1
|
Ivanovski F, Meško M, Lebar T, Rupnik M, Lainšček D, Gradišek M, Jerala R, Benčina M. Ultrasound-mediated spatial and temporal control of engineered cells in vivo. Nat Commun 2024; 15:7369. [PMID: 39191796 DOI: 10.1038/s41467-024-51620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Remote regulation of cells in deep tissue remains a significant challenge. Low-intensity pulsed ultrasound offers promise for in vivo therapies due to its non-invasive nature and precise control. This study uses pulsed ultrasound to control calcium influx in mammalian cells and engineers a therapeutic cellular device responsive to acoustic stimulation in deep tissue without overexpressing calcium channels or gas vesicles. Pulsed ultrasound parameters are established to induce calcium influx in HEK293 cells. Additionally, cells are engineered to express a designed calcium-responsive transcription factor controlling the expression of a selected therapeutic gene, constituting a therapeutic cellular device. The engineered sonogenetic system's functionality is demonstrated in vivo in mice, where an implanted anti-inflammatory cytokine-producing cellular device effectively alleviates acute colitis, as shown by improved colonic morphology and histopathology. This approach provides a powerful tool for precise, localized control of engineered cells in deep tissue, showcasing its potential for targeted therapeutic delivery.
Collapse
Affiliation(s)
- Filip Ivanovski
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- Interfaculty Doctoral Study of Biomedicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Maja Meško
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marko Rupnik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Miha Gradišek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
- CTGCT, Centre of Technology of Gene and Cell Therapy, Hajdrihova 19, Ljubljana, Slovenia.
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
- CTGCT, Centre of Technology of Gene and Cell Therapy, Hajdrihova 19, Ljubljana, Slovenia.
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Li Y, Li W, Zhou D, Zeng Z, Han Y, Chen Q, Wang Z, Wang G, Feng S, Cao W. Microcin Y utilizes its stable structure and biological activity to regulate the metabolism of intestinal probiotics and effectively clear gut Salmonella. Int J Biol Macromol 2024; 274:133290. [PMID: 38908631 DOI: 10.1016/j.ijbiomac.2024.133290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
MccY is a novel, structurally stable microcin with antibacterial activity against Enterobacteriaceae. However, the bioavailability of orally administrated MccY is unknown. This study evaluated the effects of MccY as a antimicrobial on pre-digestion in vitro and its intake, digestion and gut metabolism in vivo. The result of pre-digestion results that MccY maintained its biological activity and was resistant to decomposition. The study established a safe threshold of 4.46-9.92 mg/kg for the MccY dosage-body weight relationship in BALB/c mice. Mice fed with MccY demonstrated improved body weight and intestinal barrier function, accompanied with increased IgM immunogenicity and decreased levels of TNF-α, IL-6, and IL-10 in the intestine. MccY significantly facilitates the growth and activity of probiotics including Lactobacillus, Prevotella, and Bacteroides, and leading to the production of SCFAs and MCFAs during bacterial interactions. Furthermore, MccY effectively protects against the inflammatory response caused by Salmonella Typhimurium infection and effectively clears the Salmonella bacteria from the gut. In conclusion, MccY is seen as a promising new therapeutic target drug for enhancing the intestinal microbe-barrier axis and preventing enteritis.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Di Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinxi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zepeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guyao Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| |
Collapse
|
3
|
Calvete-Torre I, Sabater C, Cantabrana B, Margolles A, Sánchez M, Ruiz L. Gut microbiota modulation and effects of a diet enriched in apple pomace on inflammation in a DSS-induced colitis mouse model. Food Funct 2024; 15:2314-2326. [PMID: 38323473 DOI: 10.1039/d3fo04277d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Certain types of soluble dietary fibre, such as pectin and pectic oligosaccharides from different sources, have demonstrated protective effects against inflammation in DSS-induced colitis mouse models. In this work, we have evaluated the impact of a diet enriched in apple pomace (AP-diet), an agricultural by-product with a significant content of pectin and that previously demonstrated prebiotic properties in human fecal batch fermentation models, on the gut microbiota composition, intestinal damage and inflammation markers in a DSS-induced colitis model. We found that the apple pomace enriched diet (AP-diet), providing a significant amount of pectin with demonstrated prebiotic properties, was associated with a slower increase in the disease activity index, translating into better clinical symptomatology of the animals. Histological damage scoring confirmed less severe damage in those animals receiving an AP-diet before and during the DSS administration period. Some serum inflammatory markers, such as TNFα, also demonstrated lower levels in the group receiving the AP-diet, compared to the control diet. AP-diet administration is also associated with the modulation of key taxa in the colonic microbiota of animals, such as some Lachnospiraceae genera and Ruminococcus species, including commensal short chain fatty acid producers that could play a role in attenuating inflammation at the intestinal level.
Collapse
Affiliation(s)
- Inés Calvete-Torre
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Begoña Cantabrana
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Pharmacology of Therapeutic Targets Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Manuel Sánchez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Pharmacology of Therapeutic Targets Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| |
Collapse
|
4
|
Hansda A, Goswami S, Mukherjee S, Basak AJ, Dasgupta S, Roy PK, Samanta D, Mukherjee G. N-terminal ectodomain of BTNL2 inhibits T cell activation via a non-canonical interaction with its putative receptor that results in a delayed progression of DSS-induced ulcerative colitis. Mol Immunol 2024; 166:39-49. [PMID: 38219401 DOI: 10.1016/j.molimm.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Butyrophilin-like 2 (BTNL2) is a T cell inhibitory molecule that interacts with unknown binding partners to modulate the immune response in a number of inflammatory and autoimmune diseases. In this study, we found that the inhibitory effects of BTNL2 on T cell activation and effector functions can be executed by its N-terminal IgV domain (BTNL2 IgV1) alone. Structure-guided mutation of key residues on BTNL2 IgV1 based on known receptor-ligand interfaces involving immunoglobulin superfamily members revealed that BTNL2 uses a non-canonical binding interface with its putative receptor. A high avidity BTNL2 IgV1 probe revealed that in an inducible model of ulcerative colitis, severe colitis was accompanied by a selective enrichment of BTNL2-receptor expressing effector-memory CD4+ and CD8+ T cells in the Peyer's patches. Intraperitoneal administration of BTNL2 IgV1 resulted in a significant delay in the progression of DSS-induced colitis and also showed reduced activation of the BTNL2-receptor-expressing T cells in the Peyer's patches. Thus, this study demonstrates that the BTNL2-receptor-expressing T cells in the Peyer's patches participate in the disease pathogenesis and can serve as a novel therapeutic target in ulcerative colitis, which can be modulated by BTNL2 IgV1.
Collapse
Affiliation(s)
- Anita Hansda
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | | | | | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology, Kharagpur, India
| | - Shirin Dasgupta
- Dr. B C Roy Multi Speciality Medical Research Centre, IIT Kharagpur, India
| | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology, Kharagpur, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
5
|
Li Y, Li W, Zeng Z, Han Y, Chen Q, Dong X, Wang Z, Feng S, Cao W. Lasso peptide MccY alleviates non-typhoidal salmonellae-induced mouse gut inflammation via regulation of intestinal barrier function and gut microbiota. Microbiol Spectr 2023; 11:e0178423. [PMID: 37819128 PMCID: PMC10714986 DOI: 10.1128/spectrum.01784-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Diseases caused by Enterobacteriaceae multidrug-resistant strains have become increasingly difficult to manage. It is necessary to verify the new antibacterial drug MccY effect on non-typhoid Salmonella infection in mice since it is regarded as a promising microcin. The results demonstrated that MccY has a potential therapeutic application value in the protection against Salmonella-induced intestinal damage and alleviating related intestinal dysbiosis and metabolic disorders. MccY could be a promising candidate as an antimicrobial or anti-inflammatory agent for treating infectious diseases.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinxi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zepeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
6
|
Guo Y, Li Y, Tang Z, Geng C, Xie X, Song S, Wang C, Li X. Compromised NHE8 Expression Is Responsible for Vitamin D-Deficiency Induced Intestinal Barrier Dysfunction. Nutrients 2023; 15:4834. [PMID: 38004229 PMCID: PMC10674576 DOI: 10.3390/nu15224834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Objectives: Vitamin D (VitD) and Vitamin D receptor (VDR) are suggested to play protective roles in the intestinal barrier in ulcerative colitis (UC). However, the underlying mechanisms remain elusive. Evidence demonstrates that Na+/H+ exchanger isoform 8 (NHE8, SLC9A8) is essential in maintaining intestinal homeostasis, regarded as a promising target for UC therapy. Thus, this study aims to investigate the effects of VitD/VDR on NHE8 in intestinal protection. Methods: VitD-deficient mice, VDR-/- mice and NHE8-/- mice were employed in this study. Colitis mice were established by supplementing DSS-containing water. Caco-2 cells and 3D-enteroids were used for in vitro studies. VDR siRNA (siVDR), VDR over-expression plasmid (pVDR), TNF-α and NF-κb p65 inhibitor QNZ were used for mechanical studies. The expression of interested proteins was detected by multiple techniques. Results: In colitis mice, paricalcitol upregulated NHE8 expression was accompanied by restoring colonic mucosal injury. In VitD-deficient and VDR-/- colitis mice, NHE8 expression was compromised with more serious mucosal damage. Noteworthily, paricalcitol could not prevent intestinal barrier dysfunction and histological destruction in NHE8-/- mice. In Caco-2 cells and enteroids, siVDR downregulated NHE8 expression, further promoted TNF-α-induced NHE8 downregulation and stimulated TNF-α-induced NF-κb p65 phosphorylation. Conversely, QNZ blocked TNF-α-induced NHE8 downregulation in the absence or presence of siVDR. Conclusions: Our study indicates depressed NHE8 expression is responsible for VitD-deficient-induced colitis aggravation. These findings provide novel insights into the molecular mechanisms of VitD/VDR in intestine protection in UC.
Collapse
Affiliation(s)
- Yaoyu Guo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Yanni Li
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Zeya Tang
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Xiaoxi Xie
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Shuailing Song
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Chunhui Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Xiao Li
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| |
Collapse
|
7
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
8
|
Liu L, Li F, Shao T, Zhang L, Lee J, Dryden G, McClain CJ, Zhao C, Feng W. FGF21 Depletion Attenuates Colitis through Intestinal Epithelial IL-22-STAT3 Activation in Mice. Nutrients 2023; 15:2086. [PMID: 37432218 PMCID: PMC10181108 DOI: 10.3390/nu15092086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a glucose and lipid metabolic regulator. Recent research revealed that FGF21 was also induced by inflammatory stimuli. Its role in inflammatory bowel disease (IBD) has not been investigated. In this study, an experimental IBD model was established in FGF21 knockout (KO) and wild-type (WT) mice by adding 2.5% (wt/vol) dextran sodium sulfate (DSS) to their drinking water for 7 days. The severity of the colitis and the inflammation of the mouse colon tissues were analyzed. In WT mice, acute DSS treatment induced an elevation in plasma FGF21 and a significant loss of body weight in a time-dependent manner. Surprisingly, the loss of body weight and the severity of the colitis induced by DSS treatment in WT mice were significantly attenuated in FGF21 KO mice. Colon and circulating pro-inflammatory factors were significantly lower in the FGF21 KO mice compared to the WT mice. As shown by BrdU staining, the FGF21 KO mice demonstrated increased colonic epithelial cell proliferation. DSS treatment reduced intestinal Paneth cell and goblet cell numbers in the WT mice, and this effect was attenuated in the FGF21 KO mice. Mechanistically, FGF21 deficiency significantly increased the signal transducer and activator of transcription (STAT)-3 activation in intestinal epithelial cells and increased the expression of IL-22. Further study showed that the expression of suppressor of cytokine signaling-2/3 (SOCS 2/3), a known feedback inhibitor of STAT3, was significantly inhibited in the DSS-treated FGF2 KO mice compared to the WT mice. We conclude that FGF21 deficiency attenuated the severity of DSS-induced acute colitis, which is likely mediated by enhancing the activation of the IL-22-STAT3 signaling pathway in intestinal epithelial cells.
Collapse
Affiliation(s)
- Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Fengyuan Li
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Tuo Shao
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jiyeon Lee
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Gerald Dryden
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, Louisville, KY 40206, USA
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Guo Y, Li X, Geng C, Song S, Xie X, Wang C. Vitamin D receptor involves in the protection of intestinal epithelial barrier function via up-regulating SLC26A3. J Steroid Biochem Mol Biol 2023; 227:106231. [PMID: 36462760 DOI: 10.1016/j.jsbmb.2022.106231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/13/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Vitamin D receptor (VDR) and SLC26A3 (DRA) have been identified as pivotal protective factors in maintaining gut homeostasis in IBD patients. However, the specific mechanism underlying the increased intestinal susceptibility to inflammation induced by the loss of VDR and whether DRA participates in the role of VDR regulating intestinal epithelial barrier function are undefined. AIM The current study is undertaken to elucidate the regulatory effects of VDR on DRA and VDR prevents intestinal epithelial barrier dysfunction via up-regulating the expression of DRA. METHODS WT and VDR-/- mice are used as models for intestinal epithelial response. Paracellular permeability is measured by TEER and FD-4 assays. Immunohistochemistry, immunofluorescence, qPCR and immunoblotting are performed to determine the effects of VDR and DRA on gut epithelial barrier function. RESULTS VDR-/- mice exhibits significant hyperpermeability of intestine with greatly decreased levels of ZO-1 and Claudin1 proteins. DRA is located on the intestinal epithelial apical membrane and is tightly modulated by VDR in vivo and in vitro via activating ERK1/2 MAPK signaling pathway. Notably, the current study for the first time demonstrates that VDR maintains intestinal epithelial barrier integrity via up-regulating DRA expression and the lack of DRA induced by VDR knockdown leads to a more susceptive condition for intestine to DSS-induced colitis. CONCLUSION Our study provides evidence and deep comprehension regarding the role of VDR in modulating DRA expression in gut homeostasis and makes novel contributions to better generally understanding the links between VDR, DRA and intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Li Y, Li X, Geng C, Guo Y, Wang C. Somatostatin receptor 5 is critical for protecting intestinal barrier function in vivo and in vitro. Mol Cell Endocrinol 2021; 535:111390. [PMID: 34224803 DOI: 10.1016/j.mce.2021.111390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Somatostatin receptor 5 (SSTR5) is involved in intestinal barrier protection during colitis through modulating tight junction (TJ) proteins, but the mechanisms of SSTR5 in TJ regulation are largely unknown. Therefore, the present study was designed to illuminate how SSTR5 modulated intestinal barrier function and TJ proteins. In this study, activation of SSTR5 by its special agonist L817,818 effectively ameliorated impaired intestinal barrier function in TNF-α-pretreated cells and mice with colitis. Restoration of intestinal barrier function was dependent on upregulation of claudin-4 and ZO-1. Suppression of SSTR5 signaling through specific siRNA or the antagonist BIM23056 markedly exacerbated TNF-α-induced claudin-4 and ZO-1 damage. L817,818 treatment markedly suppressed TNF-α-induced NF-κB p65 phosphorylation, myosin light chain kinase (MLCK) upregulation and myosin light chain (MLC) phosphorylation. Exposure to a NF-κB inhibitor (QNZ) or MLCK inhibitor (ML-7) effectively inhibited compromised claudin-4 and ZO-1 induced by BIM23056/TNF-α. These observations indicate that activation of SSTR5 protects intestinal barrier function by upregulating claudin-4 and ZO-1 expression, which is mediated by NF-κB-MLCK-MLC signaling. Taken together, our findings suggest that SSTR5 might represent a promising target for colitis therapy.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
12
|
Lopes TCM, Almeida GG, Souza IA, Borges DC, de Lima WG, Prazeres PHDM, Birbrair A, Arantes RME, Mosser DM, Goncalves R. High-Density-Immune-Complex Regulatory Macrophages Promote Recovery of Experimental Colitis in Mice. Inflammation 2021; 44:1069-1082. [PMID: 33394188 DOI: 10.1007/s10753-020-01403-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Macrophages not only play a fundamental role in the pathogenesis of inflammatory bowel disease (IBD), but they also play a major role in preserving intestinal homeostasis. In this work, we evaluated the role of macrophages in IBD and investigated whether the functional reprogramming of macrophages to a very specific phenotype could decrease disease pathogenesis. Thus, macrophages were stimulated in the presence of high-density immune complexes which strongly upregulate their production of IL-10 and downregulate pro-inflammatory cytokines. The transfer of these high-density-immune-complex regulatory macrophages into mice with colitis was examined as a potential therapy proposal to control the disease. Animals subjected to colitis induction received these high-density-immune-complex regulatory macrophages, and then the Disease Activity Index (DAI), and macroscopic and microscopic lesions were measured. The treated group showed a dramatic improvement in all parameters analyzed, with no difference with the control group. The colon was macroscopically normal in appearance and size, and microscopically colon architecture was preserved. The immunofluorescence migration assay showed that these cells migrated to the inflamed intestine, being able to locally produce the cytokine IL-10, which could explain the dramatic improvement in the clinical and pathological condition of the animals. Thus, our results demonstrate that the polarization of macrophages to a high IL-10 producer profile after stimulation with high-density immune complexes was decisive in controlling experimental colitis, and that macrophages are a potential therapeutic target to be explored in the control of colitis.
Collapse
Affiliation(s)
- Tamara Cristina Moreira Lopes
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Izabela Aparecida Souza
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diego Costa Borges
- Departamento de Bioquímica e Imunologia-Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil
| | - Wanderson Geraldo de Lima
- Departamento de Ciências Biológicas-Instituto de Ciências Biológicas e Exatas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Pedro Henrique Dias Moura Prazeres
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rosa Maria Esteves Arantes
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - David M Mosser
- Laboratory of Macrophage and Host Defense - Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ricardo Goncalves
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Lee KH, Ahn BS, Cha D, Jang WW, Choi E, Park S, Park JH, Oh J, Jung DE, Park H, Park JH, Suh Y, Jin D, Lee S, Jang YH, Yoon T, Park MK, Seong Y, Pyo J, Yang S, Kwon Y, Jung H, Lim CK, Hong JB, Park Y, Choi E, Shin JI, Kronbichler A. Understanding the immunopathogenesis of autoimmune diseases by animal studies using gene modulation: A comprehensive review. Autoimmun Rev 2020; 19:102469. [PMID: 31918027 DOI: 10.1016/j.autrev.2020.102469] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
Autoimmune diseases are clinical syndromes that result from pathogenic inflammatory responses driven by inadequate immune activation by T- and B-cells. Although the exact mechanisms of autoimmune diseases are still elusive, genetic factors also play an important role in the pathogenesis. Recently, with the advancement of understanding of the immunological and molecular basis of autoimmune diseases, gene modulation has become a potential approach for the tailored treatment of autoimmune disorders. Gene modulation can be applied to regulate the levels of interleukins (IL), tumor necrosis factor (TNF), cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), interferon-γ and other inflammatory cytokines by inhibiting these cytokine expressions using short interfering ribonucleic acid (siRNA) or by inhibiting cytokine signaling using small molecules. In addition, gene modulation delivering anti-inflammatory cytokines or cytokine antagonists showed effectiveness in regulating autoimmunity. In this review, we summarize the potential target genes for gene or immunomodulation in autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel diseases (IBD) and multiple sclerosis (MS). This article will give a new perspective on understanding immunopathogenesis of autoimmune diseases not only in animals but also in human. Emerging approaches to investigate cytokine regulation through gene modulation may be a potential approach for the tailored immunomodulation of some autoimmune diseases near in the future.
Collapse
Affiliation(s)
- Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Soo Ahn
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dohyeon Cha
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Woo Jang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eugene Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Hyeong Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junseok Oh
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Eun Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heeryun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Ha Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngsong Suh
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongwan Jin
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Siyeon Lee
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Hwan Jang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tehwook Yoon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyu Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonje Seong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihoon Pyo
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunmo Yang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngin Kwon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjean Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae Kwang Lim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Beom Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeoeun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunjin Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Dokoshi T, Zhang LJ, Nakatsuji T, Adase CA, Sanford JA, Paladini RD, Tanaka H, Fujiya M, Gallo RL. Hyaluronidase inhibits reactive adipogenesis and inflammation of colon and skin. JCI Insight 2018; 3:123072. [PMID: 30385720 DOI: 10.1172/jci.insight.123072] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
In this study we evaluated the role of hyaluronan (HA) in reactive adipogenesis, a local expansion of preadipocytes that provides host defense by release of antimicrobial peptides. We observed that HA accumulated during maturation of adipocytes in vitro and was associated with increased expression of preadipocyte factor 1, zinc finger protein 423, and early B cell factor 1. Although HA is normally abundant in the extracellular matrix, a further increase in HA staining occurred in mice at sites of reactive adipogenesis following injury of colon by dextran sodium sulfate or injury of skin from infection with Staphylococcus aureus. HA also abundantly accumulated around adipocytes seen in the colons of patients with inflammatory bowel disease. This HA was necessary for adipocyte maturation because digestion of HA by administration of soluble hyaluronidase or transgenic expression of hyaluronidase 1 inhibited adipogenesis in vitro and in vivo. Furthermore, hyaluronidase also suppressed inflammation of both skin and colon and decreased antimicrobial peptide expression by developing preadipocytes. This resulted in increased bacterial transit across the epithelial barrier despite decreased tissue injury from inflammation. These observations suggest HA plays an important role in reactive adipogenesis and host defense after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hiroki Tanaka
- Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | | |
Collapse
|
15
|
Ağaç D, Estrada LD, Maples R, Hooper LV, Farrar JD. The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav Immun 2018; 74:176-185. [PMID: 30195028 PMCID: PMC6289674 DOI: 10.1016/j.bbi.2018.09.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/01/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022] Open
Abstract
The mammalian nervous system communicates important information about the environment to the immune system, but the underlying mechanisms are largely unknown. Secondary lymphoid organs are highly innervated by sympathetic neurons that secrete norepinephrine (NE) as the primary neurotransmitter. Immune cells express adrenergic receptors, enabling the sympathetic nervous system to directly control immune function. NE is a potent immunosuppressive factor and markedly inhibits TNF-α secretion from innate cells in response to lipopolysaccharide (LPS). In this study, we demonstrate that NE blocks the secretion of a variety of proinflammatory cytokines by rapidly inducing IL-10 secretion from innate cells in response to multiple Toll-like receptor (TLR) signals. NE mediated these effects exclusively through the β2-adrenergic receptor (ADRB2). Consequently, Adrb2-/- animals were more susceptible to L. monocytogenes infection and to intestinal inflammation in a dextran sodium sulfate (DSS) model of colitis. Further, Adrb2-/- animals rapidly succumbed to endotoxemia in response to a sub-lethal LPS challenge and exhibited elevated serum levels of TNF-α and reduced IL-10. LPS-mediated lethality in WT animals was rescued by administering a β 2-specific agonist and in Adrb2-/- animals by exogenous IL-10. These findings reveal a critical role for ADRB2 signaling in controlling inflammation through the rapid induction of IL-10. Our findings provide a fundamental insight into how the sympathetic nervous system controls a critical facet of immune function through ADRB2 signaling.
Collapse
Affiliation(s)
- Didem Ağaç
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | | | - Robert Maples
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | - Lora V. Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX,Howard Hughes Medical Institute
| | - J. David Farrar
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
16
|
Rodrigues R, Guerra G, Soares J, Santos K, Rolim F, Assis P, Araújo D, de Araújo Júnior RF, Garcia VB, de Araújo AA, Queiroga R. Lactobacillus rhamnosus EM1107 in goat milk matrix modulates intestinal inflammation involving NF-κB p65 and SOCs-1 in an acid-induced colitis model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat Commun 2018; 9:4493. [PMID: 30374059 PMCID: PMC6206083 DOI: 10.1038/s41467-018-06936-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Therapeutic alteration of gene expression in vivo can be achieved by delivering nucleic acids (e.g., mRNA, siRNA) using nanoparticles. Recent progress in modified messenger RNA (mmRNA) synthesis facilitated the development of lipid nanoparticles (LNPs) loaded with mmRNA as a promising tool for in vivo protein expression. Although progress have been made with mmRNA-LNPs based protein expression in hepatocytes, cell specificity is still a major challenge. Moreover, selective protein expression is essential for an improved therapeutic effect, due to the heterogeneous nature of diseases. Here, we present a precision protein expression strategy in Ly6c+ inflammatory leukocytes in inflammatory bowel disease (IBD) induced mice. We demonstrate a therapeutic effect in an IBD model by targeted expression of the interleukin 10 in Ly6c+ inflammatory leukocytes. A selective mmRNA expression strategy has tremendous therapeutic potential in IBD and can ultimately become a novel therapeutic modality in many other diseases. Therapeutic alteration of protein expression using modified mRNA is limited by immunogenicity and instability in vivo. Here the authors use antibody-coated lipid nanoparticles to deliver mRNA to leukocytes and drive expression of anti-inflammatory cytokines in an inflammatory bowel disease mouse model.
Collapse
|
18
|
The Bisindole Alkaloid Caulerpin, from Seaweeds of the Genus Caulerpa, Attenuated Colon Damage in Murine Colitis Model. Mar Drugs 2018; 16:md16090318. [PMID: 30205459 PMCID: PMC6163434 DOI: 10.3390/md16090318] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022] Open
Abstract
Caulerpin (CLP), an alkaloid from algae of the genus Caulerpa, has shown anti-inflammatory activity. Therefore, this study aimed to analyze the effect of CLP in the murine model of peritonitis and ulcerative colitis. Firstly, the mice were submitted to peritonitis to evaluate which dose of CLP (40, 4, or 0.4 mg/kg) could decrease the inflammatory infiltration in the peritoneum. The most effective doses were 40 and 4 mg/kg. Then, C57BL/6 mice were submitted to colitis development with 3% dextran sulfate sodium (DSS) and treated with CLP at doses of 40 and 4 mg/kg. The disease development was analyzed through the disease activity index (DAI); furthermore, colonic tissue samples were submitted to histological analysis, NFκB determination, and in vitro culture for cytokines assay. Therefore, CLP at 4 mg/kg presented the best results, triggering improvement of DAI and attenuating the colon shortening and damage. This dose was able to reduce the TNF-α, IFN-γ, IL-6, IL-17, and NFκB p65 levels, and increased the levels of IL-10 in the colon tissue. Thus, CLP mice treatment at a dose of 4 mg/kg showed promising results in ameliorating the damage observed in the ulcerative colitis.
Collapse
|
19
|
Lee AS, Sung MJ, Kim W, Jung YJ. COMP-angiopoietin-1 ameliorates inflammation-induced lymphangiogenesis in dextran sulfate sodium (DSS)-induced colitis model. J Mol Med (Berl) 2018; 96:459-467. [PMID: 29610929 PMCID: PMC5897474 DOI: 10.1007/s00109-018-1633-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
Alterations in the intestinal lymphatic network are pathological processes as related to inflammatory bowel disease (IBD). In this study, we demonstrated that reduction in inflammation-induced lymphangiogenesis ameliorates experimental acute colitis. A soluble and stable angiopoietin-1 (Ang1) variant, COMP-Ang1, possesses anti-inflammatory and angiogenic effects. We investigated the effects of COMP-Ang1 on an experimental colonic inflammation model. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium (DSS) via drinking water. We determined body weight, disease activity indices, histopathological scores, lymphatic density, anti-ER-HR3 staining, and the expression of members of the vascular endothelial growth factor (VEGF) family and various inflammatory cytokines in the mice. The density of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) and VEGFR-3-positive lymphatic vessels increased in mice with DSS-induced colitis. We observed that COMP-Ang1-treated mice showed less weight loss, fewer clinical signs of colitis, and longer colons than Ade-DSS-treated mice. COMP-Ang1 also significantly reduced the density of LYVE-1-positive lymphatic vessels and the disruption of colonic architecture that is normally associated with colitis and repressed the immunoregulatory response. Further, COMP-Ang1 treatment reduced both M1 and M2 macrophage infiltration into the inflamed colon, which involved inhibition of VEGF-C and D expression. Thus, COMP-Ang1, which acts by reducing inflammation-induced lymphangiogenesis, may be used as a novel therapeutic for the treatment of IBD and other inflammatory diseases. KEY MESSAGES COMP-Ang1 decreases inflammatory-induced lymphangiogenesis in experimental acute colitis. COMP-Ang1 improves the symptom of DSS-induced inflammatory response. COMP-Ang1 reduces the expression of pro-inflammatory cytokines in inflamed colon. COMP-Ang1 reduces the expression of VEGFs in inflamed colon. COMP-Ang1 prevents infiltration of macrophages in a DSS-induced colitis model.
Collapse
Affiliation(s)
- Ae Sin Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Mi Jeong Sung
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Division of Nephrology, Chonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Yu Jin Jung
- Department of Internal Medicine, Division of Nephrology, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
20
|
Willemze RA, Welting O, van Hamersveld HP, Meijer SL, Folgering JHA, Darwinkel H, Witherington J, Sridhar A, Vervoordeldonk MJ, Seppen J, de Jonge WJ. Neuronal control of experimental colitis occurs via sympathetic intestinal innervation. Neurogastroenterol Motil 2018; 30. [PMID: 28745812 DOI: 10.1111/nmo.13163] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Vagus nerve stimulation is currently clinically evaluated as a treatment for inflammatory bowel disease. However, the mechanism by which this therapeutic intervention can have an immune-regulatory effect in colitis remains unclear. We determined the effect of intestine-specific vagotomy or intestine-specific sympathectomy of the superior mesenteric nerve (SMN) on dextran sodium sulfate (DSS)-induced colitis in mice. Furthermore, we tested the efficacy of therapeutic SMN stimulation to treat DSS-induced colitis in rats. METHODS Vagal and SMN fibers were surgically dissected to achieve intestine-specific vagotomy and sympathectomy. Chronic SMN stimulation was achieved by implantation of a cuff electrode. Stimulation was done twice daily for 5 minutes using a biphasic pulse (10 Hz, 200 μA, 2 ms). Disease activity index (DAI) was used as a clinical parameter for colitis severity. Colonic cytokine expression was measured by quantitative PCR and ELISA. KEY RESULTS Intestine-specific vagotomy had no effect on DSS-induced colitis in mice. However, SMN sympathectomy caused a significantly higher DAI compared to sham-operated mice. Conversely, SMN stimulation led to a significantly improved DAI compared to sham stimulation, although no other parameters of colitis were affected significantly. CONCLUSIONS & INFERENCES Our results indicate that sympathetic innervation regulates the intestinal immune system as SMN denervation augments, and SMN stimulation ameliorates DSS-induced colitis. Surprisingly, intestine-specific vagal nerve denervation had no effect in DSS-induced colitis.
Collapse
Affiliation(s)
- R A Willemze
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - O Welting
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - S L Meijer
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - H Darwinkel
- Brains On-Line B.V., Groningen, The Netherlands
| | | | - A Sridhar
- Galvani Bioelectronics, Stevenage, UK
| | | | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Smole A, Lainšček D, Bezeljak U, Horvat S, Jerala R. A Synthetic Mammalian Therapeutic Gene Circuit for Sensing and Suppressing Inflammation. Mol Ther 2017; 25:102-119. [PMID: 28129106 DOI: 10.1016/j.ymthe.2016.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
Inflammation, which is a highly regulated host response against danger signals, may be harmful if it is excessive and deregulated. Ideally, anti-inflammatory therapy should autonomously commence as soon as possible after the onset of inflammation, should be controllable by a physician, and should not systemically block beneficial immune response in the long term. We describe a genetically encoded anti-inflammatory mammalian cell device based on a modular engineered genetic circuit comprising a sensor, an amplifier, a "thresholder" to restrict activation of a positive-feedback loop, a combination of advanced clinically used biopharmaceutical proteins, and orthogonal regulatory elements that linked modules into the functional device. This genetic circuit was autonomously activated by inflammatory signals, including endogenous cecal ligation and puncture (CLP)-induced inflammation in mice and serum from a systemic juvenile idiopathic arthritis (sIJA) patient, and could be reset externally by a chemical signal. The microencapsulated anti-inflammatory device significantly reduced the pathology in dextran sodium sulfate (DSS)-induced acute murine colitis, demonstrating a synthetic immunological approach for autonomous anti-inflammatory therapy.
Collapse
Affiliation(s)
- Anže Smole
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Urban Bezeljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, 1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, 1000 Ljubljana, Slovenia.
| |
Collapse
|
22
|
Li X, Cai L, Xu H, Geng C, Lu J, Tao L, Sun D, Ghishan FK, Wang C. Somatostatin regulates NHE8 protein expression via the ERK1/2 MAPK pathway in DSS-induced colitis mice. Am J Physiol Gastrointest Liver Physiol 2016; 311:G954-G963. [PMID: 27686614 PMCID: PMC5130551 DOI: 10.1152/ajpgi.00239.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/11/2016] [Indexed: 02/05/2023]
Abstract
Previous studies reported that administration of somatostatin (SST) to human patients mitigated their diarrheal symptoms. Octreotide (an analog of SST) treatment in animals resulted in upregulation of sodium/hydrogen exchanger 8 (NHE8). NHE8 is important for water/sodium absorption in the intestine, and loss of NHE8 function results in mucosal injury. Thus we hypothesized that NHE8 expression is inhibited during colitis and that SST treatment during pathological conditions can restore NHE8 expression. Our data showed for the first time that NHE8 is expressed in the human colonic tissue and that NHE8 expression is decreased in ulcerative colitis (UC) patients. We also found that octreotide could stimulate colonic NHE8 expression in colitic mice. Furthermore, the somatostatin receptor 2 (SSTR2) agonist seglitide and the somatostatin receptor 5 (SSTR5) agonist L-817,818 could restore NHE8 expression via its role in suppressing ERK1/2 phosphorylation. Our study uncovered a novel mechanism of SST stimulation of NHE8 expression in colitis.
Collapse
Affiliation(s)
- Xiao Li
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Lin Cai
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Hua Xu
- 2Department of Pediatrics, The University of Arizona, Tucson, Arizona
| | - Chong Geng
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Jing Lu
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Liping Tao
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Dan Sun
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Fayez K. Ghishan
- 2Department of Pediatrics, The University of Arizona, Tucson, Arizona
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| |
Collapse
|
23
|
Yu ZT, Nanthakumar NN, Newburg DS. The Human Milk Oligosaccharide 2'-Fucosyllactose Quenches Campylobacter jejuni-Induced Inflammation in Human Epithelial Cells HEp-2 and HT-29 and in Mouse Intestinal Mucosa. J Nutr 2016; 146:1980-1990. [PMID: 27629573 PMCID: PMC5037868 DOI: 10.3945/jn.116.230706] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/09/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Campylobacter jejuni causes diarrhea worldwide; young children are most susceptible. Binding of virulent C. jejuni to the intestinal mucosa is inhibited ex vivo by α1,2-fucosylated carbohydrate moieties, including human milk oligosaccharides (HMOSs). OBJECTIVE The simplest α1,2-fucosylated HMOS structure, 2'-fucosyllactose (2'-FL), can be predominant at ≤5 g/L milk. Although 2'-FL inhibits C. jejuni binding ex vivo and in vivo, the effects of 2'FL on the cell invasion central to C. jejuni pathogenesis have not been tested. Clinical isolates of C. jejuni infect humans, birds, and ferrets, limiting studies on its mammalian pathobiology. METHODS Human epithelial cells HEp-2 and HT-29 infected with the virulent C. jejuni strain 81-176 human isolate were treated with 5 g 2'-FL/L, and the degree of infection and inflammatory response was measured. Four-week-old male wild-type C57BL/6 mice were fed antibiotics to reduce their intestinal microbiota and were inoculated with C. jejuni strain 81-176. The sensitivity of the resulting acute transient enteric infection and immune response to inhibition by 2'-FL ingestion was tested. RESULTS In HEp-2 and HT-29 cells, 2'-FL attenuated 80% of C. jejuni invasion (P < 0.05) and suppressed the release of mucosal proinflammatory signals of interleukin (IL) 8 by 60-70%, IL-1β by 80-90%, and the neutrophil chemoattractant macrophage inflammatory protein 2 (MIP-2) by 50% (P < 0.05). Ingestion of 2'-FL by mice reduced C. jejuni colonization by 80%, weight loss by 5%, histologic features of intestinal inflammation by 50-70%, and induction of inflammatory signaling molecules of the acute-phase mucosal immune response by 50-60% (P < 0.05). This acute model did not induce IL-17 (adaptive T cell response), a chronic response. CONCLUSIONS In human cells in vitro (HEp-2, HT-29) and in a mouse infection model that recapitulated key pathologic features of C. jejuni clinical disease, 2'-FL inhibited pathogenesis and its sequelae. These data strongly support the hypothesis that 2'-FL represents a new class of oral agent for prevention, and potentially for treatment, of specific enteric infectious diseases.
Collapse
Affiliation(s)
- Zhuo-Teng Yu
- Department of Biology, Boston College, Chestnut Hill, MA; and
| | - N Nanda Nanthakumar
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - David S Newburg
- Department of Biology, Boston College, Chestnut Hill, MA; and
| |
Collapse
|
24
|
Wei W, Feng W, Xin G, Tingting N, Zhanghe Z, Haimin C, Xiaojun Y. Enhanced effect of κ-carrageenan on TNBS-induced inflammation in mice. Int Immunopharmacol 2016; 39:218-228. [DOI: 10.1016/j.intimp.2016.07.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/28/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
|
25
|
Buckinx R, Timmermans JP. Targeting the gastrointestinal tract with viral vectors: state of the art and possible applications in research and therapy. Histochem Cell Biol 2016; 146:709-720. [PMID: 27665281 DOI: 10.1007/s00418-016-1496-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
While there is a large body of preclinical data on the use of viral vectors in gene transfer, relatively little is known about viral gene transfer in the gastrointestinal tract. Viral vector technology is especially underused in the field of neurogastroenterology when compared to brain research. This review provides an overview of the studies employing viral vectors-in particular retroviruses, adenoviruses and adeno-associated viruses-to transduce different cell types in the intestine. Early work mainly focused on mucosal transduction, but had limited success due to the harsh luminal conditions in the gastrointestinal tract and the high turnover rate of enterocytes. More recently, several studies have successfully employed viral gene transfer to target the enteric nervous system and its progenitors. Although several hurdles still need to be overcome, in particular on how to augment transduction efficiency and specific cell targeting, viral vector technology holds strong potential not only as a valid research tool in fundamental gastroenterological research but also as a therapeutic agent in translational (bio)medical research.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
26
|
Wang A, Li J, Zhao Y, Johansson MEV, Xu H, Ghishan FK. Loss of NHE8 expression impairs intestinal mucosal integrity. Am J Physiol Gastrointest Liver Physiol 2015; 309:G855-64. [PMID: 26505975 PMCID: PMC4669351 DOI: 10.1152/ajpgi.00278.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/25/2015] [Indexed: 01/31/2023]
Abstract
The newest member of the Na(+)/H(+) exchanger (NHE) family, NHE8, is abundantly expressed at the apical membrane of the intestinal epithelia. We previously reported that mucin 2 expression was significantly decreased in the colon in NHE8(-/-) mice, suggesting that NHE8 is involved in intestinal mucosal protection. In this study, we further evaluated the role of NHE8 in intestinal epithelial protection after dextran sodium sulfate (DSS) challenge. Compared with wild-type mice, NHE8(-/-) mice have increased bacterial adhesion and inflammation, especially in the distal colon. NHE8(-/-) mice are also susceptible to DSS treatment. Real-time PCR detected a remarkable increase in the expression of IL-1β, IL-6, TNF-α, and IL-4 in DSS-treated NHE8(-/-) mice compared with DSS-treated wild-type littermates. Immunohistochemistry showed a disorganized epithelial layer in the colon of NHE8(-/-) mice. Periodic acid-Schiff staining showed a reduction in the number of mature goblet cells and the area of the goblet cell theca in NHE8(-/-) mice. Phyloxine/tartrazine staining revealed a decrease in functional Paneth cell population in the NHE8(-/-) small intestinal crypt. The expression of enteric defensins was also decreased in NHE8(-/-) mice. The reduced mucin production in goblet cells and antimicrobial peptides production in Paneth cells lead to disruption of the intestinal mucosa protection. Therefore, NHE8 may be involved in the establishment of intestinal mucosal integrity by regulating the functions of goblet and Paneth cells.
Collapse
Affiliation(s)
- Aiping Wang
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona; ,2Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China; and
| | - Jing Li
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona;
| | - Yang Zhao
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona;
| | | | - Hua Xu
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona;
| | - Fayez K. Ghishan
- 1Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona;
| |
Collapse
|
27
|
T regulatory cells and B cells cooperate to form a regulatory loop that maintains gut homeostasis and suppresses dextran sulfate sodium-induced colitis. Mucosal Immunol 2015; 8:1297-312. [PMID: 25807185 PMCID: PMC4583327 DOI: 10.1038/mi.2015.20] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 02/17/2015] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) and B cells present in gut-associated lymphoid tissues (GALT) are both implicated in the resolution of colitis. However, how the functions of these cells are coordinated remains elusive. We used the dextran sulfate sodium (DSS)-induced colitis model combined with gene-modified mice to monitor the progression of colitis, and simultaneously examine the number of Tregs and B cells, and the production of IgA antibodies. We found that DSS-treated mice exhibited more severe colitis in the absence of B cells, and that the adoptive transfer of B cells attenuated the disease. Moreover, the transfer of IL-10(-/-) B cells also attenuated colitis, suggesting that B cells inhibited colitis through an interleukin-10 (IL-10)-independent pathway. Furthermore, antibody depletion of Tregs resulted in exacerbated colitis. Intriguingly, the number of GALT Tregs in B cell-deficient mice was significantly decreased during colitis and the adoptive transfer of B cells into these mice restored the Treg numbers, indicating that B cells contribute to Treg homeostasis. We also found that B cells induced the proliferation of Tregs that in turn promoted B-cell differentiation into IgA-producing plasma cells. These results demonstrate that B cells and Tregs interact and cooperate to prevent excessive immune responses that can lead to colitis.
Collapse
|
28
|
Davaatseren M, Hwang JT, Park JH, Kim MS, Wang S, Sung MJ. Allyl isothiocyanate ameliorates angiogenesis and inflammation in dextran sulfate sodium-induced acute colitis. PLoS One 2014; 9:e102975. [PMID: 25051185 PMCID: PMC4106840 DOI: 10.1371/journal.pone.0102975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/24/2014] [Indexed: 02/02/2023] Open
Abstract
Allyl isothiocyanate (AITC) is a phytochemical found in cruciferous vegetables that has known chemopreventive and chemotherapeutic activities. Thus far, the antiangiogenic activity of AITC has not been reported in in vivo studies. Herein, we investigated the effect of AITC on angiogenesis and inflammation in a mouse model of colitis. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium via drinking water. To monitor the activity of AITC in this model, we measured body weight, disease activity indices, histopathological scores, microvascular density, myeloperoxidase activity, F4/80 staining, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR2) expression in the mice. We found that AITC-treated mice showed less weight loss, fewer clinical signs of colitis, and longer colons than vehicle-treated mice. AITC treatment also significantly lessened the disruption of colonic architecture that is normally associated with colitis and repressed the microvascularization response. Further, AITC treatment reduced both leukocyte recruitment and macrophage infiltration into the inflamed colon, and the mechanism these activities involved repressing iNOS and COX-2 expression. Finally, AITC attenuated the expression of VEGF-A and VEGFR2. Thus, AITC may have potential application in treating conditions marked by inflammatory-driven angiogenesis and mucosal inflammation.
Collapse
Affiliation(s)
- Munkhtugs Davaatseren
- Research Division Emerging Innovative Technology, Korea Food Research Institute, Songnam, Keongki, Republic of Korea
- Department of Bioresources and Food Science, Konkuk University, Seoul, Republic of Korea
| | - Jin-Taek Hwang
- Research Division Emerging Innovative Technology, Korea Food Research Institute, Songnam, Keongki, Republic of Korea
| | - Jae Ho Park
- Research Division Emerging Innovative Technology, Korea Food Research Institute, Songnam, Keongki, Republic of Korea
| | - Myung-Sunny Kim
- Research Division Emerging Innovative Technology, Korea Food Research Institute, Songnam, Keongki, Republic of Korea
| | - Shuaiyu Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Mi Jeong Sung
- Research Division Emerging Innovative Technology, Korea Food Research Institute, Songnam, Keongki, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
Cardnell RJG, Rabender CS, Ross GR, Guo C, Howlett EL, Alam A, Wang XY, Akbarali HI, Mikkelsen RB. Sepiapterin ameliorates chemically induced murine colitis and azoxymethane-induced colon cancer. J Pharmacol Exp Ther 2013; 347:117-25. [PMID: 23912334 DOI: 10.1124/jpet.113.203828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effects of modulating tetrahydrobiopterin (BH4) levels with a metabolic precursor, sepiapterin (SP), on dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)-induced colorectal cancer were studied. SP in the drinking water blocks DSS-induced colitis measured as decreased disease activity index (DAI), morphologic criteria, and recovery of Ca(2+)-induced contractility responses lost as a consequence of DSS treatment. SP reduces inflammatory responses measured as the decreased number of infiltrating inflammatory macrophages and neutrophils and decreased expression of proinflammatory cytokines interleukin 1β (IL-1β), IL-6, and IL-17A. High-performance liquid chromatography analyses of colonic BH4 and its oxidized derivative 7,8-dihydrobiopterin (BH2) are inconclusive although there was a trend for lower BH4:BH2 with DSS treatment that was reversed with SP. Reduction of colonic cGMP levels by DSS was reversed with SP by a mechanism sensitive to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a specific inhibitor of the NO-sensitive soluble guanylate cyclase (sGC). ODQ abrogates the protective effects of SP on colitis. This plus the finding that SP reduces DSS-enhanced protein Tyr nitration are consistent with DSS-induced uncoupling of NOS. The results agree with previous studies that demonstrated inactivation of sGC in DSS-treated animals as being important in recruitment of inflammatory cells and in altered cholinergic signaling and colon motility. SP also reduces the number of colon tumors in AOM/DSS-treated mice from 7 to 1 per unit colon length. Thus, pharmacologic modulation of BH4 with currently available drugs may provide a mechanism for alleviating some forms of colitis and potentially minimizing the potential for colorectal cancer in patients with colitis.
Collapse
Affiliation(s)
- Robert J G Cardnell
- Departments of Radiation Oncology (R.J.G.C., C.S.R., E.L.H., A.A., R.B.M.), Pharmacology and Toxicology (C.S.R., G.R.R., H.I.A.), and Human and Molecular Genetics (C.G., X.-Y.W.), Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marlow GJ, van Gent D, Ferguson LR. Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J Gastroenterol 2013; 19:3931-3941. [PMID: 23840137 PMCID: PMC3703179 DOI: 10.3748/wjg.v19.i25.3931] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/18/2013] [Accepted: 05/10/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) such as Crohn’s disease (CD) or ulcerative colitis are chronic intestinal disorders, which are on the increase in “Westernised” countries. IBD can be caused by both genetic and environmental factors. Interleukin-10 (IL-10) is an immunoregulatory cytokine that has been identified as being involved in several diseases including IBD. Studies have shown that polymorphisms in the promoter region reduce serum levels of IL-10 and this reduction has been associated with some forms of IBD. Mouse models have shown promising results with IL-10 supplementation, as such IL-10 supplementation has been touted as being a possible alternative treatment for CD in humans. Clinical trials have shown that recombinant human IL-10 is safe and well tolerated up to a dose of 8 μg/kg. However, to date, the results of the clinical trials have been disappointing. Although CD activity was reduced as measured by the CD activity index, IL-10 supplementation did not result in significantly reduced remission rates or clinical improvements when compared to placebo. This review discusses why IL-10 supplementation is not effective in CD patients currently and what can be addressed to potentially make IL-10 supplementation a more viable treatment option in the future. Based on the current research we conclude that IL-10 supplementation is not a one size fits all treatment and if the correct population of patients is chosen then IL-10 supplementation could be of benefit.
Collapse
|
31
|
Poly-γ-glutamic acid attenuates angiogenesis and inflammation in experimental colitis. Mediators Inflamm 2013; 2013:982383. [PMID: 23766568 PMCID: PMC3671540 DOI: 10.1155/2013/982383] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 01/01/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA), naturally secreted from various strains of Bacillus, has anti-inflammatory activity. In inflammatory bowel disease (IBD), inflammation is promoted and sustained by angiogenesis; however, the role played by γ-PGA in this condition is unclear. Therefore, we evaluated γ-PGA effects on angiogenesis and inflammation in a dextran sulfate sodium- (DSS-) induced mouse colitis model. Experimental colitis was induced in male C57BL/6 mice by administering 3% DSS. Disease activity index (DAI), histopathological scores, microvascular density, myeloperoxidase activity, and VEGF-A and VEGFR2 expression were compared among control mice, DSS-treated mice, and mice receiving 3% DSS along with γ-PGA at 50 mg/kg body weight per day or 3% DSS with γ-PGA at 200 mg/kg body weight per day. We found that γ-PGA significantly attenuated weight loss, DAI, and colon shortening. γ-PGA also significantly reduced histopathological evidence of injury. Moreover, γ-PGA significantly attenuated DSS-induced blood vessel densities. Furthermore, γ-PGA attenuated DSS-induced expression of VEGF-A and its receptor, VEGFR2. In addition, γ-PGA treatment led to reduced recruitment of leukocytes to the inflamed colon. Therefore, our results indicate that γ-PGA has potential application in conditions marked by inflammatory-driven angiogenesis and mucosal inflammation.
Collapse
|
32
|
Liu C, Xu H, Zhang B, Johansson MEV, Li J, Hansson GC, Ghishan FK. NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion. Am J Physiol Cell Physiol 2013; 305:C121-8. [PMID: 23657568 DOI: 10.1152/ajpcell.00101.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Na⁺/H⁺ exchanger NHE8 is expressed on the apical membrane of intestinal epithelial cells and is particularly abundant in the colon. Our previous study showed that Muc2 expression was significantly reduced in NHE8-knockout (NHE8-/-) mice, suggesting that NHE8 plays a role in mucosal protection in the colon. The current study confirms and extends our studies on the role of NHE8 in mucosal protection. The number of bacteria attached on the distal colon was significantly increased in NHE8-/- mice compared with their wild-type littermates. As expected, IL-4 expression was markedly increased in NHE8-/- mice compared with wild-type mice. Immunohistochemistry showed disorganization in the mucin layer of NHE8-/- mice, suggesting a possible direct bacteria-epithelia interaction. Furthermore, NHE8-/- mice were susceptible to dextran sodium sulfate-induced mucosal injury. In wild-type mice, dextran sodium sulfate treatment inhibited colonic NHE8 expression. In Caco-2 cells, the absence of NHE8 expression resulted in higher adhesion rates of Salmonella typhimurium but not Lactobacillus plantarum. Similarly, in vivo, S. typhimurium adhesion rate was increased in NHE8-/- mice compared with wild-type mice. Our study suggests that NHE8 plays important roles in protecting intestinal epithelia from infectious bacterial adherence.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Patel M, Olinde J, Tatum A, Ganta CV, Cromer WE, Sheth AR, Jennings MH, Mathis JM, Testerman T, Jordan PA, Manas K, Monceaux CP, Alexander JS. Gut sterilization in experimental colitis leukocyte mediated colon injury, and effects on angiogenesis/lymphangiogenesis. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojgas.2013.31003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Teixeira LB, Epifânio VLAA, Lachat JJ, Foss NT, Coutinho-Netto J. Oral treatment with Hev b 13 ameliorates experimental colitis in mice. Clin Exp Immunol 2012; 169:27-32. [PMID: 22670775 DOI: 10.1111/j.1365-2249.2012.04589.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hev b 13 is an allergenic esterase obtained from the rubber tree Hevea brasiliensis, which has been shown recently to induce human mononuclear cells to release interleukin (IL)-10 in vitro. This immunoregulatory cytokine appears to play an important role in preventing inflammation and mucosal damage in animal models of colitis and in Crohn's disease patients. The aim of this study was to evaluate the therapeutic effect of Hev b 13 in mice with 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis. Two hours following colonic instillation of the haptenizing agent, and daily thereafter for 5 days, Hev b 13 was administered by oral gavage. In mice treated with daily doses of either 0·5 mg/kg or 5·0 mg/kg of Hev b 13, the clinical signs of diarrhoea, rectal prolapse and body weight loss and also histological damage of the distal colon, were reduced significantly, in comparison with water-treated diseased mice. These findings suggest a potent anti-inflammatory activity of Hev b 13; this activity is speculated to be related to its interaction with cells from the immune system.
Collapse
Affiliation(s)
- L B Teixeira
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
35
|
Tai EKK, Wu WKK, Wang XJ, Wong HPS, Yu L, Li ZJ, Lee CW, Wong CCM, Yu J, Sung JJY, Gallo RL, Cho CH. Intrarectal administration of mCRAMP-encoding plasmid reverses exacerbated colitis in Cnlp(-/-) mice. Gene Ther 2012; 20:187-93. [PMID: 22378344 DOI: 10.1038/gt.2012.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cathelicidin is a pleiotropic host defense peptide secreted by epithelial and immune cells. Whether endogenous cathelicidin is protective against ulcerative colitis, however, is unclear. Here we sought to delineate the role of endogenous murine cathelicidin (mCRAMP) and the therapeutic efficacy of intrarectal administration of mCRAMP-encoding plasmid in ulcerative colitis using dextran sulfate sodium (DSS)-challenged cathelicidin-knockout (Cnlp(-/-)) mice as a model. Cnlp(-/-) mice had more severe symptoms and mucosal disruption than the wild-type mice in response to DSS challenge. The tissue levels of interleukin-1β and tumor necrosis factor-α, myeloperoxidase activity and the number of apoptotic cells were increased in the colon of DSS-challenged Cnlp(-/-) mice. Moreover, mucus secretion and mucin gene expression were impaired in Cnlp(-/-) mice. All these abnormalities were reversed by the intrarectal administration of mCRAMP or mCRAMP-encoding plasmid. Taken together, endogenous cathelicidin may protect against ulcerative colitis through modulation of inflammation and mucus secretion.
Collapse
Affiliation(s)
- E K K Tai
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Polyak S, Mach A, Porvasnik S, Dixon L, Conlon T, Erger KE, Acosta A, Wright AJ, Campbell-Thompson M, Zolotukhin I, Wasserfall C, Mah C. Identification of adeno-associated viral vectors suitable for intestinal gene delivery and modulation of experimental colitis. Am J Physiol Gastrointest Liver Physiol 2012; 302:G296-308. [PMID: 22114116 DOI: 10.1152/ajpgi.00562.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effective gene transfer with sustained gene expression is an important adjunct to the study of intestinal inflammation and future therapy in inflammatory bowel disease. Recombinant adeno-associated virus (AAV) vectors are ideal for gene transfer and long-term transgene expression. The purpose of our study was to identify optimal AAV pseudotypes for transduction of the epithelium in the small intestine and colon, which could be used for studies in experimental colitis. The tropism and transduction efficiencies of AAV pseudotypes 1-10 were examined in murine small intestine and colon 8 wk after administration by real-time PCR and immunohistochemistry. The clinical and histopathological effects of IL-10-mediated intestinal transduction delivered by AAVrh10 were examined in the murine IL-10⁻/⁻ enterocolitis model. Serum IL-10 levels and IL-10 expression were followed by ELISA and real-time PCR, respectively. AAV pseudotypes 4, 7, 8, 9, and 10 demonstrated optimal intestinal transduction. Transgene expression was sustained 8 wk after administration and was frequently observed in enteroendocrine cells. Long-term IL-10 gene expression and serum IL-10 levels were observed following AAV transduction in an IL-10-/- model of enterocolitis. Animals treated with AAVrh10-IL-10 had lower disease activity index scores, higher colon weight-to-length ratios, and lower microscopic inflammation scores. This study identifies novel AAV pseudotypes with small intestine and colon tropism and sustained transgene expression capable of modulating mucosal inflammation in a murine model of enterocolitis.
Collapse
Affiliation(s)
- Steven Polyak
- Univ. of Iowa College of Medicine, 200 Hawkins Dr., JCP4574, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Deshpande N, Lutz AM, Ren Y, Foygel K, Tian L, Schneider M, Pai R, Pasricha PJ, Willmann JK. Quantification and monitoring of inflammation in murine inflammatory bowel disease with targeted contrast-enhanced US. Radiology 2011; 262:172-80. [PMID: 22056689 DOI: 10.1148/radiol.11110323] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate ultrasonography (US) by using contrast agent microbubbles (MBs) targeted to P-selectin (MB(P-selectin)) to quantify P-selectin expression levels in inflamed tissue and to monitor response to therapy in a murine model of chemically induced inflammatory bowel disease (IBD). MATERIALS AND METHODS All procedures in which laboratory animals were used were approved by the institutional administrative panel on laboratory animal care. Binding affinity and specificity of MB(P-selectin) were tested in cell culture experiments under flow shear stress conditions and compared with control MBs (MB(Control)). In vivo binding specificity of MB(P-selectin) to P-selectin was tested in mice with trinitrobenzenesulfonic acid-induced colitis (n = 22) and control mice (n = 10). Monitoring of anti-tumor necrosis factor α antibody therapy was performed over 5 days in an additional 30 mice with colitis by using P-selectin-targeted US imaging, by measuring bowel wall thickness and perfusion, and by using a clinical disease activity index score. In vivo targeted contrast material-enhanced US signal was quantitatively correlated with ex vivo expression levels of P-selectin as assessed by quantitative immunofluorescence. RESULTS Attachment of MB(P-selectin) to endothelial cells was significantly (P = .0001) higher than attachment of MB(Control) and significantly (ρ = 0.83, P = .04) correlated with expression levels of P-selectin on endothelial cells. In vivo US signal in mice with colitis was significantly higher (P = .0001) with MB(P-selectin) than with MB(Control). In treated mice, in vivo US signal decreased significantly (P = .0001) compared with that in nontreated mice and correlated well with ex vivo P-selectin expression levels (ρ = 0.69; P = .04). Colonic wall thickness (P ≥ .06), bowel wall perfusion (P ≥ .85), and clinical disease activity scoring (P ≥ .06) were not significantly different between treated and nontreated mice at any time. CONCLUSION Targeted contrast-enhanced US imaging enables noninvasive in vivo quantification and monitoring of P-selectin expression in inflammation in murine IBD.
Collapse
Affiliation(s)
- Nirupama Deshpande
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305-5621, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis. Dig Dis Sci 2011; 56:2818-32. [PMID: 21479819 DOI: 10.1007/s10620-011-1692-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/23/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypoadiponectinemia has been associated with states of chronic inflammation in humans. Mesenteric fat hypertrophy and low adiponectin have been described in patients with Crohn's disease. We investigated whether adiponectin and the plant-derived homolog, osmotin, are beneficial in a murine model of colitis. METHODS C57BL/6 mice were injected (i.v.) with an adenoviral construct encoding the full-length murine adiponectin gene (AN+DSS) or a reporter-LacZ (Ctr and V+DSS groups) prior to DSS colitis protocol. In another experiment, mice with DSS colitis received either osmotin (Osm+DSS) or saline (DSS) via osmotic pumps. Disease progression and severity were evaluated using body weight, stool consistency, rectal bleeding, colon lengths, and histology. In vitro experiments were carried out in bone marrow-derived dendritic cells. RESULTS Mice overexpressing adiponectin had lower expression of proinflammatory cytokines (TNF, IL-1β), adipokines (angiotensin, osteopontin), and cellular stress and apoptosis markers. These mice had higher levels of IL-10, alternative macrophage marker, arginase 1, and leukoprotease inhibitor. The plant adiponectin homolog osmotin similarly improved colitis outcome and induced robust IL-10 secretion. LPS induced a state of adiponectin resistance in dendritic cells that was reversed by treatment with PPARγ agonist and retinoic acid. CONCLUSION Adiponectin exerted protective effects during murine DSS colitis. It had a broad activity that encompassed cytokines, chemotactic factors as well as processes that assure cell viability during stressful conditions. Reducing adiponectin resistance or using plant-derived adiponectin homologs may become therapeutic options in inflammatory bowel disease.
Collapse
|
39
|
Owen KA, Abshire MY, Tilghman RW, Casanova JE, Bouton AH. FAK regulates intestinal epithelial cell survival and proliferation during mucosal wound healing. PLoS One 2011; 6:e23123. [PMID: 21887232 PMCID: PMC3160839 DOI: 10.1371/journal.pone.0023123] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/11/2011] [Indexed: 12/29/2022] Open
Abstract
Background Following damage to the intestinal epithelium, restoration of epithelial barrier integrity is triggered by a robust proliferative response. In other tissues, focal adhesion kinase (FAK) regulates many of the cellular processes that are critical for epithelial homeostasis and restitution, including cell migration, proliferation and survival. However, few studies to date have determined how FAK contributes to mucosal wound healing in vivo. Methodology and Principal Findings To examine the role of FAK in intestinal epithelial homeostasis and during injury, we generated intestinal epithelium (IE)-specific conditional FAK knockout mice. Colitis was induced with dextran-sulfate-sodium (DSS) and intestinal tissues were analyzed by immunohistochemistry and immunoblotting. While intestinal development occurred normally in mice lacking FAK, FAK-deficient animals were profoundly susceptible to colitis. The loss of epithelial FAK resulted in elevated p53 expression and an increased sensitivity to apoptosis, coincident with a failure to upregulate epithelial cell proliferation. FAK has been reported to function as a mechanosensor, inducing cyclin D1 expression and promoting cell cycle progression under conditions in which tissue/matrix stiffness is increased. Collagen deposition, a hallmark of inflammatory injury resulting in increased tissue rigidity, was observed in control and FAK knockout mice during colitis. Despite this fibrotic response, the colonic epithelium in FAK-deficient mice exhibited significantly reduced cyclin D1 expression, suggesting that proliferation is uncoupled from fibrosis in the absence of FAK. In support of this hypothesis, proliferation of Caco-2 cells increased proportionally with matrix stiffness in vitro only under conditions of normal FAK expression; FAK depleted cells exhibited reduced proliferation concomitant with attenuated cyclin D1 expression. Conclusions In the colon, FAK functions as a regulator of epithelial cell survival and proliferation under conditions of mucosal injury and a mechanosensor of tissue compliance, inducing repair-driven proliferation in the colonic epithelium through upregulation of cyclin D1.
Collapse
Affiliation(s)
- Katherine A. Owen
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Michelle Y. Abshire
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Robert W. Tilghman
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - James E. Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
- * E-mail: (AHB); (JEC)
| | - Amy H. Bouton
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
- * E-mail: (AHB); (JEC)
| |
Collapse
|
40
|
Wu LH, Xu ZL, Dong D, He SA, Yu H. Protective Effect of Anthocyanins Extract from Blueberry on TNBS-Induced IBD Model of Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:525462. [PMID: 21785630 PMCID: PMC3135784 DOI: 10.1093/ecam/neq040] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 04/09/2010] [Indexed: 11/13/2022]
Abstract
This study was carried out to evaluate the protective effect of anthocyanins extract of blueberry on trinitrobenzene sulfonic acid (TNBS)-induced inflammatory bowel disease (IBD) model of mice. The study employed female C57BL/6 mice (n = 50), and colitis was induced by intracolonic injection of 0.5 mg of TNBS dissolved in 50% ethanol-phosphate buffered solution. The mice were divided into five groups (n = 10): vehicle, TNBS control and anthocyanins groups that received different doses of anthocyanins extract (10, 20 and 40 mg kg(-1)) daily for 6 days. Both increase in body weight and diarrhea symptoms were monitored each day. After 6 days, the animals were killed, and the following parameters were assessed: colon length, morphological score, histological score and biochemical assay (NO, myeloperoxidase (MPO), interleukin (IL)-12, IL-10, tumor necrosis factor (TNF)-α and interferon (IFN)-γ). The results showed that the anthocyanins extract of blueberry rendered strong protection against TNBS-induced colonic damage at a dosage of 40 mg kg(-1). When compared with the control, anthocyanins extract significantly prevented loss of body weight and ameliorated the scores of diarrhea, morphology and histology. Treatment with anthocyanins extract restored IL-10 excretion, as well as caused reduction in the levels of NO, MPO, IL-12, TNF-α and IFN-γ. Our research revealed the protective effect of anthocyanins extract from blueberry on TNBS-induced experimental colitis in mice, as well as examined whether high levels of dietary blueberries would lower the risk or have protective effects on human IBD, which may require further investigation.
Collapse
Affiliation(s)
- Lin-Hua Wu
- Department of Pharmacy, The Second Clinical College of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
41
|
Wang X, Chen Y, Song Y, Zhang S, Xie X, Wang X. Activated Syndecan-1 shedding contributes to mice colitis induced by dextran sulfate sodium. Dig Dis Sci 2011; 56:1047-56. [PMID: 20936359 DOI: 10.1007/s10620-010-1398-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 08/12/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Syndecan-1(Sdc1) plays important roles in many steps of inflammatory responses. In ulcerative colitis patients, decreased Sdc1 expression was observed and Sdc1 analogue heparin could improve the disease course. A better understanding of how Sdc1 functions in colitis will benefit the disease intervention. AIMS To evaluate the role of Sdc1 in dextran sulfate sodium (DSS)-induced colitis. METHODS BALB/c mice were grouped randomly into control, DSS, and heparin+DSS. The DSS group was given 4% DSS orally and heparin+DSS group was given 4% DSS with heparin (enoxaparin) subcutaneously, while the control was given distilled water orally. All mice were killed at day 7. Disease activities, histopathological changes, membrane-bound and free Sdc1 level and mRNA expression of Sdc1, IL-1, and IL-10 in colon mucosa were detected. RESULTS Significant colitis was observed in the DSS group, but disease activity index and histological score showed significant lower in the heparin+DSS group than those in the DSS group. Compared to the control group, decreased Sdc1 protein expression was detected in colon mucosa of DSS-induced colitis while Sdc1 ectodomain level in serum was much higher. Inhibited Sdc1 ectodomain shedding was detected in the heparin+DSS group compared to the DSS group. RT-PCR demonstrated that both IL-1 and IL-10 expression were up-regulated in DSS-induced colitis while heparin lessened the up-regulation extent. CONCLUSIONS Sdc1 shedding is activated in DSS-induced colitis and heparin, which mimics Sdc1 functions, relieves colitis severity by inhibiting Sdc1 shedding and down-regulating cytokines expression.
Collapse
Affiliation(s)
- Xia Wang
- Guangdong Provincial Key Laboratory of Gastroenterology and Department of Digestive Diseases, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
42
|
Chaitanya GV, Franks SE, Cromer W, Wells SR, Bienkowska M, Jennings MH, Ruddell A, Ando T, Wang Y, Gu Y, Sapp M, Mathis JM, Jordan PA, Minagar A, Alexander JS. Differential cytokine responses in human and mouse lymphatic endothelial cells to cytokines in vitro. Lymphat Res Biol 2011; 8:155-64. [PMID: 20863268 DOI: 10.1089/lrb.2010.0004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Inflammatory cytokines dysregulate microvascular function, yet how cytokines affect lymphatic endothelial cells (LEC) are unclear. METHODS AND RESULTS We examined effects of TNF-α, IL-1 beta, and IFN-gamma on LEC proliferation, endothelial cell adhesion molecule (ECAM) expression, capillary formation, and barrier changes in murine (SV-LEC) and human LECs (HMEC-1a). RESULTS All cytokines induced ICAM-1, VCAM-1, MAdCAM-1, and E-selectin in SV-LECs; TNF-α, IL-1 beta; and IFN-gamma induced ECAMs (but not MAdCAM-1) in HMEC-1a. IL-1 beta increased, while IFN-gamma and TNF-α reduced SV-LEC proliferation. While TNF-α induced, IFN-gamma decreased, and IL-1 beta did not show any effect on HMEC-1a proliferation. TNF-α, IL-1 beta, and IFN-gamma each reduced capillary formation in SV-LEC and in HMEC-1a. TNF-α and IL-1 beta reduced barrier in SV-LEC and HMEC-1a; IFN-gamma did not affect SV-LEC barrier, but enhanced HMEC-1a barrier. Inflammatory cytokines alter LEC growth, activation and barrier function in vitro and may disturb lymphatic clearance increasing tissue edema in vivo. CONCLUSION Therapies that maintain or restore lymphatic function (including cytokines blockade), may represent important strategies for limiting inflammation.
Collapse
Affiliation(s)
- G V Chaitanya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gu QP, Bai AP. Interleukin-10 and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2011; 19:57-61. [DOI: 10.11569/wcjd.v19.i1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiology of inflammatory bowel disease (IBD) has not been fully elucidated. Evidence indicates that dysregulation of intestinal mucosal immunity plays a critical role in the pathogenesis of IBD since it can cause overproduction of inflammatory cytokines and lead to uncontrolled intestinal inflammation. Cytokines play a pivotal role in modulating inflammation and may therefore be a good target for IBD therapy. Interleukin-10 (IL-10) is a regulatory cytokine which inhibits both antigen presentation and subsequent pro-inflammatory cytokine release and has been proposed as a potent anti-inflammatory biological therapy for chronic IBD. Many IL-10-based strategies have been developed for treatment of IBD, including recombinant IL-10, genetically modified bacteria expressing IL-10, adenoviral vectors encoding IL-10, and combination therapy with IL-10 and Treg cells. The use of IL-10-based strategies will provide new insights into cell- and gene-based treatment for IBD.
Collapse
|
44
|
Kosaka S, Tamauchi H, Terashima M, Maruyama H, Habu S, Kitasato H. IL-10 controls Th2-type cytokine production and eosinophil infiltration in a mouse model of allergic airway inflammation. Immunobiology 2010; 216:811-20. [PMID: 21257225 DOI: 10.1016/j.imbio.2010.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/11/2010] [Accepted: 12/14/2010] [Indexed: 12/31/2022]
Abstract
Interleukin-10 was originally described as a factor that inhibits cytokine production by murine Th1 clones. Recent studies have since shown that IL-10 can also downregulate Th2 clones and their production of IL-4 and IL-5. Because of its immuno-suppressive properties, IL-10 has been suggested as a potential therapy for allergic inflammation and asthma. However, the pathophysiological role of IL-10 in vivo has not been clearly elucidated. We investigated the effects of IL-10 administration on the production of IgE, cytokine and allergen-induced Th2 cytokine production as well as its effects on eosinophilic inflammation. We established GATA-3/TCR double transgenic (GATA-3/TCR-Tg) mice by crossing GATA-3 transgenic mice with ovalbumin (OVA)-specific TCR transgenic mice; these mice were then sensitized using an intraperitoneal injection of OVA adsorbed to alum and challenged with the intratracheal instillation of an allergen. When GATA-3/TCR-Tg mice sensitized with OVA and alum were injected with C57-IL-10 cells before OVA inhalation, the levels of IL-5, IL-13, and IL-4 decreased by 40-85% and number of eosinophils decreased by 70% (P<0.03) in the murine bronchoalveolar lavage fluid (BALF). These results suggest that IL-10 plays an important role downstream of the inflammatory cascade in the Th2 response to antigens and in the development of BALF eosinophilia and cytokine production in a murine model of asthma. These immunosuppressive properties in animal models indicate that IL-10 could be a potential clinical therapy for the treatment of allergic inflammation.
Collapse
Affiliation(s)
- Shinichiro Kosaka
- Department of Microbiology, Kitasato University Allied Health Science, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Dahan A, Amidon GL, Zimmermann EM. Drug targeting strategies for the treatment of inflammatory bowel disease: a mechanistic update. Expert Rev Clin Immunol 2010; 6:543-50. [PMID: 20594127 DOI: 10.1586/eci.10.30] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The therapeutic management of inflammatory bowel disease (IBD) represents the perfect scenario for drug targeting to the site(s) of action. While existing formulation-based targeting strategies include rectal dosage forms and oral systems that target the colon by pH-, time-, microflora- and pressure-triggered drug release, novel approaches for site-specific delivery in IBD therapy will target the inflamed intestine per se rather than intestinal region. The purpose of this article is to present a mechanistic update on the strategies employed to achieve minimal systemic exposure accompanied by maximal drug levels in the inflamed intestinal tissue. The introduction of biological agents, micro/nanoparticulate carriers including liposomes, transgenic bacteria, and gene therapy opportunities are discussed, as well as the challenges remaining to be achieved in the targeted treatment of IBD.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | |
Collapse
|
46
|
Ganta VC, Cromer W, Mills GL, Traylor J, Jennings M, Daley S, Clark B, Michael Mathis J, Bernas M, Jordan P, Witte M, Steven Alexander J, Alexander JS. Angiopoietin-2 in experimental colitis. Inflamm Bowel Dis 2010; 16:1029-39. [PMID: 19902545 PMCID: PMC2881632 DOI: 10.1002/ibd.21150] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The pathophysiology of inflammatory bowel disease (IBD) includes leukocyte infiltration, blood and lymphatic remodeling, weight loss and protein enteropathy. The roles of angiopoietin-2 (Ang-2) in initiating gut inflammation, leukocyte infiltration and angiogenesis are not well understood. METHODS Disease activity index, histopathological scoring, myeloperoxidase assay, immunohistochemistry and sodium dodecyl sulphate- polyacrylamide gel electrophoretic methods were employed in the present study to address the roles of Ang-2 in experimental colitis. RESULTS Several important differences were seen in the development of experimental IBD in Ang-2(-/-) mice. Although weight change and disease activity differ only slightly in WT and Ang-2(-/-) + DSS treated mice, leukocyte infiltration, inflammation and blood and lymphatic vessel density is significantly attenuated compared to WT + DSS mice. Gut capillary fragility and water export (stool blood and form) appear significantly earlier in Ang-2(-/-) + DSS mice vs. WT. Colon lengths were also significantly reduced in Ang-2(-/-) and gut histopathology was less severe in Ang-2(-/-) compared to WT + DSS. Lastly, the decrease in serum protein content in WT + DSS was less severe in Ang-2(-/-) + DSS, thus protein losing enteropathy (PLE) a feature of IBD is relieved by Ang-2(-/-). CONCLUSION These data demonstrate that in DSS colitis, Ang-2 mediates inflammatory hemangiogenesis, lymphangiogenesis and neutrophil infiltration to reduce some, but not all clinical features of IBD. The implications for Ang-2 manipulation in the development of IBD and other inflammatory diseases and treatments involving Ang-2 are discussed.
Collapse
Affiliation(s)
- Vijay C. Ganta
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - Walter Cromer
- Department of Cell Biology and Anatomy Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - Ginny L. Mills
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - James Traylor
- Department of Pathology Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - Merilyn Jennings
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - Sarah Daley
- Department of Surgery, University of Arizona, Arizona
| | - Benjamin Clark
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - J. Michael Mathis
- Department of Cell Biology and Anatomy Louisiana Health Sciences Centre-Shreveport, Louisiana
| | | | - Paul Jordan
- Department of Gastroenterology, University of Arizona, Arizona
| | - Marlys Witte
- Department of Surgery, University of Arizona, Arizona
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | | |
Collapse
|
47
|
Mizushima T, Sasaki M, Ando T, Wada T, Tanaka M, Okamoto Y, Ebi M, Hirata Y, Murakami K, Mizoshita T, Shimura T, Kubota E, Ogasawara N, Tanida S, Kataoka H, Kamiya T, Alexander JS, Joh T. Blockage of angiotensin II type 1 receptor regulates TNF-alpha-induced MAdCAM-1 expression via inhibition of NF-kappaB translocation to the nucleus and ameliorates colitis. Am J Physiol Gastrointest Liver Physiol 2010; 298:G255-66. [PMID: 19940029 DOI: 10.1152/ajpgi.00264.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) is an important target in the treatment of inflammatory bowel disease (IBD). Recently, treatment of IBD with an antibody to alpha4beta7-integrin, a ligand for MAdCAM-1, has been an intense focus of research. Our aim was to clarify the mechanism by which MAdCAM-1 is regulated via angiotensin II type 1 receptor (AT1R), and to verify if AT1R might be a novel target for IBD treatment. The role of AT1R in the expression of MAdCAM-1 in SVEC (a murine high endothelial venule cell) and MJC-1 (a mouse colonic endothelial cell) was examined following cytokine stimulation. We further evaluated the effect of AT1R on the pathogenesis of immune-mediated colitis using AT1R-deficient (AT1R-/-) mice and a selective AT1R blocker. AT1R blocker significantly suppressed MAdCAM-1 expression induced by TNF-alpha, but did not inhibit phosphorylation of p38 MAPK or of IkappaB that modulate MAdCAM-1 expression. However, NF-kappaB translocation into the nucleus was inhibited by these treatments. In a murine colitis model induced by dextran sulfate sodium, the degree of colitis, judged by body weight loss, histological damage, and the disease activity index, was much milder in AT1R-/- than in wild-type mice. The expression of MAdCAM-1 was also significantly lower in AT1R-/- than in wild-type mice. These results suggest that AT1R regulates the expression of MAdCAM-1 under colonic inflammatory conditions through regulation of the translocation of NF-kappaB into the nucleus. Furthermore, inhibition of AT1R ameliorates colitis in a mouse colitis model. Therefore, AT1R might be one of new therapeutic target of IBD via regulation of MAdCAM-1.
Collapse
Affiliation(s)
- Takashi Mizushima
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Qualls JE, Tuna H, Kaplan AM, Cohen DA. Suppression of experimental colitis in mice by CD11c+ dendritic cells. Inflamm Bowel Dis 2009; 15:236-47. [PMID: 18839426 DOI: 10.1002/ibd.20733] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The innate immune system serves a critical role in homeostasis of the gastrointestinal (GI) tract. Both macrophages (MØs) and dendritic cells (DCs) have been shown to have pathogenic roles in animal models of inflammatory bowel disease. However, studies by several labs have established that resident MØs and DCs within the normal GI tract maintain an immunosuppressive phenotype compared to that seen in other peripheral sites. Recent studies by our lab demonstrated that the depletion of both MØs and DCs before the initiation of dextran sodium sulfate (DSS)-induced colitis resulted in exacerbation of disease, partly caused by increased neutrophil influx. METHODS/RESULTS In this current report, DSS-induced colitis was shown to be significantly more severe when DCs were selectively depleted in mice as indicated by changes in weight loss, stool consistency, rectal bleeding, and histopathology. In contrast to enhanced colitis in MØ/DC-depleted mice, which was associated with increased neutrophil influx, increased colitis in DC-depleted mice was not associated with an increase in neutrophils in the colon, as shown by CXCL1 chemokine levels and myeloperoxidase (MPO) activity. However, increased IL-6 gene and protein expression in colon tissues correlated positively with increased colitis severity in DC-depleted mice compared to colitis in DC-intact mice. CONCLUSIONS This study demonstrates that resident DCs can suppress the severity of acute DSS colitis and that regulation of IL-6 production may contribute to DC-mediated control of intestinal inflammation.
Collapse
Affiliation(s)
- Joseph E Qualls
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
49
|
Rabizadeh S, Rhee KJ, Wu S, Huso D, Gan CM, Golub JE, Wu X, Zhang M, Sears CL. Enterotoxigenic bacteroides fragilis: a potential instigator of colitis. Inflamm Bowel Dis 2007; 13:1475-83. [PMID: 17886290 PMCID: PMC3056612 DOI: 10.1002/ibd.20265] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is proposed to result from a dysregulated mucosal immune response to the colonic flora in genetically susceptible individuals. Enterotoxigenic Bacteroides fragilis (ETBF), a molecular subclass of the common human commensal, B. fragilis, has been associated with IBD. This study investigated whether ETBF colonization of mice initiated colitis or modified the clinical course of a colitis agonist, dextran sodium sulfate (DSS). METHODS Four- and 6-week-old C57BL/6 mice were inoculated with buffer, nontoxigenic B. fragilis (NTBF) strain 9343(pFD340), or ETBF strain 86-5443-2-2 via orogastric tube. A subset of mice received 2% DSS several days pre- or post-inoculation of bacteria. Clinical status was assessed throughout the experiment and severity of colonic inflammation was scored after sacrifice. RESULTS All mice, including those receiving DSS, were clinically well prior to bacterial inoculation. NTBF and ETBF colonization was similar. Regardless of mouse age or timing of DSS administration, mice who received ETBF+DSS experienced worse colitis reflected by less weight gain, enhanced gross disease, and greater inflammation in their colons (P < 0.05), especially in the cecum. In particular, younger mice had more extensive disease. Mice inoculated only with ETBF also exhibited colitis with more severe inflammation when compared to all other groups (P < 0.05) except the ETBF+DSS group. CONCLUSIONS ETBF, a colonic commensal, alone stimulates colitis and significantly enhances colonic inflammation in DSS-treated mice. This study suggests that acquisition of ETBF colonization may be a potential factor in initiation and/or exacerbation of colitis.
Collapse
Affiliation(s)
- Shervin Rabizadeh
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ki-Jong Rhee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Huso
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine M. Gan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan E. Golub
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - XinQun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ming Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L. Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
50
|
Chidlow JH, Shukla D, Grisham MB, Kevil CG. Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues. Am J Physiol Gastrointest Liver Physiol 2007; 293:G5-G18. [PMID: 17463183 DOI: 10.1152/ajpgi.00107.2007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Angiogenesis is now understood to play a major role in the pathology of chronic inflammatory diseases and is indicated to exacerbate disease pathology. Recent evidence shows that angiogenesis is crucial during inflammatory bowel disease (IBD) and in experimental models of colitis. Examination of the relationship between angiogenesis and inflammation in experimental colitis shows that initiating factors for these responses simultaneously increase as disease progresses and correlate in magnitude. Recent studies show that inhibition of the inflammatory response attenuates angiogenesis to a similar degree and, importantly, that inhibition of angiogenesis does the same to inflammation. Recent data provide evidence that differential regulation of the angiogenic mediators involved in IBD-associated chronic inflammation is the root of this pathological angiogenesis. Many factors are involved in this phenomenon, including growth factors/cytokines, chemokines, adhesion molecules, integrins, matrix-associated molecules, and signaling targets. These factors are produced by various vascular, inflammatory, and immune cell types that are involved in IBD pathology. Moreover, recent studies provide evidence that antiangiogenic therapy is a novel and effective approach for IBD treatment. Here we review the role of pathological angiogenesis during IBD and experimental colitis and discuss the therapeutic avenues this recent knowledge has revealed.
Collapse
Affiliation(s)
- John H Chidlow
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|