule SI113, as a potent and selective inhibitor of SGK1, a serine/threonine protein kinase, that modulates several oncogenic signaling cascades. The SI113-dependent SGK1 inhibition induces cell death, blocks proliferation and perturbs cell cycle progression by modulating SGK1-related substrates. SI113 is also able to strongly and consistently block, in vitro and in vivo, growth and survival of human hepatocellular-carcinomas, either used as a single agent or in combination with ionizing radiations. In the present paper we aim to study the effect of SI113 on human GBM cell lines with variable p53 expression. Cell viability, cell death, caspase activation and cell cycle progression were then analyzed by FACS and WB-based assays, after exposure to SI113, with or without oxidative stress and ionizing radiations. Moreover, autophagy and related reticulum stress response were evaluated. We show here, that i) SGK1 is over-expressed in highly malignant gliomas and that the treatment with SI113 leads to ii) significant increase in caspase-mediated apoptotic cell death in GBM cell lines but not in normal fibroblasts; iii)enhancement of the effects of ionizing radiations; iv) modulation of the response to oxidative reticulum stress; v) induction of cytotoxic autophagy. Evidence reported here underlines the therapeutic potential of SI113 in GBM, suggesting a new therapeutic strategy either alone or in combination with radiotherapy.
Collapse
Affiliation(s)
- Cristina Talarico
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Lucia D'Antona
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Agnese Barone
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Stefania Belviso
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Claudia Abbruzzese
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Cataldo Bianco
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Stefano Alcaro
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Ortuso
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Tullio Florio
- Department of Medicina Interna e Specialità Mediche e Center of Excellence per la Ricerca Biomedica (CEBR), University of Genova, Genova, Italy
| | - Marco G Paggi
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
34
|
Wang HH, Chang TY, Lin WC, Wei KC, Shin JW. GADD45A plays a protective role against temozolomide treatment in glioblastoma cells. Sci Rep 2017; 7:8814. [PMID: 28821714 PMCID: PMC5562912 DOI: 10.1038/s41598-017-06851-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive cancers. Despite recent advances in multimodal therapies, high-grade glioma remains fatal. Temozolomide (TMZ) is an alkylating agent used worldwide for the clinical treatment of GBM; however, the innate and acquired resistance of GBM limits its application. Here, we found that TMZ inhibited the proliferation and induced the G2/M arrest of GBM cells. Therefore, we performed microarrays to identify the cell cycle- and apoptosis-related genes affected by TMZ. Notably, GADD45A was found to be up-regulated by TMZ in both cell cycle and apoptosis arrays. Furthermore, GADD45A knockdown (GADD45Akd) enhanced the cell growth arrest and cell death induced by TMZ, even in natural (T98) and adapted (TR-U373) TMZ-resistant cells. Interestingly, GADD45Akd decreased the expression of O6-methylguanine-DNA methyltransferase (MGMT) in TMZ-resistant cells (T98 and TR-U373). In MGMT-deficient/TMZ-sensitive cells (U87 and U373), GADD45Akd decreased TMZ-induced TP53 expression. Thus, in this study, we investigated the genes influenced by TMZ that were important in GBM therapy, and revealed that GADD45A plays a protective role against TMZ treatment which may through TP53-dependent and MGMT-dependent pathway in TMZ-sensitive and TMZ-resistant GBM, respectively. This protective role of GADD45A against TMZ treatment may provide a new therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Hsiao-Han Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsuey-Yu Chang
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Lin
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Chen Wei
- Departments of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Jyh-Wei Shin
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
35
|
Obacz J, Avril T, Le Reste PJ, Urra H, Quillien V, Hetz C, Chevet E. Endoplasmic reticulum proteostasis in glioblastoma—From molecular mechanisms to therapeutic perspectives. Sci Signal 2017; 10:10/470/eaal2323. [DOI: 10.1126/scisignal.aal2323] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Roessler C, Kuhlmann K, Hellwing C, Leimert A, Schumann J. Impact of Polyunsaturated Fatty Acids on miRNA Profiles of Monocytes/Macrophages and Endothelial Cells-A Pilot Study. Int J Mol Sci 2017; 18:ijms18020284. [PMID: 28134837 PMCID: PMC5343820 DOI: 10.3390/ijms18020284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Alteration of miRNAs and dietary polyunsaturated fatty acids (PUFAs) underlies vascular inflammation. PUFAs are known to be incorporated into the cell membrane of monocytes/macrophages or endothelial cells, the major cellular players of vascular diseases, thereby affecting cellular signal transduction. Nevertheless, there are no investigations concerning the PUFA impact on miRNA expression by these cells. With regard to the key role miRNAs play for overall cellular functionality, this study aims to elucidate whether PUFAs affect miRNA expression profiles. To this end, the monocyte/macrophage cell line RAW264.7 and the endothelial cell line TIME were enriched with either docosahexaenoic acid (DHA; n3-PUFA) or arachidonic acid (AA; n6-PUFA) until reaching a stable incorporation into the plasma membrane and, at least in part, exposed to an inflammatory milieu. Expressed miRNAs were determined by deep sequencing, and compared to unsupplemented/unstimulated controls. Data gained clearly show that PUFAs in fact modulate miRNA expression of both cell types analyzed regardless the presence/absence of an inflammatory stimulator. Moreover, certain miRNAs already linked to vascular inflammation were found to be affected by cellular PUFA enrichment. Hence, vascular inflammation appears to be influenced by dietary fatty acids, inter alia, via PUFA-mediated modulation of the type and amount of miRNAs synthesized by cells involved in the inflammatory process.
Collapse
Affiliation(s)
- Claudia Roessler
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Franzosenweg 1a, 06112 Halle (Saale), Germany.
| | - Kevin Kuhlmann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Franzosenweg 1a, 06112 Halle (Saale), Germany.
| | - Christine Hellwing
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Franzosenweg 1a, 06112 Halle (Saale), Germany.
| | - Anja Leimert
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Franzosenweg 1a, 06112 Halle (Saale), Germany.
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Franzosenweg 1a, 06112 Halle (Saale), Germany.
| |
Collapse
|
37
|
Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters. Mediators Inflamm 2017; 2017:9294018. [PMID: 28197019 PMCID: PMC5286482 DOI: 10.1155/2017/9294018] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/26/2016] [Indexed: 02/08/2023] Open
Abstract
One of the hallmarks of cancer-related inflammation is the recruitment of monocyte-macrophage lineage cells to the tumor microenvironment. These tumor infiltrating myeloid cells are educated by the tumor milieu, rich in cancer cells and stroma components, to exert functions such as promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Our review highlights the ontogenetic diversity of tumor-associated macrophages (TAMs) and describes their main phenotypic markers. We cover fundamental molecular players in the tumor microenvironment including extra- (CCL2, CSF-1, CXCL12, IL-4, IL-13, semaphorins, WNT5A, and WNT7B) and intracellular signals. We discuss how these factors converge on intracellular determinants (STAT3, STAT6, STAT1, NF-κB, RORC1, and HIF-1α) of cell functions and drive the recruitment and polarization of TAMs. Since microRNAs (miRNAs) modulate macrophage polarization key miRNAs (miR-146a, miR-155, miR-125a, miR-511, and miR-223) are also discussed in the context of the inflammatory myeloid tumor compartment. Accumulating evidence suggests that high TAM infiltration correlates with disease progression and overall poor survival of cancer patients. Identification of molecular targets to develop new therapeutic interventions targeting these harmful tumor infiltrating myeloid cells is emerging nowadays.
Collapse
|
38
|
Polyunsaturated Fatty Acids Differentially Modulate Cell Proliferation and Endocannabinoid System in Two Human Cancer Lines. Arch Med Res 2017; 48:46-54. [DOI: 10.1016/j.arcmed.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
|
39
|
Kim J, Okla M, Erickson A, Carr T, Natarajan SK, Chung S. Eicosapentaenoic Acid Potentiates Brown Thermogenesis through FFAR4-dependent Up-regulation of miR-30b and miR-378. J Biol Chem 2016; 291:20551-62. [PMID: 27489163 DOI: 10.1074/jbc.m116.721480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 01/25/2023] Open
Abstract
Emerging evidence suggests that n-3 polyunsaturated fatty acids (PUFA) promote brown adipose tissue thermogenesis. However, the underlying mechanisms remain elusive. Here, we hypothesize that n-3 PUFA promotes brown adipogenesis by modulating miRNAs. To test this hypothesis, murine brown preadipocytes were induced to differentiate the fatty acids of palmitic, oleate, or eicosapentaenoic acid (EPA). The increases of brown-specific signature genes and oxygen consumption rate by EPA were concurrent with up-regulation of miR-30b and 378 but not by oleate or palmitic acid. Next, we hypothesize that free fatty acid receptor 4 (Ffar4), a functional receptor for n-3 PUFA, modulates miR-30b and 378. Treatment of Ffar4 agonist (GW9508) recapitulated the thermogenic activation of EPA by increasing oxygen consumption rate, brown-specific marker genes, and miR-30b and 378, which were abrogated in Ffar4-silenced cells. Intriguingly, addition of the miR-30b mimic was unable to restore EPA-induced Ucp1 expression in Ffar4-depleted cells, implicating that Ffar4 signaling activity is required for up-regulating the brown adipogenic program. Moreover, blockage of miR-30b or 378 by locked nucleic acid inhibitors significantly attenuated Ffar4 as well as brown-specific signature gene expression, suggesting the signaling interplay between Ffar4 and miR-30b/378. The association between miR-30b/378 and brown thermogenesis was also confirmed in fish oil-fed C57/BL6 mice. Interestingly, the Ffar4 agonism-mediated signaling axis of Ffar4-miR-30b/378-Ucp1 was linked with an elevation of cAMP in brown adipocytes, similar to cold-exposed or fish oil-fed brown fat. Taken together, our work identifies a novel function of Ffar4 in modulating brown adipogenesis partly through a mechanism involving cAMP activation and up-regulation of miR-30b and miR-378.
Collapse
Affiliation(s)
- Jiyoung Kim
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Meshail Okla
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Anjeza Erickson
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Timothy Carr
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Sathish Kumar Natarajan
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Soonkyu Chung
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| |
Collapse
|
40
|
How Diet Intervention via Modulation of DNA Damage Response through MicroRNAs May Have an Effect on Cancer Prevention and Aging, an in Silico Study. Int J Mol Sci 2016; 17:ijms17050752. [PMID: 27213347 PMCID: PMC4881573 DOI: 10.3390/ijms17050752] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
The DNA damage response (DDR) is a molecular mechanism that cells have evolved to sense DNA damage (DD) to promote DNA repair, or to lead to apoptosis, or cellular senescence if the damage is too extensive. Recent evidence indicates that microRNAs (miRs) play a critical role in the regulation of DDR. Dietary bioactive compounds through miRs may affect activity of numerous genes. Among the most studied bioactive compounds modulating expression of miRs are epi-gallocatechin-3-gallate, curcumin, resveratrol and n3-polyunsaturated fatty acids. To compare the impact of these dietary compounds on DD/DDR network modulation, we performed a literature search and an in silico analysis by the DIANA-mirPathv3 software. The in silico analysis allowed us to identify pathways shared by different miRs involved in DD/DDR vis-à-vis the specific compounds. The results demonstrate that certain miRs (e.g., -146, -21) play a central role in the interplay among DD/DDR and the bioactive compounds. Furthermore, some specific pathways, such as "fatty acids biosynthesis/metabolism", "extracellular matrix-receptor interaction" and "signaling regulating the pluripotency of stem cells", appear to be targeted by most miRs affected by the studied compounds. Since DD/DDR and these pathways are strongly related to aging and carcinogenesis, the present in silico results of our study suggest that monitoring the induction of specific miRs may provide the means to assess the antiaging and chemopreventive properties of particular dietary compounds.
Collapse
|
41
|
Hackler L, Ózsvári B, Gyuris M, Sipos P, Fábián G, Molnár E, Marton A, Faragó N, Mihály J, Nagy LI, Szénási T, Diron A, Párducz Á, Kanizsai I, Puskás LG. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo. PLoS One 2016; 11:e0149832. [PMID: 26943907 PMCID: PMC4778904 DOI: 10.1371/journal.pone.0149832] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Péter Sipos
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | | | | | - Annamária Marton
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Nóra Faragó
- AVIDIN Ltd., Szeged, Hungary
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Tibor Szénási
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Árpád Párducz
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - László G. Puskás
- AVIDIN Ltd., Szeged, Hungary
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
42
|
Schumann J. Does plasma membrane lipid composition impact the miRNA-mediated regulation of vascular inflammation? Med Hypotheses 2016; 88:57-9. [PMID: 26880639 DOI: 10.1016/j.mehy.2016.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Both PUFA and miRNAs are believed to be of importance in vascular diseases. On the one hand diverse nutrition societies recommend PUFA consumption to dampen inflammatory processes. On the other hand scientists intensify efforts to use miRNAs for diagnostics or therapy in context of vascular disorders. PRESENTATION OF THE HYPOTHESIS There might be is a causal link between the plasma membrane lipid composition and the miRNA expression of monocytes and endothelial cells. PUFA enrichment of cells may affect the type and the amount of particular miRNAs produced. In this way dietary fatty acids are supposed to impact the miRNA-mediated regulation of vascular inflammatory processes. PROPOSED EXPERIMENTAL SETTING TO TEST THE HYPOTHESIS PUFA-supplemented monocytes and endothelial cells are analyzed with respect to membrane fatty acid patterns, typical markers of vascular inflammation and miRNA expression. Experiments are performed both for undifferentiated/unstimulated as well as for differentiated/stimulated cells. Verification of identified miRNA targets is performed by means of mimics/antagomirs. IMPLICATIONS OF THE HYPOTHESIS Innovative mechanism of action, which could point the way to a new understanding of the PUFA-mediated modulation of cellular signal transduction. If confirmed experimentally, it might stimulate vascular inflammation research and immunologic lipid science, hence, acting as source of inspiration for future therapeutic interventions in vascular diseases.
Collapse
Affiliation(s)
- Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Franzosenweg 1a, 06112 Halle (Saale), Germany.
| |
Collapse
|
43
|
Antal O, Péter M, Hackler L, Mán I, Szebeni G, Ayaydin F, Hideghéty K, Vigh L, Kitajka K, Balogh G, Puskás LG. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1271-82. [PMID: 26092623 DOI: 10.1016/j.bbalip.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.
Collapse
Affiliation(s)
- Otilia Antal
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Mária Péter
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | | | - Imola Mán
- Avidin Ltd., Szeged H-6726, Hungary(3)
| | | | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Katalin Hideghéty
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, H-6720, Hungary
| | - László Vigh
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Klára Kitajka
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; Avidin Ltd., Szeged H-6726, Hungary(3)
| | - Gábor Balogh
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Laszló G Puskás
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; Avidin Ltd., Szeged H-6726, Hungary(3).
| |
Collapse
|